51
|
Zhou Y, Yang K, Cheng M, Cheng Y, Li Y, Ai G, Bai T, Xu R, Duan W, Peng H, Li X, Xia A, Wang Y, Jing M, Dou D, Dickman MB. Double-faced role of Bcl-2-associated athanogene 7 in plant-Phytophthora interaction. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5751-5765. [PMID: 34195821 DOI: 10.1093/jxb/erab252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Due to their sessile nature, plants must respond to various environmental assaults in a coordinated manner. The endoplasmic reticulum is a central hub for plant responses to various stresses. We previously showed that Phytophthora utilizes effector PsAvh262-mediated binding immunoglobulin protein (BiP) accumulation for suppressing endoplasmic reticulum stress-triggered cell death. As a BiP binding partner, Bcl-2-associated athanogene 7 (BAG7) plays a crucial role in the maintenance of the unfolded protein response, but little is known about its role in plant immunity. In this work, we reveal a double-faced role of BAG7 in Arabidopsis-Phytophthora interaction in which it regulates endoplasmic reticulum stress-mediated immunity oppositely in different cellular compartments. In detail, it acts as a susceptibility factor in the endoplasmic reticulum, but plays a resistance role in the nucleus against Phytophthora. Phytophthora infection triggers the endoplasmic reticulum-to-nucleus translocation of BAG7, the same as abiotic heat stress; however, this process can be prevented by PsAvh262-mediated BiP accumulation. Moreover, the immunoglobulin/albumin-binding domain in PsAvh262 is essential for both pathogen virulence and BiP accumulation. Taken together, our study uncovers a double-faced role of BAG7; Phytophthora advances its colonization in planta by utilizing an effector to detain BAG7 in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Yang Zhou
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Yang
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Cheng
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Cheng
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yurong Li
- Corteva Agriscience, Johnston, IA 50131, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Gan Ai
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Bai
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruofei Xu
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Duan
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Xiaobo Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangdong, Guangzhou 510640, China
| | - Ai Xia
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Maofeng Jing
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daolong Dou
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Marty B Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
52
|
Lemke MD, Fisher KE, Kozlowska MA, Tano DW, Woodson JD. The core autophagy machinery is not required for chloroplast singlet oxygen-mediated cell death in the Arabidopsis thaliana plastid ferrochelatase two mutant. BMC PLANT BIOLOGY 2021; 21:342. [PMID: 34281507 PMCID: PMC8290626 DOI: 10.1186/s12870-021-03119-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Chloroplasts respond to stress and changes in the environment by producing reactive oxygen species (ROS) that have specific signaling abilities. The ROS singlet oxygen (1O2) is unique in that it can signal to initiate cellular degradation including the selective degradation of damaged chloroplasts. This chloroplast quality control pathway can be monitored in the Arabidopsis thaliana mutant plastid ferrochelatase two (fc2) that conditionally accumulates chloroplast 1O2 under diurnal light cycling conditions leading to rapid chloroplast degradation and eventual cell death. The cellular machinery involved in such degradation, however, remains unknown. Recently, it was demonstrated that whole damaged chloroplasts can be transported to the central vacuole via a process requiring autophagosomes and core components of the autophagy machinery. The relationship between this process, referred to as chlorophagy, and the degradation of 1O2-stressed chloroplasts and cells has remained unexplored. RESULTS To further understand 1O2-induced cellular degradation and determine what role autophagy may play, the expression of autophagy-related genes was monitored in 1O2-stressed fc2 seedlings and found to be induced. Although autophagosomes were present in fc2 cells, they did not associate with chloroplasts during 1O2 stress. Mutations affecting the core autophagy machinery (atg5, atg7, and atg10) were unable to suppress 1O2-induced cell death or chloroplast protrusion into the central vacuole, suggesting autophagosome formation is dispensable for such 1O2-mediated cellular degradation. However, both atg5 and atg7 led to specific defects in chloroplast ultrastructure and photosynthetic efficiencies, suggesting core autophagy machinery is involved in protecting chloroplasts from photo-oxidative damage. Finally, genes predicted to be involved in microautophagy were shown to be induced in stressed fc2 seedlings, indicating a possible role for an alternate form of autophagy in the dismantling of 1O2-damaged chloroplasts. CONCLUSIONS Our results support the hypothesis that 1O2-dependent cell death is independent from autophagosome formation, canonical autophagy, and chlorophagy. Furthermore, autophagosome-independent microautophagy may be involved in degrading 1O2-damaged chloroplasts. At the same time, canonical autophagy may still play a role in protecting chloroplasts from 1O2-induced photo-oxidative stress. Together, this suggests chloroplast function and degradation is a complex process utilizing multiple autophagy and degradation machineries, possibly depending on the type of stress or damage incurred.
Collapse
Affiliation(s)
- Matthew D. Lemke
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - Karen E. Fisher
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - Marta A. Kozlowska
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - David W. Tano
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| |
Collapse
|
53
|
Arif M, Li Z, Luo Q, Li L, Shen Y, Men S. The BAG2 and BAG6 Genes Are Involved in Multiple Abiotic Stress Tolerances in Arabidopsis Thaliana. Int J Mol Sci 2021; 22:ijms22115856. [PMID: 34072612 PMCID: PMC8198428 DOI: 10.3390/ijms22115856] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023] Open
Abstract
The BAG proteins are a family of multi-functional co-chaperones. In plants, BAG proteins were found to play roles both in abiotic and biotic stress tolerance. However, the function of Arabidopsis BAG2 remains largely unknown, whereas BAG6 is required for plants’ defense to pathogens, although it remains unknown whether BAG6 is involved in plants’ tolerance to abiotic stresses. Here, we show that both BAG2 and BAG6 are expressed in various tissues and are upregulated by salt, mannitol, and heat treatments and by stress-related hormones including ABA, ethylene, and SA. Germination of bag2, bag6 and bag2 bag6 seeds is less sensitive to ABA compared to the wild type (WT), whereas BAG2 and BAG6 overexpression lines are hypersensitive to ABA. bag2, bag6, and bag2 bag6 plants show higher survival rates than WT in drought treatment but display lower survival rates in heat-stress treatment. Consistently, these mutants showed differential expression of several stress- and ABA-related genes such as RD29A, RD29B, NCED3 and ABI4 compared to the WT. Furthermore, these mutants exhibit lower levels of ROS after drought and ABA treatment but higher ROS accumulation after heat treatment than the WT. These results suggest that BAG2 and BAG6 are negatively involved in drought stress but play a positive role in heat stress in Arabidopsis.
Collapse
Affiliation(s)
- Muhammad Arif
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.A.); (Z.L.); (Q.L.); (L.L.)
| | - Zitong Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.A.); (Z.L.); (Q.L.); (L.L.)
| | - Qiong Luo
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.A.); (Z.L.); (Q.L.); (L.L.)
| | - Luhua Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.A.); (Z.L.); (Q.L.); (L.L.)
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China;
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuzhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.A.); (Z.L.); (Q.L.); (L.L.)
- Correspondence:
| |
Collapse
|
54
|
Gangurde SS, Nayak SN, Joshi P, Purohit S, Sudini HK, Chitikineni A, Hong Y, Guo B, Chen X, Pandey MK, Varshney RK. Comparative Transcriptome Analysis Identified Candidate Genes for Late Leaf Spot Resistance and Cause of Defoliation in Groundnut. Int J Mol Sci 2021; 22:ijms22094491. [PMID: 33925801 PMCID: PMC8123497 DOI: 10.3390/ijms22094491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022] Open
Abstract
Late leaf spot (LLS) caused by fungus Nothopassalora personata in groundnut is responsible for up to 50% yield loss. To dissect the complex nature of LLS resistance, comparative transcriptome analysis was performed using resistant (GPBD 4), susceptible (TAG 24) and a resistant introgression line (ICGV 13208) and identified a total of 12,164 and 9954 DEGs (differentially expressed genes) respectively in A- and B-subgenomes of tetraploid groundnut. There were 135 and 136 unique pathways triggered in A- and B-subgenomes, respectively, upon N. personata infection. Highly upregulated putative disease resistance genes, an RPP-13 like (Aradu.P20JR) and a NBS-LRR (Aradu.Z87JB) were identified on chromosome A02 and A03, respectively, for LLS resistance. Mildew resistance Locus (MLOs)-like proteins, heavy metal transport proteins, and ubiquitin protein ligase showed trend of upregulation in susceptible genotypes, while tetratricopeptide repeats (TPR), pentatricopeptide repeat (PPR), chitinases, glutathione S-transferases, purple acid phosphatases showed upregulation in resistant genotypes. However, the highly expressed ethylene responsive factor (ERF) and ethylene responsive nuclear protein (ERF2), and early responsive dehydration gene (ERD) might be related to the possible causes of defoliation in susceptible genotypes. The identified disease resistance genes can be deployed in genomics-assisted breeding for development of LLS resistant cultivars to reduce the yield loss in groundnut.
Collapse
Affiliation(s)
- Sunil S. Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (S.S.G.); (P.J.); (S.P.); (H.K.S.); (A.C.)
- Department of Genetics, Osmania University, Hyderabad 500007, India
| | - Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad 580005, India;
| | - Pushpesh Joshi
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (S.S.G.); (P.J.); (S.P.); (H.K.S.); (A.C.)
| | - Shilp Purohit
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (S.S.G.); (P.J.); (S.P.); (H.K.S.); (A.C.)
| | - Hari K. Sudini
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (S.S.G.); (P.J.); (S.P.); (H.K.S.); (A.C.)
| | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (S.S.G.); (P.J.); (S.P.); (H.K.S.); (A.C.)
| | - Yanbin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.H.); (X.C.)
| | - Baozhu Guo
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA;
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.H.); (X.C.)
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (S.S.G.); (P.J.); (S.P.); (H.K.S.); (A.C.)
- Correspondence: (M.K.P.); (R.K.V.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (S.S.G.); (P.J.); (S.P.); (H.K.S.); (A.C.)
- Correspondence: (M.K.P.); (R.K.V.)
| |
Collapse
|
55
|
Ma X, Zhang C, Kim DY, Huang Y, Chatt E, He P, Vierstra RD, Shan L. Ubiquitylome analysis reveals a central role for the ubiquitin-proteasome system in plant innate immunity. PLANT PHYSIOLOGY 2021; 185:1943-1965. [PMID: 33793954 PMCID: PMC8133637 DOI: 10.1093/plphys/kiab011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/22/2020] [Indexed: 05/22/2023]
Abstract
Protein ubiquitylation profoundly expands proteome functionality and diversifies cellular signaling processes, with recent studies providing ample evidence for its importance to plant immunity. To gain a proteome-wide appreciation of ubiquitylome dynamics during immune recognition, we employed a two-step affinity enrichment protocol based on a 6His-tagged ubiquitin (Ub) variant coupled with high sensitivity mass spectrometry to identify Arabidopsis proteins rapidly ubiquitylated upon plant perception of the microbe-associated molecular pattern (MAMP) peptide flg22. The catalog from 2-week-old seedlings treated for 30 min with flg22 contained 690 conjugates, 64 Ub footprints, and all seven types of Ub linkages, and included previously uncharacterized conjugates of immune components. In vivo ubiquitylation assays confirmed modification of several candidates upon immune elicitation, and revealed distinct modification patterns and dynamics for key immune components, including poly- and monoubiquitylation, as well as induced or reduced levels of ubiquitylation. Gene ontology and network analyses of the collection also uncovered rapid modification of the Ub-proteasome system itself, suggesting a critical auto-regulatory loop necessary for an effective MAMP-triggered immune response and subsequent disease resistance. Included targets were UBIQUITIN-CONJUGATING ENZYME 13 (UBC13) and proteasome component REGULATORY PARTICLE NON-ATPASE SUBUNIT 8b (RPN8b), whose subsequent biochemical and genetic analyses implied negative roles in immune elicitation. Collectively, our proteomic analyses further strengthened the connection between ubiquitylation and flg22-based immune signaling, identified components and pathways regulating plant immunity, and increased the database of ubiquitylated substrates in plants.
