51
|
Cassan O, Pimparé LL, Dubos C, Gojon A, Bach L, Lèbre S, Martin A. A gene regulatory network in Arabidopsis roots reveals features and regulators of the plant response to elevated CO 2. THE NEW PHYTOLOGIST 2023. [PMID: 36727308 DOI: 10.1111/nph.18788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
The elevation of CO2 in the atmosphere increases plant biomass but decreases their mineral content. The genetic and molecular bases of these effects remain mostly unknown, in particular in the root system, which is responsible for plant nutrient uptake. To gain knowledge about the effect of elevated CO2 on plant growth and physiology, and to identify its regulatory in the roots, we analyzed genome expression in Arabidopsis roots through a combinatorial design with contrasted levels of CO2 , nitrate, and iron. We demonstrated that elevated CO2 has a modest effect on root genome expression under nutrient sufficiency, but by contrast leads to massive expression changes under nitrate or iron deficiencies. We demonstrated that elevated CO2 negatively targets nitrate and iron starvation modules at the transcriptional level, associated with a reduction in high-affinity nitrate uptake. Finally, we inferred a gene regulatory network governing the root response to elevated CO2 . This network allowed us to identify candidate transcription factors including MYB15, WOX11, and EDF3 which we experimentally validated for their role in the stimulation of growth by elevated CO2 . Our approach identified key features and regulators of the plant response to elevated CO2 , with the objective of developing crops resilient to climate change.
Collapse
Affiliation(s)
- Océane Cassan
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, 34000, Montpellier, France
| | - Léa-Lou Pimparé
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, 34000, Montpellier, France
| | - Christian Dubos
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, 34000, Montpellier, France
| | - Alain Gojon
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, 34000, Montpellier, France
| | - Liên Bach
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, 34000, Montpellier, France
| | - Sophie Lèbre
- IMAG, Univ. Montpellier, CNRS, 34000, Montpellier, France
- Université Paul-Valéry-Montpellier 3, 34000, Montpellier, France
| | - Antoine Martin
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, 34000, Montpellier, France
| |
Collapse
|
52
|
Govindasamy P, Muthusamy SK, Bagavathiannan M, Mowrer J, Jagannadham PTK, Maity A, Halli HM, G. K. S, Vadivel R, T. K. D, Raj R, Pooniya V, Babu S, Rathore SS, L. M, Tiwari G. Nitrogen use efficiency-a key to enhance crop productivity under a changing climate. FRONTIERS IN PLANT SCIENCE 2023; 14:1121073. [PMID: 37143873 PMCID: PMC10151540 DOI: 10.3389/fpls.2023.1121073] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/20/2023] [Indexed: 05/06/2023]
Abstract
Nitrogen (N) is an essential element required for the growth and development of all plants. On a global scale, N is agriculture's most widely used fertilizer nutrient. Studies have shown that crops use only 50% of the applied N effectively, while the rest is lost through various pathways to the surrounding environment. Furthermore, lost N negatively impacts the farmer's return on investment and pollutes the water, soil, and air. Therefore, enhancing nitrogen use efficiency (NUE) is critical in crop improvement programs and agronomic management systems. The major processes responsible for low N use are the volatilization, surface runoff, leaching, and denitrification of N. Improving NUE through agronomic management practices and high-throughput technologies would reduce the need for intensive N application and minimize the negative impact of N on the environment. The harmonization of agronomic, genetic, and biotechnological tools will improve the efficiency of N assimilation in crops and align agricultural systems with global needs to protect environmental functions and resources. Therefore, this review summarizes the literature on nitrogen loss, factors affecting NUE, and agronomic and genetic approaches for improving NUE in various crops and proposes a pathway to bring together agronomic and environmental needs.
Collapse
Affiliation(s)
- Prabhu Govindasamy
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Muthukumar Bagavathiannan, ; Prabhu Govindasamy,
| | - Senthilkumar K. Muthusamy
- Division of Crop Improvement, Indian Council of Agricultural Research (ICAR)-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | - Muthukumar Bagavathiannan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Muthukumar Bagavathiannan, ; Prabhu Govindasamy,
| | - Jake Mowrer
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | | | - Aniruddha Maity
- Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Hanamant M. Halli
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Pune, India
| | - Sujayananad G. K.
- Crop Protection, Indian Council of Agricultural Research (ICAR)-Indian Institute of Pulse Research, Kanpur, India
| | - Rajagopal Vadivel
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Pune, India
| | - Das T. K.
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Rishi Raj
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Vijay Pooniya
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Subhash Babu
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Sanjay Singh Rathore
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Muralikrishnan L.
- Division of Agricultural Extension, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Gopal Tiwari
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
53
|
Nezamivand-Chegini M, Metzger S, Moghadam A, Tahmasebi A, Koprivova A, Eshghi S, Mohammadi-Dehchesmeh M, Kopriva S, Niazi A, Ebrahimie E. Integration of transcriptomic and metabolomic analyses provides insights into response mechanisms to nitrogen and phosphorus deficiencies in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111498. [PMID: 36252857 DOI: 10.1016/j.plantsci.2022.111498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two essential plant macronutrients that can limit plant growth by different mechanisms. We aimed to shed light on how soybean respond to low nitrogen (LN), low phosphorus (LP) and their combined deficiency (LNP). Generally, these conditions triggered changes in gene expression of the same processes, including cell wall organization, defense response, response to oxidative stress, and photosynthesis, however, response was different in each condition. A typical primary response to LN and LP was detected also in soybean, i.e., the enhanced uptake of N and P, respectively, by upregulation of genes for the corresponding transporters. The regulation of genes involved in cell wall organization showed that in LP roots tended to produce more casparian strip, in LN more secondary wall biosynthesis occurred, and in LNP reduction in expression of genes involved in secondary wall production accompanied by cell wall loosening was observed. Flavonoid biosynthesis also showed distinct pattern of regulation in different conditions: more anthocyanin production in LP, and more isoflavonoid production in LN and LNP, which we confirmed also on the metabolite level. Interestingly, in soybean the nutrient deficiencies reduced defense response by lowering expression of genes involved in defense response, suggesting a role of N and P nutrition in plant disease resistance. In conclusion, we provide detailed information on how LN, LP, and LNP affect different processes in soybean roots on the molecular and physiological levels.
Collapse
Affiliation(s)
| | - Sabine Metzger
- MS Platform, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany; Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | | - Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Saeid Eshghi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Esmaeil Ebrahimie
- Institute of Biotechnology, Shiraz University, Shiraz, Iran; School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide SA 5371, Australia; La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
54
|
Sinsirimongkol K, Buasong A, Teppabut Y, Pholmanee N, Chen Y, Miller AJ, Punyasuk N. EgNRT2.3 and EgNAR2 expression are controlled by nitrogen deprivation and encode proteins that function as a two-component nitrate uptake system in oil palm. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153833. [PMID: 36257088 DOI: 10.1016/j.jplph.2022.153833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Oil palm (Elaeis guineensis Jacq.) is an important crop for oil and biodiesel production. Oil palm plantations require extensive fertilizer additions to achieve a high yield. Fertilizer application decisions and management for oil palm farming rely on leaf tissue and soil nutrient analyses with little information available to describe the key players for nutrient uptake. A molecular understanding of how nutrients, especially nitrogen (N), are taken up in oil palm is very important to improve fertilizer use and formulation practice in oil palm plantations. In this work, two nitrate uptake genes in oil palm, EgNRT2.3 and EgNAR2, were cloned and characterized. Spatial expression analysis showed high expression of these two genes was mainly found in un-lignified young roots. Interestingly, EgNRT2.3 and EgNAR2 were up-regulated by N deprivation, but their expression pattern depended on the form of N source. Promoter analysis of these two genes confirmed the presence of regulatory elements that support these expression patterns. The Xenopus oocyte assay showed that EgNRT2.3 and EgNAR2 had to act together to take up nitrate. The results suggest that EgNRT2.3 and EgNAR2 act as a two-component nitrate uptake system in oil palm.
Collapse
Affiliation(s)
| | - Atcharaporn Buasong
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yada Teppabut
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nutthida Pholmanee
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yi Chen
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Anthony J Miller
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Napassorn Punyasuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
55
|
Li Y, Li Y, Yao X, Wen Y, Zhou Z, Lei W, Zhang D, Lin H. Nitrogen-inducible GLK1 modulates phosphate starvation response via the PHR1-dependent pathway. THE NEW PHYTOLOGIST 2022; 236:1871-1887. [PMID: 36111350 DOI: 10.1111/nph.18499] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) is a limiting nutrient for plant growth and productivity. Thus, a deep understanding of the molecular mechanisms of plants' response to phosphate starvation is significant when breeding crops with higher phosphorus-use efficiency. Here, we found that GARP-type transcription factor GLK1 acted as a positive regulator for phosphate-starvation response (PSR) via the PHR1-dependent pathway in Arabidopsis thaliana. GLK1 increased the transcription activity of PHR1 through the direct physical interaction and regulated the multiple responses to inorganic orthophosphate (Pi) starvation. Nitrogen (N) is a key factor in the regulation of PSR. We also found that the N status controlled the function of the GLK1-PHR1 signaling module under Pi-deficient (LP) conditions by regulating the accumulation of GLK1 and PHR1. Ultimately, we showed that the presence of GLK1 effectively promoted the protein accumulation of PHR1 at low N concentrations, and this action was helpful to maintain the activation of PSR. According to these findings, we establish the working model for GLK1 in PSR and propose that GLK1 mediates the interaction between N and P by influencing the effect of N on PHR1 in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yan Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yanling Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yu Wen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Zuxu Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Wei Lei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
56
|
Hua YP, Wu PJ, Zhang TY, Song HL, Zhang YF, Chen JF, Yue CP, Huang JY, Sun T, Zhou T. Genome-Scale Investigation of GARP Family Genes Reveals Their Pivotal Roles in Nutrient Stress Resistance in Allotetraploid Rapeseed. Int J Mol Sci 2022; 23:ijms232214484. [PMID: 36430962 PMCID: PMC9698747 DOI: 10.3390/ijms232214484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The GARP genes are plant-specific transcription factors (TFs) and play key roles in regulating plant development and abiotic stress resistance. However, few systematic analyses of GARPs have been reported in allotetraploid rapeseed (Brassica napus L.) yet. In the present study, a total of 146 BnaGARP members were identified from the rapeseed genome based on the sequence signature. The BnaGARP TFs were divided into five subfamilies: ARR, GLK, NIGT1/HRS1/HHO, KAN, and PHL subfamilies, and the members within the same subfamilies shared similar exon-intron structures and conserved motif configuration. Analyses of the Ka/Ks ratios indicated that the GARP family principally underwent purifying selection. Several cis-acting regulatory elements, essential for plant growth and diverse biotic and abiotic stresses, were identified in the promoter regions of BnaGARPs. Further, 29 putative miRNAs were identified to be targeting BnaGARPs. Differential expression of BnaGARPs under low nitrate, ammonium toxicity, limited phosphate, deficient boron, salt stress, and cadmium toxicity conditions indicated their potential involvement in diverse nutrient stress responses. Notably, BnaA9.HHO1 and BnaA1.HHO5 were simultaneously transcriptionally responsive to these nutrient stresses in both hoots and roots, which indicated that BnaA9.HHO1 and BnaA1.HHO5 might play a core role in regulating rapeseed resistance to nutrient stresses. Therefore, this study would enrich our understanding of molecular characteristics of the rapeseed GARPs and will provide valuable candidate genes for further in-depth study of the GARP-mediated nutrient stress resistance in rapeseed.
