51
|
Delplace F, Huard-Chauveau C, Berthomé R, Roby D. Network organization of the plant immune system: from pathogen perception to robust defense induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:447-470. [PMID: 34399442 DOI: 10.1111/tpj.15462] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has been explored essentially through the study of qualitative resistance, a simple form of immunity, and from a reductionist point of view. The recent identification of genes conferring quantitative disease resistance revealed a large array of functions, suggesting more complex mechanisms. In addition, thanks to the advent of high-throughput analyses and system approaches, our view of the immune system has become more integrative, revealing that plant immunity should rather be seen as a distributed and highly connected molecular network including diverse functions to optimize expression of plant defenses to pathogens. Here, we review the recent progress made to understand the network complexity of regulatory pathways leading to plant immunity, from pathogen perception, through signaling pathways and finally to immune responses. We also analyze the topological organization of these networks and their emergent properties, crucial to predict novel immune functions and test them experimentally. Finally, we report how these networks might be regulated by environmental clues. Although system approaches remain extremely scarce in this area of research, a growing body of evidence indicates that the plant response to combined biotic and abiotic stresses cannot be inferred from responses to individual stresses. A view of possible research avenues in this nascent biology domain is finally proposed.
Collapse
Affiliation(s)
- Florent Delplace
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Carine Huard-Chauveau
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Richard Berthomé
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| |
Collapse
|
52
|
Hannan Parker A, Wilkinson SW, Ton J. Epigenetics: a catalyst of plant immunity against pathogens. THE NEW PHYTOLOGIST 2022; 233:66-83. [PMID: 34455592 DOI: 10.1111/nph.17699] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/20/2021] [Indexed: 05/11/2023]
Abstract
The plant immune system protects against pests and diseases. The recognition of stress-related molecular patterns triggers localised immune responses, which are often followed by longer-lasting systemic priming and/or up-regulation of defences. In some cases, this induced resistance (IR) can be transmitted to following generations. Such transgenerational IR is gradually reversed in the absence of stress at a rate that is proportional to the severity of disease experienced in previous generations. This review outlines the mechanisms by which epigenetic responses to pathogen infection shape the plant immune system across expanding time scales. We review the cis- and trans-acting mechanisms by which stress-inducible epigenetic changes at transposable elements (TEs) regulate genome-wide defence gene expression and draw particular attention to one regulatory model that is supported by recent evidence about the function of AGO1 and H2A.Z in transcriptional control of defence genes. Additionally, we explore how stress-induced mobilisation of epigenetically controlled TEs acts as a catalyst of Darwinian evolution by generating (epi)genetic diversity at environmentally responsive genes. This raises questions about the long-term evolutionary consequences of stress-induced diversification of the plant immune system in relation to the long-held dichotomy between Darwinian and Lamarckian evolution.
Collapse
Affiliation(s)
- Adam Hannan Parker
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| | - Samuel W Wilkinson
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
53
|
Nihad SAI, Hasan MK, Kabir A, Hasan MAI, Bhuiyan MR, Yusop MR, Latif MA. Linkage of SSR markers with rice blast resistance and development of partial resistant advanced lines of rice ( Oryza sativa) through marker-assisted selection. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:153-169. [PMID: 35221577 PMCID: PMC8847655 DOI: 10.1007/s12298-022-01141-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Rice blast disease is one of the major bottlenecks of rice production in the world including Bangladesh. To develop blast resistant lines, a cross was made between a high yielding but blast susceptible variety MR263 and a blast resistant variety Pongsu seribu 2. Marker-assisted backcross breeding was followed to develop F1, BC1F1, BC2F1, BC2F2, BC2F3, BC2F4 and BC2F5 population. DNA markers i.e., RM206, RM1359 and RM8225 closely linked to Pb1, pi21 and Piz blast resistant genes, respectively and marker RM276 linked to panicle blast resistant QTL (qPbj-6.1) were used in foreground selection. Calculated chi-square (χ2) value of phenotypic and genotypic segregation data of BC2F1 population followed goodness of fit to the expected ratio (1:1) (phenotypic data χ2 = 1.08, p = 0.701; genotypic data χ2 = range from 0.33 to 3.00, p = 0.08-0.56) and it indicates that the inheritance pattern of blast resistance was followed by a single gene model. Eighty-nine advanced lines of BC2F5 population were developed and out of them, 58 lines contained Piz, Pb1, pi21, and qPbj-6.1 while 31 lines contained Piz, Pb1, and QTL qPbj-6.1. Marker-trait association analysis revealed that molecular markers i.e., RM206, RM276, and RM8225 were tightly linked with blast resistance, and each marker was explained by 33.33% phenotypic variation (resistance reaction). Morphological and pathogenicity performance of advanced lines was better compared to the recurrent parent. Developed blast resistance advanced lines could be used as donors or blast resistant variety for the management of devastating rice blast disease. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01141-3.
Collapse
Affiliation(s)
| | - Mohammad Kamrul Hasan
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Amirul Kabir
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Md. Al-Imran Hasan
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Md. Rejwan Bhuiyan
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Mohd Rafii Yusop
- Institute of Tropical Agriculture and Food Security (ITAFoS), University of Putra Malaysia, Serdang, Malaysia
| | - Mohammad Abdul Latif
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| |
Collapse
|
54
|
Greer SF, Hackenberg D, Gegas V, Mitrousia G, Edwards D, Batley J, Teakle GR, Barker GC, Walsh JA. Quantitative Trait Locus Mapping of Resistance to Turnip Yellows Virus in Brassica rapa and Brassica oleracea and Introgression of These Resistances by Resynthesis Into Allotetraploid Plants for Deployment in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:781385. [PMID: 34956278 PMCID: PMC8703028 DOI: 10.3389/fpls.2021.781385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Turnip yellows virus (TuYV) is aphid-transmitted and causes considerable yield losses in oilseed rape (OSR, Brassica napus, genome: AACC) and vegetable brassicas. Insecticide control of the aphid vector is limited due to insecticide resistance and the banning of the most effective active ingredients in the EU. There is only one source of TuYV resistance in current commercial OSR varieties, which has been mapped to a single dominant quantitative trait locus (QTL) on chromosome A04. We report the identification, characterisation, and mapping of TuYV resistance in the diploid progenitor species of OSR, Brassica rapa (genome: AA), and Brassica oleracea (genome: CC). Phenotyping of F1 populations, produced from within-species crosses between resistant and susceptible individuals, revealed the resistances were quantitative and partially dominant. QTL mapping of segregating backcross populations showed that the B. rapa resistance was controlled by at least two additive QTLs, one on chromosome A02 and the other on chromosome A06. Together, they explained 40.3% of the phenotypic variation. In B. oleracea, a single QTL on chromosome C05 explained 22.1% of the phenotypic variation. The TuYV resistance QTLs detected in this study are different from those in the extant commercial resistant varieties. To exploit these resistances, an allotetraploid (genome: AACC) plant line was resynthesised from the interspecific cross between the TuYV-resistant B. rapa and B. oleracea lines. Flow cytometry confirmed that plantlets regenerated from the interspecific cross had both A and C genomes and were mixoploid. To stabilise ploidy, a fertile plantlet was self-pollinated to produce seed that had the desired resynthesised, allotetraploid genome AACC. Phenotyping of the resynthesised plants confirmed their resistance to TuYV. Genotyping with resistance-linked markers identified during the mapping in the progenitors confirmed the presence of all TuYV resistance QTLs from B. rapa and B. oleracea. This is the first report of TuYV resistance mapped in the Brassica C genome and of an allotetraploid AACC line possessing dual resistance to TuYV originating from both of its progenitors. The introgression into OSR can now be accelerated, utilising marker-assisted selection, and this may reduce selection pressure for TuYV isolates that are able to overcome existing sources of resistance to TuYV.
Collapse
Affiliation(s)
- Shannon F. Greer
- School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| | - Dieter Hackenberg
- School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| | | | | | - David Edwards
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Graham R. Teakle
- School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| | - Guy C. Barker
- School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| | - John A. Walsh
- School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| |
Collapse
|
55
|
Castano-Duque L, Gilbert MK, Mack BM, Lebar MD, Carter-Wientjes CH, Sickler CM, Cary JW, Rajasekaran K. Flavonoids Modulate the Accumulation of Toxins From Aspergillus flavus in Maize Kernels. FRONTIERS IN PLANT SCIENCE 2021; 12:761446. [PMID: 34899785 PMCID: PMC8662736 DOI: 10.3389/fpls.2021.761446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
Aspergillus flavus is an opportunistic fungal pathogen capable of producing aflatoxins, potent carcinogenic toxins that accumulate in maize kernels after infection. To better understand the molecular mechanisms of maize resistance to A. flavus growth and aflatoxin accumulation, we performed a high-throughput transcriptomic study in situ using maize kernels infected with A. flavus strain 3357. Three maize lines were evaluated: aflatoxin-contamination resistant line TZAR102, semi-resistant MI82, and susceptible line Va35. A modified genotype-environment association method (GEA) used to detect loci under selection via redundancy analysis (RDA) was used with the transcriptomic data to detect genes significantly influenced by maize line, fungal treatment, and duration of infection. Gene ontology enrichment analysis of genes highly expressed in infected kernels identified molecular pathways associated with defense responses to fungi and other microbes such as production of pathogenesis-related (PR) proteins and lipid bilayer formation. To further identify novel genes of interest, we incorporated genomic and phenotypic field data from a genome wide association analysis with gene expression data, allowing us to detect significantly expressed quantitative trait loci (eQTL). These results identified significant association between flavonoid biosynthetic pathway genes and infection by A. flavus. In planta fungal infections showed that the resistant line, TZAR102, has a higher fold increase of the metabolites naringenin and luteolin than the susceptible line, Va35, when comparing untreated and fungal infected plants. These results suggest flavonoids contribute to plant resistance mechanisms against aflatoxin contamination through modulation of toxin accumulation in maize kernels.
Collapse
|
56
|
Vollrath P, Chawla HS, Alnajar D, Gabur I, Lee H, Weber S, Ehrig L, Koopmann B, Snowdon RJ, Obermeier C. Dissection of Quantitative Blackleg Resistance Reveals Novel Variants of Resistance Gene Rlm9 in Elite Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:749491. [PMID: 34868134 PMCID: PMC8636856 DOI: 10.3389/fpls.2021.749491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 05/15/2023]
Abstract
Blackleg is one of the major fungal diseases in oilseed rape/canola worldwide. Most commercial cultivars carry R gene-mediated qualitative resistances that confer a high level of race-specific protection against Leptosphaeria maculans, the causal fungus of blackleg disease. However, monogenic resistances of this kind can potentially be rapidly overcome by mutations in the pathogen's avirulence genes. To counteract pathogen adaptation in this evolutionary arms race, there is a tremendous demand for quantitative background resistance to enhance durability and efficacy of blackleg resistance in oilseed rape. In this study, we characterized genomic regions contributing to quantitative L. maculans resistance by genome-wide association studies in a multiparental mapping population derived from six parental elite varieties exhibiting quantitative resistance, which were all crossed to one common susceptible parental elite variety. Resistance was screened using a fungal isolate with no corresponding avirulence (AvrLm) to major R genes present in the parents of the mapping population. Genome-wide association studies revealed eight significantly associated quantitative trait loci (QTL) on chromosomes A07 and A09, with small effects explaining 3-6% of the phenotypic variance. Unexpectedly, the qualitative blackleg resistance gene Rlm9 was found to be located within a resistance-associated haploblock on chromosome A07. Furthermore, long-range sequence data spanning this haploblock revealed high levels of single-nucleotide and structural variants within the Rlm9 coding sequence among the parents of the mapping population. The results suggest that novel variants of Rlm9 could play a previously unknown role in expression of quantitative disease resistance in oilseed rape.
