51
|
Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 172:847-868. [PMID: 33180329 DOI: 10.1111/ppl.13268] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 05/03/2023]
Abstract
Amid apprehension of global climate change, crop plants are inevitably confronted with a myriad of abiotic stress factors during their growth that inflicts a serious threat to their development and overall productivity. These abiotic stresses comprise extreme temperature, pH, high saline soil, and drought stress. Among different abiotic stresses, drought is considered the most calamitous stressor with its serious impact on the crops' yield stability. The development of climate-resilient crops that withstands reduced water availability is a major focus of the scientific fraternity to ensure the food security of the sharply increasing population. Numerous studies aim to recognize the key regulators of molecular and biochemical processes associated with drought stress tolerance response. A few potential candidates are now considered as promising targets for crop improvement. Transcription factors act as a key regulatory switch controlling the gene expression of diverse biological processes and, eventually, the metabolic processes. Understanding the role and regulation of the transcription factors will facilitate the crop improvement strategies intending to develop and deliver agronomically-superior crops. Therefore, in this review, we have emphasized the molecular avenues of the transcription factors that can be exploited to engineer drought tolerance potential in crop plants. We have discussed the molecular role of several transcription factors, such as basic leucine zipper (bZIP), dehydration responsive element binding (DREB), DNA binding with one finger (DOF), heat shock factor (HSF), MYB, NAC, TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP), and WRKY. We have also highlighted candidate transcription factors that can be used for the development of drought-tolerant crops.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | - Tanika Thakur
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Oceania Chirom
- National Institute of Plant Genome Research, New Delhi, India
| | - Rushil Mandlik
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Rupesh Deshmukh
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| |
Collapse
|
52
|
Yang B, Zhang K, Jin X, Yan J, Lu S, Shen Q, Guo L, Hong Y, Wang X, Guo L. Acylation of non-specific phospholipase C4 determines its function in plant response to phosphate deficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1647-1659. [PMID: 33792991 DOI: 10.1111/tpj.15260] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Non-specific phospholipase C (NPC) is involved in plant growth, development and stress responses. To elucidate the mechanism by which NPCs mediate cellular functions, here we show that NPC4 is S-acylated at the C terminus and that acylation determines its plasma membrane (PM) association and function. The acylation of NPC4 was detected using NPC4 isolated from Arabidopsis and reconstituted in vitro. The C-terminal Cys-533 was identified as the S-acylation residue, and the mutation of Cys-533 to Ala-533 in NPC4 (NPC4C533A ) led to the loss of S-acylation and membrane association of NPC4. The knockout of NPC4 impeded the phosphate deficiency-induced decrease of the phosphosphingolipid glycosyl inositol phosphoryl ceramide (GIPC), but introducing NPC4C533A to npc4-1 failed to complement this defect, thereby supporting the hypothesis that the non-acylated NPC4C533A fails to hydrolyze GIPC during phosphate deprivation. Moreover, NPC4C533A failed to complement the primary root growth in npc4-1 under stress. In addition, NPC4 in Brassica napus was S-acylated and mutation of the S-acylating cysteine residue of BnaC01.NPC4 led to the loss of S-acylation and its membrane association. Together, our results reveal that S-acylation of NPC4 in the C terminus is conserved and required for its membrane association, phosphosphingolipid hydrolysis and function in plant stress responses.
Collapse
Affiliation(s)
- Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ke Zhang
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Xiong Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiayu Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingwen Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
53
|
Zhu F, Ye Q, Chen H, Dong J, Wang T. Multigene editing reveals that MtCEP1/2/12 redundantly control lateral root and nodule number in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3661-3676. [PMID: 33640986 PMCID: PMC8096600 DOI: 10.1093/jxb/erab093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/25/2021] [Indexed: 05/26/2023]
Abstract
The multimember CEP (C-terminally Encoded Peptide) gene family is a complex group that is involved in various physiological activities in plants. Previous studies demonstrated that MtCEP1 and MtCEP7 control lateral root formation or nodulation, but these studies were based only on gain of function or artificial miRNA (amiRNA)/RNAi approaches, never knockout mutants. Moreover, an efficient multigene editing toolkit is not currently available for Medicago truncatula. Our quantitative reverse transcription-PCR data showed that MtCEP1, 2, 4, 5, 6, 7, 8, 9, 12, and 13 were up-regulated under nitrogen starvation conditions and that MtCEP1, 2, 7, 9, and 12 were induced by rhizobial inoculation. Treatment with synthetic MtCEP peptides of MtCEP1, 2, 4, 5, 6, 8, and 12 repressed lateral root emergence and promoted nodulation in the R108 wild type but not in the cra2 mutant. We optimized CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] genome editing system for M. truncatula, and thus created single mutants of MtCEP1, 2, 4, 6, and 12 and the double mutants Mtcep1/2C and Mtcep5/8C; however, these mutants did not exhibit significant differences from R108. Furthermore, a triple mutant Mtcep1/2/12C and a quintuple mutant Mtcep1/2/5/8/12C were generated and exhibited more lateral roots and fewer nodules than R108. Overall, MtCEP1, 2, and 12 were confirmed to be redundantly important in the control of lateral root number and nodulation. Moreover, the CRISPR/Cas9-based multigene editing protocol provides an additional tool for research on the model legume M. truncatula, which is highly efficient at multigene mutant generation.
Collapse
Affiliation(s)
- Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Grassland Sciences, China Agricultural University, Beijing, China
| | - Qinyi Ye
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Grassland Sciences, China Agricultural University, Beijing, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
54
|
Zhao N, Cui S, Li X, Liu B, Deng H, Liu Y, Hou M, Yang X, Mu G, Liu L. Transcriptome and Co-expression Network Analyses Reveal Differential Gene Expression and Pathways in Response to Severe Drought Stress in Peanut ( Arachis hypogaea L.). Front Genet 2021; 12:672884. [PMID: 33995498 PMCID: PMC8120245 DOI: 10.3389/fgene.2021.672884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 01/23/2023] Open
Abstract
Drought is one of the major abiotic stress factors limiting peanut production. It causes the loss of pod yield during the pod formation stage. Here, one previously identified drought-tolerant cultivar, "L422" of peanut, was stressed by drought (35 ± 5%) at pod formation stage for 5, 7, and 9 days. To analyze the drought effects on peanut, we conducted physiological and transcriptome analysis in leaves under well-watered (CK1, CK2, and CK3) and drought-stress conditions (T1, T2, and T3). By transcriptome analysis, 3,586, 6,730, and 8,054 differentially expressed genes (DEGs) were identified in "L422" at 5 days (CK1 vs T1), 7 days (CK2 vs T2), and 9 days (CK3 vs T3) of drought stress, respectively, and 2,846 genes were common DEGs among the three-time points. Furthermore, the result of weighted gene co-expression network analysis (WGCNA) revealed one significant module that was closely correlated between drought stress and physiological data. A total of 1,313 significantly up-/down-regulated genes, including 61 transcription factors, were identified in the module at three-time points throughout the drought stress stage. Additionally, six vital metabolic pathways, namely, "MAPK signaling pathway-plant," "flavonoid biosynthesis," "starch and sucrose metabolism," "phenylpropanoid biosynthesis," "glutathione metabolism," and "plant hormone signal transduction" were enriched in "L422" under severe drought stress. Nine genes responding to drought tolerance were selected for quantitative real-time PCR (qRT-PCR) verification and the results agreed with transcriptional profile data, which reveals the reliability and accuracy of transcriptome data. Taken together, these findings could lead to a better understanding of drought tolerance and facilitate the breeding of drought-resistant peanut cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lifeng Liu
- State Key Laboratory for Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
55
|
He F, Shi YJ, Mi JX, Zhao KJ, Cui XL, Chen LH, Yang HB, Zhang F, Zhao Q, Huang JL, Wan XQ. Genome-Wide Investigation of the NF-X1 Gene Family in Populus trichocarpa Expression Profiles during Development and Stress. Int J Mol Sci 2021; 22:4664. [PMID: 33925110 PMCID: PMC8124260 DOI: 10.3390/ijms22094664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Poplar are planted extensively in reforestation and afforestation. However, their successful establishment largely depends on the environmental conditions of the newly established plantation and their resistance to abiotic as well as biotic stresses. NF-X1, a widespread transcription factor in plants, plays an irreplaceable role in plant growth, development, and stress tolerance. Although the whole genome sequence of Populus trichocarpa has been published for a long time, little is known about the NF-X1 genes in poplar, especially those related to drought stress, mechanical damage, insect feeding, and hormone response at the whole genome level. In this study, whole genome analysis of the poplar NF-X1 family was performed, and 4 PtrNF-X1 genes were identified. Then, bioinformatics analysis and qRT-PCR were applied to analyze the gene structure, phylogeny, chromosomal localization, gene replication, Cis-elements, and expression patterns of PtrNF-X1genes. Sequence analysis revealed that one-quarter of the PtrNF-X1 genes did not contain introns. Phylogenetic analysis revealed that all NF-X1 genes were split into three subfamilies. The number of two pairs of segmented replication genes were detected in poplars. Cis-acting element analysis identified a large number of elements of growth and development and stress-related elements on the promoters of different NF-X1 members. In addition, some PtrNF-X1 could be significantly induced by polyethylene glycol (PEG) and abscisic acid (ABA), thus revealing their potential role in regulating stress response. Comprehensive analysis is helpful in selecting candidate NF-X1 genes for the follow-up study of the biological function, and molecular genetic progress of stress resistance in forest trees provides genetic resources.
Collapse
Affiliation(s)
- Fang He
- Correspondence: (F.H.); (X.-Q.W.); Tel.: +86-176-8377-7884 (F.H.); +86-138-8163-4583 (X.-Q.W.)
| | | | | | | | | | | | | | | | | | | | - Xue-Qin Wan
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.-J.S.); (J.-X.M.); (K.-J.Z.); (X.-L.C.); (L.-H.C.); (H.-B.Y.); (F.Z.); (Q.Z.); (J.-L.H.)
| |
Collapse
|
56
|
Smokvarska M, Jaillais Y, Martinière A. Function of membrane domains in rho-of-plant signaling. PLANT PHYSIOLOGY 2021; 185:663-681. [PMID: 33793925 PMCID: PMC8133555 DOI: 10.1093/plphys/kiaa082] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 05/18/2023]
Abstract
In a crowded environment, establishing interactions between different molecular partners can take a long time. Biological membranes have solved this issue, as they simultaneously are fluid and possess compartmentalized domains. This nanoscale organization of the membrane is often based on weak, local, and multivalent interactions between lipids and proteins. However, from local interactions at the nanoscale, different functional properties emerge at the higher scale, and these are critical to regulate and integrate cellular signaling. Rho of Plant (ROP) proteins are small guanosine triphosphate hydrolase enzymes (GTPases) involved in hormonal, biotic, and abiotic signaling, as well as fundamental cell biological properties such as polarity, vesicular trafficking, and cytoskeleton dynamics. Association with the membrane is essential for ROP function, as well as their precise targeting within micrometer-sized polar domains (i.e. microdomains) and nanometer-sized clusters (i.e. nanodomains). Here, we review our current knowledge about the formation and the maintenance of the ROP domains in membranes. Furthermore, we propose a model for ROP membrane targeting and discuss how the nanoscale organization of ROPs in membranes could determine signaling parameters like signal specificity, amplification, and integration.
