51
|
Tareef A, Song Y, Cai W, Huang H, Chang H, Wang Y, Fulham M, Feng D, Chen M. Automatic segmentation of overlapping cervical smear cells based on local distinctive features and guided shape deformation. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.09.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
52
|
WANG CHAO, SU HAI, YANG LIN, HUANG KUN. INTEGRATIVE ANALYSIS FOR LUNG ADENOCARCINOMA PREDICTS MORPHOLOGICAL FEATURES ASSOCIATED WITH GENETIC VARIATIONS. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017; 22:82-93. [PMID: 27896964 PMCID: PMC5360185 DOI: 10.1142/9789813207813_0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lung cancer is one of the most deadly cancers and lung adenocarcinoma (LUAD) is the most common histological type of lung cancer. However, LUAD is highly heterogeneous due to genetic difference as well as phenotypic differences such as cellular and tissue morphology. In this paper, we systematically examine the relationships between histological features and gene transcription. Specifically, we calculated 283 morphological features from histology images for 201 LUAD patients from TCGA project and identified the morphological feature with strong correlation with patient outcome. We then modeled the morphology feature using multiple co-expressed gene clusters using Lasso-regression. Many of the gene clusters are highly associated with genetic variations, specifically DNA copy number variations, implying that genetic variations play important roles in the development cancer morphology. As far as we know, our finding is the first to directly link the genetic variations and functional genomics to LUAD histology. These observations will lead to new insight on lung cancer development and potential new integrative biomarkers for prediction patient prognosis and response to treatments.
Collapse
Affiliation(s)
- CHAO WANG
- Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio, 43210, USA,
| | - HAI SU
- Biomedical Engineering, University of Florida, Gainsville, Florida, 32611, USA,
| | - LIN YANG
- Biomedical Engineering, University of Florida, Gainsville, Florida, 32611, USA,
| | - KUN HUANG
- Biomedical Informatics, The Ohio State University, Columbus, Ohio, 43210, US,
| |
Collapse
|
53
|
Liu C, Shang F, Ozolek JA, Rohde GK. Detecting and segmenting cell nuclei in two-dimensional microscopy images. J Pathol Inform 2016; 7:42. [PMID: 28066682 PMCID: PMC5100202 DOI: 10.4103/2153-3539.192810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/15/2016] [Indexed: 12/18/2022] Open
Abstract
Introduction: Cell nuclei are important indicators of cellular processes and diseases. Segmentation is an essential stage in systems for quantitative analysis of nuclei extracted from microscopy images. Given the wide variety of nuclei appearance in different organs and staining procedures, a plethora of methods have been described in the literature to improve the segmentation accuracy and robustness. Materials and Methods: In this paper, we propose an unsupervised method for cell nuclei detection and segmentation in two-dimensional microscopy images. The nuclei in the image are detected automatically using a matching-based method. Next, edge maps are generated at multiple image blurring levels followed by edge selection performed in polar space. The nuclei contours are refined iteratively in the constructed edge pyramid. The validation study was conducted over two cell nuclei datasets with manual labeling, including 25 hematoxylin and eosin-stained liver histopathology images and 35 Papanicolaou-stained thyroid images. Results: The nuclei detection accuracy was measured by miss rate, and the segmentation accuracy was evaluated by two types of error metrics. Overall, the nuclei detection efficiency of the proposed method is similar to the supervised template matching method. In comparison to four existing state-of-the-art segmentation methods, the proposed method performed the best with average segmentation error 10.34% and 0.33 measured by area error rate and normalized sum of distances (×10). Conclusion: Quantitative analysis showed that the method is automatic and accurate when segmenting cell nuclei from microscopy images with noisy background and has the potential to be used in clinic settings.