Collapse
Affiliation(s)
- Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tian-Yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hai-Li Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Fan Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin-Yong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (T.S.); (T.Z.); Tel.: +86-187-0271-0749 (T.Z.)
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (T.S.); (T.Z.); Tel.: +86-187-0271-0749 (T.Z.)
| |
Collapse
|
57
|
Alam I, Manghwar H, Zhang H, Yu Q, Ge L. Identification of GOLDEN2-like transcription factor genes in soybeans and their role in regulating plant development and metal ion stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1052659. [PMID: 36438095 PMCID: PMC9691782 DOI: 10.3389/fpls.2022.1052659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The Golden 2-Like (G2-like or GLK) transcription factors are essential for plant growth, development, and many stress responses as well as heavy metal stress. However, G2-like regulatory genes have not been studied in soybean. This study identified the genes for 130 G2-Like candidates' in the genome of Glycine max (soybean). These GLK genes were located on all 20 chromosomes, and several of them were segmentally duplicated. Most GLK family proteins are highly conserved in Arabidopsis and soybean and were classified into five major groups based on phylogenetic analysis. These GmGLK gene promoters share cis-acting elements involved in plant responses to abscisic acid, methyl jasmonate, auxin signaling, low temperature, and biotic and abiotic stresses. RNA-seq expression data revealed that the GLK genes were classified into 12 major groups and differentially expressed in different tissues or organs. The co-expression network complex revealed that the GmGLK genes encode proteins involved in the interaction of genes related to chlorophyll biosynthesis, circadian rhythms, and flowering regulation. Real-time quantitative PCR analysis confirmed the expression profiles of eight GLK genes in response to cadmium (Cd) and copper (Cu) stress, with some GLK genes significantly induced by both Cd and Cu stress treatments, implying a functional role in defense responsiveness. Thus, we present a comprehensive perspective of the GLK genes in soybean and emphasize their important role in crop development and metal ion stresses.
Collapse
Affiliation(s)
- Intikhab Alam
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
- College of Life Sciences, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
- Guangdong Subcenter of the National Center for Soybean Improvement, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
| | - Hakim Manghwar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
| | - Hanyin Zhang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
- Guangdong Subcenter of the National Center for Soybean Improvement, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
| | - Qianxia Yu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
- Guangdong Subcenter of the National Center for Soybean Improvement, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
| | - Liangfa Ge
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
- Guangdong Subcenter of the National Center for Soybean Improvement, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
| |
Collapse
|
58
|
Bvindi C, Tang L, Lee S, Patrick RM, Yee ZR, Mengiste T, Li Y. Histone methyltransferases SDG33 and SDG34 regulate organ-specific nitrogen responses in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1005077. [PMID: 36311072 PMCID: PMC9606235 DOI: 10.3389/fpls.2022.1005077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Histone posttranslational modifications shape the chromatin landscape of the plant genome and affect gene expression in response to developmental and environmental cues. To date, the role of histone modifications in regulating plant responses to environmental nutrient availability, especially in agriculturally important species, remains largely unknown. We describe the functions of two histone lysine methyltransferases, SET Domain Group 33 (SDG33) and SDG34, in mediating nitrogen (N) responses of shoots and roots in tomato. By comparing the transcriptomes of CRISPR edited tomato lines sdg33 and sdg34 with wild-type plants under N-supplied and N-starved conditions, we uncovered that SDG33 and SDG34 regulate overlapping yet distinct downstream gene targets. In response to N level changes, both SDG33 and SDG34 mediate gene regulation in an organ-specific manner: in roots, SDG33 and SDG34 regulate a gene network including Nitrate Transporter 1.1 (NRT1.1) and Small Auxin Up-regulated RNA (SAUR) genes. In agreement with this, mutations in sdg33 or sdg34 abolish the root growth response triggered by an N-supply; In shoots, SDG33 and SDG34 affect the expression of photosynthesis genes and photosynthetic parameters in response to N. Our analysis thus revealed that SDG33 and SDG34 regulate N-responsive gene expression and physiological changes in an organ-specific manner, thus presenting previously unknown candidate genes as targets for selection and engineering to improve N uptake and usage in crop plants.
Collapse
Affiliation(s)
- Carol Bvindi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Liang Tang
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ryan M. Patrick
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Zheng Rong Yee
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ying Li
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
59
|
Sakuraba Y. Molecular basis of nitrogen starvation-induced leaf senescence. FRONTIERS IN PLANT SCIENCE 2022; 13:1013304. [PMID: 36212285 PMCID: PMC9538721 DOI: 10.3389/fpls.2022.1013304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 06/01/2023]
Abstract
Nitrogen (N), a macronutrient, is often a limiting factor in plant growth, development, and productivity. To adapt to N-deficient environments, plants have developed elaborate N starvation responses. Under N-deficient conditions, older leaves exhibit yellowing, owing to the degradation of proteins and chlorophyll pigments in chloroplasts and subsequent N remobilization from older leaves to younger leaves and developing organs to sustain plant growth and productivity. In recent years, numerous studies have been conducted on N starvation-induced leaf senescence as one of the representative plant responses to N deficiency, revealing that leaf senescence induced by N deficiency is highly complex and intricately regulated at different levels, including transcriptional, post-transcriptional, post-translational and metabolic levels, by multiple genes and proteins. This review summarizes the current knowledge of the molecular mechanisms associated with N starvation-induced leaf senescence.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
60
|
Wen B, Gong X, Deng W, Chen X, Li D, Fu X, Li L, Tan Q. The apple GARP family gene MdHHO3 regulates the nitrate response and leaf senescence. FRONTIERS IN PLANT SCIENCE 2022; 13:932767. [PMID: 36017256 PMCID: PMC9398197 DOI: 10.3389/fpls.2022.932767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The regulation of plant gene expression by nitrate is a complex regulatory process. Here, we identified 90 GARP family genes in apples by genome-wide analysis. As a member of the GARP gene family, the expression of MdHHO3 (Malus domestica HYPERSENSITIVITY TO LOW PHOSPHATE-ELICITED PRIMARY ROOT SHORTENING1 HOMOLOG 3) is upregulated under N (nitrogen) supply. The results of DNA-binding site analysis and electrophoretic mobility shift assays (EMSA) showed that MdHHO3 binds to the motif-containing GAATC. Furthermore, MdHHO3 binds to its promoter sequence and inhibits its activity. In addition, the overexpression of MdHHO3 in apple calli resulted in less accumulation of nitrate in 35S:MdHHO3-GFP calli and downregulated the expression of the nitrate transport-related genes but upregulated the expression of the nitrate assimilation-related genes. Similarly, the expression of the nitrate transport-related genes was downregulated and the expression of the nitrate assimilation-related genes was upregulated in MdHHO3 overexpression Arabidopsis and tobacco plants. Interaction experiments showed that MdHHO3 could bind to the promoter MdNRT2.1 (NITRATE TRANSPORTER 2.1) and negatively regulate its expression. Moreover, the exposure of MdHHO3-overexpressing Arabidopsis and tobacco to nitrate deficiency resulted in an early senescence phenotype as compared to the WT plants. These results show that MdHHO3 can not only negatively regulate nitrate accumulation in response to nitrate but also promote early leaf senescence under nitrate deficiency. This information may be useful to further reveal the mechanism of the nitrate response and demonstrates that nitrate deficiency induces leaf senescence in apples.
Collapse
Affiliation(s)
- Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Xingyao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Wenpeng Deng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
61
|
Zhou J, Huang PW, Li X, Vaistij FE, Dai CC. Generalist endophyte Phomopsis liquidambaris colonization of Oryza sativa L. promotes plant growth under nitrogen starvation. PLANT MOLECULAR BIOLOGY 2022; 109:703-715. [PMID: 35522401 DOI: 10.1007/s11103-022-01268-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Fungal endophytes establish symbiotic relationships with host plants, which results in a mutual growth benefit. However, little is known about the plant genetic response underpinning endophyte colonization. Phomopsis liquidambaris usually lives as an endophyte in a wide range of asymptomatic hosts and promotes biotic and abiotic stress resistance. In this study, we show that under low nitrogen conditions P. liquidambaris promotes rice growth in a hydroponic system, which is free of other microorganisms. In order to gain insights into the mechanisms of plant colonization by P. liquidambaris under low nitrogen conditions, we compared root and shoot transcriptome profiles of root-inoculated rice at different colonization stages. We determined that genes related to plant growth promotion, such as gibberellin and auxin related genes, were up-regulated at all developmental stages both locally and systemically. The largest group of up-regulated genes (in both roots and shoots) were related to flavonoid biosynthesis, which is involved in plant growth as well as antimicrobial compounds. Furthermore, genes encoding plant defense-related endopeptidase inhibitors were strongly up-regulated at the early stage of colonization. Together, these results provide new insights into the molecular mechanisms of plant-microbe mutualism and the promotion of plant growth by a fungal endophyte under nitrogen-deficient conditions.