Collapse
Affiliation(s)
- Marija Smokvarska
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, CNRS, INRAE, Université de Lyon, ENS de Lyon, UCB Lyon 1, F-69342 Lyon, France
| | - Alexandre Martinière
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
- Author for communication:
| |
Collapse
|
57
|
Zhao P, Liu Y, Kong W, Ji J, Cai T, Guo Z. Genome-Wide Identification and Characterization of Calcium-Dependent Protein Kinase ( CDPK) and CDPK-Related Kinase ( CRK) Gene Families in Medicago truncatula. Int J Mol Sci 2021; 22:1044. [PMID: 33494310 PMCID: PMC7864493 DOI: 10.3390/ijms22031044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
Calcium-dependent protein kinase (CDPK or CPK) and CDPK-related kinase (CRK) play an important role in plant growth, development, and adaptation to environmental stresses. However, their gene families had been yet inadequately investigated in Medicago truncatula. In this study, six MtCRK genes were computationally identified, they were classified into five groups with MtCDPKs based on phylogenetic relationships. Six pairs of segmental duplications were observed in MtCDPK and MtCRK genes and the Ka/Ks ratio, an indicator of selection pressure, was below 0.310, indicating that these gene pairs underwent strong purifying selection. Cis-acting elements of morphogenesis, multiple hormone responses, and abiotic stresses were predicted in the promoter region. The spatial expression of MtCDPKs and MtCRKs displays diversity. The expression of MtCDPKs and MtCRKs could be regulated by various stresses. MtCDPK4, 14, 16, 22, and MtCRK6 harbor both N-myristoylation site and palmitoylation site and were anchored on plasma membrane, while MtCDPK7, 9, and 15 contain no or only one N-acylation site and were distributed in cytosol and nucleus, suggesting that the N-terminal acylation sites play a key role in subcellular localization of MtCDPKs and MtCRKs. In summary, comprehensive characterization of MtCDPKs and MtCRKs provide a subset of candidate genes for further functional analysis and genetic improvement against drought, cold, salt and biotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (P.Z.); (Y.L.); (W.K.); (J.J.); (T.C.)
| |
Collapse
|
58
|
Yang Y, Li HG, Wang J, Wang HL, He F, Su Y, Zhang Y, Feng CH, Niu M, Li Z, Liu C, Yin W, Xia X. ABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ADF5 in Populus euphratica. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7270-7285. [PMID: 32822499 DOI: 10.1093/jxb/eraa383] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/17/2020] [Indexed: 05/20/2023]
Abstract
Water availability is a main limiting factor for plant growth, development, and distribution throughout the world. Stomatal movement mediated by abscisic acid (ABA) is particularly important for drought adaptation, but the molecular mechanisms in trees are largely unclear. Here, we isolated an ABA-responsive element binding factor, PeABF3, in Populus euphratica. PeABF3 was preferentially expressed in the xylem and young leaves, and was induced by dehydration and ABA treatments. PeABF3 showed transactivation activity and was located in the nucleus. To study its functional mechanism in poplar responsive to drought stress, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B385') overexpressing PeABF3 were generated. PeABF3 overexpression significantly enhanced stomatal sensitivity to exogenous ABA. When subjected to drought stress, PeABF3 overexpression maintained higher photosynthetic activity and promoted cell membrane integrity, resulting in increased water-use efficiency and enhanced drought tolerance compared with wild-type controls. Moreover, a yeast one-hybrid assay and an electrophoretic mobility shift assay revealed that PeABF3 activated the expression of Actin-Depolymerizing Factor-5 (PeADF5) by directly binding to its promoter, promoting actin cytoskeleton remodeling and stomatal closure in poplar under drought stress. Taken together, our results indicate that PeABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating PeADF5 expression.
Collapse
Affiliation(s)
- Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hui-Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cong-Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mengxue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
59
|
Zhou L, Zhou M, Gritsenko MA, Stacey G. Selective Enrichment Coupled with Proteomics to Identify S-Acylated Plasma Membrane Proteins in Arabidopsis. ACTA ACUST UNITED AC 2020; 5:e20119. [PMID: 32976704 DOI: 10.1002/cppb.20119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein S-acylation, predominately in the form of palmitoylation, is a reversible lipid post-translational modification on cysteines that plays important roles in protein localization, trafficking, activity, and complex assembly. The functions and regulatory mechanisms of S-acylation have been extensively studied in mammals owing to remarkable development of high-resolution proteomics and the discovery of the S-acylation-related enzymes. However, the advancement of S-acylation studies in plants lags behind that in mammals, mainly due to the lack of knowledge about proteins responsible for this process, such as protein acyltransferases and their substrates. In this article, a set of systematic protocols to study global S-acylation in Arabidopsis seedlings is described. The procedures are presented in detail, including preparation of Arabidopsis seedlings, enrichment of plasma membrane (PM) proteins, ensuing enrichment of S-acylated proteins/peptides based on the acyl-biotin exchange method, and large-scale identification of S-acylated proteins/peptides via mass spectrometry. This approach enables researchers to study S-acylation of PM proteins in plants in a systematic and straightforward way. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of Arabidopsis seedling materials Basic Protocol 2: Isolation and enrichment of plasma membrane proteins Support Protocol 1: Determination of protein concentration using BCA assay Basic Protocol 3: Enrichment of S-acylated proteins by acyl-biotin exchange method Support Protocol 2: Protein precipitation by methanol/chloroform method Basic Protocol 4: Trypsin digestion and proteomic analysis Alternate Protocol: Pre-resin digestion and peptide-level enrichment.
Collapse
Affiliation(s)
- Lijuan Zhou
- Division of Plant Sciences, C.S. Bond Life Science Center, University of Missouri, Columbia, Missouri
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Marina A Gritsenko
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Gary Stacey
- Division of Plant Sciences, C.S. Bond Life Science Center, University of Missouri, Columbia, Missouri.,Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
60
|
Diao P, Chen C, Zhang Y, Meng Q, Lv W, Ma N. The role of NAC transcription factor in plant cold response. PLANT SIGNALING & BEHAVIOR 2020; 15:1785668. [PMID: 32662739 PMCID: PMC8550289 DOI: 10.1080/15592324.2020.1785668] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The NAC transcription factor (TF) is one of the largest families of TFs in plants and plays an important role in plant growth, development, and response to environmental stress. The structural and functional characteristics of NAC TFs have been uncovered in the past years, including sequence binding features of the DNA-binding domain located in the N-terminus and dynamic interplay between the domain located at the C-terminus and other proteins. Studies on NAC TF are increasing in number; these studies distinctly contribute to our understanding of the regulatory networks of NAC-mediated complex signaling and transcriptional reprogramming. Previous studies have indicated that NAC TFs are key regulators of the plant stress response. However, these studies have been for six years so far and mainly focused on drought and salt stress. There are relatively few reports about NAC TFs in plant cold signal pathway and no related reviews have been published. In this review article, we summarize the structural features of NAC TFs, the target genes, upstream regulators and interaction proteins of stress-responsive NAC TFs, and the roles NAC TFs play in plant cold stress signal pathway.
Collapse
Affiliation(s)
- Pengfei Diao
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
| | - Chong Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
- Nana Ma State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, Shandong, 271018, China
| | - Yuzhen Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
- CONTACT Wei Lv
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
- Nana Ma State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, Shandong, 271018, China
| |
Collapse
|
61
|
De novo transcriptome sequencing and analysis of salt-, alkali-, and drought-responsive genes in Sophora alopecuroides. BMC Genomics 2020; 21:423. [PMID: 32576152 PMCID: PMC7310485 DOI: 10.1186/s12864-020-06823-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Salinity, alkalinity, and drought stress are the main abiotic stress factors affecting plant growth and development. Sophora alopecuroides L., a perennial leguminous herb in the genus Sophora, is a highly salt-tolerant sand-fixing pioneer species distributed mostly in Western Asia and northwestern China. Few studies have assessed responses to abiotic stress in S. alopecuroides. The transcriptome of the genes that confer stress-tolerance in this species has not previously been sequenced. Our objective was to sequence and analyze this transcriptome. Results Twelve cDNA libraries were constructed in triplicate from mRNA obtained from Sophora alopecuroides for the control and salt, alkali, and drought treatments. Using de novo assembly, 902,812 assembled unigenes were generated, with an average length of 294 bp. Based on similarity searches, 545,615 (60.43%) had at least one significant match in the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, and GO databases. In addition, 1673 differentially expressed genes (DEGs) were obtained from the salt treatment, 8142 from the alkali treatment, and 17,479 from the drought treatment. A total of 11,936 transcription factor genes from 82 transcription factor families were functionally annotated under salt, alkali, and drought stress, these include MYB, bZIP, NAC and WRKY family members. DEGs were involved in the hormone signal transduction pathway, biosynthesis of secondary metabolites and antioxidant enzymes; this suggests that these pathways or processes may be involved in tolerance towards salt, alkali, and drought stress in S. alopecuroides. Conclusion Our study first reported transcriptome reference sequence data in Sophora alopecuroides, a non-model plant without a reference genome. We determined digital expression profile and discovered a broad survey of unigenes associated with salt, alkali, and drought stress which provide genomic resources available for Sophora alopecuroides.