Collapse
Affiliation(s)
- Chi Liu
- Department of Biomedical Engineering, Carnegie Mellon University, Beijing, China
| | - Fei Shang
- Department of Biomedical Engineering, Beijing Institute of Technology, Beijing, China
| | - John A Ozolek
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Gustavo K Rohde
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
54
|
Lu C, Xu H, Xu J, Gilmore H, Mandal M, Madabhushi A. Multi-Pass Adaptive Voting for Nuclei Detection in Histopathological Images. Sci Rep 2016; 6:33985. [PMID: 27694950 PMCID: PMC5046183 DOI: 10.1038/srep33985] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022] Open
Abstract
Nuclei detection is often a critical initial step in the development of computer aided diagnosis and prognosis schemes in the context of digital pathology images. While over the last few years, a number of nuclei detection methods have been proposed, most of these approaches make idealistic assumptions about the staining quality of the tissue. In this paper, we present a new Multi-Pass Adaptive Voting (MPAV) for nuclei detection which is specifically geared towards images with poor quality staining and noise on account of tissue preparation artifacts. The MPAV utilizes the symmetric property of nuclear boundary and adaptively selects gradient from edge fragments to perform voting for a potential nucleus location. The MPAV was evaluated in three cohorts with different staining methods: Hematoxylin &Eosin, CD31 &Hematoxylin, and Ki-67 and where most of the nuclei were unevenly and imprecisely stained. Across a total of 47 images and nearly 17,700 manually labeled nuclei serving as the ground truth, MPAV was able to achieve a superior performance, with an area under the precision-recall curve (AUC) of 0.73. Additionally, MPAV also outperformed three state-of-the-art nuclei detection methods, a single pass voting method, a multi-pass voting method, and a deep learning based method.
Collapse
Affiliation(s)
- Cheng Lu
- College of Computer Science, Shaanxi Normal University, Xi’an, Shaanxi Province, 710119, China
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106-7207, USA
| | - Hongming Xu
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Jun Xu
- Jiangsu Key Laboratory of Big Data Analysis Technique, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hannah Gilmore
- Department of Pathology-Anatomic, University Hospitals Case Medial Center, Case Western Reserve University, Cleveland, OH, 44106-7207, USA
| | - Mrinal Mandal
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106-7207, USA
| |
Collapse
|
55
|
Xing F, Shi X, Zhang Z, Cai J, Xie Y, Yang L. Transfer Shape Modeling Towards High-throughput Microscopy Image Segmentation. ACTA ACUST UNITED AC 2016; 9902:183-190. [PMID: 27924318 DOI: 10.1007/978-3-319-46726-9_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In order to deal with ambiguous image appearances in cell segmentation, high-level shape modeling has been introduced to delineate cell boundaries. However, shape modeling usually requires sufficient annotated training shapes, which are often labor intensive or unavailable. Meanwhile, when applying the model to different datasets, it is necessary to repeat the tedious annotation process to generate enough training data, and this will significantly limit the applicability of the model. In this paper, we propose to transfer shape modeling learned from an existing but different dataset (e.g. lung cancer) to assist cell segmentation in a new target dataset (e.g. skeletal muscle) without expensive manual annotations. Considering the intrinsic geometry structure of cell shapes, we incorporate the shape transfer model into a sparse representation framework with a manifold embedding constraint, and provide an efficient algorithm to solve the optimization problem. The proposed algorithm is tested on multiple microscopy image datasets with different tissue and staining preparations, and the experiments demonstrate its effectiveness.
Collapse
Affiliation(s)
- Fuyong Xing
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Xiaoshuang Shi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zizhao Zhang
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - JinZheng Cai
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yuanpu Xie
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Lin Yang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
56
|
Ponomarev GV, Kazanov MD. Classification of ANA HEp-2 slide images using morphological features of stained patterns. Pattern Recognit Lett 2016. [DOI: 10.1016/j.patrec.2016.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
57
|
Paramanandam M, O’Byrne M, Ghosh B, Mammen JJ, Manipadam MT, Thamburaj R, Pakrashi V. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images. PLoS One 2016; 11:e0162053. [PMID: 27649496 PMCID: PMC5029866 DOI: 10.1371/journal.pone.0162053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/15/2016] [Indexed: 02/07/2023] Open
Abstract
The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.