Collapse
Affiliation(s)
- Paul Vollrath
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Harmeet S. Chawla
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dima Alnajar
- Plant Pathology and Crop Protection Division, Department of Crop Sciences, Georg August University of Göttingen, Göttingen, Germany
| | - Iulian Gabur
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
- Department of Plant Sciences, Faculty of Agriculture, Iasi University of Life Sciences, Iaşi, Romania
| | - HueyTyng Lee
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Sven Weber
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Lennard Ehrig
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Birger Koopmann
- Plant Pathology and Crop Protection Division, Department of Crop Sciences, Georg August University of Göttingen, Göttingen, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
57
|
Amas J, Anderson R, Edwards D, Cowling W, Batley J. Status and advances in mining for blackleg (Leptosphaeria maculans) quantitative resistance (QR) in oilseed rape (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3123-3145. [PMID: 34104999 PMCID: PMC8440254 DOI: 10.1007/s00122-021-03877-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/29/2021] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Quantitative resistance (QR) loci discovered through genetic and genomic analyses are abundant in the Brassica napus genome, providing an opportunity for their utilization in enhancing blackleg resistance. Quantitative resistance (QR) has long been utilized to manage blackleg in Brassica napus (canola, oilseed rape), even before major resistance genes (R-genes) were extensively explored in breeding programmes. In contrast to R-gene-mediated qualitative resistance, QR reduces blackleg symptoms rather than completely eliminating the disease. As a polygenic trait, QR is controlled by numerous genes with modest effects, which exerts less pressure on the pathogen to evolve; hence, its effectiveness is more durable compared to R-gene-mediated resistance. Furthermore, combining QR with major R-genes has been shown to enhance resistance against diseases in important crops, including oilseed rape. For these reasons, there has been a renewed interest among breeders in utilizing QR in crop improvement. However, the mechanisms governing QR are largely unknown, limiting its deployment. Advances in genomics are facilitating the dissection of the genetic and molecular underpinnings of QR, resulting in the discovery of several loci and genes that can be potentially deployed to enhance blackleg resistance. Here, we summarize the efforts undertaken to identify blackleg QR loci in oilseed rape using linkage and association analysis. We update the knowledge on the possible mechanisms governing QR and the advances in searching for the underlying genes. Lastly, we lay out strategies to accelerate the genetic improvement of blackleg QR in oilseed rape using improved phenotyping approaches and genomic prediction tools.
Collapse
Affiliation(s)
- Junrey Amas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - Robyn Anderson
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - David Edwards
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - Wallace Cowling
- School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | - Jacqueline Batley
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| |
Collapse
|
58
|
Bertić M, Schroeder H, Kersten B, Fladung M, Orgel F, Buegger F, Schnitzler JP, Ghirardo A. European oak chemical diversity - from ecotypes to herbivore resistance. THE NEW PHYTOLOGIST 2021; 232:818-834. [PMID: 34240433 DOI: 10.1111/nph.17608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Climate change is increasing insect pressure and forcing plants to adapt. Although chemotypic differentiation and phenotypic plasticity in spatially separated tree populations are known for decades, understanding their importance in herbivory resistance across forests remains challenging. We studied four oak forest stands in Germany using nontarget metabolomics, elemental analysis, and chemometrics and mapped the leaf metabolome of herbivore-resistant (T-) and herbivore-susceptible (S-) European oaks (Quercus robur) to Tortrix viridana, an oak pest that causes severe forest defoliation. Among the detected metabolites, we identified reliable metabolic biomarkers to distinguish S- and T-oak trees. Chemotypic differentiation resulted in metabolic shifts of primary and secondary leaf metabolism. Across forests, T-oaks allocate resources towards constitutive chemical defense enriched of polyphenolic compounds, e.g. the flavonoids kaempferol, kaempferol and quercetin glucosides, while S-oaks towards growth-promoting substances such as carbohydrates and amino-acid derivatives. This extensive work across natural forests shows that oaks' resistance and susceptibility to herbivory are linked to growth-defense trade-offs of leaf metabolism. The discovery of biomarkers and the developed predictive model pave the way to understand Quercus robur's susceptibility to herbivore attack and to support forest management, contributing to the preservation of oak forests in Europe.
Collapse
Affiliation(s)
- Marko Bertić
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Hilke Schroeder
- Thünen-Institute of Forest Genetics, Sieker Landstrasse 2, 22927, Grosshansdorf, Germany
| | - Birgit Kersten
- Thünen-Institute of Forest Genetics, Sieker Landstrasse 2, 22927, Grosshansdorf, Germany
| | - Matthias Fladung
- Thünen-Institute of Forest Genetics, Sieker Landstrasse 2, 22927, Grosshansdorf, Germany
| | - Franziska Orgel
- Thünen-Institute of Forest Genetics, Sieker Landstrasse 2, 22927, Grosshansdorf, Germany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology (BIOP), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
59
|
Shumayla, Madhu, Singh K, Upadhyay SK. LysM domain-containing proteins modulate stress response and signalling in Triticum aestivum L. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2021; 189:104558. [DOI: 10.1016/j.envexpbot.2021.104558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
60
|
Rimbaud L, Fabre F, Papaïx J, Moury B, Lannou C, Barrett LG, Thrall PH. Models of Plant Resistance Deployment. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:125-152. [PMID: 33929880 DOI: 10.1146/annurev-phyto-020620-122134] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to their evolutionary potential, plant pathogens are able to rapidly adapt to genetically controlled plant resistance, often resulting in resistance breakdown and major epidemics in agricultural crops. Various deployment strategies have been proposed to improve resistance management. Globally, these rely on careful selection of resistance sources and their combination at various spatiotemporal scales (e.g., via gene pyramiding, crop rotations and mixtures, landscape mosaics). However, testing and optimizing these strategies using controlled experiments at large spatiotemporal scales are logistically challenging. Mathematical models provide an alternative investigative tool, and many have been developed to explore resistance deployment strategies under various contexts. This review analyzes 69 modeling studies in light of specific model structures (e.g., demographic or demogenetic, spatial or not), underlying assumptions (e.g., whether preadapted pathogens are present before resistance deployment), and evaluation criteria (e.g., resistance durability, disease control, cost-effectiveness). It highlights major research findings and discusses challenges for future modeling efforts.
Collapse
Affiliation(s)
- Loup Rimbaud
- INRAE, Pathologie Végétale, 84140 Montfavet, France; ,
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia; ,
| | - Frédéric Fabre
- INRAE, Bordeaux Sciences Agro, SAVE, 33882 Villenave d'Ornon, France;
| | | | - Benoît Moury
- INRAE, Pathologie Végétale, 84140 Montfavet, France; ,
| | | | - Luke G Barrett
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia; ,
| | - Peter H Thrall
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia; ,
| |
Collapse
|
61
|
Caseys C, Shi G, Soltis N, Gwinner R, Corwin J, Atwell S, Kliebenstein DJ. Quantitative interactions: the disease outcome of Botrytis cinerea across the plant kingdom. G3 (BETHESDA, MD.) 2021; 11:jkab175. [PMID: 34003931 PMCID: PMC8496218 DOI: 10.1093/g3journal/jkab175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/28/2021] [Indexed: 11/12/2022]
Abstract
Botrytis cinerea is a fungal pathogen that causes necrotic disease on more than a thousand known hosts widely spread across the plant kingdom. How B. cinerea interacts with such extensive host diversity remains largely unknown. To address this question, we generated an infectivity matrix of 98 strains of B. cinerea on 90 genotypes representing eight host plants. This experimental infectivity matrix revealed that the disease outcome is largely explained by variations in either the host resistance or pathogen virulence. However, the specific interactions between host and pathogen account for 16% of the disease outcome. Furthermore, the disease outcomes cluster among genotypes of a species but are independent of the relatedness between hosts. When analyzing the host specificity and virulence of B. cinerea, generalist strains are predominant. In this fungal necrotroph, specialization may happen by a loss in virulence on most hosts rather than an increase of virulence on a specific host. To uncover the genetic architecture of Botrytis host specificity and virulence, a genome-wide association study (GWAS) was performed and revealed up to 1492 genes of interest. The genetic architecture of these traits is widespread across the B. cinerea genome. The complexity of the disease outcome might be explained by hundreds of functionally diverse genes putatively involved in adjusting the infection to diverse hosts.
Collapse
Affiliation(s)
- Celine Caseys
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Gongjun Shi
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Nicole Soltis
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, CA 95616 USA
| | - Raoni Gwinner
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Embrapa Amazonia Ocidental, Manaus 69010-970, Brazil
| | - Jason Corwin
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Ecology and Evolution Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - Susanna Atwell
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- DynaMo Center of Excellence, University of Copenhagen, Frederiksberg C DK-1871, Denmark
| |
Collapse
|
62
|
Jiquel A, Gervais J, Geistodt‐Kiener A, Delourme R, Gay EJ, Ollivier B, Fudal I, Faure S, Balesdent M, Rouxel T. A gene-for-gene interaction involving a 'late' effector contributes to quantitative resistance to the stem canker disease in Brassica napus. THE NEW PHYTOLOGIST 2021; 231:1510-1524. [PMID: 33621369 PMCID: PMC8360019 DOI: 10.1111/nph.17292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 05/19/2023]
Abstract
The control of stem canker disease of Brassica napus (rapeseed), caused by the fungus Leptosphaeria maculans is based largely on plant genetic resistance: single-gene specific resistance (Rlm genes) or quantitative, polygenic, adult-stage resistance. Our working hypothesis was that quantitative resistance partly obeys the gene-for-gene model, with resistance genes 'recognizing' fungal effectors expressed during late systemic colonization. Five LmSTEE (stem-expressed effector) genes were selected and placed under the control of the AvrLm4-7 promoter, an effector gene highly expressed at the cotyledon stage of infection, for miniaturized cotyledon inoculation test screening of a gene pool of 204 rapeseed genotypes. We identified a rapeseed genotype, 'Yudal', expressing hypersensitive response to LmSTEE98. The LmSTEE98-RlmSTEE98 interaction was further validated by inactivation of the LmSTEE98 gene with a CRISPR-Cas9 approach. Isolates with mutated versions of LmSTEE98 induced more severe stem symptoms than the wild-type isolate in 'Yudal'. This single-gene resistance was mapped in a 0.6 cM interval of the 'Darmor_bzh' × 'Yudal' genetic map. One typical gene-for-gene interaction contributes partly to quantitative resistance when L. maculans colonizes the stems of rapeseed. With numerous other effectors specific to stem colonization, our study provides a new route for resistance gene discovery, elucidation of quantitative resistance mechanisms and selection for durable resistance.