Collapse
Affiliation(s)
- Xiyu Ma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Chao Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Do Young Kim
- Department of Genetics, University of Wisconsin–Madison, 425-G Henry Mall, Madison, Wisconsin 53706
- Advanced Bio Convergence Center, Pohang Technopark, Gyeong-Buk 37668, South Korea
| | - Yanyan Huang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Elizabeth Chatt
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin–Madison, 425-G Henry Mall, Madison, Wisconsin 53706
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
- Author for communication:
| |
Collapse
|
56
|
Santos RB, Figueiredo A. Two sides of the same story in grapevine-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3367-3380. [PMID: 33631010 DOI: 10.1093/jxb/erab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Proteases are an integral part of plant defence systems, and their role in plant-pathogen interactions is unequivocal. Emerging evidence suggests that different protease families contribute to the establishment not only of hypersensitive response, priming, and signalling, but also of recognition events through complex proteolytic cascades. Moreover, they play a crucial role in pathogen/microbe-associated molecular pattern (PAMP/MAMP)-triggered immunity as well as in effector-triggered immunity. However, despite important advances in our understanding of the role of proteases in plant defence, the contribution of proteases to pathogen defence in grapevine remains poorly understood. In this review, we summarize current knowledge of the main grapevine pathosystems and explore the role of serine, cysteine, and aspartic proteases from both the host and pathogen point of views.
Collapse
Affiliation(s)
- Rita B Santos
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Andreia Figueiredo
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
57
|
Understanding Rice- Magnaporthe Oryzae Interaction in Resistant and Susceptible Cultivars of Rice under Panicle Blast Infection Using a Time-Course Transcriptome Analysis. Genes (Basel) 2021; 12:genes12020301. [PMID: 33672641 PMCID: PMC7924189 DOI: 10.3390/genes12020301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/21/2023] Open
Abstract
Rice blast is a global threat to food security with up to 50% yield losses. Panicle blast is a more severe form of rice blast and the response of rice plant to leaf and panicle blast is distinct in different genotypes. To understand the specific response of rice in panicle blast, transcriptome analysis of blast resistant cultivar Tetep, and susceptible cultivar HP2216 was carried out using RNA-Seq approach after 48, 72 and 96 h of infection with Magnaporthe oryzae along with mock inoculation. Transcriptome data analysis of infected panicle tissues revealed that 3553 genes differentially expressed in HP2216 and 2491 genes in Tetep, which must be the responsible factor behind the differential disease response. The defense responsive genes are involved mainly in defense pathways namely, hormonal regulation, synthesis of reactive oxygen species, secondary metabolites and cell wall modification. The common differentially expressed genes in both the cultivars were defense responsive transcription factors, NBS-LRR genes, kinases, pathogenesis related genes and peroxidases. In Tetep, cell wall strengthening pathway represented by PMR5, dirigent, tubulin, cell wall proteins, chitinases, and proteases was found to be specifically enriched. Additionally, many novel genes having DOMON, VWF, and PCaP1 domains which are specific to cell membrane were highly expressed only in Tetep post infection, suggesting their role in panicle blast resistance. Thus, our study shows that panicle blast resistance is a complex phenomenon contributed by early defense response through ROS production and detoxification, MAPK and LRR signaling, accumulation of antimicrobial compounds and secondary metabolites, and cell wall strengthening to prevent the entry and spread of the fungi. The present investigation provided valuable candidate genes that can unravel the mechanisms of panicle blast resistance and help in the rice blast breeding program.
Collapse
|
58
|
Wang X, Li F, Chen Z, Yang B, Komatsu S, Zhou S. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress. J Proteomics 2021; 232:104064. [PMID: 33276190 DOI: 10.1016/j.jprot.2020.104064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 11/30/2022]
Abstract
Flooding constrains soybean growth, while melatonin enhances the ability of plants to tolerate abiotic stresses. To interpret the melatonin-mediated flooding response in soybeans, proteomic analysis was performed in root tips. Retarded growth and severe cell death were observed in flooded soybeans, but these phenotypes were ameliorated by melatonin treatment. A total of 634, 1401, and 1205 proteins were identified under control, flood, and flood plus melatonin conditions, respectively; and these proteins were predominantly associated with metabolism of protein, RNA, and the cell wall. Among these melatonin-induced proteins, eukaryotic aspartyl protease family protein was increased after flood compared with melatonin treatment group, in accordance with its upregulated transcript levels during stress. Eukaryotic translation initiation factor 5A was decreased after flood compared with melatonin. When stress was prolonged, its transcript levels were upregulated by flood, while they were not changed by melatonin. Furthermore, 13-hydroxylupanine O-tigloyltransferase was decreased by flood compared with melatonin; however, its transcription was upregulated by melatonin. In addition, reduced lignification in root tips of flooded soybeans was restored by melatonin. These results suggest that factors related to protein degradation and functional states of RNA play critical roles in promoting the effects of melatonin on soybean plants under flooding. SIGNIFICANCE: Flooding stress threatens soybean growth, while melatonin treatment enhances plant tolerance to stress stimuli. To examine the effects of melatonin on flooded soybeans, morphological analysis was performed. Melatonin promoted soybean growth as judged from greater fresh weight of plant, longer seedling length, and less evident cell death in flooding-stressed soybeans treated with melatonin than those plants exposed to flood alone. Proteomic analysis was conducted to explore the promoting effects of melatonin on soybeans under flooding stress. As a result, metabolism of protein metabolism, RNA regulation, and cell wall was enriched by proteins identified under control, flood, and flood plus melatonin conditions. Among these melatonin-induced proteins, abundance of eukaryotic aspartyl protease family protein, eukaryotic translation initiation factor 5A, and 13-hydroxylupanine O-tigloyltransferase displayed similar change patterns between the control and melatonin compared with flood; and transcript levels of genes encoding these proteins responded to flooding stress and melatonin treatment. In addition, activated cell degradation, expanded intercellular spaces, and reduced lignification in root tips of flooded soybeans were ameliorated by melatonin treatment.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fang Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhenyuan Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Shunli Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
59
|
Zhao X, Qiu T, Feng H, Yin C, Zheng X, Yang J, Peng YL, Zhao W. A novel glycine-rich domain protein, GRDP1, functions as a critical feedback regulator for controlling cell death and disease resistance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:608-622. [PMID: 32995857 DOI: 10.1093/jxb/eraa450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Lesion mimic mutants constitute a valuable genetic resource for unraveling the signaling pathways and molecular mechanisms governing the programmed cell death and defense responses of plants. Here, we identified a lesion mimic mutant, spl-D, from T-DNA insertion rice lines. The mutant exhibited higher accumulation of H2O2, spontaneous cell death, decreased chlorophyll content, up-regulation of defense-related genes, and enhanced disease resistance. The causative gene, OsGRDP1, encodes a cytosol- and membrane-associated glycine-rich domain protein. OsGRDP1 was expressed constitutively in all of the organs of the wild-type plant, but was up-regulated throughout plant development in the spl-D mutant. Both the overexpression and knockdown (RNAi) of OsGRDP1 resulted in the lesion mimic phenotype. Moreover, the intact-protein level of OsGRDP1 was reduced in the spotted leaves from both overexpression and RNAi plants, suggesting that the disruption of intact OsGRDP1 is responsible for lesion formation. OsGRDP1 interacted with an aspartic proteinase, OsAP25. In the spl-D and overexpression plants, proteinase activity was elevated, and lesion formation was partially suppressed by an aspartic proteinase inhibitor. Taken together, our results reveal that OsGRDP1 is a critical feedback regulator, thus contributing to the elucidation of the mechanism underlying cell death and disease resistance.
Collapse
Affiliation(s)
- Xiaosheng Zhao
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Tiancheng Qiu
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Huijing Feng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Changfa Yin
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Xunmei Zheng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
60
|
Ren K, Feng L, Sun S, Zhuang X. Plant Mitophagy in Comparison to Mammals: What Is Still Missing? Int J Mol Sci 2021; 22:1236. [PMID: 33513816 PMCID: PMC7865480 DOI: 10.3390/ijms22031236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial homeostasis refers to the balance of mitochondrial number and quality in a cell. It is maintained by mitochondrial biogenesis, mitochondrial fusion/fission, and the clearance of unwanted/damaged mitochondria. Mitophagy represents a selective form of autophagy by sequestration of the potentially harmful mitochondrial materials into a double-membrane autophagosome, thus preventing the release of death inducers, which can trigger programmed cell death (PCD). Recent advances have also unveiled a close interconnection between mitophagy and mitochondrial dynamics, as well as PCD in both mammalian and plant cells. In this review, we will summarize and discuss recent findings on the interplay between mitophagy and mitochondrial dynamics, with a focus on the molecular evidence for mitophagy crosstalk with mitochondrial dynamics and PCD.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (K.R.); (L.F.); (S.S.)
| |
Collapse
|
61
|
Figueiredo L, Santos RB, Figueiredo A. Defense and Offense Strategies: The Role of Aspartic Proteases in Plant-Pathogen Interactions. BIOLOGY 2021; 10:75. [PMID: 33494266 PMCID: PMC7909840 DOI: 10.3390/biology10020075] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Plant aspartic proteases (APs; E.C.3.4.23) are a group of proteolytic enzymes widely distributed among different species characterized by the conserved sequence Asp-Gly-Thr at the active site. With a broad spectrum of biological roles, plant APs are suggested to undergo functional specialization and to be crucial in developmental processes, such as in both biotic and abiotic stress responses. Over the last decade, an increasing number of publications highlighted the APs' involvement in plant defense responses against a diversity of stresses. In contrast, few studies regarding pathogen-secreted APs and AP inhibitors have been published so far. In this review, we provide a comprehensive picture of aspartic proteases from plant and pathogenic origins, focusing on their relevance and participation in defense and offense strategies in plant-pathogen interactions.
Collapse
|
62
|
Thanthrige N, Bhowmik SD, Ferguson BJ, Kabbage M, Mundree SG, Williams B. Potential Biotechnological Applications of Autophagy for Agriculture. FRONTIERS IN PLANT SCIENCE 2021; 12:760407. [PMID: 34777441 PMCID: PMC8579036 DOI: 10.3389/fpls.2021.760407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/29/2021] [Indexed: 05/02/2023]
Abstract
Autophagy is a genetically regulated, eukaryotic cellular degradation system that sequestrates cytoplasmic materials in specialised vesicles, termed autophagosomes, for delivery and breakdown in the lysosome or vacuole. In plants, autophagy plays essential roles in development (e.g., senescence) and responses to abiotic (e.g., nutrient starvation, drought and oxidative stress) and biotic stresses (e.g., hypersensitive response). Initially, autophagy was considered a non-selective bulk degradation mechanism that provides energy and building blocks for homeostatic balance during stress. Recent studies, however, reveal that autophagy may be more subtle and selectively target ubiquitylated protein aggregates, protein complexes and even organelles for degradation to regulate vital cellular processes even during favourable conditions. The selective nature of autophagy lends itself to potential manipulation and exploitation as part of designer protein turnover machinery for the development of stress-tolerant and disease-resistant crops, crops with increased yield potential and agricultural efficiency and reduced post-harvest losses. Here, we discuss our current understanding of autophagy and speculate its potential manipulation for improved agricultural performance.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sudipta Das Bhowmik
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett J. Ferguson
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Sagadevan G. Mundree
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Brett Williams,
| |
Collapse
|
63
|
Herath V, Gayral M, Miller RK, Verchot J. BIP and the unfolded protein response are important for potyvirus and potexvirus infection. PLANT SIGNALING & BEHAVIOR 2020; 15:1807723. [PMID: 32799639 PMCID: PMC7598082 DOI: 10.1080/15592324.2020.1807723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 05/08/2023]
Abstract
Plant potexvirus and potyvirus infection can trigger endoplasmic reticulum (ER) stress. ER stress signaling increases the expression of cytoprotective ER-chaperones, especially the BiP chaperones which contribute to pro-survival functions when plants are subjected to infection. The inositol requiring enzyme (IRE1) is one ER stress sensor that is activated to splice the bZIP60 mRNA which produces a truncated transcription factor that activates gene expression in the nucleus. The IRE1/bZIP60 pathway is associated with restricting potyvirus and potexvirus infection. Recent data also identified the IRE1-independent UPR pathways led by bZIP28 and bZIP17 contribute to potexvirus and potyvirus infection. These three bZIP pathways recognize cis-regulatory elements in the BiP promoters to enhance gene expression. BiP is part of a negative feedback loop that regulates the activities of the ER stress transducers IRE1, bZIP28, and bZIP17 to block their activation. We discuss a model in which bZIP60 and bZIP17 synergistically induce BiP and other genes restricting Plantago asiatica mosaic virus (PlAMV; a potexvirus) infection while bZIP60 and bZIP28 independently induce genes supporting PlAMV infection. Regarding Turnip mosiac virus (TuMV, a potyvirus) infection, bZIP60 and bZIP28 serve to repress local and systemic infection. Finally, tauroursodeoxycholic acid treatments were used to demonstrate that the protein folding capacity significantly influences PlAMV accumulation.
