51
|
Guarino F, Cicatelli A, Castiglione S, Agius DR, Orhun GE, Fragkostefanakis S, Leclercq J, Dobránszki J, Kaiserli E, Lieberman-Lazarovich M, Sõmera M, Sarmiento C, Vettori C, Paffetti D, Poma AMG, Moschou PN, Gašparović M, Yousefi S, Vergata C, Berger MMJ, Gallusci P, Miladinović D, Martinelli F. An Epigenetic Alphabet of Crop Adaptation to Climate Change. Front Genet 2022; 13:818727. [PMID: 35251130 PMCID: PMC8888914 DOI: 10.3389/fgene.2022.818727] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/28/2022] [Indexed: 01/10/2023] Open
Abstract
Crop adaptation to climate change is in a part attributed to epigenetic mechanisms which are related to response to abiotic and biotic stresses. Although recent studies increased our knowledge on the nature of these mechanisms, epigenetics remains under-investigated and still poorly understood in many, especially non-model, plants, Epigenetic modifications are traditionally divided into two main groups, DNA methylation and histone modifications that lead to chromatin remodeling and the regulation of genome functioning. In this review, we outline the most recent and interesting findings on crop epigenetic responses to the environmental cues that are most relevant to climate change. In addition, we discuss a speculative point of view, in which we try to decipher the “epigenetic alphabet” that underlies crop adaptation mechanisms to climate change. The understanding of these mechanisms will pave the way to new strategies to design and implement the next generation of cultivars with a broad range of tolerance/resistance to stresses as well as balanced agronomic traits, with a limited loss of (epi)genetic variability.
Collapse
Affiliation(s)
- Francesco Guarino
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Angela Cicatelli
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Stefano Castiglione
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Dolores R. Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Gul Ebru Orhun
- Bayramic Vocational College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | | | - Julie Leclercq
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Institut Agro, Montpellier, France
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, FAFSEM, University of Debrecen, Debrecen, Hungary
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cristina Vettori
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Donatella Paffetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Anna M. G. Poma
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, Aquila, Italy
| | - Panagiotis N. Moschou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Mateo Gašparović
- Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, Zagreb, Croatia
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Chiara Vergata
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Margot M. J. Berger
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, Bordeaux, France
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, Bordeaux, France
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
- *Correspondence: Dragana Miladinović, ; Federico Martinelli,
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- *Correspondence: Dragana Miladinović, ; Federico Martinelli,
| |
Collapse
|
52
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
53
|
Jethva J, Schmidt RR, Sauter M, Selinski J. Try or Die: Dynamics of Plant Respiration and How to Survive Low Oxygen Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020205. [PMID: 35050092 PMCID: PMC8780655 DOI: 10.3390/plants11020205] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/09/2023]
Abstract
Fluctuations in oxygen (O2) availability occur as a result of flooding, which is periodically encountered by terrestrial plants. Plant respiration and mitochondrial energy generation rely on O2 availability. Therefore, decreased O2 concentrations severely affect mitochondrial function. Low O2 concentrations (hypoxia) induce cellular stress due to decreased ATP production, depletion of energy reserves and accumulation of metabolic intermediates. In addition, the transition from low to high O2 in combination with light changes-as experienced during re-oxygenation-leads to the excess formation of reactive oxygen species (ROS). In this review, we will update our current knowledge about the mechanisms enabling plants to adapt to low-O2 environments, and how to survive re-oxygenation. New insights into the role of mitochondrial retrograde signaling, chromatin modification, as well as moonlighting proteins and mitochondrial alternative electron transport pathways (and their contribution to low O2 tolerance and survival of re-oxygenation), are presented.
Collapse
Affiliation(s)
- Jay Jethva
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Romy R. Schmidt
- Department of Plant Biotechnology, Faculty of Biology, University of Bielefeld, D-33615 Bielefeld, Germany;
| | - Margret Sauter
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Faculty of Mathematics and Natural Sciences, Christian-Albrechts University, D-24118 Kiel, Germany
- Correspondence: ; Tel.: +49-(0)431-880-4245
| |
Collapse
|
54
|
NuA4 and H2A.Z control environmental responses and autotrophic growth in Arabidopsis. Nat Commun 2022; 13:277. [PMID: 35022409 PMCID: PMC8755797 DOI: 10.1038/s41467-021-27882-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleosomal acetyltransferase of H4 (NuA4) is an essential transcriptional coactivator in eukaryotes, but remains poorly characterized in plants. Here, we describe Arabidopsis homologs of the NuA4 scaffold proteins Enhancer of Polycomb-Like 1 (AtEPL1) and Esa1-Associated Factor 1 (AtEAF1). Loss of AtEAF1 results in inhibition of growth and chloroplast development. These effects are stronger in the Atepl1 mutant and are further enhanced by loss of Golden2-Like (GLK) transcription factors, suggesting that NuA4 activates nuclear plastid genes alongside GLK. We demonstrate that AtEPL1 is necessary for nucleosomal acetylation of histones H4 and H2A.Z by NuA4 in vitro. These chromatin marks are diminished genome-wide in Atepl1, while another active chromatin mark, H3K9 acetylation (H3K9ac), is locally enhanced. Expression of many chloroplast-related genes depends on NuA4, as they are downregulated with loss of H4ac and H2A.Zac. Finally, we demonstrate that NuA4 promotes H2A.Z deposition and by doing so prevents spurious activation of stress response genes. Function of nucleosomal acetyltransferase of H4 (NuA4), one major complex of HAT, remains unclear in plants. Here, the authors generate mutants targeting two components of the putative NuA4 complex in Arabidopsis (EAF1 and EPL1) and show their roles in photosynthesis genes regulation through H4K5ac and H2A.Z acetylation.
Collapse
|
55
|
Hannan Parker A, Wilkinson SW, Ton J. Epigenetics: a catalyst of plant immunity against pathogens. THE NEW PHYTOLOGIST 2022; 233:66-83. [PMID: 34455592 DOI: 10.1111/nph.17699] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/20/2021] [Indexed: 05/11/2023]
Abstract
The plant immune system protects against pests and diseases. The recognition of stress-related molecular patterns triggers localised immune responses, which are often followed by longer-lasting systemic priming and/or up-regulation of defences. In some cases, this induced resistance (IR) can be transmitted to following generations. Such transgenerational IR is gradually reversed in the absence of stress at a rate that is proportional to the severity of disease experienced in previous generations. This review outlines the mechanisms by which epigenetic responses to pathogen infection shape the plant immune system across expanding time scales. We review the cis- and trans-acting mechanisms by which stress-inducible epigenetic changes at transposable elements (TEs) regulate genome-wide defence gene expression and draw particular attention to one regulatory model that is supported by recent evidence about the function of AGO1 and H2A.Z in transcriptional control of defence genes. Additionally, we explore how stress-induced mobilisation of epigenetically controlled TEs acts as a catalyst of Darwinian evolution by generating (epi)genetic diversity at environmentally responsive genes. This raises questions about the long-term evolutionary consequences of stress-induced diversification of the plant immune system in relation to the long-held dichotomy between Darwinian and Lamarckian evolution.