Collapse
Affiliation(s)
- Jun Zhou
- Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
- Centre for Novel Agricultural Products, Department of Biology, University of York, YO10 5DD, York, United Kingdom
| | - Peng-Wei Huang
- Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Xin Li
- Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Fabián E Vaistij
- Centre for Novel Agricultural Products, Department of Biology, University of York, YO10 5DD, York, United Kingdom
| | - Chuan-Chao Dai
- Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China.
| |
Collapse
|
62
|
Sakuraba Y, Zhuo M, Yanagisawa S. RWP-RK domain-containing transcription factors in the Viridiplantae: biology and phylogenetic relationships. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4323-4337. [PMID: 35605260 DOI: 10.1093/jxb/erac229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The RWP-RK protein family is a group of transcription factors containing the RWP-RK DNA-binding domain. This domain is an ancient motif that emerged before the establishment of the Viridiplantae-the green plants, consisting of green algae and land plants. The domain is mostly absent in other kingdoms but widely distributed in Viridiplantae. In green algae, a liverwort, and several angiosperms, RWP-RK proteins play essential roles in nitrogen responses and sexual reproduction-associated processes, which are seemingly unrelated phenomena but possibly interdependent in autotrophs. Consistent with related but diversified roles of the RWP-RK proteins in these organisms, the RWP-RK protein family appears to have expanded intensively, but independently, in the algal and land plant lineages. Thus, bryophyte RWP-RK proteins occupy a unique position in the evolutionary process of establishing the RWP-RK protein family. In this review, we summarize current knowledge of the RWP-RK protein family in the Viridiplantae, and discuss the significance of bryophyte RWP-RK proteins in clarifying the relationship between diversification in the RWP-RK protein family and procurement of sophisticated mechanisms for adaptation to the terrestrial environment.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mengna Zhuo
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
63
|
You Y, Sun X, Ma M, He J, Li L, Porto FW, Lin S. Trypsin is a coordinate regulator of N and P nutrients in marine phytoplankton. Nat Commun 2022; 13:4022. [PMID: 35821503 PMCID: PMC9276738 DOI: 10.1038/s41467-022-31802-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Trypsin is best known as a digestive enzyme in animals, but remains unexplored in phytoplankton, the major primary producers in the ocean. Here we report the prevalence of trypsin genes in global ocean phytoplankton and significant influences of environmental nitrogen (N) and phosphorus (P) on their expression. Using CRISPR/Cas9 mediated-knockout and overexpression analyses, we further reveal that a trypsin in Phaeodactylum tricornutum (PtTryp2) functions to repress N acquisition, but its expression decreases under N-deficiency to promote N acquisition. On the contrary, PtTryp2 promotes phosphate uptake per se, and its expression increases under P-deficiency to further reinforce P acquisition. Furthermore, PtTryp2 knockout led to amplitude magnification of the nitrate and phosphate uptake 'seesaw', whereas PtTryp2 overexpression dampened it, linking PtTryp2 to stabilizing N:P stoichiometry. Our data demonstrate that PtTryp2 is a coordinate regulator of N:P stoichiometric homeostasis. The study opens a window for deciphering how phytoplankton adapt to nutrient-variable marine environments.
Collapse
Affiliation(s)
- Yanchun You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Minglei Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiamin He
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Felipe Wendt Porto
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
64
|
Shimada S, Yanagawa Y, Munesada T, Horii Y, Kuriyama T, Kawashima M, Kondou Y, Yoshizumi T, Mitsuda N, Ohme-Takagi M, Makita Y, Matsui M. A collection of inducible transcription factor-glucocorticoid receptor fusion lines for functional analyses in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:595-607. [PMID: 35510416 DOI: 10.1111/tpj.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis possesses approximately 2000 transcription factors (TFs) in its genome. They play pivotal roles in various biological processes but analysis of their function has been hampered by the overlapping nature of their activities. To uncover clues to their function, we generated inducible TF lines using glucocorticoid receptor (GR) fusion techniques in Arabidopsis. These TF-GR lines each express one of 1255 TFs as a fusion with the GR gene. An average 14 lines of T2 transgenic TF-GR lines were generated for each TF to monitor their function. To evaluate these transcription lines, we induced the TF-GR lines of phytochrome-interacting factor 4, which controls photomorphogenesis, with synthetic glucocorticoid dexamethasone. These phytochrome-interacting factor 4-GR lines showed the phenotype described in a previous report. We performed screening of the other TF-GR lines for TFs involved in light signaling under blue and far-red light conditions and identified 13 novel TF candidates. Among these, we found two lines showing higher anthocyanin accumulation under light conditions and we examined the regulating genes. These results indicate that the TF-GR lines can be used to dissect functionally redundant genes in plants and demonstrate that the TF-GR line collection can be used as an effective tool for functional analysis of TFs.
Collapse
Affiliation(s)
- Setsuko Shimada
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yuki Yanagawa
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, 271-8510, Japan
| | - Takachika Munesada
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of NanoBioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Yoko Horii
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Tomoko Kuriyama
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mika Kawashima
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Youichi Kondou
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Takeshi Yoshizumi
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Faculty of Agriculture, Takasaki University of Health and Welfare, 54 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, 305-8562, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, 305-8562, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yuko Makita
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of Engineering, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi City, Gunma, 371-0816, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
65
|
Yue C, Chen Q, Hu J, Li C, Luo L, Zeng L. Genome-Wide Identification and Characterization of GARP Transcription Factor Gene Family Members Reveal Their Diverse Functions in Tea Plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:947072. [PMID: 35845671 PMCID: PMC9280663 DOI: 10.3389/fpls.2022.947072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Golden2, ARR-B, Psr1 (GARP) proteins are plant-specific transcription factors that play vital and diverse roles in plants. However, systematic research on the GARP gene family in plants, including tea plant (Camellia sinensis), is scarce. In this study, a total of 69 GARP genes were identified and characterized from the tea plant genome based on the B-motif sequence signature. The CsGARP genes were clustered into five subfamilies: PHR1/PHL1, KAN, NIGT1/HRS1/HHO, GLK and ARR-B subfamilies. The phylogenetic relationships, gene structures, chromosomal locations, conserved motifs and regulatory cis-acting elements of the CsGARP family members were comprehensively analyzed. The expansion of CsGARP genes occurred via whole-genome duplication/segmental duplication, proximal duplication, and dispersed duplication under purifying selective pressure. The expression patterns of the CsGARP genes were systematically explored from various perspectives: in different tissues during different seasons; in different leaf color stages of tea plant; under aluminum treatment and nitrogen treatment; and in response to abiotic stresses such as cold, drought and salt and to biotic stress caused by Acaphylla theae. The results demonstrate that CsGARP family genes are ubiquitously expressed and play crucial roles in the regulation of growth and development of tea plant and the responses to environmental stimuli. Collectively, these results not only provide valuable information for further functional investigations of CsGARPs in tea plant but also contribute to broadening our knowledge of the functional diversity of GARP family genes in plants.
Collapse
Affiliation(s)
- Chuan Yue
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| | - Qianqian Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Hu
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Congcong Li
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liyong Luo
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| | - Liang Zeng
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| |
Collapse
|
66
|
Zhao X, Yang J, Li X, Li G, Sun Z, Chen Y, Chen Y, Xia M, Li Y, Yao L, Hou H. Identification and expression analysis of GARP superfamily genes in response to nitrogen and phosphorus stress in Spirodela polyrhiza. BMC PLANT BIOLOGY 2022; 22:308. [PMID: 35751022 PMCID: PMC9233324 DOI: 10.1186/s12870-022-03696-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND GARP transcription factors perform critical roles in plant development and response to environmental stimulus, especially in the phosphorus (P) and nitrogen (N) sensing and uptake. Spirodela polyrhiza (giant duckweed) is widely used for phytoremediation and biomass production due to its rapid growth and efficient N and P removal capacities. However, there has not yet been a comprehensive analysis of the GRAP gene family in S. polyrhiza. RESULTS We conducted a comprehensive study of GRAP superfamily genes in S. polyrhiza. First, we investigated 35 SpGARP genes which have been classified into three groups based on their gene structures, conserved motifs, and phylogenetic relationship. Then, we identified the duplication events, performed the synteny analysis, and calculated the Ka/Ks ratio in these SpGARP genes. The regulatory and co-expression networks of SpGARPs were further constructed using cis-acting element analysis and weighted correlation network analysis (WGCNA). Finally, the expression pattern of SpGARP genes were analyzed using RNA-seq data and qRT-PCR, and several NIGT1 transcription factors were found to be involved in both N and P starvation responses. CONCLUSIONS The study provides insight into the evolution and function of GARP superfamily in S. polyrhiza, and lays the foundation for the further functional verification of SpGARP genes.
Collapse
Affiliation(s)
- Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaozhe Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoliang Sun
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yimeng Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manli Xia
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixian Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North Diversion Project of Henan Province, Collaborative Innovation Center of Water Security for Water Source Region of Mid-Line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang, 473061, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
67
|
Yu C, Wang Q, Zhang S, Zeng H, Chen W, Chen W, Lou H, Yu W, Wu J. Effects of Strigolactone on Torreya grandis Gene Expression and Soil Microbial Community Structure Under Simulated Nitrogen Deposition. FRONTIERS IN PLANT SCIENCE 2022; 13:908129. [PMID: 35720604 PMCID: PMC9201785 DOI: 10.3389/fpls.2022.908129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen enters the terrestrial ecosystem through deposition. High nitrogen levels can affect physical and chemical properties of soil and inhibit normal growth and reproduction of forest plants. Nitrogen modulates the composition of soil microorganisms. Strigolactones inhibits plant branching, promotes root growth, nutrient absorption, and promotes arbuscular fungal mycelia branching. Plants are subjected to increasing atmospheric nitrogen deposition. Therefore, it is imperative to explore the relationship between strigolactone and nitrogen deposition of plants and abundance of soil microorganisms. In the present study, the effects of strigolactone on genetic responses and soil microorganisms of Torreya grandis, under simulated nitrogen deposition were explored using high-throughput sequencing techniques. T. grandis is a subtropical economic tree species in China. A total of 4,008 differentially expressed genes were identified in additional N deposition and GR24 treatment. These genes were associated with multiple GO terms and metabolic pathways. GO enrichment analysis showed that several DEGs were associated with enrichment of the transporter activity term. Both additional nitrogen deposition and GR24 treatment modulated the content of nutrient elements. The content of K reduced in leaves after additional N deposition treatment. The content of P increased in leaves after GR24 treatment. A total of 20 families and 29 DEGs associated with transporters were identified. These transporters may be regulated by transcription factors. A total of 1,402,819 clean reads and 1,778 amplicon sequence variants (ASVs) were generated through Bacterial 16S rRNA sequencing. Random forest classification revealed that Legionella, Lacunisphaera, Klebsiella, Bryobacter, and Janthinobacterium were significantly enriched in the soil in the additional N deposition group and the GR24 treatment group. Co-occurrence network analysis showed significant differences in composition of soil microbial community under different treatments. These results indicate a relationship between N deposition and strigolactones effect. The results provide new insights on the role of strigolactones in plants and composition of soil microorganisms under nitrogen deposition.