Collapse
|
62
|
Liu Y, Wu C, Hu X, Gao H, Wang Y, Luo H, Cai S, Li G, Zheng Y, Lin C, Zhu Q. Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis). TREE PHYSIOLOGY 2020; 40:538-556. [PMID: 31860727 DOI: 10.1093/treephys/tpz133] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 05/20/2023]
Abstract
Most bamboo species including Moso bamboo (Phyllostachys edulis) are tropical or subtropical plants that greatly contribute to human well-being. Low temperature is one of the main environmental factors restricting bamboo growth and geographic distribution. Our knowledge of the molecular changes during bamboo adaption to cold stress remains limited. Here, we provided a general overview of the cold-responsive transcriptional profiles in Moso bamboo by systematically analyzing its transcriptomic response under cold stress. Our results showed that low temperature induced strong morphological and biochemical alternations in Moso bamboo. To examine the global gene expression changes in response to cold, 12 libraries (non-treated, cold-treated 0.5, 1 and 24 h at -2 °C) were sequenced using an Illumina sequencing platform. Only a few differentially expressed genes (DEGs) were identified at early stage, while a large number of DEGs were identified at late stage in this study, suggesting that the majority of cold response genes in bamboo are late-responsive genes. A total of 222 transcription factors from 24 different families were differentially expressed during 24-h cold treatment, and the expressions of several well-known C-repeat/dehydration responsive element-binding factor negative regulators were significantly upregulated in response to cold, indicating the existence of special cold response networks. Our data also revealed that the expression of genes related to cell wall and the biosynthesis of fatty acids were altered in response to cold stress, indicating their potential roles in the acquisition of bamboo cold tolerance. In summary, our studies showed that both plant kingdom-conserved and species-specific cold response pathways exist in Moso bamboo, which lays the foundation for studying the regulatory mechanisms underlying bamboo cold stress response and provides useful gene resources for the construction of cold-tolerant bamboo through genetic engineering in the future.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chu Wu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Hu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongye Gao
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Wang
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Luo
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sen Cai
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guowei Li
- College of Life Science, Shandong Normal University, Jinan 250000, China
| | - Yushan Zheng
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qiang Zhu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
63
|
Ding W, Ouyang Q, Li Y, Shi T, Li L, Yang X, Ji K, Wang L, Yue Y. Genome-wide investigation of WRKY transcription factors in sweet osmanthus and their potential regulation of aroma synthesis. TREE PHYSIOLOGY 2020; 40:557-572. [PMID: 31860707 DOI: 10.1093/treephys/tpz129] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
WRKY transcription factors, one of the largest transcription factor families, play important roles in regulating the synthesis of secondary metabolites. In sweet osmanthus (Osmanthus fragrans), the monoterpenes have been demonstrated as the most important volatile compounds, and the W-box, which is the cognate binding site of WRKY transcription factors, could be identified in most of the terpene-synthesis-related genes' promoters. However, the role of the WRKY family in terpene synthesis in sweet osmanthus has rarely been examined. In this study, 154 WRKY genes with conserved WRKY domain were identified and classified into three groups. The group II was further divided into five subgroups, and almost all members of IId contained a plant zinc cluster domain. Eight OfWRKYs (OfWRKY7/19/36/38/42/84/95/139) were screened from 20 OfWRKYs for their flower-specific expression patterns in different tissues. Simultaneously, the expression patterns of OfWRKYs and emission patterns of volatile compounds during the flowering process were determined and gas chromatography-mass spectrometry results showed that monoterpenes, such as linalool and ocimene, accounted for the highest proportion, contributing to the floral scent of sweet osmanthus in two cultivars. In addition, correlation analysis revealed the expression patterns of OfWRKYs (OfWRKY7/19/36/139) were each correlated with distinct monoterpenes (linalool, linalool derivatives, ocimene and ocimene derivatives). Subcellular localization analysis showed that p35S::GFP-OfWRKY7/38/95/139 were localized in the nucleus and OfWRKY139 had very strong transactivation activity. Collectively, the results indicated potential roles of OfWRKY139 and OfWRKYs with plant zinc cluster domain in regulating synthesis of aromatic compounds in sweet osmanthus, laying the foundation for use of OfWRKYs to improve the aroma of ornamental plants.
Collapse
Affiliation(s)
- Wenjie Ding
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qixia Ouyang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuli Li
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tingting Shi
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ling Li
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Kongshu Ji
- Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, 210037, PR China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
64
|
S-acylation in plants: an expanding field. Biochem Soc Trans 2020; 48:529-536. [DOI: 10.1042/bst20190703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
S-acylation is a common yet poorly understood fatty acid-based post-translational modification of proteins in all eukaryotes, including plants. While exact roles for S-acylation in protein function are largely unknown the reversibility of S-acylation indicates that it is likely able to play a regulatory role. As more studies reveal the roles of S-acylation within the cell it is becoming apparent that how S-acylation affects proteins is conceptually different from other reversible modifications such as phosphorylation or ubiquitination; a new mind-set is therefore required to fully integrate these data into our knowledge of plant biology. This review aims to highlight recent advances made in the function and enzymology of S-acylation in plants, highlights current and emerging technologies for its study and suggests future avenues for investigation.
Collapse
|
65
|
Yang JH, Lee KH, Du Q, Yang S, Yuan B, Qi L, Wang H. A membrane-associated NAC domain transcription factor XVP interacts with TDIF co-receptor and regulates vascular meristem activity. THE NEW PHYTOLOGIST 2020; 226:59-74. [PMID: 31660587 DOI: 10.1111/nph.16289] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/24/2019] [Indexed: 05/22/2023]
Abstract
Vascular stem cell maintenance is regulated by a peptide signaling involving Tracheary Element Differentiation Inhibitory Factor (TDIF) and Receptor TDR/PXY (Phloem intercalated with Xylem) and co-receptor BAK1 (BRI1-associated receptor kinase1). The regulatory mechanism of this signaling pathway is largely unknown despite its importance in stem cell maintenance in the vascular meristem. We report that activation of a NAC domain transcription factor XVP leads to precocious Xylem differentiation, disruption of Vascular Patterning, and reduced cell numbers in vascular bundles. We combined molecular and genetic studies to elucidate the biological functions of XVP. XVP is expressed in the cambium, localized on the plasma membrane and forms a complex with TDIF co-receptors PXY-BAK1. Simultaneous mutation of XVP and its close homologous NAC048 enhances TDIF signaling. In addition, genetics analysis indicated that XVP promotes xylem differentiation through a known master regulator VASCULAR-RELATED NAC-DOMAIN6 (VND6). Expression analyses indicate that XVP activates CLAVATA3/ESR (CLE)-related protein 44 (CLE44), the coding gene of TDIF, whereas TDIF represses XVP expression, suggesting a feedback mechanism. Therefore, XVP functions as a negative regulator of the TDIF-PXY module and fine-tunes TDIF signaling in vascular development. These results shed new light on the mechanism of vascular stem cell maintenance.
Collapse
Affiliation(s)
- Jung Hyun Yang
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Kwang-Hee Lee
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Qian Du
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Shuo Yang
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Bingjian Yuan
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Liying Qi
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
- Institute for System Genomics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
66
|
Yang C, Huang Y, Lv W, Zhang Y, Bhat JA, Kong J, Xing H, Zhao J, Zhao T. GmNAC8 acts as a positive regulator in soybean drought stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110442. [PMID: 32081255 DOI: 10.1016/j.plantsci.2020.110442] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 05/18/2023]
Abstract
NAC proteins represent one of the largest transcription factor (TF) families involved in the regulation of plant development and the response to abiotic stress. In the present study, we elucidated the detailed role of GmNAC8 in the regulation of drought stress tolerance in soybean. The GmNAC8 protein was localized in the nucleus, and expression of the GmNAC8 gene was significantly induced in response to drought, abscisic acid (ABA), ethylene (ETH) and salicylic acid (SA) treatments. Thus, we generated GmNAC8 overexpression (OE1 and OE2) and GmNAC8 knockout (KO1 and KO2) lines to determine the role of GmNAC8 in drought stress tolerance. Our results revealed that, compared with the wild type (WT) plant, GmNAC8 overexpression and GmNAC8 knockout lines exhibited significantly higher and lower drought tolerance, respectively. Furthermore, the SOD activity and proline content were significantly higher in the GmNAC8 overexpression lines and significantly lower in the GmNAC8 knockout lines than in the WT plants under drought stress. In addition, GmNAC8 protein was found to physically interact with the drought-induced protein GmDi19-3 in the nucleus. Moreover, the GmDi19-3 expression pattern showed the same trend as the GmNAC8 gene did under drought and hormone (ABA, ETH and SA) treatments, and GmDi19-3 overexpression lines (GmDi19-3-OE9, GmDi19-3-OE10 and GmDi19-3-OE31) showed enhanced drought tolerance compared to that of the WT plants. Hence, the above results indicated that GmNAC8 acts as a positive regulator of drought tolerance in soybean and inferred that GmNAC8 probably functions by interacting with another positive regulatory protein, GmDi19-3.
Collapse
Affiliation(s)
- Chengfeng Yang
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzhong Huang
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhuan Lv
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Zhang
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Javaid Akhter Bhat
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiejie Kong
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Xing
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinming Zhao
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tuanjie Zhao
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), National Center for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
67
|
Meraj TA, Fu J, Raza MA, Zhu C, Shen Q, Xu D, Wang Q. Transcriptional Factors Regulate Plant Stress Responses through Mediating Secondary Metabolism. Genes (Basel) 2020; 11:genes11040346. [PMID: 32218164 PMCID: PMC7230336 DOI: 10.3390/genes11040346] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/02/2022] Open
Abstract
Plants are adapted to sense numerous stress stimuli and mount efficient defense responses by directing intricate signaling pathways. They respond to undesirable circumstances to produce stress-inducible phytochemicals that play indispensable roles in plant immunity. Extensive studies have been made to elucidate the underpinnings of defensive molecular mechanisms in various plant species. Transcriptional factors (TFs) are involved in plant defense regulations through acting as mediators by perceiving stress signals and directing downstream defense gene expression. The cross interactions of TFs and stress signaling crosstalk are decisive in determining accumulation of defense metabolites. Here, we collected the major TFs that are efficient in stress responses through regulating secondary metabolism for the direct cessation of stress factors. We focused on six major TF families including AP2/ERF, WRKY, bHLH, bZIP, MYB, and NAC. This review is the compilation of studies where researches were conducted to explore the roles of TFs in stress responses and the contribution of secondary metabolites in combating stress influences. Modulation of these TFs at transcriptional and post-transcriptional levels can facilitate molecular breeding and genetic improvement of crop plants regarding stress sensitivity and response through production of defensive compounds.