Collapse
Affiliation(s)
- Adam Hannan Parker
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| | - Samuel W Wilkinson
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
56
|
Kumar S, Seem K, Kumar S, Vinod KK, Chinnusamy V, Mohapatra T. Pup1 QTL Regulates Gene Expression Through Epigenetic Modification of DNA Under Phosphate Starvation Stress in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:871890. [PMID: 35712593 PMCID: PMC9195100 DOI: 10.3389/fpls.2022.871890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/29/2022] [Indexed: 05/03/2023]
Abstract
Cytosine methylation, epigenetic DNA modification, is well known to regulate gene expression. Among the epigenetic modifications, 5-methylcytosine (5-mC) has been one of the extensively studied epigenetic changes responsible for regulating gene expression in animals and plants. Though a dramatic change in 5-mC content is observed at the genome level, the variation in gene expression is generally less than that it is expected. Only less is understood about the significance of 5-mC in gene regulation under P-starvation stress in plants. Using whole-genome bisulfite sequencing of a pair of rice [Pusa-44 and its near-isogenic line (NIL)-23 harboring Pup1 QTL] genotypes, we could decipher the role of Pup1 on DNA (de)methylation-mediated regulation of gene expression under P-starvation stress. We observed 13-15% of total cytosines to be methylated in the rice genome, which increased significantly under the stress. The number of differentially methylated regions (DMRs) for hypomethylation (6,068) was higher than those (5,279) for hypermethylated DMRs under the stress, particularly in root of NIL-23. Hypomethylation in CHH context caused upregulated expression of 489 genes in shoot and 382 genes in root of NIL-23 under the stress, wherein 387 genes in shoot and 240 genes in root were upregulated exclusively in NIL-23. Many of the genes for DNA methylation, a few for DNA demethylation, and RNA-directed DNA methylation were upregulated in root of NIL-23 under the stress. Methylation or demethylation of DNA in genic regions differentially affected gene expression. Correlation analysis for the distribution of DMRs and gene expression indicated the regulation of gene mainly through (de)methylation of promoter. Many of the P-responsive genes were hypomethylated or upregulated in roots of NIL-23 under the stress. Hypermethylation of gene body in CG, CHG, and CHH contexts caused up- or downregulated expression of transcription factors (TFs), P transporters, phosphoesterases, retrotransposon proteins, and other proteins. Our integrated transcriptome and methylome analyses revealed an important role of the Pup1 QTL in epigenetic regulation of the genes for transporters, TFs, phosphatases, carbohydrate metabolism, hormone-signaling, and chromatin architecture or epigenetic modifications in P-starvation tolerance. This provides insights into the molecular function of Pup1 in modulating gene expression through DNA (de)methylation, which might be useful in improving P-use efficiency or productivity of rice in P-deficient soil.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar ; ; orcid.org/0000-0002-7127-3079
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - K. K. Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
57
|
Kumar S, Kaur S, Seem K, Kumar S, Mohapatra T. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective. Front Cell Dev Biol 2021; 9:774719. [PMID: 34957106 PMCID: PMC8692796 DOI: 10.3389/fcell.2021.774719] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/23/2021] [Indexed: 01/17/2023] Open
Abstract
The genome of a eukaryotic organism is comprised of a supra-molecular complex of chromatin fibers and intricately folded three-dimensional (3D) structures. Chromosomal interactions and topological changes in response to the developmental and/or environmental stimuli affect gene expression. Chromatin architecture plays important roles in DNA replication, gene expression, and genome integrity. Higher-order chromatin organizations like chromosome territories (CTs), A/B compartments, topologically associating domains (TADs), and chromatin loops vary among cells, tissues, and species depending on the developmental stage and/or environmental conditions (4D genomics). Every chromosome occupies a separate territory in the interphase nucleus and forms the top layer of hierarchical structure (CTs) in most of the eukaryotes. While the A and B compartments are associated with active (euchromatic) and inactive (heterochromatic) chromatin, respectively, having well-defined genomic/epigenomic features, TADs are the structural units of chromatin. Chromatin architecture like TADs as well as the local interactions between promoter and regulatory elements correlates with the chromatin activity, which alters during environmental stresses due to relocalization of the architectural proteins. Moreover, chromatin looping brings the gene and regulatory elements in close proximity for interactions. The intricate relationship between nucleotide sequence and chromatin architecture requires a more comprehensive understanding to unravel the genome organization and genetic plasticity. During the last decade, advances in chromatin conformation capture techniques for unravelling 3D genome organizations have improved our understanding of genome biology. However, the recent advances, such as Hi-C and ChIA-PET, have substantially increased the resolution, throughput as well our interest in analysing genome organizations. The present review provides an overview of the historical and contemporary perspectives of chromosome conformation capture technologies, their applications in functional genomics, and the constraints in predicting 3D genome organization. We also discuss the future perspectives of understanding high-order chromatin organizations in deciphering transcriptional regulation of gene expression under environmental stress (4D genomics). These might help design the climate-smart crop to meet the ever-growing demands of food, feed, and fodder.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
58
|
Yung WS, Li MW, Sze CC, Wang Q, Lam HM. Histone modifications and chromatin remodelling in plants in response to salt stress. PHYSIOLOGIA PLANTARUM 2021; 173:1495-1513. [PMID: 34028035 DOI: 10.1111/ppl.13467] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
In the face of global food security crises, it is necessary to boost agricultural production. One factor hampering the attempts to increase food production is elevated soil salinity, which can be due to salt that is naturally present in the soil or a consequence of excessive or prolonged irrigation or application of fertiliser. In response to environmental stresses, plants activate multiple molecular mechanisms, including the timely activation of stress-responsive transcriptional networks. However, in the case of salt stress, the combined effects of the initial osmotic shock and the subsequent ion-specific stress increase the complexity in the selective regulation of gene expressions involved in restoring or maintaining osmotic balance, ion homeostasis and reactive oxygen species scavenging. Histone modifications and chromatin remodelling are important epigenetic processes that regulate gene expressions by modifying the chromatin status and recruiting transcription regulators. In this review, we have specifically summarised the currently available knowledge on histone modifications and chromatin remodelling in relation to plant responses to salt stress. Current findings have revealed the functional importance of chromatin modifiers in regulating salt tolerance and identified the effector genes affected by epigenetic modifications, although counteraction between modifiers within the same family may occur. Emerging evidence has also illustrated the crosstalk between epigenetic modifications and hormone signalling pathways which involves formation of protein complexes. With an improved understanding of these processes, plant breeders will be able to develop alternative strategies using genome editing technologies for crop improvement.
Collapse
Affiliation(s)
- Wai-Shing Yung
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Man-Wah Li
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ching-Ching Sze
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qianwen Wang
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
59
|
Haider S, Iqbal J, Naseer S, Yaseen T, Shaukat M, Bibi H, Ahmad Y, Daud H, Abbasi NL, Mahmood T. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. PLANT CELL REPORTS 2021; 40:2247-2271. [PMID: 33890138 DOI: 10.1007/s00299-021-02696-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events. The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.
Collapse
Affiliation(s)
- Saqlain Haider
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201, Pakistan.
| | - Sana Naseer
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muzaffar Shaukat
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Haleema Bibi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yumna Ahmad
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hina Daud
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nayyab Laiba Abbasi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
60
|
Lai D, Huang X, Wang C, Ow DW. Arabidopsis OXIDATIVE STRESS 3 enhances stress tolerance in Schizosaccharomyces pombe by promoting histone subunit replacement that upregulates drug-resistant genes. Genetics 2021; 219:6371188. [PMID: 34740252 DOI: 10.1093/genetics/iyab149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/04/2021] [Indexed: 11/14/2022] Open
Abstract
Histone replacement in chromatin-remodeling plays an important role in eukaryotic gene expression. New histone variants replacing their canonical counterparts often lead to a change in transcription, including responses to stresses caused by temperature, drought, salinity, and heavy metals. In this study, we describe a chromatin-remodeling process triggered by eviction of Rad3/Tel1-phosphorylated H2Aα, in which a heterologous plant protein AtOXS3 can subsequently bind fission yeast HA2.Z and Swc2, a component of the SWR1 complex, to facilitate replacement of H2Aα with H2A.Z. The histone replacement increases occupancy of the oxidative stress-responsive transcription factor Pap1 at the promoters of at least three drug-resistant genes, which enhances their transcription and hence primes the cell for higher stress tolerance.
Collapse
Affiliation(s)
- Dingwang Lai
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuting Huang
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changhu Wang
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - David W Ow
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
61
|
Osadchuk K, Cheng CL, Irish EE. The integration of leaf-derived signals sets the timing of vegetative phase change in maize, a process coordinated by epigenetic remodeling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111035. [PMID: 34620439 DOI: 10.1016/j.plantsci.2021.111035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
After germination, the maize shoot proceeds through a series of developmental stages before flowering. The first transition occurs during the vegetative phase where the shoot matures from the juvenile to the adult phase, called vegetative phase change (VPC). In maize, both phases exhibit easily-scored morphological characteristics, facilitating the elucidation of molecular mechanisms directing the characteristic gene expression patterns and resulting physiological features of each phase. miR156 expression is high during the juvenile phase, suppressing expression of squamosa promoter binding proteins/SBP-like transcription factors and miR172. The decline in miR156 and subsequent increase in miR172 expression marks the transition into the adult phase, where miR172 represses transcripts that confer juvenile traits. Leaf-derived signals attenuate miR156 expression and thus the duration of the juvenile phase. As found in other species, VPC in maize utilizes signals that consist of hormones, stress, and sugar to direct epigenetic modifiers. In this review we identify the intersection of leaf-derived signaling with components that contribute to the epigenetic changes which may, in turn, manage the distinct global gene expression patterns of each phase. In maize, published research regarding chromatin remodeling during VPC is minimal. Therefore, we identified epigenetic regulators in the maize genome and, using published gene expression data and research from other plant species, identify VPC candidates.
Collapse
Affiliation(s)
- Krista Osadchuk
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Chi-Lien Cheng
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Erin E Irish
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
62
|
Xue M, Zhang H, Zhao F, Zhao T, Li H, Jiang D. The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis. MOLECULAR PLANT 2021; 14:1799-1813. [PMID: 34242850 DOI: 10.1016/j.molp.2021.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/12/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Global warming poses a major threat to plant growth and crop production. In some plants, including Arabidopsis thaliana, elevated temperatures induce a series of morphological and developmental adjustments termed thermomorphogenesis, which facilitates plant cooling under high-temperature conditions. Plant thermal response is suppressed by histone variant H2A.Z. At warm temperatures, H2A.Z is evicted from nucleosomes at thermoresponsive genes, resulting in changes in their expression. However, the mechanisms that regulate H2A.Z eviction and subsequent transcriptional changes are largely unknown. Here, we show that the INO80 chromatin remodeling complex (INO80-C) promotes thermomorphogenesis and activates the expression of thermoresponsive and auxin-related genes. INO80-C associates with PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a potent regulator of thermomorphogenesis, and mediates temperature-induced H2A.Z eviction at PIF4 targets. Moreover, INO80-C directly interacts with COMPASS-like and transcription elongation factors to promote active histone modification, histone H3 lysine 4 trimethylation, and RNA polymerase II elongation, leading to the thermal induction of transcription. Notably, the transcription elongation factors SPT4 and SPT5 are required for H2A.Z eviction at PIF4 targets, suggesting the cooperation of INO80-C and transcription elongation in H2A.Z removal. Taken together, these results suggest that the (PIF4)-(INO80-C)-(COMPASS-like)-(transcription elongator) module controls plant thermal response, thereby establishing a link between H2A.Z eviction and active transcription.