Collapse
Affiliation(s)
- Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Qi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Hao Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- NFGA Engineering Research Center for Torreya grandis ‘Merrillii’, Zhejiang A&F University, Hangzhou, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- NFGA Engineering Research Center for Torreya grandis ‘Merrillii’, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
68
|
Liu Q, Wu K, Song W, Zhong N, Wu Y, Fu X. Improving Crop Nitrogen Use Efficiency Toward Sustainable Green Revolution. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:523-551. [PMID: 35595292 DOI: 10.1146/annurev-arplant-070121-015752] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Green Revolution of the 1960s improved crop yields in part through the widespread cultivation of semidwarf plant varieties, which resist lodging but require a high-nitrogen (N) fertilizer input. Because environmentally degrading synthetic fertilizer use underlies current worldwide cereal yields, future agricultural sustainability demands enhanced N use efficiency (NUE). Here, we summarize the current understanding of how plants sense, uptake, and respond to N availability in the model plants that can be used to improve sustainable productivity in agriculture. Recent progress in unlocking the genetic basis of NUE within the broader context of plant systems biology has provided insights into the coordination of plant growth and nutrient assimilation and inspired the implementation of a new breeding strategy to cut fertilizer use in high-yield cereal crops. We conclude that identifying fresh targets for N sensing and response in crops would simultaneously enable improved grain productivity and NUE to launch a new Green Revolution and promote future food security.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Wenzhen Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Nan Zhong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Yunzhe Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
69
|
Łangowski Ł, Goñi O, Ikuyinminu E, Feeney E, O'Connell S. Investigation of the direct effect of a precision Ascophyllum nodosum biostimulant on nitrogen use efficiency in wheat seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:44-57. [PMID: 35306329 DOI: 10.1016/j.plaphy.2022.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Reduction in the greenhouse gas (GHG) emissions and nitrogen (N) pollution of ground water by improving nitrogen use efficiency (NUE) in crops has become an intensively investigated research topic in pursuit of a more sustainable future. Although, distinct solutions have been proposed there are only a few reports documenting the detailed interplay between observed plant growth dynamics and changes in plant N related transcriptional and biochemical changes. It was previously demonstrated that the application of a formulated biostimulant (PSI-362) derived from Ascophyllum nodosum (ANE) improves N uptake in Arabidopsis thaliana and in barley. In this study, the effect of PSI-362 on the growth dynamics of wheat seedlings was evaluated at different biostimulant and N supplementation rates. Wheat grown on N deficient MS medium was also analysed from the first hour of the treatment until the depletion of the nutrients in the medium 9 days later. During this time the biomass increase measured for PSI-362 treated plants versus untreated controls was associated with increased nitrate uptake, with surplus N assimilated by the biomass in the form of glutamate, glutamine, free amino acids, soluble proteins, and chlorophyll. Phenotypical and biochemical analysis were supported by evaluation of differential expression of genetic markers involved in nitrate perception and transport (TaNRT1.1/NPF6.3), nitrate and nitrite reduction (TaNR1 and TaNiR1) and assimilation (TaGDH2, TaGoGAT, TaGS1). Finally, a comparative analysis of the precision biostimulant PSI-362 and two generic ANEs demonstrated that the NUE effect greatly differs depending on the ANE formulation used.
Collapse
Affiliation(s)
| | - Oscar Goñi
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Kerry (South Campus), Clash, Tralee, Co. Kerry, Ireland; Brandon Bioscience, Tralee, Co. Kerry, Ireland
| | - Elomofe Ikuyinminu
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Kerry (South Campus), Clash, Tralee, Co. Kerry, Ireland; Brandon Bioscience, Tralee, Co. Kerry, Ireland
| | - Ewan Feeney
- Brandon Bioscience, Tralee, Co. Kerry, Ireland
| | - Shane O'Connell
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Kerry (South Campus), Clash, Tralee, Co. Kerry, Ireland; Brandon Bioscience, Tralee, Co. Kerry, Ireland.
| |
Collapse
|
70
|
Dokwal D, Cocuron JC, Alonso AP, Dickstein R. Metabolite shift in Medicago truncatula occurs in phosphorus deprivation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2093-2111. [PMID: 34971389 DOI: 10.1093/jxb/erab559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Symbiotic nitrogen (N) fixation entails successful interaction between legume hosts and rhizobia that occur in specialized organs called nodules. N-fixing legumes have a higher demand for phosphorus (P) than legumes grown on mineral N. Medicago truncatula is an important model plant for characterization of effects of P deficiency at the molecular level. Hence, a study was carried out to address the alteration in metabolite levels of M. truncatula grown aeroponically and subjected to 4 weeks of P stress. First, GC-MS-based untargeted metabolomics initially revealed changes in the metabolic profile of nodules, with increased levels of amino acids and sugars and a decline in amounts of organic acids. Subsequently, LC-MS/MS was used to quantify these compounds including phosphorylated metabolites in the whole plant. Our results showed a drastic reduction in levels of organic acids and phosphorylated compounds in -P leaves, with a moderate reduction in -P roots and nodules. Additionally, sugars and amino acids were elevated in the whole plant under P deprivation. These findings provide evidence that N fixation in M. truncatula is mediated through a N feedback mechanism that in parallel is related to carbon and P metabolism.
Collapse
Affiliation(s)
- Dhiraj Dokwal
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | | | - Ana Paula Alonso
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Rebecca Dickstein
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
71
|
Marro N, Lidoy J, Chico MÁ, Rial C, García J, Varela RM, Macías FA, Pozo MJ, Janoušková M, López-Ráez JA. Strigolactones: New players in the nitrogen-phosphorus signalling interplay. PLANT, CELL & ENVIRONMENT 2022; 45:512-527. [PMID: 34719040 DOI: 10.1111/pce.14212] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 05/08/2023]
Abstract
Nitrogen (N) and phosphorus (P) are among the most important macronutrients for plant growth and development, and the most widely used as fertilizers. Understanding how plants sense and respond to N and P deficiency is essential to optimize and reduce the use of chemical fertilizers. Strigolactones (SLs) are phytohormones acting as modulators and sensors of plant responses to P deficiency. In the present work, we assess the potential role of SLs in N starvation and in the N-P signalling interplay. Physiological, transcriptional and metabolic responses were analysed in wild-type and SL-deficient tomato plants grown under different P and N regimes, and in plants treated with a short-term pulse of the synthetic SL analogue 2'-epi-GR24. The results evidence that plants prioritize N over P status by affecting SL biosynthesis. We also show that SLs modulate the expression of key regulatory genes of phosphate and nitrate signalling pathways, including the N-P integrators PHO2 and NIGT1/HHO. The results support a key role for SLs as sensors during early plant responses to both N and phosphate starvation and mediating the N-P signalling interplay, indicating that SLs are involved in more physiological processes than so far proposed.
Collapse
Affiliation(s)
- Nicolás Marro
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Javier Lidoy
- Group of Mycorrhizas, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María Ángeles Chico
- Group of Mycorrhizas, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Carlos Rial
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (CeiA3), School of Science, University of Cádiz, Cádiz, Spain
| | - Juan García
- Group of Mycorrhizas, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Rosa M Varela
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (CeiA3), School of Science, University of Cádiz, Cádiz, Spain
| | - Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (CeiA3), School of Science, University of Cádiz, Cádiz, Spain
| | - María J Pozo
- Group of Mycorrhizas, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Martina Janoušková
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Juan A López-Ráez
- Group of Mycorrhizas, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
72
|
New insights into the role of chrysanthemum calcineurin B-like interacting protein kinase CmCIPK23 in nitrate signaling in Arabidopsis roots. Sci Rep 2022; 12:1018. [PMID: 35046428 PMCID: PMC8770472 DOI: 10.1038/s41598-021-04758-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Nitrate is an important source of nitrogen and also acts as a signaling molecule to trigger numerous physiological, growth, and developmental processes throughout the life of the plant. Many nitrate transporters, transcription factors, and protein kinases participate in the regulation of nitrate signaling. Here, we identified a gene encoding the chrysanthemum calcineurin B-like interacting protein kinase CmCIPK23, which participates in nitrate signaling pathways. In Arabidopsis, overexpression of CmCIPK23 significantly decreased lateral root number and length and primary root length compared to the WT when grown on modified Murashige and Skoog medium with KNO3 as the sole nitrogen source (modified MS). The expression of nitrate-responsive genes differed significantly between CmCIPK23-overexpressing Arabidopsis (CmCIPK23-OE) and the WT after nitrate treatment. Nitrate content was significantly lower in CmCIPK23-OE roots, which may have resulted from reduced nitrate uptake at high external nitrate concentrations (≥ 1 mM). Nitrate reductase activity and the expression of nitrate reductase and glutamine synthase genes were lower in CmCIPK23-OE roots. We also found that CmCIPK23 interacted with the transcription factor CmTGA1, whose Arabidopsis homolog regulates the nitrate response. We inferred that CmCIPK23 overexpression influences root development on modified MS medium, as well as root nitrate uptake and assimilation at high external nitrate supply. These findings offer new perspectives on the mechanisms by which the chrysanthemum CBL interacting protein kinase CmCIPK23 influences nitrate signaling.
Collapse
|
73
|
Wu R, Liu Z, Wang J, Guo C, Zhou Y, Bawa G, Rochaix JD, Sun X. COE2 Is Required for the Root Foraging Response to Nitrogen Limitation. Int J Mol Sci 2022; 23:ijms23020861. [PMID: 35055047 PMCID: PMC8778332 DOI: 10.3390/ijms23020861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 01/10/2023] Open
Abstract
There are numerous exchanges of signals and materials between leaves and roots, including nitrogen, which is one of the essential nutrients for plant growth and development. In this study we identified and characterized the Chlorophyll A/B-Binding Protein (CAB) (named coe2 for CAB overexpression 2) mutant, which is defective in the development of chloroplasts and roots under normal growth conditions. The phenotype of coe2 is caused by a mutation in the Nitric Oxide Associated (NOA1) gene that is implicated in a wide range of chloroplast functions including the regulation of metabolism and signaling of nitric oxide (NO). A transcriptome analysis reveals that expression of genes involved in metabolism and lateral root development are strongly altered in coe2 seedlings compared with WT. COE2 is expressed in hypocotyls, roots, root hairs, and root caps. Both the accumulation of NO and the growth of lateral roots are enhanced in WT but not in coe2 under nitrogen limitation. These new findings suggest that COE2-dependent signaling not only coordinates gene expression but also promotes chloroplast development and function by modulating root development and absorption of nitrogen compounds.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Zhixin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Jiajing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Chenxi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Yaping Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - George Bawa
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland;
| | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
- Correspondence:
| |
Collapse
|
74
|
Ye JY, Tian WH, Jin CW. Nitrogen in plants: from nutrition to the modulation of abiotic stress adaptation. STRESS BIOLOGY 2022; 2:4. [PMID: 37676383 PMCID: PMC10441927 DOI: 10.1007/s44154-021-00030-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/14/2021] [Indexed: 09/08/2023]
Abstract
Nitrogen is one of the most important nutrient for plant growth and development; it is strongly associated with a variety of abiotic stress responses. As sessile organisms, plants have evolved to develop efficient strategies to manage N to support growth when exposed to a diverse range of stressors. This review summarizes the recent progress in the field of plant nitrate (NO3-) and ammonium (NH4+) uptake, which are the two major forms of N that are absorbed by plants. We explore the intricate relationship between NO3-/NH4+ and abiotic stress responses in plants, focusing on stresses from nutrient deficiencies, unfavorable pH, ions, and drought. Although many molecular details remain unclear, research has revealed a number of core signaling regulators that are associated with N-mediated abiotic stress responses. An in-depth understanding and exploration of the molecular processes that underpin the interactions between N and abiotic stresses is useful in the design of effective strategies to improve crop growth, development, and productivity.