Collapse
Affiliation(s)
- Audren Jiquel
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
- Euralis Semences6 Chemin des PanedautesMondonville31700France
| | - Julie Gervais
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Aude Geistodt‐Kiener
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
- Université Paris‐SaclayRoute de l'Orme aux MerisiersSaint‐Aubin91190France
| | | | - Elise J. Gay
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
- Université Paris‐SaclayRoute de l'Orme aux MerisiersSaint‐Aubin91190France
| | - Bénédicte Ollivier
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Isabelle Fudal
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | | | - Marie‐Hélène Balesdent
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Thierry Rouxel
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| |
Collapse
|
63
|
Jayaraman J, Chatterjee A, Hunter S, Chen R, Stroud EA, Saei H, Hoyte S, Deroles S, Tahir J, Templeton MD, Brendolise C. Rapid Methodologies for Assessing Pseudomonas syringae pv. actinidiae Colonization and Effector-Mediated Hypersensitive Response in Kiwifruit. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:880-890. [PMID: 33834857 DOI: 10.1094/mpmi-02-21-0043-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The infection of Pseudomonas syringae pv. actinidiae in kiwifruit is currently assessed by numerous methodologies, each with their own limitations. Most studies are based on either a laborious method of growth quantification of the pathogen or qualitative assessments by visual scoring following stem or cutting inoculation. Additionally, when assessing for resistance against specific pathogen effectors, confounding interactions between multiple genes in the pathogen can make mapping resistance phenotypes nearly impossible. Here, we present robust alternative methods to quantify pathogen load based on rapid bacterial DNA quantification by PCR, the use of Pseudomonas fluorescens, and a transient reporter eclipse assay for assessing resistance conferred by isolated bacterial avirulence genes. These assays compare well with bacterial plate counts to assess bacterial colonization as a result of plant resistance activation. The DNA-based quantification, when coupled with the P. fluorescens and reporter eclipse assays to independently identify bacterial avirulence genes, is rapid, highly reproducible, and scalable for high-throughput screens of multiple cultivars or genotypes. Application of these methodologies will allow rapid and high-throughput identification of resistant cultivars and the bacterial avirulence genes they recognize, facilitating resistance gene discovery for plant breeding programs.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jay Jayaraman
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Bio-Protection Research Centre, Lincoln, New Zealand
| | - Abhishek Chatterjee
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Shannon Hunter
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Ronan Chen
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Erin A Stroud
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Hassan Saei
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Stephen Hoyte
- The New Zealand Institute for Plant and Food Research Limited, Ruakura Research Centre, Hamilton, New Zealand
| | - Simon Deroles
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Matthew D Templeton
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Bio-Protection Research Centre, Lincoln, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
64
|
Gopalan-Nair R, Jardinaud MF, Legrand L, Landry D, Barlet X, Lopez-Roques C, Vandecasteele C, Bouchez O, Genin S, Guidot A. Convergent Rewiring of the Virulence Regulatory Network Promotes Adaptation of Ralstonia solanacearum on Resistant Tomato. Mol Biol Evol 2021; 38:1792-1808. [PMID: 33306125 PMCID: PMC8097285 DOI: 10.1093/molbev/msaa320] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The evolutionary and adaptive potential of a pathogen is a key determinant for successful host colonization and proliferation but remains poorly known for most of the pathogens. Here, we used experimental evolution combined with phenotyping, genomics, and transcriptomics to estimate the adaptive potential of the bacterial plant pathogen Ralstonia solanacearum to overcome the quantitative resistance of the tomato cultivar Hawaii 7996. After serial passaging over 300 generations, we observed pathogen adaptation to within-plant environment of the resistant cultivar but no plant resistance breakdown. Genomic sequence analysis of the adapted clones revealed few genetic alterations, but we provide evidence that all but one were gain of function mutations. Transcriptomic analyses revealed that even if different adaptive events occurred in independently evolved clones, there is convergence toward a global rewiring of the virulence regulatory network as evidenced by largely overlapping gene expression profiles. A subset of four transcription regulators, including HrpB, the activator of the type 3 secretion system regulon and EfpR, a global regulator of virulence and metabolic functions, emerged as key nodes of this regulatory network that are frequently targeted to redirect the pathogen’s physiology and improve its fitness in adverse conditions. Significant transcriptomic variations were also detected in evolved clones showing no genomic polymorphism, suggesting that epigenetic modifications regulate expression of some of the virulence network components and play a major role in adaptation as well.
Collapse
Affiliation(s)
| | | | - Ludovic Legrand
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - David Landry
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Xavier Barlet
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | | | - Olivier Bouchez
- GeT-PlaGe, Genotoul, INRAE, US 1426, Castanet-Tolosan, France
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Alice Guidot
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
65
|
Capador-Barreto HD, Bernhardsson C, Milesi P, Vos I, Lundén K, Wu HX, Karlsson B, Ingvarsson PK, Stenlid J, Elfstrand M. Killing two enemies with one stone? Genomics of resistance to two sympatric pathogens in Norway spruce. Mol Ecol 2021; 30:4433-4447. [PMID: 34218489 DOI: 10.1111/mec.16058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022]
Abstract
Trees must cope with the attack of multiple pathogens, often simultaneously during their long lifespan. Ironically, the genetic and molecular mechanisms controlling this process are poorly understood. The objective of this study was to compare the genetic component of resistance in Norway spruce to Heterobasidion annosum s.s. and its sympatric congener Heterobasidion parviporum. Heterobasidion root- and stem-rot is a major disease of Norway spruce caused by members of the Heterobasidion annosum species complex. Resistance to both pathogens was measured using artificial inoculations in half-sib families of Norway spruce trees originating from central to northern Europe. The genetic component of resistance was analysed using 63,760 genome-wide exome-capture sequenced SNPs and multitrait genome-wide associations. No correlation was found for resistance to the two pathogens; however, associations were found between genomic variants and resistance traits with synergic or antagonist pleiotropic effects to both pathogens. Additionally, a latitudinal cline in resistance in the bark to H. annosum s.s. was found; trees from southern latitudes, with a later bud-set and thicker stem diameter, allowed longer lesions, but this was not the case for H. parviporum. In summary, this study detects genomic variants with pleiotropic effects which explain multiple disease resistance from a genic level and could be useful for selection of resistant trees to both pathogens. Furthermore, it highlights the need for additional research to understand the evolution of resistance traits to multiple pathogens in trees.
Collapse
Affiliation(s)
- Hernán D Capador-Barreto
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carolina Bernhardsson
- Uppsala Biocentre, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Vos
- Forestry Research Institute of Sweden (Skogforsk), Ekebo, Sweden
| | - Karl Lundén
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bo Karlsson
- Forestry Research Institute of Sweden (Skogforsk), Ekebo, Sweden
| | - Pär K Ingvarsson
- Uppsala Biocentre, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Stenlid
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin Elfstrand
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
66
|
Naalden D, van Kleeff PJM, Dangol S, Mastop M, Corkill R, Hogenhout SA, Kant MR, Schuurink RC. Spotlight on the Roles of Whitefly Effectors in Insect-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:661141. [PMID: 34276723 PMCID: PMC8283192 DOI: 10.3389/fpls.2021.661141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 05/30/2023]
Abstract
The Bemisia tabaci species complex (whitefly) causes enormous agricultural losses. These phloem-feeding insects induce feeding damage and transmit a wide range of dangerous plant viruses. Whiteflies colonize a broad range of plant species that appear to be poorly defended against these insects. Substantial research has begun to unravel how phloem feeders modulate plant processes, such as defense pathways, and the central roles of effector proteins, which are deposited into the plant along with the saliva during feeding. Here, we review the current literature on whitefly effectors in light of what is known about the effectors of phloem-feeding insects in general. Further analysis of these effectors may improve our understanding of how these insects establish compatible interactions with plants, whereas the subsequent identification of plant defense processes could lead to improved crop resistance to insects. We focus on the core concepts that define the effectors of phloem-feeding insects, such as the criteria used to identify candidate effectors in sequence-mining pipelines and screens used to analyze the potential roles of these effectors and their targets in planta. We discuss aspects of whitefly effector research that require further exploration, including where effectors localize when injected into plant tissues, whether the effectors target plant processes beyond defense pathways, and the properties of effectors in other insect excretions such as honeydew. Finally, we provide an overview of open issues and how they might be addressed.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Paula J. M. van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Rebecca Corkill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Saskia A. Hogenhout
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Merijn R. Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Robert C. Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
67
|
Adhikari P, Mideros SX, Jamann TM. Differential Regulation of Maize and Sorghum Orthologs in Response to the Fungal Pathogen Exserohilum turcicum. FRONTIERS IN PLANT SCIENCE 2021; 12:675208. [PMID: 34113371 PMCID: PMC8185347 DOI: 10.3389/fpls.2021.675208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 06/01/2023]
Abstract
Pathogens that infect more than one host offer an opportunity to study how resistance mechanisms have evolved across different species. Exserohilum turcicum infects both maize and sorghum and the isolates are host-specific, offering a unique system to examine both compatible and incompatible interactions. We conducted transcriptional analysis of maize and sorghum in response to maize-specific and sorghum-specific E. turcicum isolates and identified functionally related co-expressed modules. Maize had a more robust transcriptional response than sorghum. E. turcicum responsive genes were enriched in core orthologs in both crops, but only up to 16% of core orthologs showed conserved expression patterns. Most changes in gene expression for the core orthologs, including hub genes, were lineage specific, suggesting a role for regulatory divergent evolution. We identified several defense-related shared differentially expressed (DE) orthologs with conserved expression patterns between the two crops, suggesting a role for parallel evolution of those genes in both crops. Many of the differentially expressed genes (DEGs) during the incompatible interaction were related to quantitative disease resistance (QDR). This work offers insights into how different hosts with relatively recent divergence interact with a common pathogen. Our results are important for developing resistance to this critical pathogen and understanding the evolution of host-pathogen interactions.
Collapse
|
68
|
Schurack S, Depotter JRL, Gupta D, Thines M, Doehlemann G. Comparative transcriptome profiling identifies maize line specificity of fungal effectors in the maize-Ustilago maydis interaction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:733-752. [PMID: 33570802 DOI: 10.1111/tpj.15195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 05/20/2023]
Abstract
The biotrophic pathogen Ustilago maydis causes smut disease on maize (Zea mays) and induces the formation of tumours on all aerial parts of the plant. Unlike in other biotrophic interactions, no gene-for-gene interactions have been identified in the maize-U. maydis pathosystem. Thus, maize resistance to U. maydis is considered a polygenic, quantitative trait. Here, we study the molecular mechanisms of quantitative disease resistance (QDR) in maize, and how U. maydis interferes with its components. Based on quantitative scoring of disease symptoms in 26 maize lines, we performed an RNA sequencing (RNA-Seq) analysis of six U. maydis-infected maize lines of highly distinct resistance levels. The different maize lines showed specific responses of diverse cellular processes to U. maydis infection. For U. maydis, our analysis identified 406 genes being differentially expressed between maize lines, of which 102 encode predicted effector proteins. Based on this analysis, we generated U. maydis CRISPR/Cas9 knock-out mutants for selected candidate effector sets. After infections of different maize lines with the fungal mutants, RNA-Seq analysis identified effectors with quantitative, maize line-specific virulence functions, and revealed auxin-related processes as a possible target for one of them. Thus, we show that both transcriptional activity and virulence function of fungal effector genes are modified according to the infected maize line, providing insights into the molecular mechanisms underlying QDR in the maize-U. maydis interaction.
Collapse
Affiliation(s)
- Selma Schurack
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
- IMPRS, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jasper R L Depotter
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Deepak Gupta
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt, Frankfurt a. M, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt, Frankfurt a. M, Germany
| | - Gunther Doehlemann
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
69
|
Parker MT, Knop K, Zacharaki V, Sherwood AV, Tomé D, Yu X, Martin PGP, Beynon J, Michaels SD, Barton GJ, Simpson GG. Widespread premature transcription termination of Arabidopsis thaliana NLR genes by the spen protein FPA. eLife 2021; 10:e65537. [PMID: 33904405 PMCID: PMC8116057 DOI: 10.7554/elife.65537] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Genes involved in disease resistance are some of the fastest evolving and most diverse components of genomes. Large numbers of nucleotide-binding, leucine-rich repeat (NLR) genes are found in plant genomes and are required for disease resistance. However, NLRs can trigger autoimmunity, disrupt beneficial microbiota or reduce fitness. It is therefore crucial to understand how NLRs are controlled. Here, we show that the RNA-binding protein FPA mediates widespread premature cleavage and polyadenylation of NLR transcripts, thereby controlling their functional expression and impacting immunity. Using long-read Nanopore direct RNA sequencing, we resolved the complexity of NLR transcript processing and gene annotation. Our results uncover a co-transcriptional layer of NLR control with implications for understanding the regulatory and evolutionary dynamics of NLRs in the immune responses of plants.