Collapse
Affiliation(s)
- Mande Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fengyue Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
63
|
Kudo H, Matsuo M, Satoh S, Hata T, Hachisu R, Nakamura M, Yamamoto YY, Kimura H, Matsui M, Obokata J. Cryptic promoter activation occurs by at least two different mechanisms in the Arabidopsis genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:29-39. [PMID: 34252235 DOI: 10.1111/tpj.15420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In gene-trap screening of plant genomes, promoterless reporter constructs are often expressed without trapping of annotated gene promoters. The molecular basis of this phenomenon, which has been interpreted as the trapping of cryptic promoters, is poorly understood. Here, we found that cryptic promoter activation occurs by at least two different mechanisms using Arabidopsis gene-trap lines in which a firefly luciferase (LUC) open reading frame (ORF) without an apparent promoter sequence was expressed from intergenic regions: one mechanism is 'cryptic promoter capturing', in which the LUC ORF captured pre-existing promoter-like chromatin marked by H3K4me3 and H2A.Z, and the other is 'promoter de novo origination', in which the promoter chromatin was newly formed near the 5' end of the inserted LUC ORF. The latter finding raises a question as to how the inserted LUC ORF sequence is involved in this phenomenon. To examine this, we performed a model experiment with chimeric LUC genes in transgenic plants. Using Arabidopsis psaH1 promoter-LUC constructs, we found that the functional core promoter region, where transcription start sites (TSSs) occur, cannot simply be determined by the upstream nor core promoter sequences; rather, its positioning proximal to the inserted LUC ORF sequence was more critical. This result suggests that the insertion of the coding sequence alters the local distribution of TSSs in the plant genome. The possible impact of the two types of cryptic promoter activation mechanisms on plant genome evolution and endosymbiotic gene transfer is discussed.
Collapse
Affiliation(s)
- Hisayuki Kudo
- Center for G Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Mitsuhiro Matsuo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Takayuki Hata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Rei Hachisu
- Center for G Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Masayuki Nakamura
- Center for G Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yoshiharu Y Yamamoto
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagito, Gihu-shi, Gifu, 501-1193, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Kanagawa, 226-8501, Japan
| | - Minami Matsui
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto, 606-8522, Japan
| |
Collapse
|
64
|
OsARP6 Is Involved in Internode Elongation by Regulating Cell-Cycle-Related Genes. Biomolecules 2021; 11:biom11081100. [PMID: 34439766 PMCID: PMC8393719 DOI: 10.3390/biom11081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
The SWR1 complex (SWR1-C) is important for the deposition of histone variant H2A.Z into chromatin to regulate gene expression. Characterization of SWR1-C subunits in Arabidopsis thaliana has revealed their role in variety of developmental processes. Oryza sativa actin related protein 6 (OsARP6) is a subunit of rice SWR1-C. Its role in rice plant development is unknown. Here, we examined the subcellular localization, expression patterns, and loss of function phenotypes for this protein and found that OsARP6 is a nuclear localized protein, and is broadly expressed. OsARP6 interacted with OsPIE1, a central ATPase subunit of rice SWR1-C. The osarp6 knockout mutants displayed pleiotropic phenotypic alterations in vegetative and reproductive traits, including semi-dwarf phenotype, lower tillers number, short leaf length, changes in spikelet morphology, and seed abortion. Microscopic thin sectioning of the top internode revealed that the dwarf phenotype of osarp6 was due to reduced number of cells rather than reduced cell length. The altered transcript level of genes involved in cell division suggested that OsARP6 affects cell cycle regulation. In addition, H2A.Z levels were reduced at the promoters and transcription start sites (TSS) of the regulated genes in osarp6 plants. Together, these results suggest that OsARP6 is involved in rice plant development, and H2A.Z deposition.
Collapse
|
65
|
Singh RK, Prasad M. Delineating the epigenetic regulation of heat and drought response in plants. Crit Rev Biotechnol 2021; 42:548-561. [PMID: 34289772 DOI: 10.1080/07388551.2021.1946004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Being sessile in nature, plants cannot overlook the incursion of unfavorable environmental conditions, including heat and drought. Heat and drought severely affect plant growth, development, reproduction and therefore productivity which poses a severe threat to global food security. Plants respond to these hostile environmental circumstances by rearranging their genomic and molecular architecture. One such modification commonly known as epigenetic changes involves the perishable to inheritable changes in DNA or DNA-binding histone proteins leading to modified chromatin organization. Reversible epigenetic modifications include DNA methylation, exchange of histone variants, histone methylation, histone acetylation, ATP-dependent nucleosome remodeling, and others. These modifications are employed to regulate the spatial and temporal expression of genes in response to external stimuli or specific developmental requirements. Understanding the epigenetic regulation of stress-related gene expression in response to heat and drought would commence manifold avenues for crop improvement through molecular breeding or biotechnological approaches.
Collapse
Affiliation(s)
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
66
|
PHYTOCHROME-INTERACTING FACTORs trigger environmentally responsive chromatin dynamics in plants. Nat Genet 2021; 53:955-961. [PMID: 34140685 PMCID: PMC9169284 DOI: 10.1038/s41588-021-00882-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 05/11/2021] [Indexed: 01/26/2023]
Abstract
The interplay between light receptors and PHYTOCHROME-INTERACTING FACTORs (PIFs) serves as a regulatory hub that perceives and integrates environmental cues into transcriptional networks of plants1,2. Although occupancy of the histone variant H2A.Z and acetylation of histone H3 have emerged as regulators of environmentally responsive gene networks, how these epigenomic features interface with PIF activity is poorly understood3-7. By taking advantage of rapid and reversible light-mediated manipulation of PIF7 subnuclear localization and phosphorylation, we simultaneously assayed the DNA-binding properties of PIF7, as well as its impact on chromatin dynamics genome wide. We found that PIFs act rapidly to reshape the H2A.Z and H3K9ac epigenetic landscape in response to a change in light quality. Furthermore, we discovered that PIFs achieve H2A.Z removal through direct interaction with EIN6 ENHANCER (EEN), the Arabidopsis thaliana homolog of the chromatin remodeling complex subunit INO80 Subunit 6 (Ies6). Thus, we describe a PIF-INO80 regulatory module that is an intermediate step for allowing plants to change their growth trajectory in response to environmental changes.
Collapse
|
67
|
Baduel P, Quadrana L. Jumpstarting evolution: How transposition can facilitate adaptation to rapid environmental changes. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102043. [PMID: 33932785 DOI: 10.1016/j.pbi.2021.102043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Because of their ability to replicate across genomes, transposable elements (TEs) represent major generators of large-effect mutations. As a result, chromatin-based mechanisms have evolved to control the mutational potential of TEs at multiple levels, from the epigenetic silencing of TE sequences, through the modulation of their integration space, up to the alleviation of the impact of new insertions. Although most TE insertions are highly deleterious, some can provide key adaptive variation. Together with their remarkable sensitivity to the environment and precise integration preferences, the unique characteristics of TEs place them as potent genomic engines of adaptive innovation. Herein, we review recent works exploring the regulation and impact of transposition in nature and discuss their implications for the evolutionary response of species to drastic environmental changes.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France
| | - Leandro Quadrana
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
68
|
Zhang C, Qian Q, Huang X, Zhang W, Liu X, Hou X. NF-YCs modulate histone variant H2A.Z deposition to regulate photomorphogenic growth in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1120-1132. [PMID: 33945672 DOI: 10.1111/jipb.13109] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
In plants, light signals trigger a photomorphogenic program involving transcriptome changes, epigenetic regulation, and inhibited hypocotyl elongation. The evolutionarily conserved histone variant H2A.Z, which functions in transcriptional regulation, is deposited in chromatin by the SWI2/SNF2-RELATED 1 complex (SWR1c). However, the role of H2A.Z in photomorphogenesis and its deposition mechanism remain unclear. Here, we show that in Arabidopsis thaliana, H2A.Z deposition at its target loci is induced by light irradiation via NUCLEAR FACTOR-Y, subunit C (NF-YC) proteins, thereby inhibiting photomorphogenic growth. NF-YCs physically interact with ACTIN-RELATED PROTEIN6 (ARP6), a key component of the SWR1c that is essential for depositing H2A.Z, in a light-dependent manner. NF-YCs and ARP6 function together as negative regulators of hypocotyl growth by depositing H2A.Z at their target genes during photomorphogenesis. Our findings reveal an important role for the histone variant H2A.Z in photomorphogenic growth and provide insights into a novel transcription regulatory node that mediates H2A.Z deposition to control plant growth in response to changing light conditions.