Collapse
Affiliation(s)
- Jia Yuan Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Wen Hao Tian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
75
|
Paz-Ares J, Puga MI, Rojas-Triana M, Martinez-Hevia I, Diaz S, Poza-Carrión C, Miñambres M, Leyva A. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. MOLECULAR PLANT 2022; 15:104-124. [PMID: 34954444 DOI: 10.1016/j.molp.2021.12.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 05/25/2023]
Abstract
Phosphorus (P) is an essential nutrient for plant growth and reproduction. Plants preferentially absorb P as orthophosphate (Pi), an ion that displays low solubility and that is readily fixed in the soil, making P limitation a condition common to many soils and Pi fertilization an inefficient practice. To cope with Pi limitation, plants have evolved a series of developmental and physiological responses, collectively known as the Pi starvation rescue system (PSR), aimed to improve Pi acquisition and use efficiency (PUE) and protect from Pi-starvation-induced stress. Intensive research has been carried out during the last 20 years to unravel the mechanisms underlying the control of the PSR in plants. Here we review the results of this research effort that have led to the identification and characterization of several core Pi starvation signaling components, including sensors, transcription factors, microRNAs (miRNAs) and miRNA inhibitors, kinases, phosphatases, and components of the proteostasis machinery. We also refer to recent results revealing the existence of intricate signaling interplays between Pi and other nutrients and antagonists, N, Fe, Zn, and As, that have changed the initial single-nutrient-centric view to a more integrated view of nutrient homeostasis. Finally, we discuss advances toward improving PUE and future research priorities.
Collapse
Affiliation(s)
- Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain.
| | - Maria Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Monica Rojas-Triana
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Iris Martinez-Hevia
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Sergio Diaz
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Cesar Poza-Carrión
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Miguel Miñambres
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Antonio Leyva
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
76
|
Yang X, Guo T, Li J, Chen Z, Guo B, An X. Genome-wide analysis of the MYB-related transcription factor family and associated responses to abiotic stressors in Populus. Int J Biol Macromol 2021; 191:359-376. [PMID: 34534587 DOI: 10.1016/j.ijbiomac.2021.09.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
MYB proteins are one of the most abundant transcription factor families in the plant kingdom. Evidence has increasingly revealed that MYB-related proteins function in diverse plant biological processes. However, little is known about the genome-wide characterization and functions of MYB-related proteins in Populus, an important model and commercial tree species. In this study, 152 PtrMYBRs were identified and unevenly located on 19 Populus chromosomes. A phylogenetic analysis divided them into six major subgroups, supported by conserved gene organization, consensus motifs, and protein domain architecture. Promoter assessment and gene ontology classification results indicated that the MYB-related family is likely involved in plant development and responses to various environmental stressors. The Populus MYB-related family members showed various expression patterns in different tissues and stress conditions, implying their crucial roles in the development and stress responses in Populus. Co-expression analyses revealed that Populus MYB-related genes might participate in the regulation of antioxidant defense system and various signaling pathways in response to stress. The three-dimensional structures of different subgroup of Populus MYB-related proteins further provided functional information at the proteomic level. These findings provide valuable information for a prospective functional dissection of MYB-related proteins and genetic improvement of Populus.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ting Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Zhong Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Bin Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Shanxi Academy of Forest Sciences, Taiyuan, Shanxi 030012, China
| | - Xinmin An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
77
|
Ueda Y, Sakuraba Y, Yanagisawa S. Environmental Control of Phosphorus Acquisition: A Piece of the Molecular Framework Underlying Nutritional Homeostasis. PLANT & CELL PHYSIOLOGY 2021; 62:573-581. [PMID: 33508134 DOI: 10.1093/pcp/pcab010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Homeostasis of phosphorus (P), an essential macronutrient, is vital for plant growth under diverse environmental conditions. Although plants acquire P from the soil as inorganic phosphate (Pi), its availability is generally limited. Therefore, plants employ mechanisms involving various Pi transporters that facilitate efficient Pi uptake against a steep concentration gradient across the plant-soil interface. Among the different types of Pi transporters in plants, some members of the PHOSPHATE TRANSPORTER 1 (PHT1) family, present in the plasma membrane of root epidermal cells and root hairs, are chiefly responsible for Pi uptake from the rhizosphere. Therefore, accurate regulation of PHT1 expression is crucial for the maintenance of P homeostasis. Previous investigations positioned the Pi-dependent posttranslational regulation of PHOSPHATE STARVATION RESPONSE 1 (PHR1) transcription factor activity at the center of the regulatory mechanism controlling PHT1 expression and P homeostasis; however, recent studies indicate that several other factors also regulate the expression of PHT1 to modulate P acquisition and sustain P homeostasis against environmental fluctuations. Together with PHR1, several transcription factors that mediate the availability of other nutrients (such as nitrogen and zinc), light, and stress signals form an intricate transcriptional network to maintain P homeostasis under highly diverse environments. In this review, we summarize this intricate transcriptional network for the maintenance of P homeostasis under different environmental conditions, with a main focus on the mechanisms identified in Arabidopsis.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki, 305-8686 Japan
| | - Yasuhito Sakuraba
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
78
|
Cheng CY, Li Y, Varala K, Bubert J, Huang J, Kim GJ, Halim J, Arp J, Shih HJS, Levinson G, Park SH, Cho HY, Moose SP, Coruzzi GM. Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships. Nat Commun 2021; 12:5627. [PMID: 34561450 PMCID: PMC8463701 DOI: 10.1038/s41467-021-25893-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Inferring phenotypic outcomes from genomic features is both a promise and challenge for systems biology. Using gene expression data to predict phenotypic outcomes, and functionally validating the genes with predictive powers are two challenges we address in this study. We applied an evolutionarily informed machine learning approach to predict phenotypes based on transcriptome responses shared both within and across species. Specifically, we exploited the phenotypic diversity in nitrogen use efficiency and evolutionarily conserved transcriptome responses to nitrogen treatments across Arabidopsis accessions and maize varieties. We demonstrate that using evolutionarily conserved nitrogen responsive genes is a biologically principled approach to reduce the feature dimensionality in machine learning that ultimately improved the predictive power of our gene-to-trait models. Further, we functionally validated seven candidate transcription factors with predictive power for NUE outcomes in Arabidopsis and one in maize. Moreover, application of our evolutionarily informed pipeline to other species including rice and mice models underscores its potential to uncover genes affecting any physiological or clinical traits of interest across biology, agriculture, or medicine.
Collapse
Affiliation(s)
- Chia-Yi Cheng
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ying Li
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Kranthi Varala
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Jessica Bubert
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ji Huang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Grace J Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Justin Halim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Jennifer Arp
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hung-Jui S Shih
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Grace Levinson
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Seo Hyun Park
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Ha Young Cho
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Stephen P Moose
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gloria M Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
79
|
Sun Y, Hu Z, Wang X, Shen X, Hu S, Yan Y, Kant S, Xu G, Xue Y, Sun S. Overexpression of OsPHR3 improves growth traits and facilitates nitrogen use efficiency under low phosphate condition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:712-722. [PMID: 34214781 DOI: 10.1016/j.plaphy.2021.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) and nitrogen (N) are both essential macronutrients for maintaining plant growth and development. In rice (Oryza sativa L.), OsPHR3 is one of the four paralogs of PHR1, which acts as a central regulator of phosphate (Pi) homeostasis, as well being involved in N homeostasis. However, the functions of OsPHR3 in N utilization under different Pi conditions have yet to be fully studied. In this study, we aimed to dissect the effect of OsPHR3-overexpression on N utilization under Pi deficient regimes. Biochemical, molecular and physiological assays were performed to determine the N-influx, translocation, and accumulation in OsPHR3-overexpressing rice lines, grown under Pi-sufficient and -deficient conditions, in both hydroponic and soil systems. Furthermore, important agronomic traits of these plants were also evaluated. The overexpression of OsPHR3 increased N uptake under Pi stress regimes. Increased N uptake also elevated total N concentrations in these plants by inducing N transporter genes expression. Furthermore, overexpression of OsPHR3 increased N use efficiency, 1000-grain weight and grain yield under different Pi conditions. We established new findings that OsPHR3-overexpression facilitates N utilization under Pi deficient conditions. This will help achieving higher yields by coordinating the utilization of N and P.
Collapse
Affiliation(s)
- Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, 201403, China
| | - Zhi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Wang
- Landscape Architecture Department, College of Horticulture, Nanjing Agricultural University, 210095, China
| | - Xing Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siwen Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Yan
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, 3400, Australia
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Xue
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, 201403, China.
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
80
|
Li Q, Zhou L, Li Y, Zhang D, Gao Y. Plant NIGT1/HRS1/HHO Transcription Factors: Key Regulators with Multiple Roles in Plant Growth, Development, and Stress Responses. Int J Mol Sci 2021; 22:ijms22168685. [PMID: 34445391 PMCID: PMC8395448 DOI: 10.3390/ijms22168685] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
The NIGT1/HRS1/HHO transcription factor (TF) family is a new subfamily of the G2-like TF family in the GARP superfamily and contains two conserved domains: the Myb-DNA binding domain and the hydrophobic and globular domain. Some studies showed that NIGT1/HRS1/HHO TFs are involved in coordinating the absorption and utilization of nitrogen and phosphorus. NIGT1/HRS1/HHO TFs also play an important role in plant growth and development and in the responses to abiotic stresses. This review focuses on recent advances in the structural characteristics of the NIGT1/HRS1/HHO TF family and discusses how the roles and functions of the NIGT1/HRS1/HHO TFs operate in terms of in plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Qian Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (Q.L.); (L.Z.); (D.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Luyan Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (Q.L.); (L.Z.); (D.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yuhong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China;
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (Q.L.); (L.Z.); (D.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yong Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (Q.L.); (L.Z.); (D.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-0514-87997217
| |
Collapse
|
81
|
Abstract
Nutrients are vital to life through intertwined sensing, signaling, and metabolic processes. Emerging research focuses on how distinct nutrient signaling networks integrate and coordinate gene expression, metabolism, growth, and survival. We review the multifaceted roles of sugars, nitrate, and phosphate as essential plant nutrients in controlling complex molecular and cellular mechanisms of dynamic signaling networks. Key advances in central sugar and energy signaling mechanisms mediated by the evolutionarily conserved master regulators HEXOKINASE1 (HXK1), TARGET OF RAPAMYCIN (TOR), and SNF1-RELATED PROTEIN KINASE1 (SNRK1) are discussed. Significant progress in primary nitrate sensing, calcium signaling, transcriptome analysis, and root-shoot communication to shape plant biomass and architecture are elaborated. Discoveries on intracellular and extracellular phosphate signaling and the intimate connections with nitrate and sugar signaling are examined. This review highlights the dynamic nutrient, energy, growth, and stress signaling networks that orchestrate systemwide transcriptional, translational, and metabolic reprogramming, modulate growth and developmental programs, and respond to environmental cues. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lei Li
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA; ,
| | - Kun-Hsiang Liu
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA; , .,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, and Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA; ,
| |
Collapse
|
82
|
Sharma S, Vengavasi K, Kumar MN, Yadav SK, Pandey R. Expression of potential reference genes in response to macronutrient stress in rice and soybean. Gene 2021; 792:145742. [PMID: 34051336 DOI: 10.1016/j.gene.2021.145742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023]
Abstract
Given the complexity of nutrient stress responses and the availability of a few validated reference genes, we aimed to identify robust and stable reference genes for macronutrient stress in rice and soybean. Ten potential reference genes were evaluated using geNorm, NormFinder, BestKeeper, Comparative ΔCt method, and RefFinder algorithms under low and completely starved conditions of nitrogen (N), phosphorus (P), potassium (K), and sulphur (S). Results revealed distinct sets of reference gene pairs, showing stable expression under different experimental conditions. The gene pairs TIP41/UBC(9/10/18) and F-box/UBC10 were most stable in rice and soybean, respectively under N stress. Under P stress, UBC9/UBC10 in rice and F-Box/UBC10 in soybean were most stable. Similarly, TIP41/UBC10 in rice and RING FINGER/UBC9 in soybean were the best gene pairs under K stress while F-Box/TIP41 in rice and UBC9/UBC10 in soybean were the most stable gene pairs under S stress. These reference gene pairs were validated by quantifying the expression levels of high-affinity transporters like NRT2.1/NRT2.5, PT1, AKT1, and SULTR1 for N, P, K, and S stress, respectively. This study reiterates the importance of choosing reference genes based on crop species and the experimental conditions, in order to obtain concrete answers to missing links of gene regulation in response to macronutrient deficiencies.