Collapse
Affiliation(s)
- Venura Herath
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Kandy, Sri Lanka
| | | | - Rita K. Miller
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
64
|
Thanthrige N, Jain S, Bhowmik SD, Ferguson BJ, Kabbage M, Mundree S, Williams B. Centrality of BAGs in Plant PCD, Stress Responses, and Host Defense. TRENDS IN PLANT SCIENCE 2020; 25:1131-1140. [PMID: 32467063 DOI: 10.1016/j.tplants.2020.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 05/02/2023]
Abstract
Programmed cell death (PCD) is a genetically regulated process for the selective demise of unwanted and damaged cells. Although our understanding of plant PCD pathways has advanced significantly, doubts remain on the extent of conservation of animal apoptosis in plants. At least at the primary sequence level, plants do not encode the regulators of animal apoptosis. Structural analyses have enabled the identification of the B cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family of co-chaperones in plants. This discovery suggests that some aspects of animal PCD are conserved in plants, while the varied subcellular localization of plant BAGs indicates that they may have evolved distinct functions. Here we review plant BAG proteins, with an emphasis on their roles in the regulation of plant PCD.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Sachin Jain
- Department of Plant Pathology, University of Wisconsin-, Madison, WI 53706, USA
| | - Sudipta Das Bhowmik
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brett J Ferguson
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-, Madison, WI 53706, USA
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
65
|
Sun X, Pan B, Wang Y, Xu W, Zhang S. Exogenous Calcium Improved Resistance to Botryosphaeria dothidea by Increasing Autophagy Activity and Salicylic Acid Level in Pear. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1150-1160. [PMID: 32432513 DOI: 10.1094/mpmi-04-20-0101-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pear ring rot, caused by Botryosphaeria dothidea, is one of the most serious diseases in pear. Calcium (Ca2+) was reported to play a key role in the plant defense response. Here, we found that exogenous calcium could enhance resistance to B. dothidea in pear leaves. Less H2O2 and O2- but more activated reactive oxygen species scavenge enzymes accumulated in calcium-treated leaves than in H2O-treated leaves. Moreover, the increased level of more ascorbic acid-glutathione was maintained by Ca2+ treatment under pathogen infection. The expression of core autophagy-related genes and autophagosome formations were enhanced in Ca2+-treated leaves. Silencing of PbrATG5 in Pyrus betulaefolia conferred sensitivity to inoculation, which was only slightly recovered by Ca2+ treatment. Moreover, the salicylic acid (SA) level and SA-related gene expression were induced more strongly by B. dothidea in Ca2+-treated leaves than in H2O-treated leaves. Taken together, these results demonstrated that exogenous Ca2+ enhanced resistance to B. dothidea by increasing autophagic activity and SA accumulation. Our findings reveal a new mechanism of Ca2+ in increasing the tolerance of pear to B. dothidea infection.
Collapse
Affiliation(s)
- Xun Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bisheng Pan
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Xu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
66
|
Wang J, Yeckel G, Kandoth PK, Wasala L, Hussey RS, Davis EL, Baum TJ, Mitchum MG. Targeted suppression of soybean BAG6-induced cell death in yeast by soybean cyst nematode effectors. MOLECULAR PLANT PATHOLOGY 2020; 21:1227-1239. [PMID: 32686295 PMCID: PMC7411569 DOI: 10.1111/mpp.12970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 05/29/2023]
Abstract
While numerous effectors that suppress plant immunity have been identified from bacteria, fungi, and oomycete pathogens, relatively little is known for nematode effectors. Several dozen effectors have been reported from the soybean cyst nematode (SCN). Previous studies suggest that a hypersensitive response-like programmed cell death is triggered at nematode feeding sites in soybean during an incompatible interaction. However, virulent SCN populations overcome this incompatibility using unknown mechanisms. A soybean BAG6 (Bcl-2 associated anthanogene 6) gene previously reported by us to be highly up-regulated in degenerating feeding sites induced by SCN in a resistant soybean line was attenuated in response to a virulent SCN population. We show that GmBAG6-1 induces cell death in yeast like its Arabidopsis homolog AtBAG6 and also in soybean. This led us to hypothesize that virulent SCN may target GmBAG6-1 as part of their strategy to overcome soybean defence responses during infection. Thus, we used a yeast viability assay to screen SCN effector candidates for their ability to specifically suppress GmBAG6-1-induced cell death. We identified several effectors that strongly suppressed cell death mediated by GmBAG6-1. Two effectors identified as suppressors showed direct interaction with GmBAG6-1 in yeast, suggesting that one mechanism of cell death suppression may occur through an interaction with this host protein.
Collapse
Affiliation(s)
- Jianying Wang
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
| | - Greg Yeckel
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Present address:
Corteva AgriscienceJohnstonIAUSA
| | - Pramod K. Kandoth
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Present address:
National Agri‐food Biotechnology InstituteMohaliIndia
| | - Lakmini Wasala
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Present address:
Department of Veterinary PathobiologyUniversity of MissouriColumbiaMOUSA
| | | | - Eric L. Davis
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Thomas J. Baum
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Melissa G. Mitchum
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
67
|
Phytopathogen Effectors Use Multiple Mechanisms to Manipulate Plant Autophagy. Cell Host Microbe 2020; 28:558-571.e6. [PMID: 32810441 DOI: 10.1016/j.chom.2020.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/23/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023]
Abstract
Autophagy is a central part of immunity and hence is a key target of pathogens. However, the precise molecular mechanisms by which plant pathogens manipulate autophagy remain elusive. We identify a network of 88 interactions between 184 effectors from bacterial, fungal, oomycete, and nematode pathogens with 25 Arabidopsis autophagy (ATG) proteins. Notably, Pseudomonas syringae pv tomato (Pto) bacterial effectors HrpZ1, HopF3, and AvrPtoB employ distinct molecular strategies to modulate autophagy. Calcium-dependent HrpZ1 oligomerization targets ATG4b-mediated cleavage of ATG8 to enhance autophagy, while HopF3 also targets ATG8 but suppresses autophagy, with both effectors promoting infection. AvrPtoB affects ATG1 kinase phosphorylation and enhances bacterial virulence. Since pathogens inject limited numbers of effectors into hosts, our findings establish autophagy as a key target during infection. Additionally, as autophagy is enhanced and inhibited by these effectors, autophagy likely has different functions throughout infection and, thus, must be temporally and precisely regulated for successful infection.
Collapse
|
68
|
Comparative Proteomic Analysis of Dipsacus asperoides Roots from Different Habitats in China. Molecules 2020; 25:molecules25163605. [PMID: 32784367 PMCID: PMC7464434 DOI: 10.3390/molecules25163605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022] Open
Abstract
Dipsacus asperoides is a kind of Chinese herbal medicine with beneficial health properties. To date, the quality of D. asperoides from different habitats has shown significant differences. However, the molecular differences in D. asperoides from different habitats are still unknown. The aim of this study was to investigate the differences in protein levels of D. asperoides from different habitats. Isobaric tags for relative and absolute quantification (iTRAQ) and 2DLC/MS/MS were used to detect statistically significant changes in D. asperoides from different habitats. Through proteomic analysis, a total of 2149 proteins were identified, of which 42 important differentially expressed proteins were screened. Through in-depth analysis of differential proteins, the protein metabolism energy and carbohydrate metabolism of D. asperoides from Hubei Province were strong, but their antioxidant capacity was weak. We found that three proteins, UTP-glucose-1-phosphate uridylyltransferase, allene oxide cyclase, and isopentyl diphosphate isomerase 2, may be the key proteins involved in dipsacus saponin VI synthesis. Eight proteins were found in D. asperoides in response to environmental stress from different habitats. Quantitative real-time PCR analysis confirmed the accuracy and authenticity of the proteomic analysis. The results of this study may provide the basic information for exploring the cause of differences in secondary metabolites in different habitats of D. asperoides and the protein mechanism governing differences in quality.
Collapse
|
69
|
Gayral M, Arias Gaguancela O, Vasquez E, Herath V, Flores FJ, Dickman MB, Verchot J. Multiple ER-to-nucleus stress signaling pathways are activated during Plantago asiatica mosaic virus and Turnip mosaic virus infection in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1233-1245. [PMID: 32390256 DOI: 10.1111/tpj.14798] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 04/02/2020] [Accepted: 04/23/2020] [Indexed: 05/22/2023]
Abstract
Pathogens and other adverse environmental conditions can trigger endoplasmic reticulum (ER) stress. ER stress signaling increases the expression of cytoprotective ER-chaperones. The inositol-requiring enzyme (IRE1) is one ER stress sensor that is activated to splice the bZIP60 mRNA that produces a truncated transcription factor that activates gene expression in the nucleus. The IRE1/bZIP60 pathway is associated with restricting potyvirus and potexvirus infection. This study shows that the Plantago asiatica mosaic virus (PlAMV) triple gene block 3 (TGB3) and the Turnip mosaic virus (TuMV) 6K2 proteins activate alternative transcription pathways involving the bZIP17, bZIP28, BAG7, NAC089 and NAC103 factors in Arabidopsis thaliana. Using the corresponding knockout mutant lines, we show that bZIP17, bZIP60, BAG7 and NAC089 are factors in reducing PlAMV infection, whereas bZIP28 and bZIP60 are factors in reducing TuMV infection. We propose a model in which bZIP60 and bZIP17 synergistically induce genes restricting PlAMV infection, while bZIP60 and bZIP28 independently induce genes supporting PlAMV infection. Regarding TuMV-green fluorescent protein (GFP) infection, bZIP60 and bZIP28 serve to repress local and systemic infection. Finally, tauroursodeoxycholic acid treatments were used to demonstrate that the protein folding capacity significantly influences PlAMV accumulation.