Collapse
Affiliation(s)
- Chunyu Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qian Qian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiang Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wenbin Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, The Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
69
|
Srivastava AK, Suresh Kumar J, Suprasanna P. Seed 'primeomics': plants memorize their germination under stress. Biol Rev Camb Philos Soc 2021; 96:1723-1743. [PMID: 33961327 DOI: 10.1111/brv.12722] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Seed priming is a pre-germination treatment administered through various chemical, physical and biological agents, which induce mild stress during the early phases of germination. Priming facilitates synchronized seed germination, better seedling establishment, improved plant growth and enhanced yield, especially in stressful environments. In parallel, the phenomenon of 'stress memory' in which exposure to a sub-lethal stress leads to better responses to future or recurring lethal stresses has gained widespread attention in recent years. The versatility and realistic yield gains associated with seed priming and its connection with stress memory make a critical examination useful for the design of robust approaches for maximizing future yield gains. Herein, a literature review identified selenium, salicylic acid, poly-ethylene glycol, CaCl2 and thiourea as the seed priming agents (SPRs) for which the most studies have been carried out. The average priming duration for SPRs generally ranged from 2 to 48 h, i.e. during phase I/II of germination. The major signalling events for regulating early seed germination, including the DOG1 (delay of germination 1)-abscisic acid (ABA)-heme regulatory module, ABA-gibberellic acid antagonism and nucleus-organelle communication are detailed. We propose that both seed priming and stress memory invoke a 'bet-hedging' strategy in plants, wherein their growth under optimal conditions is compromised in exchange for better growth under stressful conditions. The molecular basis of stress memory is explained at the level of chromatin reorganization, alternative transcript splicing, metabolite accumulation and autophagy. This provides a useful framework to study similar mechanisms operating during seed priming. In addition, we highlight the potential for merging findings on seed priming with those of stress memory, with the dual benefit of advancing fundamental research and boosting crop productivity. Finally, a roadmap for future work, entailing identification of SPR-responsive varieties and the development of dual/multiple-benefit SPRs, is proposed for enhancing SPR-mediated agricultural productivity worldwide.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Jisha Suresh Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
70
|
Yang X, Zhang X, Yang Y, Zhang H, Zhu W, Nie WF. The histone variant Sl_H2A.Z regulates carotenoid biosynthesis and gene expression during tomato fruit ripening. HORTICULTURE RESEARCH 2021; 8:85. [PMID: 33790255 PMCID: PMC8012623 DOI: 10.1038/s41438-021-00520-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 05/03/2023]
Abstract
The conserved histone variant H2A.Z is essential for transcriptional regulation; defense responses; and various biological processes in plants, such as growth, development, and flowering. However, little is known about how H2A.Z affects the developmental process and ripening of tomato fruits. Here, we utilized the CRISPR/Cas9 gene-editing system to generate a sl_hta9 sl_hta11 double-mutant, designated sl_h2a.z, and found that these two mutations led to a significant reduction in the fresh weight of tomato fruits. Subsequent messenger RNA (mRNA)-seq results showed that dysfunction of Sl_H2A.Z has profound effects on the reprogramming of genome-wide gene expression at different developmental stages of tomato fruits, indicating a ripening-dependent correlation between Sl_H2A.Z and gene expression regulation in tomato fruits. In addition, the expression of three genes, SlPSY1, SlPDS, and SlVDE, encoding the key enzymes in the biosynthesis pathway of carotenoids, was significantly upregulated in the later ripening stages, which was consistent with the increased contents of carotenoids in sl_h2a.z double-mutant fruits. Overall, our study reveals a role of Sl_H2A.Z in the regulation of carotenoids and provides a resource for the study of Sl_H2A.Z-dependent gene expression regulation. Hence, our results provide a link between epigenetic regulation via histone variants and fruit development, suggesting a conceptual framework to understand how histone variants regulate tomato fruit quality.
Collapse
Affiliation(s)
- Xuedong Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, 201403, Shanghai, China
| | - Xuelian Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, 201403, Shanghai, China
| | - Youxin Yang
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, 330045, Nanchang, Jiangxi, China
| | - Hui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, 201403, Shanghai, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, 201403, Shanghai, China.
| | - Wen-Feng Nie
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
| |
Collapse
|
71
|
Cai H, Huang Y, Chen F, Liu L, Chai M, Zhang M, Yan M, Aslam M, He Q, Qin Y. ERECTA signaling regulates plant immune responses via chromatin-mediated promotion of WRKY33 binding to target genes. THE NEW PHYTOLOGIST 2021; 230:737-756. [PMID: 33454980 DOI: 10.1111/nph.17200] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The signaling pathway mediated by the receptor-like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear. Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were studied. Electrophoretic mobility shift assay and yeast one-hybrid analysis were applied to identify ER-WRKY33 downstream components. Chromatin immunoprecipitation analyses were further investigated. In this study, we show that the chromatin remodeling complex SWR1 enhances resistance to the white mold fungus Sclerotinia sclerotiorum in Arabidopsis thaliana via a process mediated by ER signaling. We identify a series of WRKY33 target YODA DOWNSTREAM (YDD) genes and demonstrate that SWR1 and ER signaling are required to enrich H2A.Z histone variant and H3K4me3 histone modification at YDDs and the binding of WRKY33 to YDD promoters upon S. sclerotiorum infection. We also reveal that the binding of WRKY33 to YDD promoters in turn promotes the enrichment of H2A.Z and H3K4me3 at YDD genes, thereby forming a positive regulatory loop to activate YDDs expression. Our study reveals how H2A.Z, H3K4me3 and ER signaling mutually regulate YDDs gene expression upon pathogen infection, highlighting the critical role of chromatin structure in ER-signaling-mediated plant immune responses.
Collapse
Affiliation(s)
- Hanyang Cai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youmei Huang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fangqian Chen
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Liu
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengnan Chai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Man Zhang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Maokai Yan
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mohammad Aslam
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Qing He
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
| |
Collapse
|
72
|
Wu L, Chang Y, Wang L, Wu J, Wang S. Genetic dissection of drought resistance based on root traits at the bud stage in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1047-1061. [PMID: 33426592 DOI: 10.1007/s00122-020-03750-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
A whole-genome resequencing-derived SNP dataset used for genome-wide association analysis revealed 196 loci significantly associated with drought stress based on root traits. Candidate genes identified in the regions of these loci include homologs of known drought resistance genes in A. thaliana. Drought is the main abiotic constraint of the production of common bean. Improved adaptation to drought environments has become a main goal of crop breeding due to the increasing scarcity of water that will occur in the future. The overall objective of our study was to identify genomic regions associated with drought resistance based on root traits using genome-wide association analysis. A natural population of 438 common bean accessions was evaluated for root traits: root surface area, root average diameter, root volume, total root length, taproot length, lateral root number, root dry weight, lateral root length, special root weight/length, using seed germination pouches under drought conditions and in well-watered environments. The coefficient of variation ranged from 11.24% (root average diameter) to 38.19% (root dry weight) in the well-watered environment and from 9.61% (root average diameter) to 39.05% (lateral root length) under drought stress. A whole-genome resequencing-derived SNP dataset revealed 196 loci containing 230 candidate SNPs associated with drought resistance. Seventeen candidate SNPs were simultaneously associated with more than two traits. Forty-one loci were simultaneously associated with more than two traits, and eleven loci were colocated with loci previously reported to be related to drought resistance. Candidate genes of the associated loci included the ABA-responsive element-binding protein family, MYB, NAC, the protein kinase superfamily, etc. These results revealed promising alleles linked to drought resistance or root traits, providing insights into the genetic basis of drought resistance and roots, which will be useful for common bean improvement.
Collapse
Affiliation(s)
- Lei Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujie Chang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lanfen Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shumin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
73
|
Li A, Hu B, Chu C. Epigenetic regulation of nitrogen and phosphorus responses in plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153363. [PMID: 33508741 DOI: 10.1016/j.jplph.2021.153363] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two of the most important nutrients for plant growth and crop yields. In the last decade, plenty of studies have revealed the genetic factors and their regulatory networks which are involved in N and/or P uptake and utilization in different model plant species, especially in Arabidopsis and rice. However, increasing evidences have shown that epigenetic regulation also plays a vital role in modulating plant responses to nutrient availability. In this review, we make a brief summary of epigenetic regulation including histone modifications, DNA methylation, and other chromatin structure alterations in tuning N and P responses. We also give an outlook for future research directions to comprehensively dissect the involvement of epigenetic regulation in modulating nutrient response in plants.
Collapse
Affiliation(s)
- Aifu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
74
|
Xin X, Su T, Li P, Wang W, Zhao X, Yu Y, Zhang D, Yu S, Zhang F. A histone H4 gene prevents drought-induced bolting in Chinese cabbage by attenuating the expression of flowering genes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:623-635. [PMID: 33005948 DOI: 10.1093/jxb/eraa452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Flowering is an important trait in Chinese cabbage, because premature flowering reduces yield and quality of the harvested products. Water deficit, caused by drought or other environmental conditions, induces early flowering. Drought resistance involves global reprogramming of transcription, hormone signaling, and chromatin modification. We show that a histone H4 protein, BrHIS4.A04, physically interacts with a homeodomain protein BrVIN3.1, which was selected during the domestication of late-bolting Chinese cabbage. Over-expression of BrHIS4.A04 resulted in premature flowering under normal growth conditions, but prevented further premature bolting in response to drought. We show that the expression of key abscisic acid (ABA) signaling genes, and also photoperiodic flowering genes was attenuated in BrHIS4.A04-overexpressing (BrHIS4.A04OE) plants under drought conditions. Furthermore, the relative change in H4-acetylation at these gene loci was reduced in BrHIS4.A04OE plants. We suggest that BrHIS4.A04 prevents premature bolting by attenuating the expression of photoperiodic flowering genes under drought conditions, through the ABA signaling pathway. Since BrHIS4.A04OE plants displayed no phenotype related to vegetative or reproductive development under laboratory-induced drought conditions, our findings contribute to the potential fine-tuning of flowering time in crops through genetic engineering without any growth penalty, although more data are necessary under field drought conditions.
Collapse
Affiliation(s)
- Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| |
Collapse
|
75
|
Klupczyńska EA, Pawłowski TA. Regulation of Seed Dormancy and Germination Mechanisms in a Changing Environment. Int J Mol Sci 2021; 22:1357. [PMID: 33572974 PMCID: PMC7866424 DOI: 10.3390/ijms22031357] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Environmental conditions are the basis of plant reproduction and are the critical factors controlling seed dormancy and germination. Global climate change is currently affecting environmental conditions and changing the reproduction of plants from seeds. Disturbances in germination will cause disturbances in the diversity of plant communities. Models developed for climate change scenarios show that some species will face a significant decrease in suitable habitat area. Dormancy is an adaptive mechanism that affects the probability of survival of a species. The ability of seeds of many plant species to survive until dormancy recedes and meet the requirements for germination is an adaptive strategy that can act as a buffer against the negative effects of environmental heterogeneity. The influence of temperature and humidity on seed dormancy status underlines the need to understand how changing environmental conditions will affect seed germination patterns. Knowledge of these processes is important for understanding plant evolution and adaptation to changes in the habitat. The network of genes controlling seed dormancy under the influence of environmental conditions is not fully characterized. Integrating research techniques from different disciplines of biology could aid understanding of the mechanisms of the processes controlling seed germination. Transcriptomics, proteomics, epigenetics, and other fields provide researchers with new opportunities to understand the many processes of plant life. This paper focuses on presenting the adaptation mechanism of seed dormancy and germination to the various environments, with emphasis on their prospective roles in adaptation to the changing climate.