Collapse
Affiliation(s)
- Sandeep Sharma
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| | - Krishnapriya Vengavasi
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| | - M Nagaraj Kumar
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| | - Shiv Kumar Yadav
- Division of Seed Science and Technology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| | - Renu Pandey
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India.
| |
Collapse
|
83
|
Singh A. Expression dynamics indicate the role of Jasmonic acid biosynthesis pathway in regulating macronutrient (N, P and K +) deficiency tolerance in rice (Oryza sativa L.). PLANT CELL REPORTS 2021; 40:1495-1512. [PMID: 34089089 DOI: 10.1007/s00299-021-02721-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 05/25/2023]
Abstract
Expression pattern indicates that JA biosynthesis pathway via regulating JA levels might control root system architecture to improve nutrient use efficiency (NUE) and N, P, K+ deficiency tolerance in rice. Deficiencies of macronutrients (N, P and K+) and consequent excessive use of fertilizers have dramatically reduced soil fertility. It calls for development of nutrient use efficient plants. Plants combat nutrient deficiencies by altering their root system architecture (RSA) to enhance the acquisition of nutrients from the soil. Amongst various phytohormones, Jasmonic acid (JA) is known to regulate plant root growth and modulate RSA. Therefore, to understand the role of JA in macronutrient deficiency in rice, expression pattern of JA biosynthesis genes was analyzed under N, P and K+ deficiencies. Several members belonging to different families of JA biosynthesis genes (PLA1, LOX, AOS, AOC, OPR, ACX and JAR1) showed differential expression exclusively in one nutrient deficiency or in multiple nutrient deficiencies. Expression analysis during developmental stages showed that several genes expressed significantly in vegetative tissues, particularly in root. In addition, JA biosynthesis genes were found to have significant expression under the treatment of different phytohormones, including Auxin, cytokinin, gibberellic acid (GA), abscisic acid (ABA), JA and abiotic stresses, such as drought, salinity and cold. Analysis of promoters of these genes revealed various cis-regulatory elements associated with hormone response, plant development and abiotic stresses. These findings suggest that JA biosynthesis pathway by regulating the level of JA might control the RSA thus, it may help rice plant in combating macronutrient deficiency.
Collapse
Affiliation(s)
- Amarjeet Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
84
|
Konishi M, Okitsu T, Yanagisawa S. Nitrate-responsive NIN-like protein transcription factors perform unique and redundant roles in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5735-5750. [PMID: 34050740 DOI: 10.1093/jxb/erab246] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Upon sensing nitrate, NODULE INCEPTION (NIN)-like protein (NLP) transcription factors alter gene expression to promote nitrate uptake and utilization. Of the nine NLPs in Arabidopsis, the physiological roles of only three NLPs (NLP6-NLP8) have been characterized to date. To evaluate the unique and redundant roles of Arabidopsis NLPs, we assessed the phenotypes of single and higher order nlp mutants. Unlike other nlp single mutants, nlp2 and nlp7 single mutants showed a reduction in shoot fresh weight when grown in the presence of nitrate as the sole nitrogen source, indicating that NLP2, like NLP7, plays a major role in vegetative growth. Interestingly, the growth defect of nlp7 recovered upon the supply of ammonium or glutamine, whereas that of nlp2 did not. Furthermore, complementation assays using chimeric constructs revealed that the coding sequence, but not the promoter region, of NLP genes was responsible for the differences between nlp2 and nlp7 single mutant phenotypes, suggesting differences in protein function. Importantly, nitrate utilization was almost completely abolished in the nlp septuple mutant (nlp2 nlp4 nlp5 nlp6 nlp7 nlp8 nlp9), suggesting that NLPs other than NLP2 and NLP7 also assist in the regulation of nitrate-inducible gene expression and nitrate-dependent promotion of vegetative growth in Arabidopsis.
Collapse
Affiliation(s)
- Mineko Konishi
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Tokyo, Japan
| | - Takayuki Okitsu
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Tokyo, Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Tokyo, Japan
| |
Collapse
|
85
|
Liang T, Yuan Z, Fu L, Zhu M, Luo X, Xu W, Yuan H, Zhu R, Hu Z, Wu X. Integrative Transcriptomic and Proteomic Analysis Reveals an Alternative Molecular Network of Glutamine Synthetase 2 Corresponding to Nitrogen Deficiency in Rice ( Oryza sativa L.). Int J Mol Sci 2021; 22:ijms22147674. [PMID: 34299294 PMCID: PMC8304609 DOI: 10.3390/ijms22147674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 01/21/2023] Open
Abstract
Nitrogen (N) is an essential nutrient for plant growth and development. The root system architecture is a highly regulated morphological system, which is sensitive to the availability of nutrients, such as N. Phenotypic characterization of roots from LY9348 (a rice variety with high nitrogen use efficiency (NUE)) treated with 0.725 mM NH4NO3 (1/4N) was remarkable, especially primary root (PR) elongation, which was the highest. A comprehensive analysis was performed for transcriptome and proteome profiling of LY9348 roots between 1/4N and 2.9 mM NH4NO3 (1N) treatments. The results indicated 3908 differential expression genes (DEGs; 2569 upregulated and 1339 downregulated) and 411 differential abundance proteins (DAPs; 192 upregulated and 219 downregulated). Among all DAPs in the proteome, glutamine synthetase (GS2), a chloroplastic ammonium assimilation protein, was the most upregulated protein identified. The unexpected concentration of GS2 from the shoot to the root in the 1/4N treatment indicated that the presence of an alternative pathway of N assimilation regulated by GS2 in LY9348 corresponded to the low N signal, which was supported by GS enzyme activity and glutamine/glutamate (Gln/Glu) contents analysis. In addition, N transporters (NRT2.1, NRT2.2, NRT2.3, NRT2.4, NAR2.1, AMT1.3, AMT1.2, and putative AMT3.3) and N assimilators (NR2, GS1;1, GS1;2, GS1;3, NADH-GOGAT2, and AS2) were significantly induced during the long-term N-deficiency response at the transcription level (14 days). Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that phenylpropanoid biosynthesis and glutathione metabolism were significantly modulated by N deficiency. Notably, many transcription factors and plant hormones were found to participate in root morphological adaptation. In conclusion, our study provides valuable information to further understand the response of rice roots to N-deficiency stress.
Collapse
Affiliation(s)
- Ting Liang
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhengqing Yuan
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lu Fu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Menghan Zhu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Luo
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wuwu Xu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Renshan Zhu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xianting Wu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610000, China
- Correspondence: ; Tel.: +86-181-8061-4938
| |
Collapse
|
86
|
Wang C, Li Y, Li M, Zhang K, Ma W, Zheng L, Xu H, Cui B, Liu R, Yang Y, Zhong Y, Liao H. Functional assembly of root-associated microbial consortia improves nutrient efficiency and yield in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1021-1035. [PMID: 33491865 DOI: 10.1111/jipb.13073] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Root-associated microbes are critical for plant growth and nutrient acquisition. However, scant information exists on optimizing communities of beneficial root-associated microbes or the mechanisms underlying their interactions with host plants. In this report, we demonstrate that root-associated microbes are critical influencers of host plant growth and nutrient acquisition. Three synthetic communities (SynComs) were constructed based on functional screening of 1,893 microbial strains isolated from root-associated compartments of soybean plants. Functional assemblage of SynComs promoted significant plant growth and nutrient acquisition under both N/P nutrient deficiency and sufficiency conditions. Field trials further revealed that application of SynComs stably and significantly promoted plant growth, facilitated N and P acquisition, and subsequently increased soybean yield. Among the tested communities, SynCom1 exhibited the greatest promotion effect, with yield increases of up to 36.1% observed in two field sites. Further RNA-seq implied that SynCom application systemically regulates N and P signaling networks at the transcriptional level, which leads to increased representation of important growth pathways, especially those related to auxin responses. Overall, this study details a promising strategy for constructing SynComs based on functional screening, which are capable of enhancing nutrient acquisition and crop yield through the activities of beneficial root-associated microbes.
Collapse
Affiliation(s)
- Cunhu Wang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanjun Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingjia Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kefei Zhang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenjing Ma
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Zheng
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hanyu Xu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baofeng Cui
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ran Liu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongqing Yang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongjia Zhong
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
87
|
Ruffel S, Chaput V, Przybyla-Toscano J, Fayos I, Ibarra C, Moyano T, Fizames C, Tillard P, O’Brien JA, Gutiérrez RA, Gojon A, Lejay L. Genome-wide analysis in response to nitrogen and carbon identifies regulators for root AtNRT2 transporters. PLANT PHYSIOLOGY 2021; 186:696-714. [PMID: 33582801 PMCID: PMC8154064 DOI: 10.1093/plphys/kiab047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/19/2021] [Indexed: 05/14/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the High-Affinity Transport System (HATS) for root nitrate (NO3-) uptake depends mainly on four NRT2 NO3- transporters, namely NRT2.1, NRT2.2, NRT2.4, and NRT2.5. The HATS is the target of many regulations to coordinate nitrogen (N) acquisition with the N status of the plant and with carbon (C) assimilation through photosynthesis. At the molecular level, C and N signaling pathways control gene expression of the NRT2 transporters. Although several regulators of these transporters have been identified in response to either N or C signals, the response of NRT2 gene expression to the interaction of these signals has never been specifically investigated, and the underlying molecular mechanisms remain largely unknown. To address this question we used an original systems biology approach to model a regulatory gene network targeting NRT2.1, NRT2.2, NRT2.4, and NRT2.5 in response to N/C signals. Our systems analysis of the data identified three transcription factors, TGA3, MYC1, and bHLH093. Functional analysis of mutants combined with yeast one-hybrid experiments confirmed that all three transcription factors are regulators of NRT2.4 or NRT2.5 in response to N or C signals. These results reveal a role for TGA3, MYC1, and bHLH093 in controlling the expression of root NRT2 transporter genes.