Collapse
Affiliation(s)
- Tehseen Ahmad Meraj
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Jingye Fu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China;
| | - Chenying Zhu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Qinqin Shen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Dongbei Xu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
- Correspondence:
| |
Collapse
|
68
|
Zhao G, Song Y, Wang Q, Yao D, Li D, Qin W, Ge X, Yang Z, Xu W, Su Z, Zhang X, Li F, Wu J. Gossypium hirsutum Salt Tolerance Is Enhanced by Overexpression of G. arboreum JAZ1. Front Bioeng Biotechnol 2020; 8:157. [PMID: 32211392 PMCID: PMC7076078 DOI: 10.3389/fbioe.2020.00157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Gossypium arboreum possesses many favorable traits including robust defense against biotic and abiotic stress although it has been withdrawn from the market because of lower yield and fiber quality compared to G. hirsutum (upland cotton). It is therefore important to explore and utilize the beneficial genes of G. arboretum for G. hirsutum cultivar breeding. Here, the function of G. arboreum JAZ1 in tolerance to salt stress was determined through loss-of-function analysis. GaJAZ1can interact with GaMYC2 to repress expression of downstream genes whose promoters contain a G-box cis element, affecting plant tolerance to salinity stress. The experimental data from NaCl treatments and a 2 year continuous field trial with natural saline-alkaline soil showed that the ectopically overexpressed GaJAZ1 significantly increased salt tolerance in upland cotton compared to the wild type, showing higher growth vigor with taller plants, increased fresh weight, and more bolls, which is due to reprogrammed expression of tolerance-related genes and promotion of root development. High-throughput RNA sequencing of GaJAZ1 transgenic and wild-type plants showed many differentially expressed genes involved in JA signaling and biosynthesis, salt stress-related genes, and hormone-related genes, suggesting that overexpressing GaJAZ1 can reprogram the expression of defense-related genes in G. hirsutum plants to increase tolerance to salt stress. The research provides a foundation to explore and utilize favorable genes from Gossypium species for upland cotton cultivar breeding.
Collapse
Affiliation(s)
- Ge Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yun Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qianhua Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dongxia Yao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dongliang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wenqiang Qin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyan Zhang
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jiahe Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Plant Genomics, Institute of Microbiology Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
69
|
Zhang L, Jia X, Zhao J, Hasi A, Niu Y. Molecular characterisation and expression analysis of NAC transcription factor genes in wild Medicago falcata under abiotic stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:327-341. [PMID: 32092285 DOI: 10.1071/fp19199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
The No apical meristem-Arabidopsis transcription activation factor-Cup-shaped cotyledon (NAC) proteins play vital roles in plant development processes and responses to abiotic stress. In this study, 146 unigenes were identified as NAC genes from wild Medicago falcata L. by RNA sequencing. Among these were 30 full-length NACs, which, except for MfNAC63, MfNAC64 and MfNAC91, contained a complete DNA-binding domain and a variable transcriptional activation region. Sequence analyses of MfNACs along with their Arabidopsis thaliana (L.) Heynh. counterparts allowed these proteins to be phylogenetically classified into nine groups. MfNAC35, MfNAC88, MfNAC79, MfNAC26 and MfNAC95 were found to be stress-responsive genes. The eight MfNAC genes that were chosen for further analysis had different expression abilities in the leaves, stems and roots of M. falcata. Additionally, their expression levels were regulated by salinity, drought and cold stress, and ABA. This study will be useful for understanding the roles of MfNACs in wild M. falcata and could provide important information for the selection of candidate genes associated with stress tolerance.
Collapse
Affiliation(s)
- Liquan Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China; and State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R.China; and Corresponding authors. Emails: ;
| | - Xuhui Jia
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China
| | - Jingwei Zhao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China
| | - Agula Hasi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China; and State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R.China; and Corresponding authors. Emails: ;
| |
Collapse
|
70
|
Yang Z, Chi X, Guo F, Jin X, Luo H, Hawar A, Chen Y, Feng K, Wang B, Qi J, Yang Y, Sun B. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153142. [PMID: 33383401 DOI: 10.1016/j.jplph.2020.153142] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 05/10/2023]
Abstract
WRKY transcription factors have been suggested to play important roles in response and adaptation to drought stress. However, how sorghum WRKY transcription factors function in drought stress is still unclear. Here, we identify a WRKY transcription factor of sorghum, SbWRKY30, which is induced significantly by drought stress. SbWRKY30 is mainly expressed in sorghum taproot and leaf. SbWRKY30 has transcriptional activation activity and functions in the nucleus. Heterologous expression of SbWRKY30 confers tolerance to drought stress in Arabidopsis (Arabidopsis thaliana) and rice by affecting root architecture. In addition, SbWRKY30 transgenic Arabidopsis and rice plants have higher proline contents and SOD, POD, and CAT activities but lower MDA contents than wild-type plants after drought stress. As a homologous gene of the drought stress-responsive gene RD19 of Arabidopsis, SbRD19 overexpression in Arabidopsis improved the drought tolerance of plants relative to wild-type plants. Further analysis demonstrated that SbWRKY30 could induce SbRD19 expression through binding to the W-box element in the promoter of SbRD19. These results suggest that SbWRKY30 functions as a positive regulator in response to drought stress. Therefore, SbWRKY30 may serve as a promising candidate gene for molecular breeding to generate drought-tolerant crops.
Collapse
Affiliation(s)
- Zhen Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xiaoyu Chi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Fengfei Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xueying Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Huilian Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Amangul Hawar
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Yaxin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Kangkang Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
71
|
Liao P, Leung KP, Lung SC, Panthapulakkal Narayanan S, Jiang L, Chye ML. Subcellular Localization of Rice Acyl-CoA-Binding Proteins ACBP4 and ACBP5 Supports Their Non-redundant Roles in Lipid Metabolism. FRONTIERS IN PLANT SCIENCE 2020; 11:331. [PMID: 32265974 PMCID: PMC7105888 DOI: 10.3389/fpls.2020.00331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 05/03/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs), conserved at the acyl-CoA-binding domain, can bind acyl-CoA esters as well as transport them intracellularly. Six ACBPs co-exist in each model plant, dicot Arabidopsis thaliana (thale cress) and monocot Oryza sativa (rice). Although Arabidopsis ACBPs have been studied extensively, less is known about the rice ACBPs. OsACBP4 is highly induced by salt treatment, but down-regulated following pathogen infection, while OsACBP5 is up-regulated by both wounding and pathogen treatment. Their differential expression patterns under various stress treatments suggest that they may possess non-redundant functions. When expressed from the CaMV35S promoter, OsACBP4 and OsACBP5 were subcellularly localized to different endoplasmic reticulum (ER) domains in transgenic Arabidopsis. As these plants were not stress-treated, it remains to be determined if OsACBP subcellular localization would change following treatment. Given that the subcellular localization of proteins may not be reliable if not expressed in the native plant, this study addresses OsACBP4:GFP and OsACBP5:DsRED expression from their native promoters to verify their subcellular localization in transgenic rice. The results indicated that OsACBP4:GFP was targeted to the plasma membrane besides the ER, while OsACBP5:DsRED was localized at the apoplast, in contrast to their only localization at the ER in transgenic Arabidopsis. Differences in tagged-protein localization in transgenic Arabidopsis and rice imply that protein subcellular localization studies are best investigated in the native plant. Likely, initial targeting to the ER in a non-native plant could not be followed up properly to the final destination(s) unless it occurred in the native plant. Also, monocot (rice) protein targeting may not be optimally processed in a transgenic dicot (Arabidopsis), perhaps arising from the different processing systems for routing between them. Furthermore, changes in the subcellular localization of OsACBP4:GFP and OsACBP5:DsRED were not detectable following salt and pathogen treatment, respectively. These results suggest that OsACBP4 is likely involved in the intracellular shuttling of acyl-CoA esters and/or other lipids between the plasma membrane and the ER, while OsACBP5 appears to participate in the extracellular transport of acyl-CoA esters and/or other lipids, suggesting that they are non-redundant proteins in lipid trafficking.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
- State Key Laboratory of Agrobiotechnology, CUHK, New Territories, China
| | - King Pong Leung
- Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, New Territories, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | | | - Liwen Jiang
- Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, New Territories, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
- State Key Laboratory of Agrobiotechnology, CUHK, New Territories, China
- *Correspondence: Mee-Len Chye,
| |
Collapse
|
72
|
Zhou Z, Wang J, Zhang S, Yu Q, Lan H. Investigation of the Nature of CgCDPK and CgbHLH001 Interaction and the Function of bHLH Transcription Factor in Stress Tolerance in Chenopodium glaucum. FRONTIERS IN PLANT SCIENCE 2020; 11:603298. [PMID: 33552098 PMCID: PMC7862342 DOI: 10.3389/fpls.2020.603298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/11/2020] [Indexed: 05/22/2023]
Abstract
Calcium-dependent protein kinase (CDPK) and its substrates play important roles in plant response to stress. So far, the documentation on the characterization of the CDPK and downstream interaction components (especially transcription factors, TFs) is limited. In the present study, an interaction between CgCDPK (protein kinase) (accession no. MW26306) and CgbHLH001 (TF) (accession no. MT797813) from a halophyte Chenopodium glaucum was further dissected. Firstly, we revealed that the probable nature between the CgCDPK and CgbHLH001 interaction was the phosphorylation, and the N-terminus of CgbHLH001, especially the 96th serine (the potential phosphorylation site) within it, was essential for the interaction, whereas the mutation of 96Ser to alanine did not change its nuclear localization, which was determined by the N-terminus and bHLH domain together. Furthermore, we verified the function of CgbHLH001 gene in response to stress by ectopic overexpression in tobacco; the transgenic lines presented enhanced stress tolerance probably by improving physiological performance and stress-related gene expression. In conclusion, we characterized the biological significance of the interaction between CDPK and bHLH in C. glaucum and verified the positive function of CgbHLH001 in stress tolerance, which may supply more evidence in better understanding of the CDPK signaling pathway in response to adversity.
Collapse
Affiliation(s)
- Zixin Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shiyue Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- *Correspondence: Qinghui Yu,
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Haiyan Lan,
| |
Collapse
|
73
|
Liu Y, Qu J, Zhang L, Xu X, Wei G, Zhao Z, Ren M, Cao M. Identification and characterization of the TCA cycle genes in maize. BMC PLANT BIOLOGY 2019; 19:592. [PMID: 31881988 PMCID: PMC6935159 DOI: 10.1186/s12870-019-2213-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/19/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND The tricarboxylic acid (TCA) cycle is crucial for cellular energy metabolism and carbon skeleton supply. However, the detailed functions of the maize TCA cycle genes remain unclear. RESULTS In this study, 91 TCA genes were identified in maize by a homology search, and they were distributed on 10 chromosomes and 1 contig. Phylogenetic results showed that almost all maize TCA genes could be classified into eight major clades according to their enzyme families. Sequence alignment revealed that several genes in the same subunit shared high protein sequence similarity. The results of cis-acting element analysis suggested that several TCA genes might be involved in signal transduction and plant growth. Expression profile analysis showed that many maize TCA cycle genes were expressed in specific tissues, and replicate genes always shared similar expression patterns. Moreover, qPCR analysis revealed that some TCA genes were highly expressed in the anthers at the microspore meiosis phase. In addition, we predicted the potential interaction networks among the maize TCA genes. Next, we cloned five TCA genes located on different TCA enzyme complexes, Zm00001d008244 (isocitrate dehydrogenase, IDH), Zm00001d017258 (succinyl-CoA synthetase, SCoAL), Zm00001d025258 (α-ketoglutarate dehydrogenase, αKGDH), Zm00001d027558 (aconitase, ACO) and Zm00001d044042 (malate dehydrogenase, MDH). Confocal observation showed that their protein products were mainly localized to the mitochondria; however, Zm00001d025258 and Zm00001d027558 were also distributed in the nucleus, and Zm00001d017258 and Zm00001d044042 were also located in other unknown positions in the cytoplasm. Through the bimolecular fluorescent complimentary (BiFC) method, it was determined that Zm00001d027558 and Zm00001d044042 could form homologous dimers, and both homologous dimers were mainly distributed in the mitochondria. However, no heterodimers were detected between these five genes. Finally, Arabidopsis lines overexpressing the above five genes were constructed, and those transgenic lines exhibited altered primary root length, salt tolerance, and fertility. CONCLUSION Sequence compositions, duplication patterns, phylogenetic relationships, cis-elements, expression patterns, and interaction networks were investigated for all maize TCA cycle genes. Five maize TCA genes were overexpressed in Arabidopsis, and they could alter primary root length, salt tolerance, and fertility. In conclusion, our findings may help to reveal the molecular function of the TCA genes in maize.