Collapse
Affiliation(s)
| | - Tomasz A. Pawłowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland;
| |
Collapse
|
76
|
Molecular evolution and expression analysis of ADP-ribosylation factors (ARFs) from longan embryogenic callus. Gene 2021; 777:145461. [PMID: 33515723 DOI: 10.1016/j.gene.2021.145461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022]
Abstract
ADP-ribosylation modification considered as a model to study histone post-translational modification in chromatin modification. Despite it was reported in many plants, the study of ARFs gene family in longan was still unclear. In this study, 14 longan ARFs genes were identified using the longan genome (the third-generation genome) and further divided into two major groups, including the DlARF in the I-II group and the ARF-like (DlARL) in the III-V group, according to their structure and evolutionary characteristics. Whole-genome duplication (WGD) and segmental duplication events played a major role in the expansion of the DlARFs gene family, the synteny and phylogenetic analyses provided a deeper insight into the evolutionary characteristics of the DlARFs. Protein-protein interactions suggested that some DlARFs proteins may interact to participate in biological processes. Promoter analysis showed more stress response elements in DlARF5, DlGB1, DlARL1, DlARL2, and DlARL8a, suggesting that they may participate in abiotic stress. Expression profiles of DlARFs by quantitative real-time PCR (qRT-PCR) showed that they were abundant accumulation during early somatic embryogenesis (SE). Expression pattern analysis of RNA-seq and qRT-PCR revealed that some ARFs members regulated early SE, and respond to exogenous hormones and abiotic stress such as abscisic acid (ABA), gibberellin A3 (GA3), salicylic acid (SA), methyl jasmonate (MeJA), cold, and heat. Our study provides new insights for further research on the potential function of DlARFs, which may be useful for the improvement of longan.
Collapse
|
77
|
Lee TA, Bailey-Serres J. Conserved and nuanced hierarchy of gene regulatory response to hypoxia. THE NEW PHYTOLOGIST 2021; 229:71-78. [PMID: 31953954 DOI: 10.1111/nph.16437] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
A dynamic assembly of nuclear and cytoplasmic processes regulate gene activity. Hypoxic stress and the associated energy crisis activate a plurality of regulatory mechanisms including modulation of chromatin structure, transcriptional activation and post-transcriptional processes. Temporal control of genes is associated with specific chromatin modifications and transcription factors. Genome-scale technologies that resolve transcript subpopulations in the nucleus and cytoplasm indicate post-transcriptional processes enable cells to conserve energy, prepare for prolonged stress and accelerate recovery. Moreover, the harboring of gene transcripts associated with growth in the nucleus and macromolecular RNA-protein complexes contributes to the preferential translation of stress-responsive gene transcripts during hypoxia. We discuss evidence of evolutionary variation in integration of nuclear and cytoplasmic processes that may contribute to variations in flooding resilience.
Collapse
Affiliation(s)
- Travis A Lee
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Botany and Plant Sciences Department, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
78
|
AtINO80 represses photomorphogenesis by modulating nucleosome density and H2A.Z incorporation in light-related genes. Proc Natl Acad Sci U S A 2020; 117:33679-33688. [PMID: 33318175 DOI: 10.1073/pnas.2001976117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Photomorphogenesis is a critical developmental process bridging light-regulated transcriptional reprogramming with morphological changes in organisms. Strikingly, the chromatin-based transcriptional control of photomorphogenesis remains poorly understood. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog of ATP-dependent chromatin-remodeling factor AtINO80 represses plant photomorphogenesis. Loss of AtINO80 inhibited hypocotyl cell elongation and caused anthocyanin accumulation. Both light-induced genes and dark-induced genes were affected in the atino80 mutant. Genome-wide occupancy of the H2A.Z histone variant and levels of histone H3 were reduced in atino80 In particular, AtINO80 bound the gene body of ELONGATED HYPOCOTYL 5 (HY5), resulting in lower chromatin incorporations of H2A.Z and H3 at HY5 in atino80 Genetic analysis revealed that AtINO80 acts in a phytochrome B- and HY5-dependent manner in the regulation of photomorphogenesis. Together, our study elucidates a mechanism wherein AtINO80 modulates nucleosome density and H2A.Z incorporation and represses the transcription of light-related genes, such as HY5, to fine tune plant photomorphogenesis.
Collapse
|
79
|
Du K, Luo Q, Yin L, Wu J, Liu Y, Gan J, Dong A, Shen WH. OsChz1 acts as a histone chaperone in modulating chromatin organization and genome function in rice. Nat Commun 2020; 11:5717. [PMID: 33177521 PMCID: PMC7658359 DOI: 10.1038/s41467-020-19586-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
While the yeast Chz1 acts as a specific histone-chaperone for H2A.Z, functions of CHZ-domain proteins in multicellular eukaryotes remain obscure. Here, we report on the functional characterization of OsChz1, a sole CHZ-domain protein identified in rice. OsChz1 interacts with both the canonical H2A-H2B dimer and the variant H2A.Z-H2B dimer. Within crystal structure the C-terminal region of OsChz1 binds H2A-H2B via an acidic region, pointing to a previously unknown recognition mechanism. Knockout of OsChz1 leads to multiple plant developmental defects. At genome-wide level, loss of OsChz1 causes mis-regulations of thousands of genes and broad alterations of nucleosome occupancy as well as reductions of H2A.Z-enrichment. While OsChz1 associates with chromatin regions enriched of repressive histone marks (H3K27me3 and H3K4me2), its loss does not affect the genome landscape of DNA methylation. Taken together, it is emerging that OsChz1 functions as an important H2A/H2A.Z-H2B chaperone in dynamic regulation of chromatin for higher eukaryote development. Function of CHZ-domain proteins in multicellular eukaryotes remains unclear. Here, the authors characterize the sole CHZ-domain protein identified in rice and show that it functions as an H2A/H2A.Z-H2B chaperone in dynamic regulation of chromatin organization and genome function.
Collapse
Affiliation(s)
- Kangxi Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qiang Luo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiabing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jianhua Gan
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, Cédex, France.
| |
Collapse
|
80
|
Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Funct Integr Genomics 2020; 20:739-761. [PMID: 33089419 DOI: 10.1007/s10142-020-00756-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023]
Abstract
Epigenetics is defined as changes in gene expression that are not associated with changes in DNA sequence but due to the result of methylation of DNA and post-translational modifications to the histones. These epigenetic modifications are known to regulate gene expression by bringing changes in the chromatin state, which underlies plant development and shapes phenotypic plasticity in responses to the environment and internal cues. This review articulates the role of histone modifications and DNA methylation in modulating biotic and abiotic stresses, as well as crop improvement. It also highlights the possibility of engineering epigenomes and epigenome-based predictive models for improving agronomic traits.
Collapse
|
81
|
Perrella G, Zioutopoulou A, Headland LR, Kaiserli E. The impact of light and temperature on chromatin organization and plant adaptation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5247-5255. [PMID: 32215554 DOI: 10.1093/jxb/eraa154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/24/2020] [Indexed: 05/23/2023]
Abstract
Light and temperature shape the developmental trajectory and morphology of plants. Changes in chromatin organization and nuclear architecture can modulate gene expression and lead to short- and long-term plant adaptation to the environment. Here, we review recent reports investigating how changes in chromatin composition, structure, and topology modulate gene expression in response to fluctuating light and temperature conditions resulting in developmental and physiological responses. Furthermore, the potential application of novel revolutionary techniques, such Hi-C, RNA fluorescence in situ hybridization (FISH) and padlock-FISH, to study the impact of environmental stimuli such as light and temperature on nuclear compartmentalization in plants is discussed.
Collapse
Affiliation(s)
- Giorgio Perrella
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- ENEA-Trisaia Research Centre 75026, Rotondella (Matera), Italy
| | - Anna Zioutopoulou
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lauren R Headland
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
82
|
Probst AV, Desvoyes B, Gutierrez C. Similar yet critically different: the distribution, dynamics and function of histone variants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5191-5204. [PMID: 32392582 DOI: 10.1093/jxb/eraa230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 05/23/2023]
Abstract
Organization of the genetic information into chromatin plays an important role in the regulation of all DNA template-based reactions. The incorporation of different variant versions of the core histones H3, H2A, and H2B, or the linker histone H1 results in nucleosomes with unique properties. Histone variants can differ by only a few amino acids or larger protein domains and their incorporation may directly affect nucleosome stability and higher order chromatin organization or indirectly influence chromatin function through histone variant-specific binding partners. Histone variants employ dedicated histone deposition machinery for their timely and locus-specific incorporation into chromatin. Plants have evolved specific histone variants with unique expression patterns and features. In this review, we discuss our current knowledge on histone variants in Arabidopsis, their mode of deposition, variant-specific post-translational modifications, and genome-wide distribution, as well as their role in defining different chromatin states.
Collapse
Affiliation(s)
- Aline V Probst
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| |
Collapse
|
83
|
Bäurle I, Trindade I. Chromatin regulation of somatic abiotic stress memory. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5269-5279. [PMID: 32076719 DOI: 10.1093/jxb/eraa098] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/19/2020] [Indexed: 05/20/2023]
Abstract
In nature, plants are often subjected to periods of recurrent environmental stress that can strongly affect their development and productivity. To cope with these conditions, plants can remember a previous stress, which allows them to respond more efficiently to a subsequent stress, a phenomenon known as priming. This ability can be maintained at the somatic level for a few days or weeks after the stress is perceived, suggesting that plants can store information of a past stress during this recovery phase. While the immediate responses to a single stress event have been extensively studied, knowledge on priming effects and how stress memory is stored is still scarce. At the molecular level, memory of a past condition often involves changes in chromatin structure and organization, which may be maintained independently from transcription. In this review, we will summarize the most recent developments in the field and discuss how different levels of chromatin regulation contribute to priming and plant abiotic stress memory.