Collapse
Affiliation(s)
- Matthew T Parker
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Katarzyna Knop
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | | | - Anna V Sherwood
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Daniel Tomé
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Xuhong Yu
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Pascal GP Martin
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Jim Beynon
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Scott D Michaels
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | | | - Gordon G Simpson
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
- The James Hutton InstituteInvergowrieUnited Kingdom
| |
Collapse
|
70
|
Muellender MM, Mahlein AK, Stammler G, Varrelmann M. Evidence for the association of target-site resistance in cyp51 with reduced DMI sensitivity in European Cercospora beticola field isolates. PEST MANAGEMENT SCIENCE 2021; 77:1765-1774. [PMID: 33236506 DOI: 10.1002/ps.6197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cercospora leaf spot caused by Cercospora beticola is the most relevant foliar disease in sugar beet cultivation. In the last decade a decreasing sensitivity of C. beticola towards demethylation inhibitors (DMIs) occurred. Different mechanisms mediating a reduced sensitivity towards DMIs have been identified in different plant pathogens to date, such as target site mutations, over-expression or active excretion of the fungicide. RESULTS A sequencing of the cytochrome P450-dependent sterol 14α-demethylase gene sequence (cyp51) of diverse C. beticola isolates collected in different European countries with reduced DMI sensitivity was performed in order to find a possible correlation of mutations with higher EC50 values. The amino acid alterations Y464S, L144F and I309T combined with L144F were found to be associated with a reduced sensitivity. Furthermore, mutations I387M, M145W and M145W with E460Q were found uniquely. Additionally, constitutive and fungicide triggered expression of cyp51 was assayed by means of RT-qPCR. A very strong induction of cyp51 mRNA expression in sensitive isolates suggests that the fungal cells upregulate expression to maintain ergosterol biosynthesis in DMI presence. The less intensive cyp51 induction in isolates with higher EC50 values underlines the possible correlation of the found target-site mutations with reduced sensitivity. CONCLUSION This study provides new results about possible alterations in the target gene mediating reduced sensitivity of C. beticola towards DMIs and hypothesized a fungicide induced over-expression of the target enzyme CYP51 as natural reaction of the fungus to fungicide application. © 2020 Society of Chemical Industry.
Collapse
|
71
|
Abstract
Plant pathogens can adapt to quantitative resistance, eroding its effectiveness. The aim of this work was to reveal the genomic basis of adaptation to such a resistance in populations of the fungus Pseudocercospora fijiensis, a major devastating pathogen of banana, by studying convergent adaptation on different cultivars. Samples from P. fijiensis populations showing a local adaptation pattern on new banana hybrids with quantitative resistance were compared, based on a genome scan approach, with samples from traditional and more susceptible cultivars in Cuba and the Dominican Republic. Whole-genome sequencing of pools of P. fijiensis isolates (pool-seq) sampled from three locations per country was conducted according to a paired population design. The findings of different combined analyses highly supported the existence of convergent adaptation on the study cultivars between locations within but not between countries. Five to six genomic regions involved in this adaptation were detected in each country. An annotation analysis and available biological data supported the hypothesis that some genes within the detected genomic regions may play a role in quantitative pathogenicity, including gene regulation. The results suggested that the genetic basis of fungal adaptation to quantitative plant resistance is at least oligogenic, while highlighting the existence of specific host-pathogen interactions for this kind of resistance.IMPORTANCE Understanding the genetic basis of pathogen adaptation to quantitative resistance in plants has a key role to play in establishing durable strategies for resistance deployment. In this context, a population genomic approach was developed for a major plant pathogen (the fungus Pseudocercospora fijiensis causing black leaf streak disease of banana) whereby samples from new resistant banana hybrids were compared with samples from more susceptible conventional cultivars in two countries. A total of 11 genomic regions for which there was strong evidence of selection by quantitative resistance were detected. An annotation analysis and available biological data supported the hypothesis that some of the genes within these regions may play a role in quantitative pathogenicity. These results suggested a polygenic basis of quantitative pathogenicity in this fungal pathogen and complex molecular plant-pathogen interactions in quantitative disease development involving several genes on both sides.
Collapse
|
72
|
Chen H, Raffaele S, Dong S. Silent control: microbial plant pathogens evade host immunity without coding sequence changes. FEMS Microbiol Rev 2021; 45:6095737. [PMID: 33440001 DOI: 10.1093/femsre/fuab002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Both animals and plants have evolved a robust immune system to surveil and defeat invading pathogenic microbes. Evasion of host immune surveillance is the key for pathogens to initiate successful infection. To evade the host immunity, plant pathogens evolved a variety of strategies such as masking themselves from host immune recognitions, blocking immune signaling transductions, reprogramming immune responses and adapting to immune microenvironmental changes. Gain of new virulence genes, sequence and structural variations enables plant pathogens to evade host immunity through changes in the genetic code. However, recent discoveries demonstrated that variations at the transcriptional, post-transcriptional, post-translational and glycome level enable pathogens to cope with the host immune system without coding sequence changes. The biochemical modification of pathogen associated molecular patterns and silencing of effector genes emerged as potent ways for pathogens to hide from host recognition. Altered processing in mRNA activities provide pathogens with resilience to microenvironment changes. Importantly, these hiding variants are directly or indirectly modulated by catalytic enzymes or enzymatic complexes and cannot be revealed by classical genomics alone. Unveiling these novel host evasion mechanisms in plant pathogens enables us to better understand the nature of plant disease and pinpoints strategies for rational diseases management in global food protection.
Collapse
Affiliation(s)
- Han Chen
- Department of Plant Pathology and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes, INRAE, CNRS, 24 Chemin de Borde Rouge - Auzeville, CS52627, F31326 Castanet Tolosan Cedex, France
| | - Suomeng Dong
- Department of Plant Pathology and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
73
|
Jiang G, Liu D, Yin D, Zhou Z, Shi Y, Li C, Zhu L, Zhai W. A Rice NBS-ARC Gene Conferring Quantitative Resistance to Bacterial Blight Is Regulated by a Pathogen Effector-Inducible miRNA. MOLECULAR PLANT 2020; 13:1752-1767. [PMID: 32966899 DOI: 10.1016/j.molp.2020.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/13/2020] [Accepted: 09/17/2020] [Indexed: 05/04/2023]
Abstract
The bacterium Xanthomonas oryzae pv. Oryzae (Xoo) causes blight in rice worldwide, resulting in significant crop loss. However, no gene underlying a quantitative trait locus (QTL) for resistance against Xoo has been cloned yet. Here, we report the map-based cloning of a QTL, in which the NBS8R gene confers quantitative resistance to Xoo. NBS8R encodes an NB-ARC protein, which is involved in pathogen/microbe-associated molecular pattern-triggered immunity and whose expression is regulated by non-TAL effector XopQ-inducible Osa-miR1876 through DNA methylation. Sequence analysis of NBS8R in wild rice species and rice cultivars suggests that the Osa-miR1876 binding sites in the 5' UTR of NBS8R are inserted by chance and have undergone variations with Osa-miR1876 throughout evolution. The interaction between NBS8R and XopQ-inducible Osa-miR1876 is partially in keeping with the zigzag model, revealing that quantitative genes may also follow this model to control the innate immune response or basal disease resistance, and may prove valuable in utilizing the existing landraces that harbor the NBS8R gene but with no Osa-miR1876 binding site in rice breeding for bacterial blight resistance.
Collapse
Affiliation(s)
- Guanghuai Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongfeng Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dedong Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuangzhi Zhou
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Shi
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunrong Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihuang Zhu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
74
|
Lopez Arias DC, Chastellier A, Thouroude T, Bradeen J, Van Eck L, De Oliveira Y, Paillard S, Foucher F, Hibrand-Saint Oyant L, Soufflet-Freslon V. Characterization of black spot resistance in diploid roses with QTL detection, meta-analysis and candidate-gene identification. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3299-3321. [PMID: 32844252 DOI: 10.1007/s00122-020-03670-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/11/2020] [Indexed: 05/10/2023]
Abstract
Two environmentally stable QTLs linked to black spot disease resistance in the Rosa wichurana genetic background were detected, in different connected populations, on linkage groups 3 and 5. Co-localization between R-genes and defense response genes was revealed via meta-analysis. The widespread rose black spot disease (BSD) caused by the hemibiotrophic fungus Diplocarpon rosae Wolf. is efficiently controlled with fungicides. However, in the actual context of reducing agrochemical use, the demand for rose bushes with higher levels of resistance has increased. Qualitative resistance conferred by major genes (Rdr genes) has been widely studied but quantitative resistance to BSD requires further investigation. In this study, segregating populations connected through the BSD resistant Rosa wichurana male parent were phenotyped for disease resistance over several years and locations. A pseudo-testcross approach was used, resulting in six parental maps across three populations. A total of 45 individual QTLs with significant effect on BSD resistance were mapped on the male maps (on linkage groups (LG) B3, B4, B5 and B6), and 12 on the female maps (on LG A1, A2, A3, A4 and A5). Two major regions linked to BSD resistance were identified on LG B3 and B5 of the male maps and were integrated into a consensus map built from all three of the male maps. A meta-analysis was used to narrow down the confidence intervals of individual QTLs from three populations by generating meta-QTLs. Two 'hot spots' or meta-QTLs were found per LG, enabling reduction of the confidence interval to 10.42 cM for B3 and 11.47 cM for B5. An expert annotation of NBS-LRR encoding genes of the genome assembly of Hibrand et al. was performed and used to explore potential co-localization with R-genes. Co-localization with defense response genes was also investigated.
Collapse
Affiliation(s)
- D C Lopez Arias
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France.
| | - A Chastellier
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - T Thouroude
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - J Bradeen
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - L Van Eck
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Yannick De Oliveira
- Génétique Quantitative Et Évolution - Le Moulon, INRAE - Université Paris-Sud - CNRS - AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - S Paillard
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - F Foucher
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - L Hibrand-Saint Oyant
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - V Soufflet-Freslon
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
75
|
Xu Y, Li X, Liang W, Liu M. Proteome-Wide Analysis of Lysine 2-Hydroxyisobutyrylation in the Phytopathogenic Fungus Botrytis cinerea. Front Microbiol 2020; 11:585614. [PMID: 33329453 PMCID: PMC7728723 DOI: 10.3389/fmicb.2020.585614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Posttranslational modifications (PTMs) of the whole proteome have become a hot topic in the research field of epigenetics, and an increasing number of PTM types have been identified and shown to play significant roles in different cellular processes. Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly detected PTM, and the 2-hydroxyisobutyrylome has been identified in several species. Botrytis cinerea is recognized as one of the most destructive pathogens due to its broad host distribution and very large economic losses; thus the many aspects of its pathogenesis have been continuously studied. However, distribution and function of Khib in this phytopathogenic fungus are not clear. In this study, a proteome-wide analysis of Khib in B. cinerea was performed, and 5,398 Khib sites on 1,181 proteins were identified. Bioinformatics analysis showed that the 2-hydroxyisobutyrylome in B. cinerea contains both conserved proteins and novel proteins when compared with Khib proteins in other species. Functional classification, functional enrichment and protein interaction network analyses showed that Khib proteins are widely distributed in cellular compartments and involved in diverse cellular processes. Significantly, 37 proteins involved in different aspects of regulating the pathogenicity of B. cinerea were detected as Khib proteins. Our results provide a comprehensive view of the 2-hydroxyisobutyrylome and lay a foundation for further studying the regulatory mechanism of Khib in both B. cinerea and other plant pathogens.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiaoxia Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mengjie Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
76
|
Lück S, Strickert M, Lorbeer M, Melchert F, Backhaus A, Kilias D, Seiffert U, Douchkov D. "Macrobot": An Automated Segmentation-Based System for Powdery Mildew Disease Quantification. PLANT PHENOMICS (WASHINGTON, D.C.) 2020; 2020:5839856. [PMID: 33313559 PMCID: PMC7706317 DOI: 10.34133/2020/5839856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/27/2020] [Indexed: 05/25/2023]
Abstract
Managing plant diseases is increasingly difficult due to reasons such as intensifying the field production, climatic change-driven expansion of pests, redraw and loss of effectiveness of pesticides, rapid breakdown of the disease resistance in the field, and other factors. The substantial progress in genomics of both plants and pathogens, achieved in the last decades, has the potential to counteract this negative trend, however, only when the genomic data is supported by relevant phenotypic data that allows linking the genomic information to specific traits. We have developed a set of methods and equipment and combined them into a "Macrophenomics facility." The pipeline has been optimized for the quantification of powdery mildew infection symptoms on wheat and barley, but it can be adapted to other diseases and host plants. The Macrophenomics pipeline scores the visible powdery mildew disease symptoms, typically 5-7 days after inoculation (dai), in a highly automated manner. The system can precisely and reproducibly quantify the percentage of the infected leaf area with a theoretical throughput of up to 10000 individual samples per day, making it appropriate for phenotyping of large germplasm collections and crossing populations.