Collapse
Affiliation(s)
- Yongming Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213 China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610213 China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jingtao Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ling Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Gui Wei
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhuofan Zhao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213 China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610213 China
| | - Moju Cao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
74
|
Deng J, Zhu F, Liu J, Zhao Y, Wen J, Wang T, Dong J. Transcription Factor bHLH2 Represses CYSTEINE PROTEASE77 to Negatively Regulate Nodule Senescence. PLANT PHYSIOLOGY 2019; 181:1683-1703. [PMID: 31591150 PMCID: PMC6878008 DOI: 10.1104/pp.19.00574] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/23/2019] [Indexed: 05/12/2023]
Abstract
Legume-rhizobia symbiosis is a time-limited process due to the onset of senescence, which results in the degradation of host plant cells and symbiosomes. A number of transcription factors, proteases, and functional genes have been associated with nodule senescence; however, whether other proteases or transcription factors are involved in nodule senescence remains poorly understood. In this study, we identified an early nodule senescence mutant in Medicago truncatula, denoted basic helix-loop-helix transcription factor2 (bhlh2), that exhibits decreased nitrogenase activity, acceleration of plant programmed cell death (PCD), and accumulation of reactive oxygen species (ROS). The results suggest that MtbHLH2 plays a negative role in nodule senescence. Nodules of wild-type and bhlh2-TALEN mutant plants at 28 d postinoculation were used for transcriptome sequencing. The transcriptome data analysis identified a papain-like Cys protease gene, denoted MtCP77, that could serve as a potential target of MtbHLH2. Electrophoretic mobility shift assays and chromatin immunoprecipitation analysis demonstrated that MtbHLH2 directly binds to the promoter of MtCP77 to inhibit its expression. MtCP77 positively regulates nodule senescence by accelerating plant PCD and ROS accumulation. In addition, the expression of MtbHLH2 in the nodules gradually decreased from the meristematic zone to the nitrogen fixation zone, whereas the expression of MtCP77 showed enhancement. These results indicate that MtbHLH2 and MtCP77 have opposite functions in the regulation of nodule senescence. These results reveal significant roles for MtbHLH2 and MtCP77 in plant PCD, ROS accumulation, and nodule senescence, and improve our understanding of the regulation of the nodule senescence process.
Collapse
Affiliation(s)
- Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaxing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yafei Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
75
|
He F, Li H, Wang J, Su Y, Wang H, Feng C, Yang Y, Niu M, Liu C, Yin W, Xia X. PeSTZ1, a C2H2-type zinc finger transcription factor from Populus euphratica, enhances freezing tolerance through modulation of ROS scavenging by directly regulating PeAPX2. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2169-2183. [PMID: 30977939 PMCID: PMC6790368 DOI: 10.1111/pbi.13130] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/07/2019] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
In the present study, PeSTZ1, a cysteine-2/histidine-2-type zinc finger transcription factor, was isolated from the desert poplar, Populus euphratica, which serves as a model stress adaptation system for trees. PeSTZ1 was preferentially expressed in the young stems and was significantly up-regulated during chilling and freezing treatments. PeSTZ1 was localized to the nucleus and bound specifically to the PeAPX2 promoter. To examine the potential functions of PeSTZ1, we overexpressed it in poplar 84K hybrids (Populus alba × Populus glandulosa), which are known to be stress-sensitive. Upon exposure to freezing stress, transgenic poplars maintained higher photosynthetic activity and dissipated more excess light energy (in the form of heat) than wild-type poplars. Thus, PeSTZ1 functions as a transcription activator to enhance freezing tolerance without sacrificing growth. Under freezing stress, PeSTZ1 acts upstream of ASCORBATE PEROXIDASE2 (PeAPX2) and directly regulates its expression by binding to its promoter. Activated PeAPX2 promotes cytosolic APX that scavenges reactive oxygen species (ROS) under cold stress. PeSTZ1 may operate in parallel with C-REPEAT-BINDING FACTORS to regulate COLD-REGULATED gene expression. Moreover, PeSTZ1 up-regulation reduces malondialdehyde and ROS accumulation by activating the antioxidant system. Taken together, these results suggested that overexpressing PeSTZ1 in 84K poplar enhances freezing tolerance through the modulation of ROS scavenging via the direct regulation of PeAPX2 expression.
Collapse
Affiliation(s)
- Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hui‐Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jing‐Jing Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Cong‐Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Meng‐Xue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
76
|
Luo Y, Pang D, Jin M, Chen J, Kong X, Li W, Chang Y, Li Y, Wang Z. Identification of plant hormones and candidate hub genes regulating flag leaf senescence in wheat response to water deficit stress at the grain-filling stage. PLANT DIRECT 2019; 3:e00152. [PMID: 31709381 PMCID: PMC6834085 DOI: 10.1002/pld3.152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 05/16/2023]
Abstract
In order to clarify the transcriptional regulatory network and physiological mechanisms governing leaf senescence response to drought stress in wheat, experiments were performed using two wheat varieties with contrasting drought tolerance: Fu287 (F287, a drought-sensitive genotype) and Shannong20 (SN20, a drought-resistant genotype). The latter has higher SPAD values, salicylic acid (SA), jasmonic acid (JA), zeatin (Z), zeatin riboside (ZR), and gibberellin (GA 3) content as well as higher expression levels of Cu/Zn-SOD, Mn-SOD, Fe-SOD,POD,CAT, and APX under various water deficit conditions. Conjoint analysis of physiological and biochemical indicators and transcriptome data by weighted gene co-expression network analysis (WGCNA) in the present study provides a useful genomic and molecular resource for studying drought adaptation in wheat. The flag leaf senescence process was changed by altering the concentration of phytohormones. SA, JA, abscisic acid (ABA), Z, ZR, and GA 3 coordinate with each other to control leaf senescence and plant adaptation under drought stress. Further, the leaf senescence process was divided into two phases: the persistence phase and the rapid loss phase. Shorter Chltotal (duration of the flag leaf being photosynthetically active), shorter Chlper (persistence phase), reduced M (inflection point cumulative temperature when senescence rate is the maximum), decreased r max (the maximum senescence rate), larger r 0 (the initial senescence rate), and increased r aver (the average senescence rate) were slightly associated with low grain mass. We speculated that extending the period of the persistence phase by cultivation or chemical control measures could further increase the drought survivability and productivity of wheat.
Collapse
Affiliation(s)
- Yongli Luo
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| | - Dangwei Pang
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| | - Min Jin
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| | - Jin Chen
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| | - Xiang Kong
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| | - Wenqian Li
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| | - Yonglan Chang
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| | - Yong Li
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| | - Zhenlin Wang
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| |
Collapse
|
77
|
Zhang H, Yang J, Li W, Chen Y, Lu H, Zhao S, Li D, Wei M, Li C. PuHSFA4a Enhances Tolerance To Excess Zinc by Regulating Reactive Oxygen Species Production and Root Development in Populus. PLANT PHYSIOLOGY 2019; 180:2254-2271. [PMID: 31221731 PMCID: PMC6670105 DOI: 10.1104/pp.18.01495] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/11/2019] [Indexed: 05/19/2023]
Abstract
Zinc (Zn) is an essential micronutrient but in excess is highly toxic to plants. Plants regulate Zn homeostasis and withstand excess Zn through various pathways; these pathways are generally tightly regulated by a specific set of genes. However, the transcription factors involved in excess Zn tolerance have yet to be identified. Here, we characterized a Populus ussuriensis heat shock transcription factor A4a (PuHSFA4a) that acts as a positive regulator of excess Zn tolerance in P ussuriensis We used overexpression (PuHSFA4a-OE) and chimeric dominant repressor (PuHSFA4a-SRDX) lines to identify the targets of PuHSFA4a PuHSFA4a transcription is specifically induced in roots by high Zn. Overexpression of PuHSFA4a conferred excess Zn tolerance and a dominant repressor version of PuHSFA4a increased excess Zn sensitivity in P ussuriensis by regulating the antioxidant system in roots. PuHSFA4a coordinately activates genes related to abiotic stress responses and root development and directly binds to the promoter regions of glutathione-s-transferase U17 (PuGSTU17) and phospholipase A2 (PuPLA2 ). PuGSTU17 overexpression significantly increased GST activity and reduced reactive oxygen species levels in roots while PuGSTU17-RNA interference lines exhibited the opposite phenotype. Furthermore, PuPLA2 overexpression promoted root growth under high Zn stress. Taken together, we provide evidence that PuHSFA4a coordinately activates the antioxidant system and root development-related genes and directly targets PuGSTU17 and PuPLA, thereby promoting excess Zn tolerance in P ussuriensis roots.