Collapse
Affiliation(s)
- Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Inês Trindade
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
84
|
Abstract
Chromatin is a highly dynamic structure that closely relates with gene expression in eukaryotes. ATP-dependent chromatin remodelling, histone post-translational modification and DNA methylation are the main ways that mediate such plasticity. The histone variant H2A.Z is frequently encountered in eukaryotes, and can be deposited or removed from nucleosomes by chromatin remodelling complex SWR1 or INO80, respectively, leading to altered chromatin state. H2A.Z has been found to be involved in a diverse range of biological processes, including genome stability, DNA repair and transcriptional regulation. Due to their formidable production of secondary metabolites, filamentous fungi play outstanding roles in pharmaceutical production, food safety and agriculture. During the last few years, chromatin structural changes were proven to be a key factor associated with secondary metabolism in fungi. However, studies on the function of H2A.Z are scarce. Here, we summarize current knowledge of H2A.Z functions with a focus on filamentous fungi. We propose that H2A.Z is a potential target involved in the regulation of secondary metabolite biosynthesis by fungi.
Collapse
|
85
|
NAP1-RELATED PROTEIN1 and 2 negatively regulate H2A.Z abundance in chromatin in Arabidopsis. Nat Commun 2020; 11:2887. [PMID: 32513971 PMCID: PMC7280298 DOI: 10.1038/s41467-020-16691-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
In eukaryotes, DNA wraps around histones to form nucleosomes, which are compacted into chromatin. DNA-templated processes, including transcription, require chromatin disassembly and reassembly mediated by histone chaperones. Additionally, distinct histone variants can replace core histones to regulate chromatin structure and function. Although replacement of H2A with the evolutionarily conserved H2A.Z via the SWR1 histone chaperone complex has been extensively studied, in plants little is known about how a reduction of H2A.Z levels can be achieved. Here, we show that NRP proteins cause a decrease of H2A.Z-containing nucleosomes in Arabidopsis under standard growing conditions. nrp1-1 nrp2-2 double mutants show an over-accumulation of H2A.Z genome-wide, especially at heterochromatic regions normally H2A.Z-depleted in wild-type plants. Our work suggests that NRP proteins regulate gene expression by counteracting SWR1, thereby preventing excessive accumulation of H2A.Z. The histone variant H2A.Z is deposited by the SWR1 complex to replace H2A in Arabidopsis, but the mechanism of H2A.Z removal is unclear. Here, the authors show that NRP proteins can regulate gene expression by counteracting SWR1 and prevent excessive accumulation of H2A.Z.
Collapse
|
86
|
Hu Y, Lai Y, Chen X, Zhou DX, Zhao Y. Distribution pattern of histone marks potentially determines their roles in transcription and RNA processing in rice. JOURNAL OF PLANT PHYSIOLOGY 2020; 249:153167. [PMID: 32353606 DOI: 10.1016/j.jplph.2020.153167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Histone marks including histone modifications and histone variants may affect the processes of gene transcription and co-transcriptional RNA processing depending on their specific deposition patterns within genes. Here, we analyzed distribution patterns of rice histone marks and divided them into seven clusters according to their enrichment in promoter, transcription start site (TSS), and gene body regions. Expression levels of the genes in each cluster were explored to disclose the importance of histone marks in the processes of transcription. We show that: a) H3K4me3 and histone acetylation marks show locally different distributions at TSS, implying that they may play different roles in transcription initiation. b) H3K36me1 enriched at TSS has a negative effect on transcription. c) Genes with high level of expression were marked by H3K36me3 at both the TSS and body regions. In addition, we found that H3K4me2, H3K23ac, H3K4ac, and H2A.Z show exon-biased enrichment, suggesting they may be chromatin marks involved in co-transcriptional splicing. Finally, we identified histone marks that discriminate constitutive expression genes (CEGs) from tissue-specific expressed genes (TSEGs). Taken together, the analysis revealed distribution patterns of different histone marks in rice to infer their potential roles in transcription and RNA processing. The results lay foundation for further understanding the mechanism by which histone marks are involved in the regulation of these processes in plants.
Collapse
Affiliation(s)
- Yongfeng Hu
- College of Bioengineering, Jingchu University of Technology, 448000, Jingmen, China.
| | - Yan Lai
- College of Bioengineering, Jingchu University of Technology, 448000, Jingmen, China
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China; University Paris-Saclay, CNRS, INRAE, Institute of Plant Science of Paris-Saclay (IPS2), 91405, Orsay, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
87
|
Cheema MS, Good KV, Kim B, Soufari H, O’Sullivan C, Freeman ME, Stefanelli G, Casas CR, Zengeler KE, Kennedy AJ, Eirin Lopez JM, Howard PL, Zovkic IB, Shabanowitz J, Dryhurst DD, Hunt DF, Mackereth CD, Ausió J. Deciphering the Enigma of the Histone H2A.Z-1/H2A.Z-2 Isoforms: Novel Insights and Remaining Questions. Cells 2020; 9:cells9051167. [PMID: 32397240 PMCID: PMC7290884 DOI: 10.3390/cells9051167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
The replication independent (RI) histone H2A.Z is one of the more extensively studied variant members of the core histone H2A family, which consists of many replication dependent (RD) members. The protein has been shown to be indispensable for survival, and involved in multiple roles from DNA damage to chromosome segregation, replication, and transcription. However, its functional involvement in gene expression is controversial. Moreover, the variant in several groups of metazoan organisms consists of two main isoforms (H2A.Z-1 and H2A.Z-2) that differ in a few (3–6) amino acids. They comprise the main topic of this review, starting from the events that led to their identification, what is currently known about them, followed by further experimental, structural, and functional insight into their roles. Despite their structural differences, a direct correlation to their functional variability remains enigmatic. As all of this is being elucidated, it appears that a strong functional involvement of isoform variability may be connected to development.
Collapse
Affiliation(s)
- Manjinder S. Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Katrina V. Good
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Bohyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Heddy Soufari
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, 2 rue Robert Escarpit, F-33607 Pessac, France; (H.S.); (C.D.M.)
- Inserm U1212, CNRS UMR 5320, ARNA Laboratory, Univ. Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Connor O’Sullivan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Melissa E. Freeman
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Gilda Stefanelli
- Department of Neurosciences & Mental Health, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (G.S.); (I.B.Z.)
| | - Ciro Rivera Casas
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL 33181, USA; (C.R.C.); (J.M.E.L.)
| | - Kristine E. Zengeler
- Department of Chemistry and Biochemistry, Bates College, 2 Andrews Road, Lewiston, ME 04240, USA; (K.E.Z.); (A.J.K.)
| | - Andrew J. Kennedy
- Department of Chemistry and Biochemistry, Bates College, 2 Andrews Road, Lewiston, ME 04240, USA; (K.E.Z.); (A.J.K.)
| | - Jose Maria Eirin Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL 33181, USA; (C.R.C.); (J.M.E.L.)
| | - Perry L. Howard
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Iva B. Zovkic
- Department of Neurosciences & Mental Health, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (G.S.); (I.B.Z.)
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; (J.S.); (D.F.H.)
| | - Deanna D. Dryhurst
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; (J.S.); (D.F.H.)
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA
| | - Cameron D. Mackereth
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, 2 rue Robert Escarpit, F-33607 Pessac, France; (H.S.); (C.D.M.)
- Inserm U1212, CNRS UMR 5320, ARNA Laboratory, Univ. Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
- Correspondence: ; Tel.: +1-250-721-8863; Fax: +1-250-721-8855
| |
Collapse
|
88
|
Lu Y, Zhou DX, Zhao Y. Understanding epigenomics based on the rice model. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1345-1363. [PMID: 31897514 DOI: 10.1007/s00122-019-03518-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/18/2019] [Indexed: 05/26/2023]
Abstract
The purpose of this paper provides a comprehensive overview of the recent researches on rice epigenomics, including DNA methylation, histone modifications, noncoding RNAs, and three-dimensional genomics. The challenges and perspectives for future research in rice are discussed. Rice as a model plant for epigenomic studies has much progressed current understanding of epigenetics in plants. Recent results on rice epigenome profiling and three-dimensional chromatin structure studies reveal specific features and implication in gene regulation during rice plant development and adaptation to environmental changes. Results on rice chromatin regulator functions shed light on mechanisms of establishment, recognition, and resetting of epigenomic information in plants. Cloning of several rice epialleles associated with important agronomic traits highlights importance of epigenomic variation in rice plant growth, fitness, and yield. In this review, we summarize and analyze recent advances in rice epigenomics and discuss challenges and directions for future research in the field.