Collapse
Affiliation(s)
- Stefanie Lück
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correnstr. 3, 06466 Seeland, Germany
| | - Marc Strickert
- Physics Institute II, University of Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Maximilian Lorbeer
- Julius Kühn Institute for National and International Plant Health, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Friedrich Melchert
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstr. 22, 39106 Magdeburg, Germany
| | - Andreas Backhaus
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstr. 22, 39106 Magdeburg, Germany
| | - David Kilias
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstr. 22, 39106 Magdeburg, Germany
| | - Udo Seiffert
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstr. 22, 39106 Magdeburg, Germany
| | - Dimitar Douchkov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correnstr. 3, 06466 Seeland, Germany
| |
Collapse
|
77
|
Yu X, Mulkey SE, Zuleta MC, Arellano C, Ma B, Milla-Lewis SR. Quantitative Trait Loci Associated with Gray Leaf Spot Resistance in St. Augustinegrass. PLANT DISEASE 2020; 104:2799-2806. [PMID: 32986536 DOI: 10.1094/pdis-04-20-0905-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gray leaf spot (GLS), caused by Magnaporthe grisea, is a major fungal disease of St. Augustinegrass (Stenotaphrum secundatum), causing widespread blighting of the foliage under warm, humid conditions. To identify quantitative trait loci (QTL) controlling GLS resistance, an F1 mapping population consisting of 153 hybrids was developed from crosses between cultivar Raleigh (susceptible parent) and plant introduction PI 410353 (resistant parent). Single-nucleotide polymorphism (SNP) markers generated from genotyping-by-sequencing constituted nine linkage groups for each parental linkage map. The Raleigh map consisted of 2,257 SNP markers and spanned 916.63 centimorgans (cM), while the PI 410353 map comprised 511 SNP markers and covered 804.27 cM. GLS resistance was evaluated under controlled environmental conditions with measurements of final disease incidence and lesion length. Additionally, two derived traits, area under the disease progress curve and area under the lesion expansion curve, were calculated for QTL analysis. Twenty QTL were identified as being associated with these GLS resistance traits, which explained 7.6 to 37.2% of the total phenotypic variation. Three potential GLS QTL "hotspots" were identified on two linkage groups: P2 (106.26 to 110.36 cM and 113.15 to 116.67 cM) and P5 (17.74 to 19.28 cM). The two major effect QTL glsp2.3 and glsp5.2 together reduced 20.2% of disease incidence in this study. Sequence analysis showed that two candidate genes encoding β-1,3-glucanases were found in the intervals of two QTL, which might function in GLS resistance response. These QTL and linked markers can be potentially used to assist the transfer of GLS resistance genes to elite St. Augustinegrass breeding lines.
Collapse
Affiliation(s)
- Xingwang Yu
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Steve E Mulkey
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55455, U.S.A
| | - Maria C Zuleta
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Consuelo Arellano
- Department of Statistics, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Bangya Ma
- SePRO Research & Technology Campus, Whitakers, NC 27891, U.S.A
| | - Susana R Milla-Lewis
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, U.S.A
| |
Collapse
|
78
|
Weiss M, Sniezko RA, Puiu D, Crepeau MW, Stevens K, Salzberg SL, Langley CH, Neale DB, De La Torre AR. Genomic basis of white pine blister rust quantitative disease resistance and its relationship with qualitative resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:365-376. [PMID: 32654344 PMCID: PMC10773528 DOI: 10.1111/tpj.14928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The genomic architecture and molecular mechanisms controlling variation in quantitative disease resistance loci are not well understood in plant species and have been barely studied in long-generation trees. Quantitative trait loci mapping and genome-wide association studies were combined to test a large single nucleotide polymorphism (SNP) set for association with quantitative and qualitative white pine blister rust resistance in sugar pine. In the absence of a chromosome-scale reference genome, a high-density consensus linkage map was generated to obtain locations for associated SNPs. Newly discovered associations for white pine blister rust quantitative disease resistance included 453 SNPs involved in wide biological functions, including genes associated with disease resistance and others involved in morphological and developmental processes. In addition, NBS-LRR pathogen recognition genes were found to be involved in quantitative disease resistance, suggesting these newly reported genes are qualitative genes with partial resistance, they are the result of defeated qualitative resistance due to avirulent races, or they have epistatic effects on qualitative disease resistance genes. This study is a step forward in our understanding of the complex genomic architecture of quantitative disease resistance in long-generation trees, and constitutes the first step towards marker-assisted disease resistance breeding in white pine species.
Collapse
Affiliation(s)
- Matthew Weiss
- School of Forestry, Northern Arizona University, 200 E.
Pine Knoll, Flagstaff, AZ 86011
| | - Richard A. Sniezko
- Dorena Genetic Resource Center, USDA Forest Service,
Cottage-Grove, OR 97424
| | - Daniela Puiu
- Department of Biomedical Engineering, Computer Science and
Biostatistics and Center for Computational Biology, Johns Hopkins University, 3100
Wyman Park Dr., Wyman Park Building Room S220, Baltimore, MD 21211
| | - Marc W. Crepeau
- Department of Evolution and Ecology, University of
California-Davis, One Shields Avenue, Davis, CA 95616
| | - Kristian Stevens
- Department of Evolution and Ecology, University of
California-Davis, One Shields Avenue, Davis, CA 95616
| | - Steven L. Salzberg
- Department of Biomedical Engineering, Computer Science and
Biostatistics and Center for Computational Biology, Johns Hopkins University, 3100
Wyman Park Dr., Wyman Park Building Room S220, Baltimore, MD 21211
- Departments of Computer Science and Biostatistics, Johns
Hopkins University, Baltimore, MD 21218
| | - Charles H. Langley
- Department of Evolution and Ecology, University of
California-Davis, One Shields Avenue, Davis, CA 95616
| | - David B. Neale
- Department of Plant Sciences, University of
California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Amanda R. De La Torre
- School of Forestry, Northern Arizona University, 200 E.
Pine Knoll, Flagstaff, AZ 86011
| |
Collapse
|
79
|
Massana-Codina J, Schnee S, Allard PM, Rutz A, Boccard J, Michellod E, Cléroux M, Schürch S, Gindro K, Wolfender JL. Insights on the Structural and Metabolic Resistance of Potato ( Solanum tuberosum) Cultivars to Tuber Black Dot ( Colletotrichum coccodes). FRONTIERS IN PLANT SCIENCE 2020; 11:1287. [PMID: 32973846 PMCID: PMC7468465 DOI: 10.3389/fpls.2020.01287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 05/03/2023]
Abstract
Black dot is a blemish disease of potato tubers caused by the phytopathogenic fungus Colletotrichum coccodes. Qualitative resistance (monogenic) that leads to the hypersensitive response has not been reported against black dot, but commercial potato cultivars show different susceptibility levels to the disease, indicating that quantitative resistance (polygenic) mechanisms against this pathogen exist. Cytological studies are essential to decipher pathogen colonization of the plant tissue, and untargeted metabolomics has been shown effective in highlighting resistance-related metabolites in quantitative resistance. In this study, we used five commercial potato cultivars with different susceptibility levels to black dot, and studied the structural and biochemical aspects that correlate with resistance to black dot using cytological and untargeted metabolomics methods. The cytological approach using semithin sections of potato tuber periderm revealed that C. coccodes colonizes the tuber periderm, but does not penetrate in cortical cells. Furthermore, skin thickness did not correlate with disease susceptibility, indicating that other factors influence quantitative resistance to black dot. Furthermore, suberin amounts did not correlate with black dot severity, and suberin composition was similar between the five potato cultivars studied. On the other hand, the untargeted metabolomics approach allowed highlighting biomarkers of infection, as well as constitutive and induced resistance-related metabolites. Hydroxycinnamic acids, hydroxycinnamic acid amides and steroidal saponins were found to be biomarkers of resistance under control conditions, while hydroxycoumarins were found to be specifically induced in the resistant cultivars. Notably, some of these biomarkers showed antifungal activity in vitro against C. coccodes. Altogether, our results show that quantitative resistance of potatoes to black dot involves structural and biochemical mechanisms, including the production of specialized metabolites with antifungal properties.
Collapse
Affiliation(s)
- Josep Massana-Codina
- Plant Protection Research Division, Agroscope, Nyon, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Sylvain Schnee
- Plant Protection Research Division, Agroscope, Nyon, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Adriano Rutz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Emilie Michellod
- Plant Protection Research Division, Agroscope, Nyon, Switzerland
| | - Marilyn Cléroux
- Changins College for Viticulture and Enology, University Western Switzerland, Nyon, Switzerland
| | | | - Katia Gindro
- Plant Protection Research Division, Agroscope, Nyon, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
80
|
Zuluaga AP, Bidzinski P, Chanclud E, Ducasse A, Cayrol B, Gomez Selvaraj M, Ishitani M, Jauneau A, Deslandes L, Kroj T, Michel C, Szurek B, Koebnik R, Morel JB. The Rice DNA-Binding Protein ZBED Controls Stress Regulators and Maintains Disease Resistance After a Mild Drought. FRONTIERS IN PLANT SCIENCE 2020; 11:1265. [PMID: 33013945 PMCID: PMC7461821 DOI: 10.3389/fpls.2020.01265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Identifying new sources of disease resistance and the corresponding underlying resistance mechanisms remains very challenging, particularly in Monocots. Moreover, the modification of most disease resistance pathways made so far is detrimental to tolerance to abiotic stresses such as drought. This is largely due to negative cross-talks between disease resistance and abiotic stress tolerance signaling pathways. We have previously described the role of the rice ZBED protein containing three Zn-finger BED domains in disease resistance against the fungal pathogen Magnaporthe oryzae. The molecular and biological functions of such BED domains in plant proteins remain elusive. RESULTS Using Nicotiana benthamiana as a heterologous system, we show that ZBED localizes in the nucleus, binds DNA, and triggers basal immunity. These activities require conserved cysteine residues of the Zn-finger BED domains that are involved in DNA binding. Interestingly, ZBED overexpressor rice lines show increased drought tolerance. More importantly, the disease resistance response conferred by ZBED is not compromised by drought-induced stress. CONCLUSIONS Together our data indicate that ZBED might represent a new type of transcriptional regulator playing simultaneously a positive role in both disease resistance and drought tolerance. We demonstrate that it is possible to provide disease resistance and drought resistance simultaneously.
Collapse
Affiliation(s)
- A. Paola Zuluaga
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | | | - Emilie Chanclud
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Aurelie Ducasse
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Bastien Cayrol
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | | | | | - Alain Jauneau
- Institut Fédératif de Recherche 3450, Université de Toulouse, CNRS, UPS, Plateforme Imagerie TRI-Genotoul, Castanet-Tolosan, France
| | | | - Thomas Kroj
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Corinne Michel
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Boris Szurek
- UMR Interactions Plantes-Microorganismes-Environnement (IPME), IRD-Cirad-Université Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | - Ralf Koebnik
- UMR Interactions Plantes-Microorganismes-Environnement (IPME), IRD-Cirad-Université Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | | |
Collapse
|
81
|
Fass MI, Rivarola M, Ehrenbolger GF, Maringolo CA, Montecchia JF, Quiroz F, García-García F, Blázquez JD, Hopp HE, Heinz RA, Paniego NB, Lia VV. Exploring sunflower responses to Sclerotinia head rot at early stages of infection using RNA-seq analysis. Sci Rep 2020; 10:13347. [PMID: 32770047 PMCID: PMC7414910 DOI: 10.1038/s41598-020-70315-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Sclerotinia head rot (SHR), caused by the necrotrophic fungus Sclerotinia sclerotiorum, is one of the most devastating sunflower crop diseases. Despite its worldwide occurrence, the genetic determinants of plant resistance are still largely unknown. Here, we investigated the Sclerotinia-sunflower pathosystem by analysing temporal changes in gene expression in one susceptible and two tolerant inbred lines (IL) inoculated with the pathogen under field conditions. Differential expression analysis showed little overlapping among ILs, suggesting genotype-specific control of cell defense responses possibly related to differences in disease resistance strategies. Functional enrichment assessments yielded a similar pattern. However, all three ILs altered the expression of genes involved in the cellular redox state and cell wall remodeling, in agreement with current knowledge about the initiation of plant immune responses. Remarkably, the over-representation of long non-coding RNAs (lncRNA) was another common feature among ILs. Our findings highlight the diversity of transcriptional responses to SHR within sunflower breeding lines and provide evidence of lncRNAs playing a significant role at early stages of defense.