Collapse
Affiliation(s)
- Mathieu Gayral
- Texas A&M Agrilife Research and Extension Center in Dallas, 17360 Coit Rd, Dallas, TX, 75252, USA
| | - Omar Arias Gaguancela
- Texas A&M Agrilife Research and Extension Center in Dallas, 17360 Coit Rd, Dallas, TX, 75252, USA
| | - Evelyn Vasquez
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Av. General Rumiñahui s/n y Ambato, Sangolquí, 171103, Ecuador
| | - Venura Herath
- Texas A&M Agrilife Research and Extension Center in Dallas, 17360 Coit Rd, Dallas, TX, 75252, USA
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, 498 Olsen Blvd, College Station, TX, 77843, USA
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Francisco J Flores
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Av. General Rumiñahui s/n y Ambato, Sangolquí, 171103, Ecuador
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad Tecnológica Equinoccial-UTE, Av. Mariscal Sucre y Mariana de Jesús, Quito, Pichincha, 170129, Ecuador
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, 498 Olsen Blvd, College Station, TX, 77843, USA
| | - Jeanmarie Verchot
- Texas A&M Agrilife Research and Extension Center in Dallas, 17360 Coit Rd, Dallas, TX, 75252, USA
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, 498 Olsen Blvd, College Station, TX, 77843, USA
| |
Collapse
|
70
|
Wang S, Li Q, Zhao L, Fu S, Qin L, Wei Y, Fu YB, Wang H. Arabidopsis UBC22, an E2 able to catalyze lysine-11 specific ubiquitin linkage formation, has multiple functions in plant growth and immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110520. [PMID: 32563459 DOI: 10.1016/j.plantsci.2020.110520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/15/2020] [Accepted: 05/03/2020] [Indexed: 05/03/2023]
Abstract
Protein ubiquitination is critical for various biological processes in eukaryotes. A ubiquitin (Ub) chain can be linked through one of the seven lysine (K) residues or the N-terminus methionine of the Ub, and the Ub-conjugating enzymes called E2s play a critical role in determining the linkage specificity of Ub chains. Further, while K48-linked polyubiquitin chain is important for protein degradation, much less is known about the functions of other types of polyubiquitin chains in plants. We showed previously that UBC22 is unique in its ability to catalyze K11-dependent Ub dimer formation in vitro and ubc22 knockout mutants had defects in megasporogenesis. In this study, further analyses of the Arabidopsis ubc22 mutants revealed four subtypes of plants based on the phenotypic changes in vegetative growth. These four subtypes appeared consistently in the plants of three independent ubc22 mutants. Transcriptomic analysis showed that transcript levels of genes related to several pathways were altered differently in different subtypes of mutant plants. In one subtype, the mutant plants had increased expression of genes related to plant defenses and showed enhanced resistance to a necrotrophic plant pathogen. These results suggest multiple functions of UBC22 during plant development and stress response.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Zhao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada; Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Sanxiong Fu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada; Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Li Qin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
71
|
Barbacci A, Navaud O, Mbengue M, Barascud M, Godiard L, Khafif M, Lacaze A, Raffaele S. Rapid identification of an Arabidopsis NLR gene as a candidate conferring susceptibility to Sclerotinia sclerotiorum using time-resolved automated phenotyping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:903-917. [PMID: 32170798 PMCID: PMC7497225 DOI: 10.1111/tpj.14747] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/25/2020] [Accepted: 02/28/2020] [Indexed: 05/11/2023]
Abstract
The broad host range necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen of many oil and vegetable crops. Plant genes conferring complete resistance against S. sclerotiorum have not been reported. Instead, plant populations challenged by S. sclerotiorum exhibit a continuum of partial resistance designated as quantitative disease resistance (QDR). Because of their complex interplay and their small phenotypic effect, the functional characterization of QDR genes remains limited. How broad host range necrotrophic fungi manipulate plant programmed cell death is for instance largely unknown. Here, we designed a time-resolved automated disease phenotyping pipeline enabling high-throughput disease lesion measurement with high resolution, low footprint at low cost. We could accurately recover contrasted disease responses in several pathosystems using this system. We used our phenotyping pipeline to assess the kinetics of disease symptoms caused by seven S. sclerotiorum isolates on six A. thaliana natural accessions with unprecedented resolution. Large effect polymorphisms common to the most resistant A. thaliana accessions identified highly divergent alleles of the nucleotide-binding site leucine-rich repeat gene LAZ5 in the resistant accessions Rubezhnoe and Lip-0. We show that impaired LAZ5 expression in laz5.1 mutant lines and in A. thaliana Rub natural accession correlate with enhanced QDR to S. sclerotiorum. These findings illustrate the value of time-resolved image-based phenotyping for unravelling the genetic bases of complex traits such as QDR. Our results suggest that S. sclerotiorum manipulates plant sphingolipid pathways guarded by LAZ5 to trigger programmed cell death and cause disease.
Collapse
Affiliation(s)
- Adelin Barbacci
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Olivier Navaud
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Malick Mbengue
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Marielle Barascud
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Laurence Godiard
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Mehdi Khafif
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Aline Lacaze
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| |
Collapse
|
72
|
Zheng C, Zhou J, Zhang F, Yin J, Zhou G, Li Y, Chen F, Xie X. OsABAR1, a novel GRAM domain-containing protein, confers drought and salt tolerance via an ABA-dependent pathway in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:138-146. [PMID: 32416343 DOI: 10.1016/j.plaphy.2020.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 05/05/2023]
Abstract
Glucosyltransferases-like GTPase activators and Myotubularin (GRAM) domain-containing proteins are important for plant development and responses to biotic stresses. However, the effects of GRAM proteins on abiotic stress responses remain unclear. In this study, we identified a novel GRAM protein-encoding gene, OsABAR1, and characterized its regulatory functions related to rice drought and salt tolerance. The OsABAR1 protein was localized in the cytoplasm and nucleus. Among all examined organs, the OsABAR1 transcript level was highest in the roots. Moreover, OsABAR1 expression was up-regulated by drought and salinity stresses. The OsABAR1-overexpressing (OsABAR1-OX) lines exhibited enhanced tolerance to drought and salinity, whereas the knock-out lines (Osabar1) had the opposite phenotypes. We further analyzed the involvement of OsABAR1 in the abscisic acid (ABA) signaling pathway. The OsABAR1 expression level was up-regulated by ABA. In turn, OsABAR1 regulated the expression of ABA metabolic genes and responsive genes. Furthermore, OsABAR1-OX seedlings were hypersensitive to exogenous ABA, whereas Osabar1 seedlings were hyposensitive. These results imply that OsABAR1 is a positive regulator of the ABA pathway and confirm that OsABAR1 improves rice drought and salt tolerance via an ABA-dependent pathway. This study is the first to clarify the regulatory roles of GRAM proteins in rice responses to abiotic stresses.
Collapse
Affiliation(s)
- Chongke Zheng
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Jinjun Zhou
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Fang Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Jingjing Yin
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Guanhua Zhou
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Yaping Li
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China; College of Life Science, Shandong Normal University, Jinan 250014, PR China.
| | - Fan Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Xianzhi Xie
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| |
Collapse
|
73
|
Mironenka J, Różalska S, Soboń A, Bernat P. Lipids, proteins and extracellular metabolites of Trichoderma harzianum modifications caused by 2,4-dichlorophenoxyacetic acid as a plant growth stimulator. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110383. [PMID: 32143105 DOI: 10.1016/j.ecoenv.2020.110383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Strains of Trichoderma harzianum are well-known producers of bioactive secondary metabolites and have a beneficial effect on plants. However, to the best of our knowledge, the effect of the commonly used pesticides on the activity of this fungus is not yet investigated. Therefore, in the present study, the effect of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on the lipidome and selected extracellular compounds synthesized by T. harzianum IM 0961 was examined. It was observed that the herbicide 2,4-D caused changes in the lipid composition of the mycelium and that the herbicide exhibited lipophilic properties. In addition, the herbicide disturbed the phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio and increased membrane permeability. The higher amount of cardiolipin CL 72:7 and the lower amount of CL 72:8 could have been associated with a decreased ratio of 18:2 and 18:1 fatty acids in the herbicide-treated samples. Moreover, in the presence of 2,4-D, an increased lipid peroxidation (twofold), as well as a higher content of oxylipin (9-HODE and 13-HODE) and phosphatidic acid (PA), was noted, confirming that 2,4-D induced lipid peroxidation in the mycelium. The herbicide also exerted its toxic effect on the production of 14-aminoacid peptaibols and two compounds, harzianic acid and t22-azaphilone, exhibiting antibiotic and plant growth-promoting activity. During proteomic analysis, the synthesis of some proteins, such as calcineurin-like phosphoesterase metallophosphatases (MPPs), which modulate the properties of cell walls, was found to be inhibited by the herbicide. These presented findings may be of significant value in understanding the effect of 2,4-D on the activity of T. harzianum.
Collapse
Affiliation(s)
- Julia Mironenka
- University of Lodz, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Sylwia Różalska
- University of Lodz, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Adrian Soboń
- University of Lodz, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, Department of Microbial Genetics, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Przemysław Bernat
- University of Lodz, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
74
|
Langin G, Gouguet P, Üstün S. Microbial Effector Proteins - A Journey through the Proteolytic Landscape. Trends Microbiol 2020; 28:523-535. [PMID: 32544439 DOI: 10.1016/j.tim.2020.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
In the evolutionary arms race between pathogens and plants, pathogens evolved effector molecules that they secrete into the host to subvert plant cellular responses in a process termed the effector-targeted pathway (ETP). During recent years the repertoire of ETPs has increased and mounting evidence indicates that the proteasome and autophagy pathways are central hubs of microbial effectors. Both degradation pathways are implicated in a broad array of cellular responses and thus constitute an attractive target for effector proteins to have a broader impact on the host. In this article we first summarize recent findings on how effectors from various pathogens modulate proteolytic pathways and then provide a network analysis of established effector targets implicated in proteolytic degradation machineries. With this network we emphasize the idea that effectors targeting proteolytic degradation pathways will affect the protein synthesis-transport and degradation triangle. We put in perspective that, in utilizing the effector diversity of microbes, we produce excellent tools to study diverse cellular pathways and their possible interplay with each other.
Collapse
Affiliation(s)
- Gautier Langin
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany
| | - Paul Gouguet
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany
| | - Suayib Üstün
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany.
| |
Collapse
|
75
|
Lu S, Yu J, Ma L, Dou D. Two phosphatidylinositol 3-kinase components are involved in interactions between Nicotiana benthamiana and Phytophthora by regulating pathogen effectors and host cell death. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:293-302. [PMID: 32054565 DOI: 10.1071/fp19155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Phosphatidylinositol 3-phosphate (PtdIns(3)P) has been reported to regulate different physiological processes in plants. PtdIns(3)P is synthesised by the phosphatidylinositol 3-kinase (PI3K) complex which includes common subunits of vacuolar protein sorting (VPS)15, VPS30 and VPS34. Here, we characterised the roles of the important genes NbVPS15, -30 and -34 encoding PI3K components during interactions between Nicotiana benthamiana and Phytophthora pathogens. NbVPS15 and NbVPS34 were upregulated during infection, and plants deficient in these two genes displayed higher resistance to two different Phytophthora pathogens. Silencing NbVPS15 and NbVPS34 decreased the content of PtdIns(3)P in plant cells and the stability of three RxLR (containing the characteristic amino-terminal motif of arginine-X-leucine-arginine, X is any amino acid) effectors. Furthermore, NbVPS15, -30 and -34 were essential for autolysosome formation during Phytophthora capsici infection and limiting programmed cell death (PCD) induced by effectors and elicitors. Taken together, these findings suggest that NbVPS15 and NbVPS34 play a critical role in the resistance of N. benthamiana to Phytophthora pathogens by regulating PtdIns(3)P contents and host PCD.