Collapse
Affiliation(s)
- Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Plant Science of Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University Paris-Saclay, 91405, Orsay, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
89
|
Yan Z, Shen Z, Gao ZF, Chao Q, Qian CR, Zheng H, Wang BC. A comprehensive analysis of the lysine acetylome reveals diverse functions of acetylated proteins during de-etiolation in Zea mays. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153158. [PMID: 32240968 DOI: 10.1016/j.jplph.2020.153158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 06/11/2023]
Abstract
Lysine acetylation is one of the most important post-translational modifications and is involved in multiple cellular processes in plants. There is evidence that acetylation may play an important role in light-induced de-etiolation, a key developmental switch from skotomorphogenesis to photomorphogenesis. During this transition, establishment of photosynthesis is of great significance. However, studies on acetylome dynamics during de-etiolation are limited. Here, we performed the first global lysine acetylome analysis for Zea mays seedlings undergoing de-etiolation, using nano liquid chromatography coupled to tandem mass spectrometry, and identified 814 lysine-acetylated sites on 462 proteins. Bioinformatics analysis of this acetylome showed that most of the lysine-acetylated proteins are predicted to be located in the cytoplasm, nucleus, chloroplast, and mitochondria. In addition, we detected ten lysine acetylation motifs and found that the accumulation of 482 lysine-acetylated peptides corresponding to 289 proteins changed significantly during de-etiolation. These proteins include transcription factors, histones, and proteins involved in chlorophyll synthesis, photosynthesis light reaction, carbon assimilation, glycolysis, the TCA cycle, amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our study provides an in-depth dataset that extends our knowledge of in vivo acetylome dynamics during de-etiolation in monocots. This dataset promotes our understanding of the functional consequences of lysine acetylation in diverse cellular metabolic regulatory processes, and will be a useful toolkit for further investigations of the lysine acetylome and de-etiolation in plants.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| | - Chun-Rong Qian
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, New Jersey 08855, USA.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
90
|
Luo YX, Hou XM, Zhang CJ, Tan LM, Shao CR, Lin RN, Su YN, Cai XW, Li L, Chen S, He XJ. A plant-specific SWR1 chromatin-remodeling complex couples histone H2A.Z deposition with nucleosome sliding. EMBO J 2020; 39:e102008. [PMID: 32115743 DOI: 10.15252/embj.2019102008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 01/07/2023] Open
Abstract
Deposition of H2A.Z in chromatin is known to be mediated by a conserved SWR1 chromatin-remodeling complex in eukaryotes. However, little is known about whether and how the SWR1 complex cooperates with other chromatin regulators. Using immunoprecipitation followed by mass spectrometry, we found all known components of the Arabidopsis thaliana SWR1 complex and additionally identified the following three classes of previously uncharacterized plant-specific SWR1 components: MBD9, a methyl-CpG-binding domain-containing protein; CHR11 and CHR17 (CHR11/17), ISWI chromatin remodelers responsible for nucleosome sliding; and TRA1a and TRA1b, accessory subunits of the conserved NuA4 histone acetyltransferase complex. MBD9 directly interacts with CHR11/17 and the SWR1 catalytic subunit PIE1, and is responsible for the association of CHR11/17 with the SWR1 complex. MBD9, TRA1a, and TRA1b function as canonical components of the SWR1 complex to mediate H2A.Z deposition. CHR11/17 are not only responsible for nucleosome sliding but also involved in H2A.Z deposition. These results indicate that the association of the SWR1 complex with CHR11/17 may facilitate the coupling of H2A.Z deposition with nucleosome sliding, thereby co-regulating gene expression, development, and flowering time.
Collapse
Affiliation(s)
- Yu-Xi Luo
- National Institute of Biological Sciences, Beijing, China
| | - Xiao-Mei Hou
- National Institute of Biological Sciences, Beijing, China
| | - Cui-Jun Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Lian-Mei Tan
- National Institute of Biological Sciences, Beijing, China
| | | | - Rong-Nan Lin
- National Institute of Biological Sciences, Beijing, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
91
|
Foroozani M, Zahraeifard S, Oh DH, Wang G, Dassanayake M, Smith AP. Low-Phosphate Chromatin Dynamics Predict a Cell Wall Remodeling Network in Rice Shoots. PLANT PHYSIOLOGY 2020; 182:1494-1509. [PMID: 31857425 PMCID: PMC7054884 DOI: 10.1104/pp.19.01153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/06/2019] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is an essential plant macronutrient vital to fundamental metabolic processes. Plant-available P is low in most soils, making it a frequent limiter of growth. Declining P reserves for fertilizer production exacerbates this agricultural challenge. Plants modulate complex responses to fluctuating P levels via global transcriptional regulatory networks. Although chromatin structure plays a substantial role in controlling gene expression, the chromatin dynamics involved in regulating P homeostasis have not been determined. Here we define distinct chromatin states across the rice (Oryza sativa) genome by integrating multiple chromatin marks, including the H2A.Z histone variant, H3K4me3 modification, and nucleosome positioning. In response to P starvation, 40% of all protein-coding genes exhibit a transition from one chromatin state to another at their transcription start site. Several of these transitions are enriched in subsets of genes differentially expressed under P deficiency. The most prominent subset supports the presence of a coordinated signaling network that targets cell wall structure and is regulated in part via a decrease of H3K4me3 at transcription start sites. The P starvation-induced chromatin dynamics and correlated genes identified here will aid in enhancing P use efficiency in crop plants, benefitting global agriculture.
Collapse
Affiliation(s)
- Maryam Foroozani
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Sara Zahraeifard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
92
|
Lei B, Berger F. H2A Variants in Arabidopsis: Versatile Regulators of Genome Activity. PLANT COMMUNICATIONS 2020; 1:100015. [PMID: 33404536 PMCID: PMC7747964 DOI: 10.1016/j.xplc.2019.100015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 12/11/2019] [Indexed: 05/16/2023]
Abstract
The eukaryotic nucleosome prevents access to the genome. Convergently evolving histone isoforms, also called histone variants, form diverse families that are enriched over distinct features of plant genomes. Among the diverse families of plant histone variants, H2A.Z exclusively marks genes. Here we review recent research progress on the genome-wide distribution patterns and deposition of H2A.Z in plants as well as its association with histone modifications and roles in plant chromatin regulation. We also discuss some hypotheses that explain the different findings about the roles of H2A.Z in plants.
Collapse
|
93
|
Ueda M, Seki M. Histone Modifications Form Epigenetic Regulatory Networks to Regulate Abiotic Stress Response. PLANT PHYSIOLOGY 2020; 182:15-26. [PMID: 31685643 PMCID: PMC6945856 DOI: 10.1104/pp.19.00988] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/22/2019] [Indexed: 05/19/2023]
Abstract
Epigenetic modifiers such as erasers, readers, writers, and recruiters control abiotic stress response in flowering plants.
Collapse
Affiliation(s)
- Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
| |
Collapse
|
94
|
Aslam M, Fakher B, Jakada BH, Cao S, Qin Y. SWR1 Chromatin Remodeling Complex: A Key Transcriptional Regulator in Plants. Cells 2019; 8:cells8121621. [PMID: 31842357 PMCID: PMC6952815 DOI: 10.3390/cells8121621] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
The nucleosome is the structural and fundamental unit of eukaryotic chromatin. The chromatin remodeling complexes change nucleosome composition, packaging and positioning to regulate DNA accessibility for cellular machinery. SWI2/SNF2-Related 1 Chromatin Remodeling Complex (SWR1-C) belongs to the INO80 chromatin remodeling family and mainly catalyzes the exchange of H2A-H2B with the H2A.Z-H2B dimer. The replacement of H2A.Z into nucleosomes affects nucleosome stability and chromatin structure. Incorporation of H2A.Z into the chromatin and its physiochemical properties play a key role in transcriptional regulation during developmental and environmental responses. In Arabidopsis, various studies have uncovered several pivotal roles of SWR1-C. Recently, notable progress has been achieved in understanding the role of SWR1-C in plant developmental and physiological processes such as DNA damage repair, stress tolerance, and flowering time. The present article introduces the SWR1-C and comprehensively reviews recent discoveries made in understanding the function of the SWR1 complex in plants.
Collapse
Affiliation(s)
- Mohammad Aslam
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: (M.A.); (Y.Q.); Tel.: +86-177-2075-0046 (Y.Q.)
| | - Beenish Fakher
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
| | - Bello Hassan Jakada
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: (M.A.); (Y.Q.); Tel.: +86-177-2075-0046 (Y.Q.)
| |
Collapse
|
95
|
Lee TA, Bailey-Serres J. Integrative Analysis from the Epigenome to Translatome Uncovers Patterns of Dominant Nuclear Regulation during Transient Stress. THE PLANT CELL 2019; 31:2573-2595. [PMID: 31519798 PMCID: PMC6881120 DOI: 10.1105/tpc.19.00463] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/21/2019] [Accepted: 09/12/2019] [Indexed: 05/19/2023]
Abstract
Gene regulation is a dynamic process involving changes ranging from the remodeling of chromatin to preferential translation. To understand integrated nuclear and cytoplasmic gene regulatory dynamics, we performed a survey spanning the epigenome to translatome of Arabidopsis (Arabidopsis thaliana) seedlings in response to hypoxia and reoxygenation. This included chromatin assays (examining histones, accessibility, RNA polymerase II [RNAPII], and transcription factor binding) and three RNA assays (nuclear, polyadenylated, and ribosome-associated). Dynamic patterns of nuclear regulation distinguished stress-induced and growth-associated mRNAs. The rapid upregulation of hypoxia-responsive gene transcripts and their preferential translation were generally accompanied by increased chromatin accessibility, RNAPII engagement, and reduced Histone 2A.Z association. Hypoxia promoted a progressive upregulation of heat stress transcripts, as evidenced by RNAPII binding and increased nuclear RNA, with polyadenylated RNA levels only elevated after prolonged stress or reoxygenation. Promoters of rapidly versus progressively upregulated genes were enriched for cis-elements of ethylene-responsive and heat shock factor transcription factors, respectively. Genes associated with growth, including many encoding cytosolic ribosomal proteins, underwent distinct histone modifications, yet retained RNAPII engagement and accumulated nuclear transcripts during the stress. Upon reaeration, progressively upregulated and growth-associated gene transcripts were rapidly mobilized to ribosomes. Thus, multilevel nuclear regulation of nucleosomes, transcript synthesis, accumulation, and translation tailor transient stress responses.plantcell;31/11/2573/FX1F1fx1.