Collapse
Affiliation(s)
- Mónica I Fass
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina.
| | - Máximo Rivarola
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Guillermo F Ehrenbolger
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Carla A Maringolo
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce, Balcarce, Argentina
| | - Juan F Montecchia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Facundo Quiroz
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce, Balcarce, Argentina
| | | | - Joaquín Dopazo Blázquez
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, 41013, Sevilla, Spain.,INB-ELIXIR-Es, FPS, Hospital Virgen del Rocío, 42013, Sevilla, Spain
| | - H Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), 1428, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ruth A Heinz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Norma B Paniego
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Verónica V Lia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| |
Collapse
|
82
|
Delplace F, Huard-Chauveau C, Dubiella U, Khafif M, Alvarez E, Langin G, Roux F, Peyraud R, Roby D. Robustness of plant quantitative disease resistance is provided by a decentralized immune network. Proc Natl Acad Sci U S A 2020; 117:18099-18109. [PMID: 32669441 PMCID: PMC7395444 DOI: 10.1073/pnas.2000078117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Quantitative disease resistance (QDR) represents the predominant form of resistance in natural populations and crops. Surprisingly, very limited information exists on the biomolecular network of the signaling machineries underlying this form of plant immunity. This lack of information may result from its complex and quantitative nature. Here, we used an integrative approach including genomics, network reconstruction, and mutational analysis to identify and validate molecular networks that control QDR in Arabidopsis thaliana in response to the bacterial pathogen Xanthomonas campestris To tackle this challenge, we first performed a transcriptomic analysis focused on the early stages of infection and using transgenic lines deregulated for the expression of RKS1, a gene underlying a QTL conferring quantitative and broad-spectrum resistance to XcampestrisRKS1-dependent gene expression was shown to involve multiple cellular activities (signaling, transport, and metabolism processes), mainly distinct from effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses already characterized in Athaliana Protein-protein interaction network reconstitution then revealed a highly interconnected and distributed RKS1-dependent network, organized in five gene modules. Finally, knockout mutants for 41 genes belonging to the different functional modules of the network revealed that 76% of the genes and all gene modules participate partially in RKS1-mediated resistance. However, these functional modules exhibit differential robustness to genetic mutations, indicating that, within the decentralized structure of the QDR network, some modules are more resilient than others. In conclusion, our work sheds light on the complexity of QDR and provides comprehensive understanding of a QDR immune network.
Collapse
Affiliation(s)
- Florent Delplace
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Carine Huard-Chauveau
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Ullrich Dubiella
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
- KWS SAAT SE & Co, 37574 Einbeck, Germany
| | - Mehdi Khafif
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Eva Alvarez
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Gautier Langin
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Rémi Peyraud
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
- iMean, 31520 Toulouse, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France;
| |
Collapse
|
83
|
Differential Alternative Splicing Genes and Isoform Regulation Networks of Rapeseed ( Brassica napus L.) Infected with Sclerotinia sclerotiorum. Genes (Basel) 2020; 11:genes11070784. [PMID: 32668742 PMCID: PMC7397149 DOI: 10.3390/genes11070784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022] Open
Abstract
Alternative splicing (AS) is a post-transcriptional level of gene expression regulation that increases transcriptome and proteome diversity. How the AS landscape of rapeseed (Brassica napus L.) changes in response to the fungal pathogen Sclerotinia sclerotiorum is unknown. Here, we analyzed 18 RNA-seq libraries of mock-inoculated and S. sclerotiorum-inoculated susceptible and tolerant B. napus plants. We found that infection increased AS, with intron retention being the main AS event. To determine the key genes functioning in the AS response, we performed a differential AS (DAS) analysis. We identified 79 DAS genes, including those encoding splicing factors, defense response proteins, crucial transcription factors and enzymes. We generated coexpression networks based on the splicing isoforms, rather than the genes, to explore the genes’ diverse functions. Using this weighted gene coexpression network analysis alongside a gene ontology enrichment analysis, we identified 11 modules putatively involved in the pathogen defense response. Within these regulatory modules, six DAS genes (ascorbate peroxidase 1, ser/arg-rich protein 34a, unknown function 1138, nitrilase 2, v-atpase f, and amino acid transporter 1) were considered to encode key isoforms involved in the defense response. This study provides insight into the post-transcriptional response of B. napus to S. sclerotiorum infection.
Collapse
|
84
|
Burbano-Figueroa Ó. [Plant resistance to pathogens: A review describing the vertical and horizontal resistance concepts]. Rev Argent Microbiol 2020; 52:245-255. [PMID: 32622724 DOI: 10.1016/j.ram.2020.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/31/2019] [Accepted: 04/05/2020] [Indexed: 11/19/2022] Open
Abstract
Understanding plant resistance requires an interdisciplinary effort between biological and agricultural sciences. In this setting, phytopathology has experienced an upsurge of interest from researchers and scholars in the disciplines of ecology, evolution and molecular biology. This encounter did neither avoid misunderstandings among scholars nor the use of similar concepts with different meanings. The purpose of this paper is to offer a modern comprehensive view of plant resistance against pathogens using a classical phytopathology concept as framework: Van der Plank s concept of horizontal and vertical resistance. This concept is used in other agricultural science disciplines (plant breeding and genetics), supporting why it is a proper framework for explaining plant resistance. Within this frame, other classical phytopathologycal concepts are explained in combination with modern model descriptions of plant-pathogen interactions and how all these concepts are related with quantitative and field resistance. This review is written in Spanish because it serves an additional purpose. In the Spanish-speaking America, besides interdisciplinarity, phytopathology as an academic discipline faces another challenge: the students' low-English language proficiency. In this regard, this review intends to become a companion guide for plant-pathology teachers in the region interested in providing an insight into the modern concepts of plant resistance.
Collapse
Affiliation(s)
- Óscar Burbano-Figueroa
- The Plant Interactions Laboratory, Turipaná Research Center, Corporación Colombiana de Investigaciones Agropecuarias (AGROSAVIA), Cereté (Córdoba), Colombia.
| |
Collapse
|
85
|
Barbacci A, Navaud O, Mbengue M, Barascud M, Godiard L, Khafif M, Lacaze A, Raffaele S. Rapid identification of an Arabidopsis NLR gene as a candidate conferring susceptibility to Sclerotinia sclerotiorum using time-resolved automated phenotyping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:903-917. [PMID: 32170798 PMCID: PMC7497225 DOI: 10.1111/tpj.14747] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/25/2020] [Accepted: 02/28/2020] [Indexed: 05/11/2023]
Abstract
The broad host range necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen of many oil and vegetable crops. Plant genes conferring complete resistance against S. sclerotiorum have not been reported. Instead, plant populations challenged by S. sclerotiorum exhibit a continuum of partial resistance designated as quantitative disease resistance (QDR). Because of their complex interplay and their small phenotypic effect, the functional characterization of QDR genes remains limited. How broad host range necrotrophic fungi manipulate plant programmed cell death is for instance largely unknown. Here, we designed a time-resolved automated disease phenotyping pipeline enabling high-throughput disease lesion measurement with high resolution, low footprint at low cost. We could accurately recover contrasted disease responses in several pathosystems using this system. We used our phenotyping pipeline to assess the kinetics of disease symptoms caused by seven S. sclerotiorum isolates on six A. thaliana natural accessions with unprecedented resolution. Large effect polymorphisms common to the most resistant A. thaliana accessions identified highly divergent alleles of the nucleotide-binding site leucine-rich repeat gene LAZ5 in the resistant accessions Rubezhnoe and Lip-0. We show that impaired LAZ5 expression in laz5.1 mutant lines and in A. thaliana Rub natural accession correlate with enhanced QDR to S. sclerotiorum. These findings illustrate the value of time-resolved image-based phenotyping for unravelling the genetic bases of complex traits such as QDR. Our results suggest that S. sclerotiorum manipulates plant sphingolipid pathways guarded by LAZ5 to trigger programmed cell death and cause disease.
Collapse
Affiliation(s)
- Adelin Barbacci
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Olivier Navaud
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Malick Mbengue
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Marielle Barascud
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Laurence Godiard
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Mehdi Khafif
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Aline Lacaze
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| |
Collapse
|
86
|
Zurn JD, Norelli JL, Montanari S, Bell R, Bassil NV. Dissecting Genetic Resistance to Fire Blight in Three Pear Populations. PHYTOPATHOLOGY 2020; 110:1305-1311. [PMID: 32175827 DOI: 10.1094/phyto-02-20-0051-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fire blight, caused by the bacterial pathogen Erwinia amylovora, is a persistent problem for pear (Pyrus spp.) growers in the United States. Growing resistant cultivars is one of the best options for managing fire blight. The cultivars Potomac and Old Home and the selection NJA2R59T69 display resistance to fire blight. As such, three mapping populations (El Dorado × Potomac, Old Home × Bartlett, and NJA2R59T69 × Bartlett) were developed to identify genomic regions associated with resistance to fire blight. Progeny were phenotyped during 2017 and 2018 by inoculating multiple actively growing shoots of field-grown seedling trees with E. amylovora isolate E153n via the cut-leaf method. Genotyping was conducted using the recently developed Axiom Pear 70 K Genotyping Array and chromosomal linkage groups were created for each population. An integrated two-way pseudo-testcross approach was used to map quantitative trait loci (QTLs). Resistance QTLs were identified on chromosome 2 for each population. The QTLs identified in the El Dorado × Potomac and Old Home × Bartlett populations are in the same region as QTLs that were previously identified in Harrow Sweet and Moonglow. The QTL in NJA2R59T69 mapped proximally to the previously identified QTLs and originated from an unknown Asian or occidental source. Future research will focus on further characterizing the resistance regions and developing tools for DNA-informed breeding.