Collapse
Affiliation(s)
- Shan Lu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; and Corresponding author.
| | - Jia Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lina Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
76
|
Rowarth NM, Dauphinee AN, Denbigh GL, Gunawardena AH. Hsp70 plays a role in programmed cell death during the remodelling of leaves of the lace plant (Aponogeton madagascariensis). JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:907-918. [PMID: 31691798 DOI: 10.1093/jxb/erz447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/23/2019] [Indexed: 05/07/2023]
Abstract
Lace plant leaves utilize programmed cell death (PCD) to form perforations during development. The role of heat shock proteins (Hsps) in PCD during lace plant leaf development is currently unknown. Hsp70 amounts were measured throughout lace plant leaf development, and the results indicate that it is highest before and during PCD. Increased Hsp70 amounts correlate with raised anthocyanin content and caspase-like protease (CLP) activity. To investigate the effects of Hsp70 on leaf development, whole plants were treated with either of the known regulators of PCD [reactive oxygen species (ROS) or antioxidants] or an Hsp70 inhibitor, chlorophenylethynylsulfonamide (PES-Cl). ROS treatment significantly increased Hsp70 2-fold and CLP activity in early developing leaves, but no change in anthocyanin and the number of perforations formed was observed. Antioxidant treatment significantly decreased Hsp70, anthocyanin, and CLP activity in early leaves, resulting in the fewest perforations. PES-Cl (25 μM) treatment significantly increased Hsp70 4-fold in early leaves, while anthocyanin, superoxide, and CLP activity significantly declined, leading to fewer perforations. Results show that significantly increased (4-fold) or decreased Hsp70 amounts lead to lower anthocyanin and CLP activity, inhibiting PCD induction. Our data support the hypothesis that Hsp70 plays a role in regulating PCD at a threshold in lace plant leaf development. Hsp70 affects anthocyanin content and caspase-like protease activity, and helps regulate PCD during the remodelling of leaves of lace plant, Aponogeton madagascariensis.
Collapse
Affiliation(s)
- Nathan M Rowarth
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Adrian N Dauphinee
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
| | | | | |
Collapse
|
77
|
Ding H, Wu Y, Yuan G, Mo S, Chen Q, Xu X, Wu X, Ge C. In-depth proteome analysis reveals multiple pathways involved in tomato SlMPK1-mediated high-temperature responses. PROTOPLASMA 2020; 257:43-59. [PMID: 31359223 DOI: 10.1007/s00709-019-01419-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
High temperature (HT) is one of the major environmental factors which limits plant growth and yield. The mitogen-activated protein kinase (MAPK) plays vital roles in environmental stress responses. However, the mechanisms triggered by MAPKs in plants in response to HT are still extremely limited. In this study, the proteomic data of differences between SlMPK1 RNA-interference mutant (SlMPK1i) and wild type and of tomato (Solanum lycopersicum) plants under HT stress using isobaric tags for relative and absolute quantitation (iTRAQ) was re-analyzed in depth. In total, 168 differently expressed proteins (DEPs) were identified in response to HT stress, including 38 DEPs only found in wild type, and 84 DEPs specifically observed in SlMPK1i after HT treatment. The majority of higher expression of 84 DEPs were annotated into photosynthesis, oxidation-reduction process, protein folding, translation, proteolysis, stress response, and amino acid biosynthetic process. More importantly, SlMPK1-mediated photosynthesis was confirmed by the physiological characterization of SlMPK1i with a higher level of photosynthetic capacity under HT stress. Overall, the results reveal a set of potential candidate proteins helping to further understand the intricate regulatory network regulated by SlMPK1 in response to HT.
Collapse
Affiliation(s)
- Haidong Ding
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yuan Wu
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Guibo Yuan
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Shuangrong Mo
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qi Chen
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoying Xu
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiaoxia Wu
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Cailin Ge
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
78
|
Applications and Trends of Machine Learning in Genomics and Phenomics for Next-Generation Breeding. PLANTS 2019; 9:plants9010034. [PMID: 31881663 PMCID: PMC7020215 DOI: 10.3390/plants9010034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022]
Abstract
Crops are the major source of food supply and raw materials for the processing industry. A balance between crop production and food consumption is continually threatened by plant diseases and adverse environmental conditions. This leads to serious losses every year and results in food shortages, particularly in developing countries. Presently, cutting-edge technologies for genome sequencing and phenotyping of crops combined with progress in computational sciences are leading a revolution in plant breeding, boosting the identification of the genetic basis of traits at a precision never reached before. In this frame, machine learning (ML) plays a pivotal role in data-mining and analysis, providing relevant information for decision-making towards achieving breeding targets. To this end, we summarize the recent progress in next-generation sequencing and the role of phenotyping technologies in genomics-assisted breeding toward the exploitation of the natural variation and the identification of target genes. We also explore the application of ML in managing big data and predictive models, reporting a case study using microRNAs (miRNAs) to identify genes related to stress conditions.
Collapse
|
79
|
Cui F, Wu W, Wang K, Zhang Y, Hu Z, Brosché M, Liu S, Overmyer K. Cell death regulation but not abscisic acid signaling is required for enhanced immunity to Botrytis in Arabidopsis cuticle-permeable mutants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5971-5984. [PMID: 31328223 PMCID: PMC6812726 DOI: 10.1093/jxb/erz345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 05/21/2023]
Abstract
Prevailing evidence indicates that abscisic acid (ABA) negatively influences immunity to the fungal pathogen Botrytis cinerea in most but not all cases. ABA is required for cuticle biosynthesis, and cuticle permeability enhances immunity to Botrytis via unknown mechanisms. This complex web of responses obscures the role of ABA in Botrytis immunity. Here, we addressed the relationships between ABA sensitivity, cuticle permeability, and Botrytis immunity in the Arabidopsis thaliana ABA-hypersensitive mutants protein phosphatase2c quadruple mutant (pp2c-q) and enhanced response to aba1 (era1-2). Neither pp2c-q nor era1-2 exhibited phenotypes predicted by the known roles of ABA; conversely, era1-2 had a permeable cuticle and was Botrytis resistant. We employed RNA-seq analysis in cuticle-permeable mutants of differing ABA sensitivities and identified a core set of constitutively activated genes involved in Botrytis immunity and susceptibility to biotrophs, independent of ABA signaling. Furthermore, botrytis susceptible1 (bos1), a mutant with deregulated cell death and enhanced ABA sensitivity, suppressed the Botrytis immunity of cuticle permeable mutants, and this effect was linearly correlated with the extent of spread of wound-induced cell death in bos1. Overall, our data demonstrate that Botrytis immunity conferred by cuticle permeability can be genetically uncoupled from PP2C-regulated ABA sensitivity, but requires negative regulation of a parallel ABA-dependent cell-death pathway.
Collapse
Affiliation(s)
- Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Correspondence: or
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Kai Wang
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Yuan Zhang
- Library of Donghu Campus, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Correspondence: or
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
80
|
Su W, Ye C, Zhang Y, Hao S, Li QQ. Identification of putative key genes for coastal environments and cold adaptation in mangrove Kandelia obovata through transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:191-201. [PMID: 31103657 DOI: 10.1016/j.scitotenv.2019.05.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 05/28/2023]
Abstract
Mangrove forests are an important contributor to the coastal marine environment. They have developed unique adaptations to the harsh coastal wetland, yet their geographic distribution is limited by environmental temperature. The adaptive strategies of mangrove at the molecular level, however, have not been addressed. In the present work, transcriptome analyses were performed on different cold damaged plants of a mangrove species, Kandelia obovata. From the samples collected in the field after a cold stress, we found that distinct expression profiles of many key genes are related to extreme temperature responses. These include transcription factors such as WRKY and bHLH, and other genes encoding proteins like SnRK2, PR-1, KCS, involving in the pathways of plant hormones, plant-pathogen interactions, and long chain fatty acid synthesis. We also examined the transcriptomes of eight tissues of K. obovata to identify candidate genes involved in adaptation and development. While stress-responsive genes were globally expressed, tissue-specific genes with diverse functions might be involved in tissue development and adaptability. For examples, genes encoding CYP724B1 and ABCB1 were specifically expressed in the fruit and root, respectively. Additionally, 26 genes were identified as positively selected genes in K. obovata, six of them were found to be involved in chilling stress response, seed germination and oxidation-reduction processes, suggesting their roles in stressful environment adaptation. Together, these results shed light into the K. obovata's natural responses to cold snaps at the molecular level, and reveal a global gene expression portrait across different tissues. It also provides a transcriptome resource for further molecular ecology studies and conservation planning of this and other mangrove plants in their native and adopted environments.
Collapse
Affiliation(s)
- Wenyue Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Saiqi Hao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
81
|
Eisenmann B, Czemmel S, Ziegler T, Buchholz G, Kortekamp A, Trapp O, Rausch T, Dry I, Bogs J. Rpv3-1 mediated resistance to grapevine downy mildew is associated with specific host transcriptional responses and the accumulation of stilbenes. BMC PLANT BIOLOGY 2019; 19:343. [PMID: 31387524 PMCID: PMC6685164 DOI: 10.1186/s12870-019-1935-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/11/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND European grapevine cultivars (Vitis vinifera spp.) are highly susceptible to the downy mildew pathogen Plasmopara viticola. Breeding of resistant V. vinifera cultivars is a promising strategy to reduce the impact of disease management. Most cultivars that have been bred for resistance to downy mildew, rely on resistance mediated by the Rpv3 (Resistance to P. viticola) locus. However, despite the extensive use of this locus, little is known about the mechanism of Rpv3-mediated resistance. RESULTS In this study, Rpv3-mediated defense responses were investigated in Rpv3+ and Rpv3- grapevine cultivars following inoculation with two distinct P. viticola isolates avrRpv3+ and avrRpv3-, with the latter being able to overcome Rpv3 resistance. Based on comparative microscopic, metabolomic and transcriptomic analyses, our results show that the Rpv3-1-mediated resistance is associated with a defense mechanism that triggers synthesis of fungi-toxic stilbenes and programmed cell death (PCD), resulting in reduced but not suppressed pathogen growth and development. Functional annotation of the encoded protein sequence of genes significantly upregulated during the Rpv3-1-mediated defense response revealed putative roles in pathogen recognition, signal transduction and defense responses. CONCLUSION This study used histochemical, transcriptomic and metabolomic analyses of Rpv3+ and susceptible cultivars inoculated with avirulent and virulent P. viticola isolates to investigate mechanism underlying the Rpv3-1-mediated resistance response. We demonstrated a strong correlation between the expressions of stilbene biosynthesis related genes, the accumulation of fungi-toxic stilbenes, pathogen growth inhibition and PCD.
Collapse
Affiliation(s)
- Birgit Eisenmann
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Neustadt/Weinstr, Germany
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Tobias Ziegler
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Neustadt/Weinstr, Germany
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Günther Buchholz
- RLP AgroScience GmbH, AlPlanta - Institute for Plant Research, Neustadt/Weinstr, Germany
| | - Andreas Kortekamp
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Neustadt/Weinstr, Germany
| | - Oliver Trapp
- Julius Kühn-Institute, Federal Research Centre of Cultivated Plants, Institute for Grapevine Breeding, Siebeldingen, Germany
| | - Thomas Rausch
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Ian Dry
- CSIRO Agriculture & Food, Urrbrae, SA 5064 Australia
| | - Jochen Bogs
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Neustadt/Weinstr, Germany
- Technische Hochschule Bingen, 55411 Bingen am Rhein, Germany
| |
Collapse
|
82
|
Qi F, Zhang L, Dong X, Di H, Zhang J, Yao M, Dong L, Zeng X, Liu X, Wang Z, Zhou Y. Analysis of Cytology and Expression of Resistance Genes in Maize Infected with Sporisorium reilianum. PLANT DISEASE 2019; 103:2100-2107. [PMID: 31215852 DOI: 10.1094/pdis-09-18-1687-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Head smut, caused by the fungus Sporisorium reilianum, is a devastating global disease of maize (Zea mays). In the present study, maize seedlings were artificially inoculated with compatible mating-type strains of S. reilianum by needle inoculation of mesocotyls (NIM) or by soaking inoculation of radicles (SIR). After NIM or SIR, Huangzao4 mesocotyls exhibited severe damage with brownish discoloration and necrosis, whereas Mo17 mesocotyls exhibited few lesions. Fluorescence and electron microscopy showed that S. reilianum infected maize within 0.5 day after SIR and mainly colonized the phloem. With longer incubation, the density of S. reilianum hyphae increased in the vascular bundles, concentrated mainly in the phloem. In Mo17, infected cells exhibited apoptosis-like features, and hyphae became sequestered within dead cells. In contrast, in Huangzao4, pathogen invasion resulted in autophagy that failed to prevent hyphal spreading. The growth of S. reilianum hyphae diminished at 6 days after inoculation when expression of the R genes ZmWAK and ZmNL peaked. Thus, 6 days after SIR inoculation might be an important time for inhibiting the progress of S. reilianum infection in maize. The results of this study will provide a basis for further analysis of the mechanisms of maize resistance to S. reilianum.