Collapse
Affiliation(s)
- Haizhen Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wenlong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yingxi Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Han Lu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shicheng Zhao
- School of Pharmacy, Harbin University of Commerce, Harbin 150028, China
| | - Dandan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ming Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
78
|
Sun L, Gill US, Nandety RS, Kwon S, Mehta P, Dickstein R, Udvardi MK, Mysore KS, Wen J. Genome-wide analysis of flanking sequences reveals that Tnt1 insertion is positively correlated with gene methylation in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1106-1119. [PMID: 30776165 DOI: 10.1111/tpj.14291] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 05/07/2023]
Abstract
From a single transgenic line harboring five Tnt1 transposon insertions, we generated a near-saturated insertion population in Medicago truncatula. Using thermal asymmetric interlaced-polymerase chain reaction followed by sequencing, we recovered 388 888 flanking sequence tags (FSTs) from 21 741 insertion lines in this population. FST recovery from 14 Tnt1 lines using the whole-genome sequencing (WGS) and/or Tnt1-capture sequencing approaches suggests an average of 80 insertions per line, which is more than the previous estimation of 25 insertions. Analysis of the distribution pattern and preference of Tnt1 insertions showed that Tnt1 is overall randomly distributed throughout the M. truncatula genome. At the chromosomal level, Tnt1 insertions occurred on both arms of all chromosomes, with insertion frequency negatively correlated with the GC content. Based on 174 546 filtered FSTs that show exact insertion locations in the M. truncatula genome version 4.0 (Mt4.0), 0.44 Tnt1 insertions occurred per kb, and 19 583 genes contained Tnt1 with an average of 3.43 insertions per gene. Pathway and gene ontology analyses revealed that Tnt1-inserted genes are significantly enriched in processes associated with 'stress', 'transport', 'signaling' and 'stimulus response'. Surprisingly, gene groups with higher methylation frequency were more frequently targeted for insertion. Analysis of 19 583 Tnt1-inserted genes revealed that 59% (1265) of 2144 transcription factors, 63% (765) of 1216 receptor kinases and 56% (343) of 616 nucleotide-binding site-leucine-rich repeat genes harbored at least one Tnt1 insertion, compared with the overall 38% of Tnt1-inserted genes out of 50 894 annotated genes in the genome.
Collapse
Affiliation(s)
- Liang Sun
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Upinder S Gill
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Soonil Kwon
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Perdeep Mehta
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Rebecca Dickstein
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA
| | - Michael K Udvardi
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Jiangqi Wen
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| |
Collapse
|
79
|
Zhang L, Zhao T, Sun X, Wang Y, Du C, Zhu Z, Gichuki DK, Wang Q, Li S, Xin H. Overexpression of VaWRKY12, a transcription factor from Vitis amurensis with increased nuclear localization under low temperature, enhances cold tolerance of plants. PLANT MOLECULAR BIOLOGY 2019; 100:95-110. [PMID: 0 DOI: 10.1007/s11103-019-00846-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/18/2019] [Indexed: 05/23/2023]
|
80
|
Zhang R, Chen H, Duan M, Zhu F, Wen J, Dong J, Wang T. Medicago falcata MfSTMIR, an E3 ligase of endoplasmic reticulum-associated degradation, is involved in salt stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:680-696. [PMID: 30712282 PMCID: PMC6849540 DOI: 10.1111/tpj.14265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 05/28/2023]
Abstract
Recent studies on E3 of endoplasmic reticulum (ER)-associated degradation (ERAD) in plants have revealed homologs in yeast and animals. However, it remains unknown whether the plant ERAD system contains a plant-specific E3 ligase. Here, we report that MfSTMIR, which encodes an ER-membrane-localized RING E3 ligase that is highly conserved in leguminous plants, plays essential roles in the response of ER and salt stress in Medicago. MfSTMIR expression was induced by salt and tunicamycin (Tm). mtstmir loss-of-function mutants displayed impaired induction of the ER stress-responsive genes BiP1/2 and BiP3 under Tm treatment and sensitivity to salt stress. MfSTMIR promoted the degradation of a known ERAD substrate, CPY*. MfSTMIR interacted with the ERAD-associated ubiquitin-conjugating enzyme MtUBC32 and Sec61-translocon subunit MtSec61γ. MfSTMIR did not affect MtSec61γ protein stability. Our results suggest that the plant-specific E3 ligase MfSTMIR participates in the ERAD pathway by interacting with MtUBC32 and MtSec61γ to relieve ER stress during salt stress.
Collapse
Affiliation(s)
- Rongxue Zhang
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
- Crop Research Institute of Tianjin Academy of Agricultural SciencesTianjin300384China
| | - Hong Chen
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Mei Duan
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Fugui Zhu
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Jiangqi Wen
- Plant Biology DivisionSamuel Roberts Noble Research InstituteArdmoreOklahoma73401USA
| | - Jiangli Dong
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Tao Wang
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| |
Collapse
|
81
|
Zheng L, Liu P, Liu Q, Wang T, Dong J. Dynamic Protein S-Acylation in Plants. Int J Mol Sci 2019; 20:ijms20030560. [PMID: 30699892 PMCID: PMC6387154 DOI: 10.3390/ijms20030560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
Lipid modification is an important post-translational modification. S-acylation is unique among lipid modifications, as it is reversible and has thus attracted much attention. We summarize some proteins that have been shown experimentally to be S-acylated in plants. Two of these S-acylated proteins have been matched to the S-acyl transferase. More importantly, the first protein thioesterase with de-S-acylation activity has been identified in plants. This review shows that S-acylation is important for a variety of different functions in plants and that there are many unexplored aspects of S-acylation in plants.
Collapse
Affiliation(s)
- Lihua Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Peng Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Qianwen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
82
|
Spinelli M, Fusco S, Grassi C. Nutrient-Dependent Changes of Protein Palmitoylation: Impact on Nuclear Enzymes and Regulation of Gene Expression. Int J Mol Sci 2018; 19:ijms19123820. [PMID: 30513609 PMCID: PMC6320809 DOI: 10.3390/ijms19123820] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Diet is the main environmental stimulus chronically impinging on the organism throughout the entire life. Nutrients impact cells via a plethora of mechanisms including the regulation of both protein post-translational modifications and gene expression. Palmitoylation is the most-studied protein lipidation, which consists of the attachment of a molecule of palmitic acid to residues of proteins. S-palmitoylation is a reversible cysteine modification finely regulated by palmitoyl-transferases and acyl-thioesterases that is involved in the regulation of protein trafficking and activity. Recently, several studies have demonstrated that diet-dependent molecules such as insulin and fatty acids may affect protein palmitoylation. Here, we examine the role of protein palmitoylation on the regulation of gene expression focusing on the impact of this modification on the activity of chromatin remodeler enzymes, transcription factors, and nuclear proteins. We also discuss how this physiological phenomenon may represent a pivotal mechanism underlying the impact of diet and nutrient-dependent signals on human diseases.
Collapse
Affiliation(s)
- Matteo Spinelli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Salvatore Fusco
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy.
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy.
| |
Collapse
|
83
|
Ng DWK, Abeysinghe JK, Kamali M. Regulating the Regulators: The Control of Transcription Factors in Plant Defense Signaling. Int J Mol Sci 2018; 19:E3737. [PMID: 30477211 PMCID: PMC6321093 DOI: 10.3390/ijms19123737] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/12/2023] Open
Abstract
Being sessile, plants rely on intricate signaling pathways to mount an efficient defense against external threats while maintaining the cost balance for growth. Transcription factors (TFs) form a repertoire of master regulators in controlling various processes of plant development and responses against external stimuli. There are about 58 families of TFs in plants and among them, six major TF families (AP2/ERF (APETALA2/ethylene responsive factor), bHLH (basic helix-loop-helix), MYB (myeloblastosis related), NAC (no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF1/2), and cup-shaped cotyledon (CUC2)), WRKY, and bZIP (basic leucine zipper)) are found to be involved in biotic and abiotic stress responses. As master regulators of plant defense, the expression and activities of these TFs are subjected to various transcriptional and post-transcriptional controls, as well as post-translational modifications. Many excellent reviews have discussed the importance of these TFs families in mediating their downstream target signaling pathways in plant defense. In this review, we summarize the molecular regulatory mechanisms determining the expression and activities of these master regulators themselves, providing insights for studying their variation and regulation in crop wild relatives (CWR). With the advance of genome sequencing and the growing collection of re-sequencing data of CWR, now is the time to re-examine and discover CWR for the lost or alternative alleles of TFs. Such approach will facilitate molecular breeding and genetic improvement of domesticated crops, especially in stress tolerance and defense responses, with the aim to address the growing concern of climate change and its impact on agriculture crop production.
Collapse
Affiliation(s)
- Danny W-K Ng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Jayami K Abeysinghe
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Maedeh Kamali
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
84
|
Transcription Factor ANAC074 Binds to NRS1, NRS2, or MybSt1 Element in Addition to the NACRS to Regulate Gene Expression. Int J Mol Sci 2018; 19:ijms19103271. [PMID: 30347890 PMCID: PMC6214087 DOI: 10.3390/ijms19103271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors play important roles in many biological processes, and mainly bind to the NACRS with core sequences "CACG" or "CATGTG" to regulate gene expression. However, whether NAC proteins can bind to other motifs without these core sequences remains unknown. In this study, we employed a Transcription Factor-Centered Yeast one Hybrid (TF-Centered Y1H) screen to study the motifs recognized by ANAC074. In addition to the NACRS core cis-element, we identified that ANAC074 could bind to MybSt1, NRS1, and NRS2. Y1H and GUS assays showed that ANAC074 could bind the promoters of ethylene responsive genes and stress responsive genes via the NRS1, NRS2, or MybSt1 element. ChIP study further confirmed that the bindings of ANAC074 to MybSt1, NRS1, and NRS2 actually occurred in Arabidopsis. Furthermore, ten NAC proteins from different NAC subfamilies in Arabidopsis thaliana were selected and confirmed to bind to the MybSt1, NRS1, and NRS2 motifs, indicating that they are recognized commonly by NACs. These findings will help us to further reveal the functions of NAC proteins.
Collapse
|
85
|
Zhuo X, Zheng T, Zhang Z, Zhang Y, Jiang L, Ahmad S, Sun L, Wang J, Cheng T, Zhang Q. Genome-Wide Analysis of the NAC Transcription Factor Gene Family Reveals Differential Expression Patterns and Cold-Stress Responses in the Woody Plant Prunus mume. Genes (Basel) 2018; 9:genes9100494. [PMID: 30322087 PMCID: PMC6209978 DOI: 10.3390/genes9100494] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/06/2018] [Accepted: 10/06/2018] [Indexed: 02/07/2023] Open
Abstract
NAC transcription factors (TFs) participate in multiple biological processes, including biotic and abiotic stress responses, signal transduction and development. Cold stress can adversely impact plant growth and development, thereby limiting agricultural productivity. Prunus mume, an excellent horticultural crop, is widely cultivated in Asian countries. Its flower can tolerate freezing-stress in the early spring. To investigate the putative NAC genes responsible for cold-stress, we identified and analyzed 113 high-confidence PmNAC genes and characterized them by bioinformatics tools and expression profiles. These PmNACs were clustered into 14 sub-families and distributed on eight chromosomes and scaffolds, with the highest number located on chromosome 3. Duplicated events resulted in a large gene family; 15 and 8 pairs of PmNACs were the result of tandem and segmental duplicates, respectively. Moreover, three membrane-bound proteins (PmNAC59/66/73) and three miRNA-targeted genes (PmNAC40/41/83) were identified. Most PmNAC genes presented tissue-specific and time-specific expression patterns. Sixteen PmNACs (PmNAC11/19/20/23/41/48/58/74/75/76/78/79/85/86/103/111) exhibited down-regulation during flower bud opening and are, therefore, putative candidates for dormancy and cold-tolerance. Seventeen genes (PmNAC11/12/17/21/29/42/30/48/59/66/73/75/85/86/93/99/111) were highly expressed in stem during winter and are putative candidates for freezing resistance. The cold-stress response pattern of 15 putative PmNACs was observed under 4 °C at different treatment times. The expression of 10 genes (PmNAC11/20/23/40/42/48/57/60/66/86) was upregulated, while 5 genes (PmNAC59/61/82/85/107) were significantly inhibited. The putative candidates, thus identified, have the potential for breeding the cold-tolerant horticultural plants. This study increases our understanding of functions of the NAC gene family in cold tolerance, thereby potentially intensifying the molecular breeding programs of woody plants.