Collapse
Affiliation(s)
- Jason D Zurn
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) National Clonal Germplasm Repository, Corvallis, OR, U.S.A
| | - John L Norelli
- USDA-ARS Appalachian Fruit Research Laboratory, Kearneysville, WV, U.S.A
| | - Sara Montanari
- Department of Plant Sciences, University of California Davis, Davis, CA, U.S.A
| | - Richard Bell
- USDA-ARS Appalachian Fruit Research Laboratory, Kearneysville, WV, U.S.A
| | - Nahla V Bassil
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) National Clonal Germplasm Repository, Corvallis, OR, U.S.A
| |
Collapse
|
87
|
Meng X, Li L, Narsai R, De Clercq I, Whelan J, Berkowitz O. Mitochondrial signalling is critical for acclimation and adaptation to flooding in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:227-247. [PMID: 32064696 DOI: 10.1111/tpj.14724] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 05/23/2023]
Abstract
Mitochondria have critical functions in the acclimation to abiotic and biotic stresses. Adverse environmental conditions lead to increased demands in energy supply and metabolic intermediates, which are provided by mitochondrial ATP production and the tricarboxylic acid (TCA) cycle. Mitochondria also play a role as stress sensors to adjust nuclear gene expression via retrograde signalling with the transcription factor (TF) ANAC017 and the kinase CDKE1 key components to integrate various signals into this pathway. To determine the importance of mitochondria as sensors of stress and their contribution in the tolerance to adverse growth conditions, a comparative phenotypical, physiological and transcriptomic characterisation of Arabidopsis mitochondrial signalling mutants (cdke1/rao1 and anac017/rao2) and a set of contrasting accessions was performed after applying the complex compound stress of submergence. Our results showed that impaired mitochondrial retrograde signalling leads to increased sensitivity to the stress treatments. The multi-factorial approach identified a network of 702 co-expressed genes, including several WRKY TFs, overlapping in the transcriptional responses in the mitochondrial signalling mutants and stress-sensitive accessions. Functional characterisation of two WRKY TFs (WRKY40 and WRKY45), using both knockout and overexpressing lines, confirmed their role in conferring tolerance to submergence. Together, the results revealed that acclimation to submergence is dependent on mitochondrial retrograde signalling, and underlying transcriptional re-programming is used as an adaptation mechanism.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Lu Li
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Inge De Clercq
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
88
|
Arabidopsis Transmembrane Receptor-Like Kinases (RLKs): A Bridge between Extracellular Signal and Intracellular Regulatory Machinery. Int J Mol Sci 2020; 21:ijms21114000. [PMID: 32503273 PMCID: PMC7313013 DOI: 10.3390/ijms21114000] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Receptors form the crux for any biochemical signaling. Receptor-like kinases (RLKs) are conserved protein kinases in eukaryotes that establish signaling circuits to transduce information from outer plant cell membrane to the nucleus of plant cells, eventually activating processes directing growth, development, stress responses, and disease resistance. Plant RLKs share considerable homology with the receptor tyrosine kinases (RTKs) of the animal system, differing at the site of phosphorylation. Typically, RLKs have a membrane-localization signal in the amino-terminal, followed by an extracellular ligand-binding domain, a solitary membrane-spanning domain, and a cytoplasmic kinase domain. The functional characterization of ligand-binding domains of the various RLKs has demonstrated their essential role in the perception of extracellular stimuli, while its cytosolic kinase domain is usually confined to the phosphorylation of their substrates to control downstream regulatory machinery. Identification of the several ligands of RLKs, as well as a few of its immediate substrates have predominantly contributed to a better understanding of the fundamental signaling mechanisms. In the model plant Arabidopsis, several studies have indicated that multiple RLKs are involved in modulating various types of physiological roles via diverse signaling routes. Here, we summarize recent advances and provide an updated overview of transmembrane RLKs in Arabidopsis.
Collapse
|
89
|
Sucher J, Mbengue M, Dresen A, Barascud M, Didelon M, Barbacci A, Raffaele S. Phylotranscriptomics of the Pentapetalae Reveals Frequent Regulatory Variation in Plant Local Responses to the Fungal Pathogen Sclerotinia sclerotiorum. THE PLANT CELL 2020; 32:1820-1844. [PMID: 32265317 PMCID: PMC7268813 DOI: 10.1105/tpc.19.00806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
Abstract
Quantitative disease resistance (QDR) is a conserved form of plant immunity that limits infections caused by a broad range of pathogens. QDR has a complex genetic determinism. The extent to which molecular components of the QDR response vary across plant species remains elusive. The fungal pathogen Sclerotinia sclerotiorum, causal agent of white mold diseases on hundreds of plant species, triggers QDR in host populations. To document the diversity of local responses to S. sclerotiorum at the molecular level, we analyzed the complete transcriptomes of six species spanning the Pentapetalae (Phaseolus vulgaris, Ricinus communis, Arabidopsis [Arabidopsis thaliana], Helianthus annuus, Solanum lycopersicum, and Beta vulgaris) inoculated with the same strain of S. sclerotiorum About one-third of plant transcriptomes responded locally to S. sclerotiorum, including a high proportion of broadly conserved genes showing frequent regulatory divergence at the interspecific level. Evolutionary inferences suggested a trend toward the acquisition of gene induction relatively recently in several lineages. Focusing on a group of ABCG transporters, we propose that exaptation by regulatory divergence contributed to the evolution of QDR. This evolutionary scenario has implications for understanding the QDR spectrum and durability. Our work provides resources for functional studies of gene regulation and QDR molecular mechanisms across the Pentapetalae.
Collapse
Affiliation(s)
- Justine Sucher
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Malick Mbengue
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Axel Dresen
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Marielle Barascud
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Marie Didelon
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Adelin Barbacci
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| |
Collapse
|
90
|
Carella P. All Together Now: Phylotranscriptomics Reveals Core Responses to Fungal Infection across the Pentapetalae. THE PLANT CELL 2020; 32:1773-1774. [PMID: 32312786 PMCID: PMC7268796 DOI: 10.1105/tpc.20.00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Philip Carella
- Sainsbury LaboratoryUniversity of CambridgeCambridge, United Kingdom
| |
Collapse
|
91
|
Ngernmuen A, Suktrakul W, Kate-Ngam S, Jantasuriyarat C. Transcriptome Comparison of Defense Responses in the Rice Variety 'Jao Hom Nin' Regarding Two Blast Resistant Genes, Pish and Pik. PLANTS 2020; 9:plants9060694. [PMID: 32485961 PMCID: PMC7356797 DOI: 10.3390/plants9060694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 11/24/2022]
Abstract
Jao Hom Nin (JHN) is a Thai rice variety with broad-spectrum resistant against rice blast fungus. JHN contains two rice blast resistant genes, Pish and Pik, located on chromosome 1 and on chromosome 11, respectively. To understand the blast resistance in JHN, the study of the defense mechanism related to the Pish and Pik genes is crucial. This study aimed to dissect defense response genes between the Pish and Pik genes using the RNA-seq technique. Differentially expressed genes (DEGs) of Pish and Pik backcross inbred lines were identified between 0 and 24 h after inoculation with rice blast spore suspension. The results showed that 1248 and 858 DEGs were unique to the Pish and Pik lines, respectively. The wall-associated kinase gene was unique to the Pish line and the zinc-finger-containing protein gene was unique to the Pik line. Pathogenicity-related proteins PR-4 and PR-10 were commonly found in both Pish and Pik lines. Moreover, DEGs functionally categorized in brassinosteriod, jasmonic acid, and salicylic acid pathways were detected in both Pish and Pik lines. These unique and shared genes in the Pish and Pik rice blast defense responses will help to dissect the mechanisms of plant defense and facilitate rice blast breeding programs.
Collapse
Affiliation(s)
- Athipat Ngernmuen
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkhen Campus, Ladyao, Chatuchak, Bangkok 10900, Thailand; (A.N.); (W.S.)
| | - Worrawit Suktrakul
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkhen Campus, Ladyao, Chatuchak, Bangkok 10900, Thailand; (A.N.); (W.S.)
| | - Sureeporn Kate-Ngam
- Department of Agronomy, Faculty of Agriculture, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand;
| | - Chatchawan Jantasuriyarat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkhen Campus, Ladyao, Chatuchak, Bangkok 10900, Thailand; (A.N.); (W.S.)
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +662-562-5444
| |
Collapse
|
92
|
Papp D, Singh J, Gadoury D, Khan A. New North American Isolates of Venturia inaequalis Can Overcome Apple Scab Resistance of Malus floribunda 821. PLANT DISEASE 2020; 104:649-655. [PMID: 31961770 DOI: 10.1094/pdis-10-19-2082-re] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Apple scab, caused by Venturia inaequalis, is a destructive fungal disease of major apple cultivars worldwide, most of which are moderately to highly susceptible. Thus, development of scab resistant cultivars is one of the highest priorities of apple breeding programs. The principal source of resistance for breeding programs has been the scab resistance gene Rvi6 that originated from the Japanese crabapple Malus floribunda (Sieb.) sel. 821. Isolates of V. inaequalis able to overcome Rvi6 have been identified in Europe, but have not yet been reported on the American continents. We recently discovered scab infection on M. floribunda 821 trees in a research orchard at Geneva, NY, U.S.A., where approximately 10% of the leaves bore profusely sporulating apple scab lesions, many of which had coalesced to cover entire leaves. We observed both chlorosis, typical to Rvi6, and pinpoint pitting symptoms typical to failed infections by V. inaequalis on hosts bearing the Rvi7 gene. We assessed genetic diversity and population genetic structure of 11 V. inaequalis isolates in total, of North American and European origin, isolated from M. floribunda 821, 'Nova Easygro', 'Golden Delicious', TSR33T239, 'Schone van Boskoop', and 'Prima', using 16,321 genome-wide SNPs. Population genetic structure and PCA separated the isolates into distinct European and U.S. groups. The forgoing suggests that the new Rvi6 virulent isolates emerged within U.S. populations, rather than being transported from Europe. The complete resistance breakdown in M. floribunda 821 but not in descendant cultivars, which kept their field resistance, suggests that durable resistance to apple scab will require a more comprehensive understanding of Rvi6 mediated resistance in diverse genetic backgrounds.
Collapse
Affiliation(s)
- David Papp
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, U.S.A
| | - Jugpreet Singh
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, U.S.A
| | - David Gadoury
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, U.S.A
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, U.S.A
| |
Collapse
|
93
|
Jacob C, Melotto M. Human Pathogen Colonization of Lettuce Dependent Upon Plant Genotype and Defense Response Activation. FRONTIERS IN PLANT SCIENCE 2020; 10:1769. [PMID: 32082340 PMCID: PMC7002439 DOI: 10.3389/fpls.2019.01769] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/18/2019] [Indexed: 05/26/2023]
Abstract
Fresh produce contaminated with human pathogens may result in foodborne disease outbreaks that cause a significant number of illnesses, hospitalizations, and death episodes affecting both public health and the agribusiness every year. The ability of these pathogens to survive throughout the food production chain is remarkable. Using a genetic approach, we observed that leaf colonization by Salmonella enterica serovar Typhimurium 14028s (S. Typhimurium 14028s) and Escherichia coli O157:H7 was significantly affected by genetic diversity of lettuce (Lactuca sativa L. and L. serriola L.). In particular, there was a significant variation among 11 lettuce genotypes in bacterial attachment, internalization, and apoplastic persistence after surface- and syringe-inoculation methods. We observed a significant correlation of the bacterial leaf internalization rate with stomatal pore traits (width and area). Moreover, bacterial apoplastic populations significantly decreased in 9 out of 11 lettuce genotypes after 10 days of surface inoculation. However, after syringe infiltration, populations of E. coli O157:H7 and S. Typhimurium 14028s showed positive, neutral, or negative net growth in a 10-day experimental period among seedlings of different lettuce types. The relative ability of the bacteria to persist in the apoplast of lettuce genotypes after syringe inoculation was minimally altered when assessed during a longer period (20 days) using 3.5- to 4-week-old plants. Interestingly, contrasting bacterial persistence in the lettuce genotypes Red Tide and Lollo Rossa was positively correlated with significant differences in the level of reactive oxygen species burst and callose deposition against S. Typhimurium 14028s and E. coli O157:H7 which are related to plant defense responses. Overall, we characterized the genetic diversity in the interaction between lettuce genotypes and enterobacteria S. Typhimurium 14028s and E. coli O157:H7 and discovered that this genetic diversity is linked to variations in plant immune responses towards these bacteria. These results provide opportunities to capitalize on plant genetics to reduce pathogen contamination of leaves.