Collapse
Affiliation(s)
- Sandrine Ruffel
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Valentin Chaput
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | | | - Ian Fayos
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Catalina Ibarra
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute for Integrative Biology, FONDAP Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Tomas Moyano
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute for Integrative Biology, FONDAP Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Cécile Fizames
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Pascal Tillard
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Jose Antonio O’Brien
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal. Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute for Integrative Biology, FONDAP Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alain Gojon
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Laurence Lejay
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
- Author for communication:
| |
Collapse
|
88
|
Ruffel S, Chaput V, Przybyla-Toscano J, Fayos I, Ibarra C, Moyano T, Fizames C, Tillard P, O'Brien JA, Gutiérrez RA, Gojon A, Lejay L. Genome-wide analysis in response to nitrogen and carbon identifies regulators for root AtNRT2 transporters. PLANT PHYSIOLOGY 2021; 186:696-714. [PMID: 33582801 DOI: 10.1101/822197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/19/2021] [Indexed: 05/26/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the High-Affinity Transport System (HATS) for root nitrate (NO3-) uptake depends mainly on four NRT2 NO3- transporters, namely NRT2.1, NRT2.2, NRT2.4, and NRT2.5. The HATS is the target of many regulations to coordinate nitrogen (N) acquisition with the N status of the plant and with carbon (C) assimilation through photosynthesis. At the molecular level, C and N signaling pathways control gene expression of the NRT2 transporters. Although several regulators of these transporters have been identified in response to either N or C signals, the response of NRT2 gene expression to the interaction of these signals has never been specifically investigated, and the underlying molecular mechanisms remain largely unknown. To address this question we used an original systems biology approach to model a regulatory gene network targeting NRT2.1, NRT2.2, NRT2.4, and NRT2.5 in response to N/C signals. Our systems analysis of the data identified three transcription factors, TGA3, MYC1, and bHLH093. Functional analysis of mutants combined with yeast one-hybrid experiments confirmed that all three transcription factors are regulators of NRT2.4 or NRT2.5 in response to N or C signals. These results reveal a role for TGA3, MYC1, and bHLH093 in controlling the expression of root NRT2 transporter genes.
Collapse
Affiliation(s)
- Sandrine Ruffel
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Valentin Chaput
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | | | - Ian Fayos
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Catalina Ibarra
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute for Integrative Biology, FONDAP Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Tomas Moyano
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute for Integrative Biology, FONDAP Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Cécile Fizames
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Pascal Tillard
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Jose Antonio O'Brien
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal. Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute for Integrative Biology, FONDAP Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alain Gojon
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Laurence Lejay
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| |
Collapse
|
89
|
Low nitrogen conditions accelerate flowering by modulating the phosphorylation state of FLOWERING BHLH 4 in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2022942118. [PMID: 33963081 DOI: 10.1073/pnas.2022942118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nitrogen (N) is an essential nutrient that affects multiple plant developmental processes, including flowering. As flowering requires resources to develop sink tissues for reproduction, nutrient availability is tightly linked to this process. Low N levels accelerate floral transition; however, the molecular mechanisms underlying this response are not well understood. Here, we identify the FLOWERING BHLH 4 (FBH4) transcription factor as a key regulator of N-responsive flowering in Arabidopsis Low N-induced early flowering is compromised in fbh quadruple mutants. We found that FBH4 is a highly phosphorylated protein and that FBH4 phosphorylation levels decrease under low N conditions. In addition, decreased phosphorylation promotes FBH4 nuclear localization and transcriptional activation of the direct target CONSTANS (CO) and downstream florigen FLOWERING LOCUS T (FT) genes. Moreover, we demonstrate that the evolutionarily conserved cellular fuel sensor SNF1-RELATED KINASE 1 (SnRK1), whose kinase activity is down-regulated under low N conditions, directly phosphorylates FBH4. SnRK1 negatively regulates CO and FT transcript levels under high N conditions. Together, these results reveal a mechanism by which N levels may fine-tune FBH4 nuclear localization by adjusting the phosphorylation state to modulate flowering time. In addition to its role in flowering regulation, we also showed that FBH4 was involved in low N-induced up-regulation of nutrient recycling and remobilization-related gene expression. Thus, our findings provide insight into N-responsive growth phase transitions and optimization of plant fitness under nutrient-limited conditions.
Collapse
|
90
|
Safi A, Medici A, Szponarski W, Martin F, Clément-Vidal A, Marshall-Colon A, Ruffel S, Gaymard F, Rouached H, Leclercq J, Coruzzi G, Lacombe B, Krouk G. GARP transcription factors repress Arabidopsis nitrogen starvation response via ROS-dependent and -independent pathways. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3881-3901. [PMID: 33758916 PMCID: PMC8096604 DOI: 10.1093/jxb/erab114] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/22/2021] [Indexed: 05/04/2023]
Abstract
Plants need to cope with strong variations of nitrogen availability in the soil. Although many molecular players are being discovered concerning how plants perceive NO3- provision, it is less clear how plants recognize a lack of nitrogen. Following nitrogen removal, plants activate their nitrogen starvation response (NSR), which is characterized by the activation of very high-affinity nitrate transport systems (NRT2.4 and NRT2.5) and other sentinel genes involved in N remobilization such as GDH3. Using a combination of functional genomics via transcription factor perturbation and molecular physiology studies, we show that the transcription factors belonging to the HHO subfamily are important regulators of NSR through two potential mechanisms. First, HHOs directly repress the high-affinity nitrate transporters, NRT2.4 and NRT2.5. hho mutants display increased high-affinity nitrate transport activity, opening up promising perspectives for biotechnological applications. Second, we show that reactive oxygen species (ROS) are important to control NSR in wild-type plants and that HRS1 and HHO1 overexpressors and mutants are affected in their ROS content, defining a potential feed-forward branch of the signaling pathway. Taken together, our results define the relationships of two types of molecular players controlling the NSR, namely ROS and the HHO transcription factors. This work (i) up opens perspectives on a poorly understood nutrient-related signaling pathway and (ii) defines targets for molecular breeding of plants with enhanced NO3- uptake.
Collapse
Affiliation(s)
- Alaeddine Safi
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Correspondence: or
| | - Anna Medici
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | | | - Florence Martin
- CIRAD, AGAP Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Anne Clément-Vidal
- CIRAD, AGAP Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Amy Marshall-Colon
- New York University, Department of Biology, Center for Genomics & Systems Biology, New York, NY, USA
- Present address: Department of Plant Biology, University of Illinois at Urbana -Champaign, Urbana, IL, USA
| | - Sandrine Ruffel
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Frédéric Gaymard
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Hatem Rouached
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Department of Plant, Soil, and Microbial Sciences, and Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Julie Leclercq
- CIRAD, AGAP Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gloria Coruzzi
- New York University, Department of Biology, Center for Genomics & Systems Biology, New York, NY, USA
| | - Benoît Lacombe
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Gabriel Krouk
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Correspondence: or
| |
Collapse
|
91
|
Wang R, Zhong Y, Liu X, Zhao C, Zhao J, Li M, Ul Hassan M, Yang B, Li D, Liu R, Li X. Cis-regulation of the amino acid transporter genes ZmAAP2 and ZmLHT1 by ZmPHR1 transcription factors in maize ear under phosphate limitation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3846-3863. [PMID: 33765129 DOI: 10.1093/jxb/erab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus and nitrogen nutrition have profound and complicated innate connections; however, underlying molecular mechanisms are mostly elusive. PHR1 is a master phosphate signaling component, and whether it directly functions in phosphorus-nitrogen crosstalk remains a particularly interesting question. In maize, nitrogen limitation caused tip kernel abortion and ear shortening. By contrast, moderately low phosphate in the field reduced kernels across the ear, maintained ear elongation and significantly lowered concentrations of total free amino acids and soluble proteins 2 weeks after silking. Transcriptome profiling revealed significant enrichment and overall down-regulation of transport genes in ears under low phosphate. Importantly, 313 out of 847 differentially expressed genes harbored PHR1 binding sequences (P1BS) including those controlling amino acid/polyamine transport and metabolism. Specifically, both ZmAAP2 and ZmLHT1 are plasma membrane-localized broad-spectrum amino acid transporters, and ZmPHR1.1 and ZmPHR1.2 were able to bind to P1BS-containing ZmAAP2 and ZmLHT1 and down-regulate their expression in planta. Taken together, the results suggest that prevalence of P1BS elements enables ZmPHR1s to regulate a large number of low phosphate responsive genes. Further, consistent with reduced accumulation of free amino acids, ZmPHR1s down-regulate ZmAAP2 and ZmLHT1 expression as direct linkers of phosphorus and nitrogen nutrition independent of NIGT1 in maize ear under low phosphate.
Collapse
Affiliation(s)
- Ruifeng Wang
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Yanting Zhong
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xiaoting Liu
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Cheng Zhao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, ShanghaiChina
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, BeijingChina
| | - Mengfei Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Mahmood Ul Hassan
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Bo Yang
- State Key Laboratory of Plant physiology and Biochemistry and National Centre of Maize Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, BeijingChina
| | - Dongdong Li
- Department of Crop Genomics and Bioinformatics, National Centre of Maize Genetic Improvement, China Agricultural University, BeijingChina
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agricultural and Forestry University, FuzhouChina
| | - Xuexian Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
92
|
Ludewig U, Vatov E, Hedderich D, Neuhäuser B. Adjusting plant nutrient acquisition to fluctuating availability: transcriptional co-regulation of the nitrate and phosphate deprivation responses in roots. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3500-3503. [PMID: 33948653 PMCID: PMC8096598 DOI: 10.1093/jxb/erab131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article comments on: Safi A, Medici A, Szponarski W, Martin F, Clement-Vidal A, Marshall-Colon A, Ruffel S, Gaymard F, Rouached H, Leclercq J, Coruzzi G, Lacombe B, Krouk G. 2021. GARP transcription factors repress Arabidopsis nitrogen starvation response via ROS-dependent and -independent pathways. Journal of Experimental Botany 72, 3881–3901.