Collapse
Affiliation(s)
- Xiaokang Zhuo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Zhiyong Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Yichi Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Liangbao Jiang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
86
|
Feng H, Li X, Chen H, Deng J, Zhang C, Liu J, Wang T, Zhang X, Dong J. GhHUB2, a ubiquitin ligase, is involved in cotton fiber development via the ubiquitin-26S proteasome pathway. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5059-5075. [PMID: 30053051 PMCID: PMC6184758 DOI: 10.1093/jxb/ery269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/12/2018] [Indexed: 05/02/2023]
Abstract
Cotton fibers, which are extremely elongated single cells of epidermal seed trichomes and have highly thickened cell walls, constitute the most important natural textile material worldwide. However, the regulation of fiber development is not well understood. Here, we report that GhHUB2, a functional homolog of AtHUB2, controls fiber elongation and secondary cell wall (SCW) deposition. GhHUB2 is ubiquitously expressed, including within fibers. Overexpression of GhHUB2 in cotton increased fiber length and SCW thickness, while RNAi knockdown of GhHUB2 resulted in shortened fibers and thinner cell walls. We found that GhHUB2 interacted with GhKNL1, a transcriptional repressor predominantly expressed in developing fibers, and that GhHUB2 ubiquitinated and degraded GhKNL1 via the ubiquitin-26S proteasome pathway. GhHUB2 negatively regulated GhKNL1 protein levels and lead to the disinhibition of genes such as GhXTH1, Gh1,3-β-G, GhCesA4, GhAGP4, GhCTL1, and GhCOBL4, thus promoting fiber elongation and enhancing SCW biosynthesis. We found that GhREV-08, a transcription factor that participates in SCW deposition and auxin signaling pathway, was a direct target of GhKNL1. In conclusion, our study uncovers a novel function of HUB2 in plants in addition to its monoubiquitination of H2B. Moreover, we provide evidence for control of the fiber development by the ubiquitin-26S proteasome pathway.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
87
|
Shen J, Zhao Q, Wang X, Gao C, Zhu Y, Zeng Y, Jiang L. A plant Bro1 domain protein BRAF regulates multivesicular body biogenesis and membrane protein homeostasis. Nat Commun 2018; 9:3784. [PMID: 30224707 PMCID: PMC6141507 DOI: 10.1038/s41467-018-05913-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Plant development, defense, and many physiological processes rely on the endosomal sorting complex required for transport (ESCRT) machinery to control the homeostasis of membrane proteins by selective vacuolar degradation. Although ESCRT core components are conserved among higher eukaryotes, the regulators that control the function of the ESCRT machinery remain elusive. We recently identified a plant-specific ESCRT component, FREE1, that is essential for multivesicular body/prevacuolar compartment (MVB/PVC) biogenesis and vacuolar sorting of membrane proteins. Here we identify a plant-specific Bro1-domain protein BRAF, which regulates FREE1 recruitment to the MVB/PVC membrane by competitively binding to the ESCRT-I component Vps23. Altogether, we have successfully identified a role for BRAF, whose function as a unique evolutionary ESCRT regulator in orchestrating intraluminal vesicle formation in MVB/PVCs and the sorting of membrane proteins for degradation in plants makes it an important regulatory mechanism underlying the ESCRT machinery in higher eukaryotes.
Collapse
Affiliation(s)
- Jinbo Shen
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Linan, Hangzhou, 311300, China.
| | - Qiong Zhao
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiangfeng Wang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Caiji Gao
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Ying Zhu
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
88
|
Carluccio AV, Prigigallo MI, Rosas-Diaz T, Lozano-Duran R, Stavolone L. S-acylation mediates Mungbean yellow mosaic virus AC4 localization to the plasma membrane and in turns gene silencing suppression. PLoS Pathog 2018; 14:e1007207. [PMID: 30067843 PMCID: PMC6089456 DOI: 10.1371/journal.ppat.1007207] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/13/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022] Open
Abstract
RNA silencing plays a critical role in plant resistance against viruses. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that interfere with the cellular silencing machinery through various mechanisms not always well understood. We examined the role of Mungbean yellow mosaic virus (MYMV) AC4 and showed that it is essential for infectivity but not for virus replication. It acts as a determinant of pathogenicity and counteracts virus induced gene silencing by strongly suppressing the systemic phase of silencing whereas it does not interfere with local production of siRNA. We demonstrate the ability of AC4 to bind native 21-25 nt siRNAs in vitro by electrophoretic mobility shift assay. While most of the known VSRs have cytoplasmic localization, we observed that despite its hydrophilic nature and the absence of trans-membrane domain, MYMV AC4 specifically accumulates to the plasma membrane (PM). We show that AC4 binds to PM via S-palmitoylation, a process of post-translational modification regulating membrane-protein interactions, not known for plant viral protein before. When localized to the PM, AC4 strongly suppresses systemic silencing whereas its delocalization impairs VSR activity of the protein. We also show that AC4 interacts with the receptor-like kinase (RLK) BARELY ANY MERISTEM 1 (BAM1), a positive regulator of the cell-to-cell movement of RNAi. The absolute requirement of PM localization for direct silencing suppression activity of AC4 is novel and intriguing. We discuss a possible model of action: palmitoylated AC4 anchors to the PM by means of palmitate to acquire the optimal conformation to bind siRNAs, hinder their systemic movement and hence suppress the spread of the PTGS signal in the plant.
Collapse
Affiliation(s)
- Anna Vittoria Carluccio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle ricerche, Bari, Italia
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Maria Isabella Prigigallo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle ricerche, Bari, Italia
| | - Tabata Rosas-Diaz
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
- Chinese Academy of Sciences–John Innes Centre Center of Excellence for Plant and Microbial Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Livia Stavolone
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle ricerche, Bari, Italia
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| |
Collapse
|
89
|
Mathew IE, Agarwal P. May the Fittest Protein Evolve: Favoring the Plant-Specific Origin and Expansion of NAC Transcription Factors. Bioessays 2018; 40:e1800018. [PMID: 29938806 DOI: 10.1002/bies.201800018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/26/2018] [Indexed: 12/12/2022]
Abstract
Plant-specific NAC transcription factors (TFs) evolve during the transition from aquatic to terrestrial plant life and are amplified to become one of the biggest TF families. This is because they regulate genes involved in water conductance and cell support. They also control flower and fruit formation. The review presented here focuses on various properties, regulatory intricacies, and developmental roles of NAC family members. Processes controlled by NACs depend majorly on their transcriptional properties. NACs can function as both activators and/or repressors. Additionally, their homo/hetero dimerization abilities can also affect DNA binding and activation properties. The active protein levels are dependent on the regulatory cascades. Because NACs regulate both development and stress responses in plants, in-depth knowledge about them has the potential to help guide future crop improvement studies.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
90
|
He H, Van Breusegem F, Mhamdi A. Redox-dependent control of nuclear transcription in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3359-3372. [PMID: 29659979 DOI: 10.1093/jxb/ery130] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/27/2018] [Indexed: 05/03/2023]
Abstract
Redox-dependent regulatory networks are affected by altered cellular or extracellular levels of reactive oxygen species (ROS). Perturbations of ROS production and scavenging homeostasis have a considerable impact on the nuclear transcriptome. While the regulatory mechanisms by which ROS modulate gene transcription in prokaryotes, lower eukaryotes, and mammalian cells are well established, new insights into the mechanism underlying redox control of gene expression in plants have only recently been known. In this review, we aim to provide an overview of the current knowledge on how ROS and thiol-dependent transcriptional regulatory networks are controlled. We assess the impact of redox perturbations and oxidative stress on transcriptome adjustments using cat2 mutants as a model system and discuss how redox homeostasis can modify the various parts of the transcriptional machinery.
Collapse
Affiliation(s)
- Huaming He
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
91
|
|
92
|
Liu ZJ, Li F, Wang LG, Liu RZ, Ma JJ, Fu MC. Molecular characterization of a stress-induced NAC gene, GhSNAC3, from Gossypium hirsutum. J Genet 2018; 97:539-548. [PMID: 29932074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
NAC genes, specific to plants, play important roles in plant development as well as in response to biotic and abiotic stresses. Here, a novel gene encoding a NAC domain, named as GhSNAC3, was isolated from upland cotton (Gossypium hirsutum L.). Sequence analyses showed that GhSNAC3 encodes a protein of 346 amino acids with an estimated molecular mass of 38.4 kDa and pI of 8.87. Transient localization assays in onion epidermal cells confirmed GhSNAC3 is a nuclear protein. Transactivation studies using a yeast system revealed that GhSNAC3 functions as a transcription activator. Quantitative real-time polymerase chain reaction analysis indicated that GhSNAC3 was induced by high salinity, drought and abscisic acid treatments. We overexpressed GhSNAC3 in tobacco by using Agrobacterium-mediated transformation. Transgenic lines produced longer primary roots and more fresh weight under salt and drought stresses as compared to wild-type plants. Collectively, our results indicated that overexpression of GhSNAC3 in tobacco can enhance drought and salt tolerances.