Collapse
Affiliation(s)
- Fengkun Qi
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Lin Zhang
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Xiaojie Dong
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Hong Di
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Jiayue Zhang
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Minhao Yao
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Ling Dong
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Xing Zeng
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Xianjun Liu
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Zhenhua Wang
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Yu Zhou
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| |
Collapse
|
83
|
Zhang Y, Song G, Lal NK, Nagalakshmi U, Li Y, Zheng W, Huang PJ, Branon TC, Ting AY, Walley JW, Dinesh-Kumar SP. TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated immunity. Nat Commun 2019; 10:3252. [PMID: 31324801 PMCID: PMC6642208 DOI: 10.1038/s41467-019-11202-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/01/2019] [Indexed: 11/25/2022] Open
Abstract
Nucleotide-binding leucine-rich repeat (NLR) immune receptors play a critical role in defence against pathogens in plants and animals. However, we know very little about NLR-interacting proteins and the mechanisms that regulate NLR levels. Here, we used proximity labeling (PL) to identify the proteome proximal to N, which is an NLR that confers resistance to Tobacco mosaic virus (TMV). Evaluation of different PL methods indicated that TurboID-based PL provides more efficient levels of biotinylation than BioID and BioID2 in plants. TurboID-based PL of N followed by quantitative proteomic analysis and genetic screening revealed multiple regulators of N-mediated immunity. Interestingly, a putative E3 ubiquitin ligase, UBR7, directly interacts with the TIR domain of N. UBR7 downregulation leads to an increased amount of N protein and enhanced TMV resistance. TMV-p50 effector disrupts the N-UBR7 interaction and relieves negative regulation of N. These findings demonstrate the utility of TurboID-based PL in plants and the N-interacting proteins we identified enhance our understanding of the mechanisms underlying NLR regulation.
Collapse
Affiliation(s)
- Yongliang Zhang
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA.
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Gaoyuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Neeraj K Lal
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Ugrappa Nagalakshmi
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Yuanyuan Li
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Wenjie Zheng
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Pin-Jui Huang
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Tess C Branon
- Departments of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alice Y Ting
- Departments of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA.
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
84
|
Wang Y, Garrido-Oter R, Wu J, Winkelmüller TM, Agler M, Colby T, Nobori T, Kemen E, Tsuda K. Site-specific cleavage of bacterial MucD by secreted proteases mediates antibacterial resistance in Arabidopsis. Nat Commun 2019; 10:2853. [PMID: 31253808 PMCID: PMC6599210 DOI: 10.1038/s41467-019-10793-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/03/2019] [Indexed: 01/10/2023] Open
Abstract
Plant innate immunity restricts growth of bacterial pathogens that threaten global food security. However, the mechanisms by which plant immunity suppresses bacterial growth remain enigmatic. Here we show that Arabidopsis thaliana secreted aspartic protease 1 and 2 (SAP1 and SAP2) cleave the evolutionarily conserved bacterial protein MucD to redundantly inhibit the growth of the bacterial pathogen Pseudomonas syringae. Antibacterial activity of SAP1 requires its protease activity in planta and in vitro. Plants overexpressing SAP1 exhibit enhanced MucD cleavage and resistance but incur no penalties in growth and reproduction, while sap1 sap2 double mutant plants exhibit compromised MucD cleavage and resistance against P. syringae. P. syringae lacking mucD shows compromised growth in planta and in vitro. Notably, growth of ΔmucD complemented with the non-cleavable MucDF106Y is not affected by SAP activity in planta and in vitro. Our findings identify the genetic factors and biochemical process underlying an antibacterial mechanism in plants. During innate immune responses, plant cells secrete proteases into apoplastic spaces where they contribute to pathogen resistance. Here Wang et al. show that the Arabidopsis SAP1 and SAP2 proteases cleave the bacterial MucD protein to inhibit growth of Pseudomonas syringae.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany
| | - Ruben Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany.,Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jingni Wu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany.,Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Thomas M Winkelmüller
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany
| | - Matthew Agler
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany.,Plant Microbiosis Lab, Institute of Microbiology, Friedrich-Schiller University Jena, Neugasse 23, 07743, Jena, Germany
| | - Thomas Colby
- Plant Proteomics Group, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany.,Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Tatsuya Nobori
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany
| | - Eric Kemen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany.,Center for Plant Molecular Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
85
|
Cao S, Guo M, Wang C, Xu W, Shi T, Tong G, Zhen C, Cheng H, Yang C, Elsheery NI, Cheng Y. Genome-wide characterization of aspartic protease (AP) gene family in Populus trichocarpa and identification of the potential PtAPs involved in wood formation. BMC PLANT BIOLOGY 2019; 19:276. [PMID: 31234799 PMCID: PMC6591973 DOI: 10.1186/s12870-019-1865-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/03/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Aspartic protease (AP) is one of four large proteolytic enzyme families that are involved in plant growth and development. Little is known about the AP gene family in tree species, although it has been characterized in Arabidopsis, rice and grape. The AP genes that are involved in tree wood formation remain to be determined. RESULTS A total of 67 AP genes were identified in Populus trichocarpa (PtAP) and classified into three categories (A, B and C). Chromosome mapping analysis revealed that two-thirds of the PtAP genes were located in genome duplication blocks, indicating the expansion of the AP family by segmental duplications in Populus. The microarray data from the Populus eFP browser demonstrated that PtAP genes had diversified tissue expression patterns. Semi-qRT-PCR analysis further determined that more than 10 PtAPs were highly or preferentially expressed in the developing xylem. When the involvement of the PtAPs in wood formation became the focus, many SCW-related cis-elements were found in the promoters of these PtAPs. Based on PtAPpromoter::GUS techniques, the activities of PtAP66 promoters were observed only in fiber cells, not in the vessels of stems as the xylem and leaf veins developed in the transgenic Populus tree, and strong GUS signals were detected in interfascicular fiber cells, roots, anthers and sepals of PtAP17promoter::GUS transgenic plants. Intensive GUS activities in various secondary tissues implied that PtAP66 and PtAP17 could function in wood formation. In addition, most of the PtAP proteins were predicted to contain N- and (or) O-glycosylation sites, and the integration of PNGase F digestion and western blotting revealed that the PtAP17 and PtAP66 proteins were N-glycosylated in Populus. CONCLUSIONS Comprehensive characterization of the PtAP genes suggests their functional diversity during Populus growth and development. Our findings provide an overall understanding of the AP gene family in trees and establish a better foundation to further describe the roles of PtAPs in wood formation.
Collapse
Affiliation(s)
- Shenquan Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Mengjie Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Chong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Wenjing Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Tianyuan Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Guimin Tong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Cheng Zhen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | | | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| |
Collapse
|
86
|
Zhou M, Zheng S, Liu R, Lu J, Lu L, Zhang C, Liu Z, Luo C, Zhang L, Yant L, Wu Y. Genome-wide identification, phylogenetic and expression analysis of the heat shock transcription factor family in bread wheat (Triticum aestivum L.). BMC Genomics 2019; 20:505. [PMID: 31215411 PMCID: PMC6580518 DOI: 10.1186/s12864-019-5876-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/31/2019] [Indexed: 01/31/2023] Open
Abstract
Background Environmental toxicity from non-essential heavy metals such as cadmium (Cd), which is released from human activities and other environmental causes, is rapidly increasing. Wheat can accumulate high levels of Cd in edible tissues, which poses a major hazard to human health. It has been reported that heat shock transcription factor A 4a (HsfA4a) of wheat and rice conferred Cd tolerance by upregulating metallothionein gene expression. However, genome-wide identification, classification, and comparative analysis of the Hsf family in wheat is lacking. Further, because of the promising role of Hsf genes in Cd tolerance, there is need for an understanding of the expression of this family and their functions on wheat under Cd stress. Therefore, here we identify the wheat TaHsf family and to begin to understand the molecular mechanisms mediated by the Hsf family under Cd stress. Results We first identified 78 putative Hsf homologs using the latest available wheat genome information, of which 38 belonged to class A, 16 to class B and 24 to class C subfamily. Then, we determined chromosome localizations, gene structures, conserved protein motifs, and phylogenetic relationships of these TaHsfs. Using RNA sequencing data over the course of development, we surveyed expression profiles of these TaHsfs during development and under different abiotic stresses to characterise the regulatory network of this family. Finally, we selected 13 TaHsf genes for expression level verification under Cd stress using qRT-PCR. Conclusions To our knowledge, this is the first report of the genome organization, evolutionary features and expression profiles of the wheat Hsf gene family. This work therefore lays the foundation for targeted functional analysis of wheat Hsf genes, and contributes to a better understanding of the roles and regulatory mechanism of wheat Hsfs under Cd stress. Electronic supplementary material The online version of this article (10.1186/s12864-019-5876-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Shigang Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Rong Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Chihong Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Zehou Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Congpei Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Yu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
87
|
Xi G, Wang Y, Yin L, Wang Y, Zhou S. De novo transcriptome analysis of gene responses to pest feeding in leaves of Panax ginseng C. A. Meyer. Mol Med Rep 2019; 20:433-444. [PMID: 31180519 PMCID: PMC6580019 DOI: 10.3892/mmr.2019.10275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/07/2019] [Indexed: 11/15/2022] Open
Abstract
The aim of the present study was to investigate the transcriptomic differences between Panax ginseng [Renshen (RS)] plants bitten by pests (n=3, test group; samples defined as RS11-13) or not (n=3, control group; samples defined as RS1-3) using de novo RNA sequencing on an Illumina HiSeq™ 2000 platform. A total of 51,097,386 (99.6%), 49,310,564 (99.5%), 59,192,372 (99.6%), 60,338,540 (99.5%), 56,976,410 (99.6%) and 54,226,588 (99.6%) clean reads were obtained for RS11, RS12, RS13, RS1, RS2 and RS3, respectively. De novo assembly generated 370,267 unigenes, 927 of which were differentially expressed genes (DEGs), including 782 significantly upregulated and 145 significantly downregulated genes. Function enrichment analysis revealed that these DEGs were located in 28 significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways, including phenylpropanoid biosynthesis (for example, TRINITY_DN30766_c0_g2_i1, encoding peroxidase 20) and mitogen-activated protein kinase (MAPK) signaling (TRINITY_DN85589_c0_g1_i1, encoding WRKY transcription factor 75). Weighted gene co-expression network analysis identified modules including TRINITY_DN85589_c0_g1_i1, TRINITY_DN58279_c0_g1_i1 [encoding aspartyl protease (AP)] and TRINITY_DN74866_c0_g2_i1 [encoding 12-oxophytodienoate reductase (OPR)] that may be the most significantly associated with pest responses. In this module, TRINITY_DN85589_c0_g1_i1 may co-express with TRINITY_DN58279_c0_g1_i1 or TRINITY_DN74866_c0_g2_i1. WRYK and AP have been suggested to promote the activity of antioxidant peroxidase. Collectively, the findings from the present study suggested that a MAPK-WRKY-OPR/AP-peroxidase signaling pathway may be a potentially important mechanism underlying defense responses against pests in ginseng plants.