Collapse
Affiliation(s)
- Cristián Jacob
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Horticulture and Agronomy Graduate Group, University of California, Davis, Davis, CA, United States
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
94
|
Westbrook JW, Zhang Q, Mandal MK, Jenkins EV, Barth LE, Jenkins JW, Grimwood J, Schmutz J, Holliday JA. Optimizing genomic selection for blight resistance in American chestnut backcross populations: A trade-off with American chestnut ancestry implies resistance is polygenic. Evol Appl 2020; 13:31-47. [PMID: 31892942 PMCID: PMC6935594 DOI: 10.1111/eva.12886] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 01/04/2023] Open
Abstract
American chestnut was once a foundation species of eastern North American forests, but was rendered functionally extinct in the early 20th century by an exotic fungal blight (Cryphonectria parasitica). Over the past 30 years, the American Chestnut Foundation (TACF) has pursued backcross breeding to generate hybrids that combine the timber-type form of American chestnut with the blight resistance of Chinese chestnut based on a hypothesis of major gene resistance. To accelerate selection within two backcross populations that descended from two Chinese chestnuts, we developed genomic prediction models for five presence/absence blight phenotypes of 1,230 BC3F2 selection candidates and average canker severity of their BC3F3 progeny. We also genotyped pure Chinese and American chestnut reference panels to estimate the proportion of BC3F2 genomes inherited from parent species. We found that genomic prediction from a method that assumes an infinitesimal model of inheritance (HBLUP) has similar accuracy to a method that tends to perform well for traits controlled by major genes (Bayes C). Furthermore, the proportion of BC3F2 trees' genomes inherited from American chestnut was negatively correlated with the blight resistance of these trees and their progeny. On average, selected BC3F2 trees inherited 83% of their genome from American chestnut and have blight resistance that is intermediate between F1 hybrids and American chestnut. Results suggest polygenic inheritance of blight resistance. The blight resistance of restoration populations will be enhanced through recurrent selection, by advancing additional sources of resistance through fewer backcross generations, and by potentially by breeding with transgenic blight-tolerant trees.
Collapse
Affiliation(s)
| | - Qian Zhang
- Department of Forest Resources and Environmental ConservationVirginia TechBlacksburgVAUSA
| | | | | | | | | | - Jane Grimwood
- HudsonAlpha Institute for BiotechnologyHuntsvilleALUSA
| | | | - Jason A. Holliday
- Department of Forest Resources and Environmental ConservationVirginia TechBlacksburgVAUSA
| |
Collapse
|
95
|
Lück S, Strickert M, Lorbeer M, Melchert F, Backhaus A, Kilias D, Seiffert U, Douchkov D. "Macrobot": An Automated Segmentation-Based System for Powdery Mildew Disease Quantification. PLANT PHENOMICS (WASHINGTON, D.C.) 2020; 2020:5839856. [PMID: 33313559 DOI: 10.1101/2020.03.16.993451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/27/2020] [Indexed: 05/18/2023]
Abstract
Managing plant diseases is increasingly difficult due to reasons such as intensifying the field production, climatic change-driven expansion of pests, redraw and loss of effectiveness of pesticides, rapid breakdown of the disease resistance in the field, and other factors. The substantial progress in genomics of both plants and pathogens, achieved in the last decades, has the potential to counteract this negative trend, however, only when the genomic data is supported by relevant phenotypic data that allows linking the genomic information to specific traits. We have developed a set of methods and equipment and combined them into a "Macrophenomics facility." The pipeline has been optimized for the quantification of powdery mildew infection symptoms on wheat and barley, but it can be adapted to other diseases and host plants. The Macrophenomics pipeline scores the visible powdery mildew disease symptoms, typically 5-7 days after inoculation (dai), in a highly automated manner. The system can precisely and reproducibly quantify the percentage of the infected leaf area with a theoretical throughput of up to 10000 individual samples per day, making it appropriate for phenotyping of large germplasm collections and crossing populations.
Collapse
Affiliation(s)
- Stefanie Lück
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correnstr. 3, 06466 Seeland, Germany
| | - Marc Strickert
- Physics Institute II, University of Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Maximilian Lorbeer
- Julius Kühn Institute for National and International Plant Health, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Friedrich Melchert
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstr. 22, 39106 Magdeburg, Germany
| | - Andreas Backhaus
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstr. 22, 39106 Magdeburg, Germany
| | - David Kilias
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstr. 22, 39106 Magdeburg, Germany
| | - Udo Seiffert
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstr. 22, 39106 Magdeburg, Germany
| | - Dimitar Douchkov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correnstr. 3, 06466 Seeland, Germany
| |
Collapse
|
96
|
Wagner G, Laperche A, Lariagon C, Marnet N, Renault D, Guitton Y, Bouchereau A, Delourme R, Manzanares-Dauleux MJ, Gravot A. Resolution of quantitative resistance to clubroot into QTL-specific metabolic modules. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5375-5390. [PMID: 31145785 PMCID: PMC6793449 DOI: 10.1093/jxb/erz265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/21/2019] [Indexed: 05/23/2023]
Abstract
Plant disease resistance is often under quantitative genetic control. Thus, in a given interaction, plant cellular responses to infection are influenced by resistance or susceptibility alleles at different loci. In this study, a genetic linkage analysis was used to address the complexity of the metabolic responses of Brassica napus roots to infection by Plasmodiophora brassicae. Metabolome profiling and pathogen quantification in a segregating progeny allowed a comparative mapping of quantitative trait loci (QTLs) involved in resistance and in metabolic adjustments. Distinct metabolic modules were associated with each resistance QTL, suggesting the involvement of different underlying cellular mechanisms. This approach highlighted the possible role of gluconasturtiin and two unknown metabolites in the resistance conferred by two QTLs on chromosomes C03 and C09, respectively. Only two susceptibility biomarkers (glycine and glutathione) were simultaneously linked to the three main resistance QTLs, suggesting the central role of these compounds in the interaction. By contrast, several genotype-specific metabolic responses to infection were genetically unconnected to resistance or susceptibility. Likewise, variations of root sugar profiles, which might have influenced pathogen nutrition, were not found to be related to resistance QTLs. This work illustrates how genetic metabolomics can help to understand plant stress responses and their possible links with disease.
Collapse
Affiliation(s)
- Geoffrey Wagner
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| | - Anne Laperche
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| | | | - Nathalie Marnet
- Plateau de Profilage Métabolique et Métabolomique (P2M2), Centre de Recherche Angers Nantes BIA, INRA, Le Rheu, France
| | - David Renault
- UMR EcoBio, Université de Rennes, CNRS, Rennes, France
| | - Yann Guitton
- LUNAM Université, Oniris, Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, France
| | - Alain Bouchereau
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| | - Régine Delourme
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| | | | - Antoine Gravot
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| |
Collapse
|
97
|
Quantitative Phenotyping of Northern Leaf Blight in UAV Images Using Deep Learning. REMOTE SENSING 2019. [DOI: 10.3390/rs11192209] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plant disease poses a serious threat to global food security. Accurate, high-throughput methods of quantifying disease are needed by breeders to better develop resistant plant varieties and by researchers to better understand the mechanisms of plant resistance and pathogen virulence. Northern leaf blight (NLB) is a serious disease affecting maize and is responsible for significant yield losses. A Mask R-CNN model was trained to segment NLB disease lesions in unmanned aerial vehicle (UAV) images. The trained model was able to accurately detect and segment individual lesions in a hold-out test set. The mean intersect over union (IOU) between the ground truth and predicted lesions was 0.73, with an average precision of 0.96 at an IOU threshold of 0.50. Over a range of IOU thresholds (0.50 to 0.95), the average precision was 0.61. This work demonstrates the potential for combining UAV technology with a deep learning-based approach for instance segmentation to provide accurate, high-throughput quantitative measures of plant disease.
Collapse
|
98
|
Cowger C, Brown JKM. Durability of Quantitative Resistance in Crops: Greater Than We Know? ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:253-277. [PMID: 31206351 DOI: 10.1146/annurev-phyto-082718-100016] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Quantitative resistance (QR) to crop diseases has usually been much more durable than major-gene, effector-triggered resistance. It has been observed that the effectiveness of some QR has eroded as pathogens adapt to it, especially when deployment is extensive and epidemics occur regularly, but it generally declines more slowly than effector-triggered resistance. Changes in aggressiveness and specificity of diverse pathogens on cultivars with QR have been recorded, along with experimental data on fitness costs of pathogen adaptation to QR, but there is little information about molecular mechanisms of adaptation. Some QR has correlated or antagonistic effects on multiple diseases. Longitudinal data on cultivars' disease ratings in trials over several years can be used to assess the significance of QR for durable resistance in crops. It is argued that published data likely underreport the durability of QR, owing to publication bias. The implications of research on QR for plant breeding are discussed.
Collapse
Affiliation(s)
- Christina Cowger
- USDA-ARS and North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - James K M Brown
- Department of Crop Genetics, John Innes Centre, Colney, Norwich NR4 7UK, United Kingdom;
| |
Collapse
|
99
|
Hall MD, Routtu J, Ebert D. Dissecting the genetic architecture of a stepwise infection process. Mol Ecol 2019; 28:3942-3957. [PMID: 31283079 DOI: 10.1111/mec.15166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
How a host fights infection depends on an ordered sequence of steps, beginning with attempts to prevent a pathogen from establishing an infection, through to steps that mitigate a pathogen's control of host resources or minimize the damage caused during infection. Yet empirically characterizing the genetic basis of these steps remains challenging. Although each step is likely to have a unique genetic and environmental signature, and may therefore respond to selection in different ways, events that occur earlier in the infection process can mask or overwhelm the contributions of subsequent steps. In this study, we dissect the genetic architecture of a stepwise infection process using a quantitative trait locus (QTL) mapping approach. We control for variation at the first line of defence against a bacterial pathogen and expose downstream genetic variability related to the host's ability to mitigate the damage pathogens cause. In our model, the water-flea Daphnia magna, we found a single major effect QTL, explaining 64% of the variance, that is linked to the host's ability to completely block pathogen entry by preventing their attachment to the host oesophagus; this is consistent with the detection of this locus in previous studies. In susceptible hosts allowing attachment, however, a further 23 QTLs, explaining between 5% and 16% of the variance, were mapped to traits related to the expression of disease. The general lack of pleiotropy and epistasis for traits related to the different stages of the infection process, together with the wide distribution of QTLs across the genome, highlights the modular nature of a host's defence portfolio, and the potential for each different step to evolve independently. We discuss how isolating the genetic basis of individual steps can help to resolve discussion over the genetic architecture of host resistance.
Collapse
Affiliation(s)
- Matthew D Hall
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jarkko Routtu
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,Molecular Ecology, Martin-Luther-Universität, Halle-Wittenberg, Germany
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| |
Collapse
|
100
|
Juyo Rojas DK, Soto Sedano JC, Ballvora A, Léon J, Mosquera Vásquez T. Novel organ-specific genetic factors for quantitative resistance to late blight in potato. PLoS One 2019; 14:e0213818. [PMID: 31310605 PMCID: PMC6634379 DOI: 10.1371/journal.pone.0213818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/23/2019] [Indexed: 01/25/2023] Open
Abstract
Potato, Solanum tuberosum, is one of the major consumed food in the world, being the basis of the diet of millions of people. The main limiting and destructive disease of potato is late blight, caused by Phytophtora infestans. Here, we present a multi-environmental analysis of the response to P. infestans using an association panel of 150 accessions of S. tuberosum Group Phureja, evaluated in two localities in Colombia. Disease resistance data were merged with a genotyping matrix of 83,862 SNPs obtained by 2b-restriction site–associated DNA and Genotyping by sequencing approaches into a Genome-wide association study. We are reporting 16 organ-specific QTL conferring resistance to late blight. These QTL explain between 13.7% and 50.9% of the phenotypic variance. Six and ten QTL were detected for resistance response in leaves and stem, respectively. In silico analysis revealed 15 candidate genes for resistance to late blight. Four of them have no functional genome annotation, while eleven candidate genes code for diverse proteins, including a leucine-rich repeat kinase.
Collapse
Affiliation(s)
| | | | - Agim Ballvora
- University of Bonn, Institute of Crop Science and Resource Conservation Plant Breeding, Katzenburgweg, Bonn, Germany
| | - Jens Léon
- University of Bonn, Institute of Crop Science and Resource Conservation Plant Breeding, Katzenburgweg, Bonn, Germany
| | - Teresa Mosquera Vásquez
- Universidad Nacional de Colombia, sede Bogotá, Facultad de Ciencias Agrarias, Bogotá, Colombia
- * E-mail:
| |
Collapse
|