Collapse
Affiliation(s)
- Zhan-Ji Liu
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
93
|
Liu H, Zhou Y, Li H, Wang T, Zhang J, Ouyang B, Ye Z. Molecular and functional characterization of ShNAC1, an NAC transcription factor from Solanum habrochaites. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:9-19. [PMID: 29650161 DOI: 10.1016/j.plantsci.2018.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 05/23/2023]
Abstract
NAC transcription factors (TFs) are important regulators of plant adaptation to abiotic stress. In this study, we functionally characterized an NAC TF, ShNAC1, from Solanum habrochaites. ShNAC1 was up-regulated by drought, cold, and salt stresses, and it displayed lower expression at the late stage of stress treatments than its orthologous gene in S. lycopersicum. Overexpression of ShNAC1 in tomato resulted in reduced cold, drought, and salt tolerance. Additionally, ShNAC1 displayed the highest expression in senescent leaf, and overexpressing ShNAC1 accelerated salt- and dark-induced leaf senescence. ShNAC1 was located in the nucleus without transactivation activity. RNA-seq analysis revealed that 81% (190 out of 234) differentially-expressed genes (DEGs) showed down-regulation in the transgenic line L2 compared with wild-type, suggesting that ShNAC1 may function as a transcriptional repressor. Among these down-regulated DEGs, many were involved in stress responses, such as SlHKT1;1, SlMAPKKK59, SlJA2, SlTIL, SlALDH2B1, etc. Noticeably, one ACS gene and three ACO genes involved in ethylene biosynthesis were up-regulated, while seven ERF genes in the ethylene signal transduction pathway were down-regulated in the transgenic lines, respectively. Our results suggested that ShNAC1 negatively regulates tolerance to abiotic stress in tomato probably by modulating the ethylene biosynthesis and signal transduction pathways.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Yuhong Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
94
|
Khan SA, Li MZ, Wang SM, Yin HJ. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress. Int J Mol Sci 2018; 19:ijms19061634. [PMID: 29857524 PMCID: PMC6032162 DOI: 10.3390/ijms19061634] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/10/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
Owing to diverse abiotic stresses and global climate deterioration, the agricultural production worldwide is suffering serious losses. Breeding stress-resilient crops with higher quality and yield against multiple environmental stresses via application of transgenic technologies is currently the most promising approach. Deciphering molecular principles and mining stress-associate genes that govern plant responses against abiotic stresses is one of the prerequisites to develop stress-resistant crop varieties. As molecular switches in controlling stress-responsive genes expression, transcription factors (TFs) play crucial roles in regulating various abiotic stress responses. Hence, functional analysis of TFs and their interaction partners during abiotic stresses is crucial to perceive their role in diverse signaling cascades that many researchers have continued to undertake. Here, we review current developments in understanding TFs, with particular emphasis on their functions in orchestrating plant abiotic stress responses. Further, we discuss novel molecular mechanisms of their action under abiotic stress conditions. This will provide valuable information for understanding regulatory mechanisms to engineer stress-tolerant crops.
Collapse
Affiliation(s)
- Sardar-Ali Khan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Meng-Zhan Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Hong-Ju Yin
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
95
|
Zhou YB, Liu C, Tang DY, Yan L, Wang D, Yang YZ, Gui JS, Zhao XY, Li LG, Tang XD, Yu F, Li JL, Liu LL, Zhu YH, Lin JZ, Liu XM. The Receptor-Like Cytoplasmic Kinase STRK1 Phosphorylates and Activates CatC, Thereby Regulating H 2O 2 Homeostasis and Improving Salt Tolerance in Rice. THE PLANT CELL 2018; 30:1100-1118. [PMID: 29581216 PMCID: PMC6002193 DOI: 10.1105/tpc.17.01000] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/21/2018] [Accepted: 03/23/2018] [Indexed: 05/19/2023]
Abstract
Salt stress can significantly affect plant growth and agricultural productivity. Receptor-like kinases (RLKs) are believed to play essential roles in plant growth, development, and responses to abiotic stresses. Here, we identify a receptor-like cytoplasmic kinase, salt tolerance receptor-like cytoplasmic kinase 1 (STRK1), from rice (Oryza sativa) that positively regulates salt and oxidative stress tolerance. Our results show that STRK1 anchors and interacts with CatC at the plasma membrane via palmitoylation. CatC is phosphorylated mainly at Tyr-210 and is activated by STRK1. The phosphorylation mimic form CatCY210D exhibits higher catalase activity both in vitro and in planta, and salt stress enhances STRK1-mediated tyrosine phosphorylation on CatC. Compared with wild-type plants, STRK1-overexpressing plants exhibited higher catalase activity and lower accumulation of H2O2 as well as higher tolerance to salt and oxidative stress. Our findings demonstrate that STRK1 improves salt and oxidative tolerance by phosphorylating and activating CatC and thereby regulating H2O2 homeostasis. Moreover, overexpression of STRK1 in rice not only improved growth at the seedling stage but also markedly limited the grain yield loss under salt stress conditions. Together, these results offer an opportunity to improve rice grain yield under salt stress.
Collapse
Affiliation(s)
- Yan-Biao Zhou
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory of Hybrid Rice, Yahua Seeds Science Academy of Hunan, Changsha 410119, China
| | - Cong Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Dong-Ying Tang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Lu Yan
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Dan Wang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yuan-Zhu Yang
- State Key Laboratory of Hybrid Rice, Yahua Seeds Science Academy of Hunan, Changsha 410119, China
| | - Jin-Shan Gui
- National Key Laboratory of Plant Molecular Genetics/Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Ying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Lai-Geng Li
- National Key Laboratory of Plant Molecular Genetics/Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Dan Tang
- State Key Laboratory of Hybrid Rice, Yahua Seeds Science Academy of Hunan, Changsha 410119, China
| | - Feng Yu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jiang-Lin Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Lan-Lan Liu
- State Key Laboratory of Hybrid Rice, Yahua Seeds Science Academy of Hunan, Changsha 410119, China
| | - Yong-Hua Zhu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jian-Zhong Lin
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Xuan-Ming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
96
|
Liu Y, Li P, Fan L, Wu M. The nuclear transportation routes of membrane-bound transcription factors. Cell Commun Signal 2018; 16:12. [PMID: 29615051 PMCID: PMC5883603 DOI: 10.1186/s12964-018-0224-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Membrane-bound transcription factors (MTFs) are transcription factors (TFs) that are anchored in membranes in a dormant state. Activated by external or internal stimuli, MTFs are released from parent membranes and are transported to the nucleus. Existing research indicates that some plasma membrane (PM)-bound proteins and some endoplasmic reticulum (ER) membrane-bound proteins have the ability to enter the nucleus. Upon specific signal recognition cues, some PM-bound TFs undergo proteolytic cleavage to liberate the intracellular fragments that enter the nucleus to control gene transcription. However, lipid-anchored PM-bound proteins enter the nucleus in their full length for depalmitoylation. In addition, some PM-bound TFs exist as full-length proteins in cell nucleus via trafficking to the Golgi and the ER, where membrane-releasing mechanisms rely on endocytosis. In contrast, the ER membrane-bound TFs relocate to the nucleus directly or by trafficking to the Golgi. In both of these pathways, only the fragments of the ER membrane-bound TFs transit to the nucleus. Several different nuclear trafficking modes of MTFs are summarized in this review, providing an effective supplement to the mechanisms of signal transduction and gene regulation. Moreover, targeting intracellular movement pathways of disease-associated MTFs may significantly improve the survival of patients.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
97
|
Liu J, Deng J, Zhu F, Li Y, Lu Z, Qin P, Wang T, Dong J. The MtDMI2-MtPUB2 Negative Feedback Loop Plays a Role in Nodulation Homeostasis. PLANT PHYSIOLOGY 2018; 176:3003-3026. [PMID: 29440269 PMCID: PMC5884597 DOI: 10.1104/pp.17.01587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/06/2018] [Indexed: 05/19/2023]
Abstract
DOES NOT MAKE INFECTION 2 (MtDMI2) is a Leu rich repeat-type receptor kinase required for signal transduction in the Medicago truncatula/Sinorhizobium meliloti symbiosis pathway. However, the mechanisms through which MtDMI2 participates in nodulation homeostasis are poorly understood. In this study, we identified MtPUB2-a novel plant U-box (PUB)-type E3 ligase-and showed that it interacts with MtDMI2. MtDMI2 and MtPUB2 accumulation were shown to be similar in various tissues. Roots of plants in which MtPUB2 was silenced by RNAi (MtPUB2-RNAi plants) exhibited impaired infection threads, fewer nodules, and shorter primary root lengths compared to those of control plants transformed with empty vector. Using liquid chromatography-tandem mass spectrometry, we showed that MtDMI2 phosphorylates MtPUB2 at Ser-316, Ser-421, and Thr-488 residues. When MtPUB2-RNAi plants were transformed with MtPUB2S421D , which mimics the phosphorylated state, MtDMI2 was persistently ubiquitinated and degraded by MtPUB2S421D, resulting in fewer nodules than observed in MtPUB2/MtPUB2-RNAi-complemented plants. However, MtPUB2S421A /MtPUB2-RNAi-complemented plants showed no MtPUB2 ubiquitination activity, and their nodulation phenotype was similar to that of MtPUB2-RNAi plants transformed with empty vector. Further studies demonstrated that these proteins form a negative feedback loop of the prey (MtDMI2)-predator (MtPUB2) type. Our results suggest that the MtDMI2-MtPUB2 negative feedback loop, which displays crosstalk with the long-distance autoregulation of nodulation via MtNIN, plays an important role in nodulation homeostasis.
Collapse
Affiliation(s)
- Jiaxing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Lu
- University of Wyoming, Department of Atmospheric Science, Laramie, Wyoming
| | - Peibin Qin
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd., Chaoyang District, Beijing, 100015, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
98
|
Li X, Feng H, Wen J, Dong J, Wang T. MtCAS31 Aids Symbiotic Nitrogen Fixation by Protecting the Leghemoglobin MtLb120-1 Under Drought Stress in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2018; 9:633. [PMID: 29868087 PMCID: PMC5960688 DOI: 10.3389/fpls.2018.00633] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/23/2018] [Indexed: 05/09/2023]
Abstract
Symbiotic nitrogen fixation (SNF) in legume root nodules injects millions of tons of nitrogen into agricultural lands and provides ammonia to non-legume crops under N-deficient conditions. During plant growth and development, environmental stresses, such as drought, salt, cold, and heat stress are unavoidable. This raises an interesting question as to how the legumes cope with the environmental stress along with SNF. Under drought stress, dehydrin proteins are accumulated, which function as protein protector and osmotic substances. In this study, we found that the dehydrin MtCAS31 (cold-acclimation-specific 31) functions in SNF in Medicago truncatula during drought stress. We found that MtCAS31 is expressed in nodules and interacts with leghemoglobin MtLb120-1. The interaction between the two proteins protects MtLb120-1 from denaturation under thermal stress in vivo. Compared to wild type, cas31 mutants display a lower nitrogenase activity, a lower ATP/ADP ratio, higher expression of nodule senescence genes and higher accumulation of amyloplasts under dehydration conditions. The results suggested that MtCAS31 protects MtLb120-1 from the damage of drought stress. We identified a new function for dehydrins in SNF under drought stress, which enriches the understanding of the molecular mechanism of dehydrins.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - JiangQi Wen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK, United States
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- *Correspondence: Jiangli Dong, Tao Wang,
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- *Correspondence: Jiangli Dong, Tao Wang,
| |
Collapse
|