Collapse
Affiliation(s)
- Guangsheng Xi
- Pharmaceutical Engineering Department, College of Chemical Engineering and Resource Reuse, Wuzhou University, Wuzhou, Guangxi 543000, P.R. China
| | - Yanling Wang
- Pharmaceutical Engineering Department, College of Chemical Engineering and Resource Reuse, Wuzhou University, Wuzhou, Guangxi 543000, P.R. China
| | - Le Yin
- Department of Chinese Medicine, College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, Jilin 132101, P.R. China
| | - Yunjia Wang
- Department of Mapping and Geographic Information, College of Environment and Mapping, China University of Mining and Technology, Xuzhou, Jiangsu 221116, P.R. China
| | - Shengxue Zhou
- Department of Chinese Medicine, College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, Jilin 132101, P.R. China
| |
Collapse
|
88
|
Şahin-Çevik M, Sivri ED, Çevik B. Identification and Expression Analysis of Genes Induced in Response to Tomato chlorosis virus Infection in Tomato. THE PLANT PATHOLOGY JOURNAL 2019; 35:257-273. [PMID: 31244571 PMCID: PMC6586192 DOI: 10.5423/ppj.oa.12.2018.0287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/10/2019] [Accepted: 03/13/2019] [Indexed: 05/05/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most widely grown and economically important vegetable crops in the world. Tomato chlorosis virus (ToCV) is one of the recently emerged viruses of tomato distributed worldwide. ToCV-tomato interaction was investigated at the molecular level for determining changes in the expression of tomato genes in response to ToCV infection in this study. A cDNA library enriched with genes induced in response to ToCV infection were constructed and 240 cDNAs were sequenced from this library. The macroarray analysis of 108 cDNAs revealed that the expression of 92 non-redundant tomato genes was induced by 1.5-fold or greater in response to ToCV infection. The majority of ToCV-induced genes identified in this study were associated with a variety of cellular functions including transcription, defense and defense signaling, metabolism, energy, transport facilitation, protein synthesis and fate and cellular biogenesis. Twenty ToCV-induced genes from different functional groups were selected and induction of 19 of these genes in response to ToCV infection was validated by RT-qPCR assay. Finally, the expression of 6 selected genes was analyzed in different stages of ToCV infection from 0 to 45 dpi. While the expression of three of these genes was only induced by ToCV infection, others were induced both by ToCV infection and wounding. The result showed that ToCV induced the basic defense response and activated the defense signaling in tomato plants at different stages of the infection. Functions of these defense related genes and their potential roles in disease development and resistance to ToCV are also discussed.
Collapse
Affiliation(s)
- Mehtap Şahin-Çevik
- Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Agricultural Biotechnology, 32260 Isparta,
Turkey
- Corresponding author: Phone) +902462118544, FAX) +902462114885, E-mail)
| | - Emine Doguş Sivri
- Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Agricultural Biotechnology, 32260 Isparta,
Turkey
| | - Bayram Çevik
- Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Plant Protection, 32260 Isparta,
Turkey
| |
Collapse
|
89
|
Ahn E, Hu Z, Perumal R, Prom LK, Odvody G, Upadhyaya HD, Magill C. Genome wide association analysis of sorghum mini core lines regarding anthracnose, downy mildew, and head smut. PLoS One 2019; 14:e0216671. [PMID: 31086384 PMCID: PMC6516728 DOI: 10.1371/journal.pone.0216671] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/26/2019] [Indexed: 02/04/2023] Open
Abstract
In previous studies, a sorghum mini core collection was scored over several years for response to Colletotrichum sublineola, Peronosclerospora sorghi, and Sporisorium reilianum, the causal agents of the disease anthracnose, downy mildew, and head smut, respectively. The screening results were combined with over 290,000 Single nucleotide polymorphic (SNP) loci from an updated version of a publicly available genotype by sequencing (GBS) dataset available for the mini core collection. GAPIT (Genome Association and Prediction Integrated Tool) R package was used to identify chromosomal locations that differ in disease response. When the top scoring SNPs were mapped to the most recent version of the published sorghum genome, in each case, a nearby and most often the closest annotated gene has precedence for a role in host defense.
Collapse
Affiliation(s)
- Ezekiel Ahn
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - Ramasamy Perumal
- Kansas State University, Agricultural Research Center, Hays, Kansas, United States of America
| | - Louis K. Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, Texas, United States of America
| | - Gary Odvody
- Texas A&M AgriLife Research, Corpus Christi, Texas, United States of America
| | - Hari D. Upadhyaya
- ICRISAT, Patancheru, Telangana, India
- King Abdulaziz University, Jeddah, Saudi Arabia
| | - Clint Magill
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
90
|
Fu C, Hou Y, Ge J, Zhang L, Liu X, Huo P, Liu J. Increased fes1a thermotolerance is induced by BAG6 knockout. PLANT MOLECULAR BIOLOGY 2019; 100:73-82. [PMID: 30796711 DOI: 10.1007/s11103-019-00844-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 02/14/2019] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE: (1) The fes1a bag6 double mutant shows an increased short term thermotolerance compared to fes1a. BAG6 is a suppressor of Fes1A; (2) IQ motif is essential to effective performance of BAG6. (3) Calmodulin was involved in signal transduction. (4) BAG6 is localized in the nucleus. HSP70s play an important role in the heat-induced stress tolerance of plants. However, effective HSP70 function requires the assistance of many co-chaperones. BAG6 and Fes1A are HSP70-binding proteins that are critical for Arabidopsis thaliana thermotolerance. Despite this importance, little is known about how these co-chaperones interact. In this study, we assessed the thermotolerance of a fes1a bag6 double mutant. We found that the fes1a bag6 double mutant shows an increased short-term thermotolerance compared to fes1a. However, calmodulin inhibitors diminished this enhanced thermotolerance in the fes1a bag6 double mutant. In addition, we found the IQ motif to be essential for effective BAG6 performance. Since BAG6 is localized in the nucleus, the signal transduction is likely to involve nuclear calcium signaling.
Collapse
Affiliation(s)
- Can Fu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
- College of Biotechnology, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Yanfei Hou
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Jingjing Ge
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Limin Zhang
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xiaxia Liu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Panfei Huo
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Jian Liu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
91
|
Signorelli S, Tarkowski ŁP, Van den Ende W, Bassham DC. Linking Autophagy to Abiotic and Biotic Stress Responses. TRENDS IN PLANT SCIENCE 2019; 24:413-430. [PMID: 30824355 PMCID: PMC6475611 DOI: 10.1016/j.tplants.2019.02.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role of SNF-related kinase 1 (SnRK1) and TOR kinases in the regulation of autophagy, abscisic acid (ABA) and its signaling kinase SnRK2 have emerged as key players in the induction of autophagy under stress conditions. Furthermore, an interplay between reactive oxygen species (ROS) and autophagy is observed, ROS being able to induce autophagy and autophagy able to reduce ROS production. We also highlight the importance of osmotic adjustment for the successful performance of autophagy and discuss the potential role of GABA in plant survival and ethylene (ET)-induced autophagy.
Collapse
Affiliation(s)
- Santiago Signorelli
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium; Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay.
| | | | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
92
|
Asami P, Rupasinghe T, Moghaddam L, Njaci I, Roessner U, Mundree S, Williams B. Roots of the Resurrection Plant Tripogon loliiformis Survive Desiccation Without the Activation of Autophagy Pathways by Maintaining Energy Reserves. FRONTIERS IN PLANT SCIENCE 2019; 10:459. [PMID: 31105716 PMCID: PMC6494956 DOI: 10.3389/fpls.2019.00459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/27/2019] [Indexed: 05/18/2023]
Abstract
Being sessile, plants must regulate energy balance, potentially via source-sink relations, to compromise growth with survival in stressful conditions. Crops are sensitive, possibly because they allocate their energy resources toward growth and yield rather than stress tolerance. In contrast, resurrection plants tightly regulate sugar metabolism and use a series of physiological adaptations to suppress cell death in their vegetative tissue to regain full metabolic capacity from a desiccated state within 72 h of watering. Previously, we showed that shoots of the resurrection plant Tripogon loliiformis, initiate autophagy upon dehydration as one strategy to reinstate homeostasis and suppress cell death. Here, we describe the relationship between energy status, sugar metabolism, trehalose-mediated activation of autophagy pathways and investigate whether shoots and roots utilize similar desiccation tolerance strategies. We show that despite containing high levels of trehalose, dehydrated Tripogon roots do not display elevated activation of autophagy pathways. Using targeted and non-targeted metabolomics, transmission electron microscopy (TEM) and transcriptomics we show that T. loliiformis engages a strategy similar to the long-term drought responses of sensitive plants and continues to use the roots as a sink even during sustained stress. Dehydrating T. loliiformis roots contained more sucrose and trehalose-6-phosphate compared to shoots at an equivalent water content. The increased resources in the roots provides sufficient energy to cope with stress and thus autophagy is not required. These results were confirmed by the absence of autophagosomes in roots by TEM. Upregulation of sweet genes in both shoots and roots show transcriptional regulation of sucrose translocation from leaves to roots and within roots during dehydration. Differences in the cell's metabolic status caused starkly different cell death responses between shoots and roots. These findings show how shoots and roots utilize different stress response strategies and may provide candidate targets that can be used as tools for the improvement of stress tolerance in crops.
Collapse
Affiliation(s)
- Pauline Asami
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Lalehvash Moghaddam
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Isaac Njaci
- Biosciences Eastern and Central Africa-International Livestock Research Institute, Nairobi, Kenya
| | - Ute Roessner
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
93
|
Soares A, Niedermaier S, Faro R, Loos A, Manadas B, Faro C, Huesgen PF, Cheung AY, Simões I. An atypical aspartic protease modulates lateral root development in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2157-2171. [PMID: 30778561 DOI: 10.1093/jxb/erz059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/05/2019] [Indexed: 05/25/2023]
Abstract
Few atypical aspartic proteases (APs) present in plants have been functionally studied to date despite having been implicated in developmental processes and stress responses. Here we characterize a novel atypical AP that we name Atypical Aspartic Protease in Roots 1 (ASPR1), denoting its expression in Arabidopsis roots. Recombinant ASPR1 produced by transient expression in Nicotiana benthamiana was active and displayed atypical properties, combining optimum acidic pH, partial sensitivity to pepstatin, pronounced sensitivity to redox agents, and unique specificity preferences resembling those of fungal APs. ASPR1 overexpression suppressed primary root growth and lateral root development, implying a previously unknown biological role for an AP. Quantitative comparison of wild-type and aspr1 root proteomes revealed deregulation of proteins associated with both reactive oxygen species and auxin homeostasis in the mutant. Together, our findings on ASPR1 reinforce the diverse pattern of enzymatic properties and biological roles of atypical APs and raise exciting questions on how these distinctive features impact functional specialization among these proteases.