Collapse
Affiliation(s)
- Travis A Lee
- Center for Plant Cell Biology and Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Botany and Plant Sciences Department, University of California, Riverside, California 92521
| |
Collapse
|
96
|
Del Olmo I, Poza-Viejo L, Piñeiro M, Jarillo JA, Crevillén P. High ambient temperature leads to reduced FT expression and delayed flowering in Brassica rapa via a mechanism associated with H2A.Z dynamics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:343-356. [PMID: 31257648 DOI: 10.1111/tpj.14446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 05/08/2023]
Abstract
Flowering time is a relevant agronomic trait because is crucial for the optimal formation of seeds and fruits. The genetic pathways controlling this developmental phase transition have been studied extensively in Arabidopsis thaliana. These pathways converge in a small number of genes including FT, the so-called florigen, which integrates environmental cues like ambient temperature. Nevertheless, detailed and functional studies about flowering time in Brassica crops are scarce. Here we study the role of the FT Brassica rapa homologues and the effect of high ambient temperature on flowering time in this crop. Phenotypic characterization and gene-expression analyses suggest that BraA.FT.a (BraA02g016700.3C) is decisive for initiating floral transition; consequently, braA.ft.a loss-of-function and hypomorphic mutations result in late flowering phenotypes. We also show that high ambient temperature delays B. rapa floral transition by reducing BraA.FT.a expression. Strikingly, these expression changes are associated with increased histone H2A.Z levels and less accessible chromatin configuration of the BraA.FT.a locus at high ambient temperature. Interestingly, increased H2A.Z levels at high ambient temperature were also observed for other B. rapa temperature-responsive genes. Previous reports delimited that Arabidopsis flowers earlier at high ambient temperature due to reduced H2A.Z incorporation in the FT locus. Our data reveal a conserved chromatin-mediated mechanism in B. rapa and Arabidopsis in which the incorporation of H2A.Z at FT chromatin in response to warm ambient temperature results in different flowering time responses. This work will help to develop improved Brassica crop varieties with flowering time requirements to cope with global warming. OPEN RESEARCH BADGES: This article has earned an Open Materials Badge for making publicly available the components of the research methodology needed to reproduce the reported procedure and analysis. Methods are available at protocols.iodx.doi.org/10.17504/protocols.io.zmff43n.
Collapse
Affiliation(s)
- Iván Del Olmo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| | - Laura Poza-Viejo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
97
|
Roles of the INO80 and SWR1 Chromatin Remodeling Complexes in Plants. Int J Mol Sci 2019; 20:ijms20184591. [PMID: 31533258 PMCID: PMC6770637 DOI: 10.3390/ijms20184591] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic genes are packed into a dynamic but stable nucleoprotein structure called chromatin. Chromatin-remodeling and modifying complexes generate a dynamic chromatin environment that ensures appropriate DNA processing and metabolism in various processes such as gene expression, as well as DNA replication, repair, and recombination. The INO80 and SWR1 chromatin remodeling complexes (INO80-c and SWR1-c) are ATP-dependent complexes that modulate the incorporation of the histone variant H2A.Z into nucleosomes, which is a critical step in eukaryotic gene regulation. Although SWR1-c has been identified in plants, plant INO80-c has not been successfully isolated and characterized. In this review, we will focus on the functions of the SWR1-c and putative INO80-c (SWR1/INO80-c) multi-subunits and multifunctional complexes in Arabidopsis thaliana. We will describe the subunit compositions of the SWR1/INO80-c and the recent findings from the standpoint of each subunit and discuss their involvement in regulating development and environmental responses in Arabidopsis.
Collapse
|
98
|
Zander M, Willige BC, He Y, Nguyen TA, Langford AE, Nehring R, Howell E, McGrath R, Bartlett A, Castanon R, Nery JR, Chen H, Zhang Z, Jupe F, Stepanova A, Schmitz RJ, Lewsey MG, Chory J, Ecker JR. Epigenetic silencing of a multifunctional plant stress regulator. eLife 2019; 8:e47835. [PMID: 31418686 PMCID: PMC6739875 DOI: 10.7554/elife.47835] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022] Open
Abstract
The central regulator of the ethylene (ET) signaling pathway, which controls a plethora of developmental programs and responses to environmental cues in plants, is ETHYLENE-INSENSITIVE2 (EIN2). Here we identify a chromatin-dependent regulatory mechanism at EIN2 requiring two genes: ETHYLENE-INSENSITIVE6 (EIN6), which is a H3K27me3 demethylase also known as RELATIVE OF EARLY FLOWERING6 (REF6), and EIN6 ENHANCER (EEN), the Arabidopsis homolog of the yeast INO80 chromatin remodeling complex subunit IES6 (INO EIGHTY SUBUNIT). Strikingly, EIN6 (REF6) and the INO80 complex redundantly control the level and the localization of the repressive histone modification H3K27me3 and the histone variant H2A.Z at the 5' untranslated region (5'UTR) intron of EIN2. Concomitant loss of EIN6 (REF6) and the INO80 complex shifts the chromatin landscape at EIN2 to a repressive state causing a dramatic reduction of EIN2 expression. These results uncover a unique type of chromatin regulation which safeguards the expression of an essential multifunctional plant stress regulator.
Collapse
Affiliation(s)
- Mark Zander
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
- Genomic Analysis LaboratorySalk Institute for Biological StudiesLa JollaUnited States
- Howard Hughes Medical Institute, Salk Institute for Biological StudiesLa JollaUnited States
| | - Björn C Willige
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Yupeng He
- Genomic Analysis LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Thu A Nguyen
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Amber E Langford
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Ramlah Nehring
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Elizabeth Howell
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Robert McGrath
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Anna Bartlett
- Genomic Analysis LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Rosa Castanon
- Genomic Analysis LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Joseph R Nery
- Genomic Analysis LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Huaming Chen
- Genomic Analysis LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Zhuzhu Zhang
- Genomic Analysis LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Florian Jupe
- Genomic Analysis LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Anna Stepanova
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Robert J Schmitz
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Mathew G Lewsey
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Joanne Chory
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
- Howard Hughes Medical Institute, Salk Institute for Biological StudiesLa JollaUnited States
| | - Joseph R Ecker
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
- Genomic Analysis LaboratorySalk Institute for Biological StudiesLa JollaUnited States
- Howard Hughes Medical Institute, Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
99
|
Identification of SWI2/SNF2-Related 1 Chromatin Remodeling Complex (SWR1-C) Subunits in Pineapple and the Role of Pineapple SWR1 COMPLEX 6 (AcSWC6) in Biotic and Abiotic Stress Response. Biomolecules 2019; 9:biom9080364. [PMID: 31412667 PMCID: PMC6723344 DOI: 10.3390/biom9080364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 12/18/2022] Open
Abstract
Chromatin remodeling complex orchestrates numerous aspects of growth and development in eukaryotes. SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is a member of the SWI/SNF ATPase-containing chromatin remodeling complex responsible for the exchange of H2A for H2A.Z. In plants, SWR1-C plays a crucial role by transcriptionally regulating numerous biological and developmental processes. However, SWR1-C activity remains obscure in pineapple. Here, we aim to identify the SWR1-C subunits in pineapple. By genome-wide identification, we found a total of 11 SWR1-C subunits in the pineapple. The identified SWR1-C subunits were named and classified based on the sequence similarity and phylogenetic analysis. RNA-Seq analysis showed that pineapple SWR1-C subunits are expressed differentially in different organs and at different stages. Additionally, the qRT-PCR of pineapple SWR1-C subunits during abiotic stress exposure showed significant changes in their expression. We further investigated the functions of pineapple SWR1 COMPLEX 6 (AcSWC6) by ectopically expressing it in Arabidopsis. Interestingly, transgenic plants ectopically expressing AcSWC6 showed susceptibility to fungal infection and enhanced resistance to salt and osmotic stress, revealing its involvement in biotic and abiotic stress. Moreover, the complementation of mutant Arabidopsisswc6 by pineapple SWC6 suggested the conserved function of SWC6 in plants.
Collapse
|
100
|
Zhang H, Cheng G, Yang Z, Wang T, Xu J. Identification of Sugarcane Host Factors Interacting with the 6K2 Protein of the Sugarcane Mosaic Virus. Int J Mol Sci 2019; 20:ijms20163867. [PMID: 31398864 PMCID: PMC6719097 DOI: 10.3390/ijms20163867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
The 6K2 protein of potyviruses plays a key role in the viral infection in plants. In the present study, the coding sequence of 6K2 was cloned from Sugarcane mosaic virus (SCMV) strain FZ1 into pBT3-STE to generate the plasmid pBT3-STE-6K2, which was used as bait to screen a cDNA library prepared from sugarcane plants infected with SCMV based on the DUALmembrane system. One hundred and fifty-seven positive colonies were screened and sequenced, and the corresponding full-length genes were cloned from sugarcane cultivar ROC22. Then, 24 genes with annotations were obtained, and the deduced proteins were classified into three groups, in which eight proteins were involved in the stress response, 12 proteins were involved in transport, and four proteins were involved in photosynthesis based on their biological functions. Of the 24 proteins, 20 proteins were verified to interact with SCMV-6K2 by yeast two-hybrid assays. The possible roles of these proteins in SCMV infection on sugarcane are analyzed and discussed. This is the first report on the interaction of SCMV-6K2 with host factors from sugarcane, and will improve knowledge on the mechanism of SCMV infection in sugarcane.
Collapse
Affiliation(s)
- Hai Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guangyuan Cheng
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zongtao Yang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tong Wang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingsheng Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- State Key Laboratory for Protection and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China.
| |
Collapse
|