Collapse
Affiliation(s)
- Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr., Stuttgart, Germany
| | - Emil Vatov
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr., Stuttgart, Germany
| | - Dominik Hedderich
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr., Stuttgart, Germany
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr., Stuttgart, Germany
| |
Collapse
|
93
|
Su H, Wang T, Ju C, Deng J, Zhang T, Li M, Tian H, Wang C. Abscisic acid signaling negatively regulates nitrate uptake via phosphorylation of NRT1.1 by SnRK2s in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:597-610. [PMID: 33331676 DOI: 10.1111/jipb.13057] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 05/21/2023]
Abstract
Nitrogen (N) is a limiting nutrient for plant growth and productivity. The phytohormone abscisic acid (ABA) has been suggested to play a vital role in nitrate uptake in fluctuating N environments. However, the molecular mechanisms underlying the involvement of ABA in N deficiency responses are largely unknown. In this study, we demonstrated that ABA signaling components, particularly the three subclass III SUCROSE NON-FERMENTING1 (SNF1)-RELATED PROTEIN KINASE 2S (SnRK2) proteins, function in root foraging and uptake of nitrate under N deficiency in Arabidopsis thaliana. The snrk2.2snrk2.3snrk2.6 triple mutant grew a longer primary root and had a higher rate of nitrate influx and accumulation compared with wild-type plants under nitrate deficiency. Strikingly, SnRK2.2/2.3/2.6 proteins interacted with and phosphorylated the nitrate transceptor NITRATE TRANSPORTER1.1 (NRT1.1) in vitro and in vivo. The phosphorylation of NRT1.1 by SnRK2s resulted in a significant decrease of nitrate uptake and impairment of root growth. Moreover, we identified NRT1.1Ser585 as a previously unknown functional site: the phosphomimetic NRT1.1S585D was impaired in both low- and high-affinity transport activities. Taken together, our findings provide new insight into how plants fine-tune growth via ABA signaling under N deficiency.
Collapse
Affiliation(s)
- Hang Su
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Tian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Chuanfeng Ju
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jinping Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tianqi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Mengjiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Hui Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Cun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
94
|
Zhang Z, Li Z, Wang W, Jiang Z, Guo L, Wang X, Qian Y, Huang X, Liu Y, Liu X, Qiu Y, Li A, Yan Y, Xie J, Cao S, Kopriva S, Li L, Kong F, Liu B, Wang Y, Hu B, Chu C. Modulation of nitrate-induced phosphate response by the MYB transcription factor RLI1/HINGE1 in the nucleus. MOLECULAR PLANT 2021; 14:517-529. [PMID: 33316467 DOI: 10.1016/j.molp.2020.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/10/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The coordinated utilization of nitrogen (N) and phosphorus (P) is vital for plants to maintain nutrient balance and achieve optimal growth. Previously, we revealed a mechanism by which nitrate induces genes for phosphate utilization; this mechanism depends on NRT1.1B-facilitated degradation of cytoplasmic SPX4, which in turn promotes cytoplasmic-nuclear shuttling of PHR2, the central transcription factor of phosphate signaling, and triggers the nitrate-induced phosphate response (NIPR) and N-P coordinated utilization in rice. In this study, we unveiled a fine-tuning mechanism of NIPR in the nucleus regulated by Highly Induced by Nitrate Gene 1 (HINGE1, also known as RLI1), a MYB-transcription factor closely related to PHR2. RLI1/HINGE1, which is transcriptionally activated by PHR2 under nitrate induction, can directly activate the expression of phosphate starvation-induced genes. More importantly, RLI1/HINGE1 competes with PHR2 for binding to its repressor proteins in the nucleus (SPX proteins), and consequently releases PHR2 to further enhance phosphate response. Therefore, RLI1/HINGE1 amplifies the phosphate response in the nucleus downstream of the cytoplasmic SPX4-PHR2 cascade, thereby enabling fine-tuning of N-P balance when nitrate supply is sufficient.
Collapse
Affiliation(s)
- Zhihua Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhao Li
- College of Plant Science, Jilin University, Changchun, China
| | - Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhimin Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Liping Guo
- College of Plant Science, Jilin University, Changchun, China
| | - Xiaohan Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | | | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yongqiang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiujie Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yahong Qiu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Aifu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Yan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Junpeng Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shouyun Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bin Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
95
|
Zhang TT, Kang H, Fu LL, Sun WJ, Gao WS, You CX, Wang XF, Hao YJ. NIN-like protein 7 promotes nitrate-mediated lateral root development by activating transcription of TRYPTOPHAN AMINOTRANSFERASE RELATED 2. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110771. [PMID: 33487355 DOI: 10.1016/j.plantsci.2020.110771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/05/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Nitrate is essential for plant growth and development. When nitrate availability is low, plants produce more lateral roots (LRs) to seek nitrate from the soil. In this study, by DNA electrophoretic mobility shift and luciferase assays, it was showed that NIN-like protein 7 (NLP7) transcription factor activated expression of TAR2 by directly binding to its promoter. Finally, through genetic analysis, it was speculated that NLP7 regulated LR development through TAR2. In conclusion, NLP7 binds to the TAR2 promoter and activates TAR2 expression, thereby promoting nitrate-dependent LR development.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, China; State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hui Kang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lu-Lu Fu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Wei-Jian Sun
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Wen-Sheng Gao
- Shandong Fruit and Tea Technology Services, Jinan, 250013, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
96
|
Sakakibara H. Cytokinin biosynthesis and transport for systemic nitrogen signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:421-430. [PMID: 33015901 DOI: 10.1111/tpj.15011] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
The plasticity of growth and development in response to environmental changes is one of the essential aspects of plant behavior. Cytokinins play an important role as signaling molecules in the long-distance communication between organs in systemic growth regulation in response to nitrogen. The spatial distribution of the expression sites of cytokinin biosynthesis genes leads to structural differences in the molecular species transported through the xylem and phloem, giving root-borne trans-hydroxylated cytokinins, namely trans-zeatin (tZ) type, a specialized efficacy in regulating shoot growth. Furthermore, root-to-shoot translocation via the xylem, tZ, and its precursor, the tZ riboside, controls different sets of shoot growth traits to fine-tune shoot growth in response to nitrogen availability. In addition to nitrogen, photosynthetically generated sugars positively regulate de novo cytokinin biosynthesis in the roots, and contribute to plant growth under elevated CO2 conditions. In shoot-to-root signaling, cytokinins also play a role in the regulation of nutrient acquisition and root system growth in cooperation with other types of signaling molecules, such as C-TERMINALLY ENCODED PEPTIDE DOWNSTREAMs. As cytokinin is a key regulator for the maintenance of shoot apical meristem, deepening our understanding of the regulatory mechanisms of cytokinin biosynthesis and transport in response to nitrogen is important not only for basic comprehension of plant growth, but also to ensure the stability of agricultural production.
Collapse
Affiliation(s)
- Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
97
|
Wang Y, Chen YF, Wu WH. Potassium and phosphorus transport and signaling in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:34-52. [PMID: 33325114 DOI: 10.1111/jipb.13053] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 05/26/2023]
Abstract
Nitrogen (N), potassium (K), and phosphorus (P) are essential macronutrients for plant growth and development, and their availability affects crop yield. Compared with N, the relatively low availability of K and P in soils limits crop production and thus threatens food security and agricultural sustainability. Improvement of plant nutrient utilization efficiency provides a potential route to overcome the effects of K and P deficiencies. Investigation of the molecular mechanisms underlying how plants sense, absorb, transport, and use K and P is an important prerequisite to improve crop nutrient utilization efficiency. In this review, we summarize current understanding of K and P transport and signaling in plants, mainly taking Arabidopsis thaliana and rice (Oryza sativa) as examples. We also discuss the mechanisms coordinating transport of N and K, as well as P and N.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
98
|
Kumar S, Kumar S, Mohapatra T. Interaction Between Macro- and Micro-Nutrients in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:665583. [PMID: 34040623 PMCID: PMC8141648 DOI: 10.3389/fpls.2021.665583] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are some of the vital nutrients required for optimum growth, development, and productivity of plants. The deficiency of any of these nutrients may lead to defects in plant growth and decreased productivity. Plant responses to the deficiency of N, P, S, Fe, or Zn have been studied mainly as a separate event, and only a few reports discuss the molecular basis of biological interaction among the nutrients. Macro-nutrients like N, P, and/or S not only show the interacting pathways for each other but also affect micro-nutrient pathways. Limited reports are available on the investigation of two-by-two or multi-level nutrient interactions in plants. Such studies on the nutrient interaction pathways suggest that an MYB-like transcription factor, phosphate starvation response 1 (PHR1), acts as a master regulator of N, P, S, Fe, and Zn homeostasis. Similarly, light-responsive transcription factors were identified to be involved in modulating nutrient responses in Arabidopsis. This review focuses on the recent advances in our understanding of how plants coordinate the acquisition, transport, signaling, and interacting pathways for N, P, S, Fe, and Zn nutrition at the molecular level. Identification of the important candidate genes for interactions between N, P, S, Fe, and/or Zn metabolic pathways might be useful for the breeders to improve nutrient use efficiency and yield/quality of crop plants. Integrated studies on pathways interactions/cross-talks between macro- and micro-nutrients in the agronomically important crop plants would be essential for sustainable agriculture around the globe, particularly under the changing climatic conditions.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar, ; , orcid.org/0000-0002-7127-3079
| | | | | |
Collapse
|
99
|
Maurya J, Bandyopadhyay T, Prasad M. Transcriptional regulators of nitrate metabolism: Key players in improving nitrogen use in crops. J Biotechnol 2020; 324:121-133. [PMID: 33031844 DOI: 10.1016/j.jbiotec.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/19/2020] [Accepted: 10/03/2020] [Indexed: 11/30/2022]
Abstract
Green revolution has boosted crop yields by the development of varieties which rely on high fertilizer application. Since then, higher productivity has largely witnessed excessive nitrogen (N) fertilizer application resulting in many environmentally and agronomically unsustainable consequences. One possible solution to this problem is to develop varieties with efficient N use endowed with genetically superior N metabolizing machinery, thereby significantly reducing N loss in soil and facilitating gainful yield performance at lower N conditions. Nitrate (NO3-) is the major form of N acquired by plants in aerobic soils. Hence, its efficient acquisition, transport, assimilation into complex organic compounds, and overall homeostasis is crucial to ensure productivity under optimal and suboptimal N conditions. Transcription factors are prime regulators of these processes, and insights into their mechanism of action and the resultant effect on N metabolism are crucial to generating crops with efficient and durable nitrogen use efficiency. The present review, therefore, presents a comprehensive updated account of major N responsive transcription factor families, their cross-talk with other growth factors, and explores existing and potential areas of their biotechnological application to maximize crop yields.
Collapse
Affiliation(s)
- Jyoti Maurya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
100
|
Liu Y, Zeng Y, Li Y, Liu Z, Lin-Wang K, Espley RV, Allan AC, Zhang J. Genomic survey and gene expression analysis of the MYB-related transcription factor superfamily in potato (Solanum tuberosum L.). Int J Biol Macromol 2020; 164:2450-2464. [DOI: 10.1016/j.ijbiomac.2020.08.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
|