Collapse
Affiliation(s)
- André Soares
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Stefan Niedermaier
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Rosário Faro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Andreas Loos
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Carlos Faro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Isaura Simões
- Institute for Interdisciplinary Research, University of Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| |
Collapse
|
94
|
Santos C, Nogueira FCS, Domont GB, Fontes W, Prado GS, Habibi P, Santos VO, Oliveira-Neto OB, Grossi-de-Sá MF, Jorrín-Novo JV, Franco OL, Mehta A. Proteomic Analysis and Functional Validation of a Brassica oleracea Endochitinase Involved in Resistance to Xanthomonas campestris. FRONTIERS IN PLANT SCIENCE 2019; 10:414. [PMID: 31031780 PMCID: PMC6473119 DOI: 10.3389/fpls.2019.00414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/19/2019] [Indexed: 05/02/2023]
Abstract
Black rot is a severe disease caused by the bacterium Xanthomonas campestris pv. campestris (Xcc), which can lead to substantial losses in cruciferous vegetable production worldwide. Although the use of resistant cultivars is the main strategy to control this disease, there are limited sources of resistance. In this study, we used the LC-MS/MS technique to analyze young cabbage leaves and chloroplast-enriched samples at 24 h after infection by Xcc, using both susceptible (Veloce) and resistant (Astrus) cultivars. A comparison between susceptible Xcc-inoculated plants and the control condition, as well as between resistant Xcc-inoculated plants with the control was performed and more than 300 differentially abundant proteins were identified in each comparison. The chloroplast enriched samples contributed with the identification of 600 additional protein species in the resistant interaction and 900 in the susceptible one, which were not detected in total leaf sample. We further determined the expression levels for 30 genes encoding the identified differential proteins by qRT-PCR. CHI-B4 like gene, encoding an endochitinase showing a high increased abundance in resistant Xcc-inoculated leaves, was selected for functional validation by overexpression in Arabidopsis thaliana. Compared to the wild type (Col-0), transgenic plants were highly resistant to Xcc indicating that CHI-B4 like gene could be an interesting candidate to be used in genetic breeding programs aiming at black rot resistance.
Collapse
Affiliation(s)
- Cristiane Santos
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Fábio C. S. Nogueira
- Proteomics Unit, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B. Domont
- Proteomics Unit, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner Fontes
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | | | - Peyman Habibi
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Department of Bioprocess Engineering and Biotechnology, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Osmundo B. Oliveira-Neto
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Bioquímica e Biologia Molecular, Escola de Medicina, Faculdades Integradas da União Educacional do Planalto Central, Brasília, Brazil
| | - Maria Fatima Grossi-de-Sá
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Centro de Analises Proteomicas e Bioquimica, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Jesus V. Jorrín-Novo
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Córdoba, Spain
| | - Octavio L. Franco
- Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Centro de Analises Proteomicas e Bioquimica, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| |
Collapse
|
95
|
Soares A, Ribeiro Carlton SM, Simões I. Atypical and nucellin-like aspartic proteases: emerging players in plant developmental processes and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2059-2076. [PMID: 30715463 DOI: 10.1093/jxb/erz034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Members of the pepsin-like family (A1) of aspartic proteases (APs) are widely distributed in plants. A large number of genes encoding putative A1 APs are found in different plant genomes, the vast majority of which exhibit distinct features when compared with the so-called typical APs (and, therefore, grouped as atypical and nucellin-like APs). These features include the absence of the plant-specific insert; an unusually high number of cysteine residues; the nature of the amino acids preceding the first catalytic aspartate; and unexpected localizations. The over-representation of atypical and nucellin-like APs in plants is suggestive of greater diversification of protein functions and a more regulatory role for these APs, as compared with the housekeeping function generally attributed to typical APs. New functions have been uncovered for non-typical APs, with proposed roles in biotic and abiotic stress responses, chloroplast metabolism, and reproductive development, clearly suggesting functional specialization and tight regulation of activity. Furthermore, unusual enzymatic properties have also been documented for some of these proteases. Here, we give an overview of the current knowledge on the distinctive features and functions of both atypical and nucellin-like APs, and discuss this emerging pattern of functional complexity and specialization among plant pepsin-like proteases.
Collapse
Affiliation(s)
- André Soares
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | | | - Isaura Simões
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
96
|
Zhang H, Li Y, Dickman MB, Wang Z. Cytoprotective Co-chaperone BcBAG1 Is a Component for Fungal Development, Virulence, and Unfolded Protein Response (UPR) of Botrytis cinerea. Front Microbiol 2019; 10:685. [PMID: 31024482 PMCID: PMC6467101 DOI: 10.3389/fmicb.2019.00685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
The Bcl-2 associated athanogene (BAG) family is an evolutionarily conserved group of co-chaperones that confers stress protection against a variety of cellular insults extending from yeasts, plants to humans. Little is known, however, regarding the biological role of BAG proteins in phytopathogenic fungi. Here, we identified the unique BAG gene (BcBAG1) from the necrotrophic fungal pathogen, Botrytis cinerea. BcBAG1 is the homolog of Arabidopsis thaliana AtBAG4, and ectopic expression of BcBAG1 in atbag4 knock-out mutants restores salt tolerance. BcBAG1 deletion mutants (ΔBcbag1) exhibited decreased conidiation, enhanced melanin accumulation and lost the ability to develop sclerotia. Also, BcBAG1 disruption blocked fungal conidial germination and successful penetration, leading to a reduced virulence in host plants. BcBAG1 contains BAG (BD) domain at C-terminus and ubiquitin-like (UBL) domain at N-terminus. Complementation assays indicated that BD can largely restored pathogenicity of ΔBcbag1. Abiotic stress assays showed ΔBcbag1 was more sensitive than the wild-type strain to NaCl, calcofluor white, SDS, tunicamycin, dithiothreitol (DTT), heat and cold stress, suggesting BcBAG1 plays a cytoprotective role during salt stress, cell wall stress, and ER stress. BcBAG1 negatively regulated the expression of BcBIP1, BcIRE1 and the splicing of BcHAC1 mRNA, which are core regulators of unfolded protein response (UPR) during ER stress. Moreover, BcBAG1 interacted with HSP70-type chaperones, BcBIP1 and BcSKS2. In summary, this work demonstrates that BcBAG1 is pleiotropic and not only essential for fungal development, hyphal melanization, and virulence, but also required for response to multiple abiotic stresses and UPR pathway of B. cinerea.
Collapse
Affiliation(s)
- Honghong Zhang
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute for Plant Genomics and Biotechnology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States.,Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Yurong Li
- Institute for Plant Genomics and Biotechnology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States.,Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Martin B Dickman
- Institute for Plant Genomics and Biotechnology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States.,Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Zonghua Wang
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
97
|
Della Coletta R, Hirsch CN, Rouse MN, Lorenz A, Garvin DF. Genomic Dissection of Nonhost Resistance to Wheat Stem Rust in Brachypodium distachyon. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:392-400. [PMID: 30261155 DOI: 10.1094/mpmi-08-18-0220-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The emergence of new races of Puccinia graminis f. sp. tritici, the causal pathogen of wheat stem rust, has spurred interest in developing durable resistance to this disease in wheat. Nonhost resistance holds promise to help control this and other diseases because it is durable against nonadapted pathogens. However, the genetic and molecular basis of nonhost resistance to wheat stem rust is poorly understood. In this study, the model grass Brachypodium distachyon, a nonhost of P. graminis f. sp. tritici, was used to genetically dissect nonhost resistance to wheat stem rust. A recombinant inbred line (RIL) population segregating for response to wheat stem rust was evaluated for resistance. Evaluation of genome-wide cumulative single nucleotide polymorphism allele frequency differences between contrasting pools of resistant and susceptible RILs followed by molecular marker analysis identified six quantitative trait loci (QTL) that cumulatively explained 72.5% of the variation in stem rust resistance. Two of the QTLs explained 31.7% of the variation, and their interaction explained another 4.6%. Thus, nonhost resistance to wheat stem rust in B. distachyon is genetically complex, with both major and minor QTLs acting additively and, in some cases, interacting. These findings will guide future research to identify genes essential to nonhost resistance to wheat stem rust.
Collapse
Affiliation(s)
- Rafael Della Coletta
- 1 Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, U.S.A
- 2 CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, Brazil
| | - Candice N Hirsch
- 1 Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, U.S.A
| | - Matthew N Rouse
- 3 USDA-ARS Cereal Disease Laboratory, St. Paul, MN, U.S.A
- 4 Department of Plant Pathology, University of Minnesota; and
| | - Aaron Lorenz
- 1 Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, U.S.A
| | - David F Garvin
- 1 Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, U.S.A
- 5 USDA-ARS Plant Science Research Unit, St. Paul, MN, U.S.A
| |
Collapse
|
98
|
Yan Q, Si J, Cui X, Peng H, Jing M, Chen X, Xing H, Dou D. GmDAD1, a Conserved Defender Against Cell Death 1 ( DAD1) From Soybean, Positively Regulates Plant Resistance Against Phytophthora Pathogens. FRONTIERS IN PLANT SCIENCE 2019; 10:107. [PMID: 30800138 PMCID: PMC6376896 DOI: 10.3389/fpls.2019.00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/23/2019] [Indexed: 05/09/2023]
Abstract
Initially identified as a mammalian apoptosis suppressor, defender against apoptotic death 1 (DAD1) protein has conserved plant orthologs acting as negative regulators of cell death. The potential roles and action mechanisms of plant DADs in resistance against Phytophthora pathogens are still unknown. Here, we cloned GmDAD1 from soybean and performed functional dissection. GmDAD1 expression can be induced by Phytophthora sojae infection in both compatible and incompatible soybean varieties. By manipulating GmDAD1 expression in soybean hairy roots, we showed that GmDAD1 transcript accumulations are positively correlated with plant resistance levels against P. sojae. Heterologous expression of GmDAD1 in Nicotiana benthamiana enhanced its resistance to Phytophthora parasitica. NbDAD1 from N. benthamiana was shown to have similar role in conferring Phytophthora resistance. As an endoplasmic reticulum (ER)-localized protein, GmDAD1 was demonstrated to be involved in ER stress signaling and to affect the expression of multiple defense-related genes. Taken together, our findings reveal that GmDAD1 plays a critical role in defense against Phytophthora pathogens and might participate in the ER stress signaling pathway. The defense-associated characteristic of GmDAD1 makes it a valuable working target for breeding Phytophthora resistant soybean varieties.
Collapse
Affiliation(s)
- Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jierui Si
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxia Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Han Xing
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
99
|
Abstract
The highly conserved catabolic process of autophagy delivers unwanted proteins or damaged organelles to vacuoles for degradation and recycling. This is essential for the regulation of cellular homeostasis, stress adaptation, and programmed cell death in eukaryotes. In particular, emerging evidence indicates that autophagy plays a multifunctional regulatory role in plant innate immunity during plant-pathogen interactions. In this review, we highlight existing knowledge regarding the involvement of autophagy in plant immunity, mechanisms functioning in the induction of autophagy upon pathogen infection, and possible directions for future research.
Collapse
|
100
|
Ding X, Zhang X, Otegui MS. Plant autophagy: new flavors on the menu. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:113-121. [PMID: 30267997 DOI: 10.1016/j.pbi.2018.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Autophagy mediates the delivery of cytoplasmic content to vacuoles or lysosomes for degradation or storage. The best characterized autophagy route called macroautophagy involves the sequestration of cargo in double-membrane autophagosomes and is conserved in eukaryotes, including plants. Recently, several new receptors, some of them plant-specific, that select cargo for macroautophagy have been identified. Some of these receptors appear to participate in regulation of competing catabolic pathways, for example proteasome-mediated versus autophagic degradation under specific stress conditions. Vacuolar microautophagy, a process by which the vacuole directly engulf cytoplasmic material, also occurs in plants but its underlying molecular mechanisms are yet to be elucidated.
Collapse
Affiliation(s)
- Xinxin Ding
- Department of Botany, 430 Lincoln Drive, University of Wisconsin-Madison, WI 53706, United States; Laboratory of Molecular and Cellular Biology, 1525 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Xiaoguo Zhang
- Department of Botany, 430 Lincoln Drive, University of Wisconsin-Madison, WI 53706, United States; Laboratory of Molecular and Cellular Biology, 1525 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Marisa S Otegui
- Department of Botany, 430 Lincoln Drive, University of Wisconsin-Madison, WI 53706, United States; Laboratory of Molecular and Cellular Biology, 1525 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Genetics, 405 Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|