Collapse
Affiliation(s)
| | - Michael O’Byrne
- School of Mechanical and Materials Engineering, University College Dublin, Ireland
| | - Bidisha Ghosh
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Ireland
| | - Joy John Mammen
- Department of Transfusion Medicine & Immunohematology, Christian Medical College, Vellore, India
| | | | | | - Vikram Pakrashi
- School of Mechanical and Materials Engineering, University College Dublin, Ireland
| |
Collapse
|
58
|
Cheng S, Quan T, Liu X, Zeng S. Large-scale localization of touching somas from 3D images using density-peak clustering. BMC Bioinformatics 2016; 17:375. [PMID: 27628179 PMCID: PMC5024436 DOI: 10.1186/s12859-016-1252-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 09/08/2016] [Indexed: 12/13/2022] Open
Abstract
Background Soma localization is an important step in computational neuroscience to map neuronal circuits. However, locating somas from large-scale and complicated datasets is challenging. The challenges primarily originate from the dense distribution of somas, the diversity of soma sizes and the inhomogeneity of image contrast. Results We proposed a novel localization method based on density-peak clustering. In this method, we introduced two quantities (the local density ρ of each voxel and its minimum distance δ from voxels of higher density) to describe the soma imaging signal, and developed an automatic algorithm to identify the soma positions from the feature space (ρ, δ). Compared with other methods focused on high local density, our method allowed the soma center to be characterized by high local density and large minimum distance. The simulation results indicated that our method had a strong ability to locate the densely positioned somas and strong robustness of the key parameter for the localization. From the analysis of the experimental datasets, we demonstrated that our method was effective at locating somas from large-scale and complicated datasets, and was superior to current state-of-the-art methods for the localization of densely positioned somas. Conclusions Our method effectively located somas from large-scale and complicated datasets. Furthermore, we demonstrated the strong robustness of the key parameter for the localization and its effectiveness at a low signal-to-noise ratio (SNR) level. Thus, the method provides an effective tool for the neuroscience community to quantify the spatial distribution of neurons and the morphologies of somas. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1252-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shenghua Cheng
- School of Mathematics and Statistics, Huazhong University of Science and Technology, 1037 Luoyu Rd, Building of Science - 715, Wuhan, 430074, China.,Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tingwei Quan
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,School of Mathematics and Statistics, Hubei University of Education, Wuhan, 430205, China
| | - Xiaomao Liu
- School of Mathematics and Statistics, Huazhong University of Science and Technology, 1037 Luoyu Rd, Building of Science - 715, Wuhan, 430074, China.
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
59
|
Ram S, Rodriguez JJ. Size-Invariant Detection of Cell Nuclei in Microscopy Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1753-1764. [PMID: 26886972 DOI: 10.1109/tmi.2016.2527740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Accurate detection of individual cell nuclei in microscopy images is an essential and fundamental task for many biological studies. In particular, multivariate fluorescence microscopy is used to observe different aspects of cells in cultures. Manual detection of individual cell nuclei by visual inspection is time consuming, and prone to induce subjective bias. This makes automatic detection of cell nuclei essential for large-scale, objective studies of cell cultures. Blur, clutter, bleed-through, imaging noise and touching and partially overlapping nuclei with varying sizes and shapes make automated detection of individual cell nuclei a challenging task using image analysis. In this paper we propose a new automated method for fast and robust detection of individual cell nuclei based on their radial symmetric nature in fluorescence in-situ hybridization (FISH) images obtained via confocal microscopy. The main contributions are two-fold. 1) This work presents a more accurate cell nucleus detection system using the fast radial symmetry transform (FRST). 2) The proposed cell nucleus detection system is robust against most occlusions and variations in size and moderate shape deformations. We evaluate the performance of the proposed algorithm using precision/recall rates, Fβ-score and root-mean-squared distance (RMSD) and show that our algorithm provides improved detection accuracy compared to existing algorithms.
Collapse
|
60
|
Gurcan MN. Histopathological Image Analysis: Path to Acceptance through Evaluation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:1004-1005. [PMID: 28936115 PMCID: PMC5603203 DOI: 10.1017/s1431927616005869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
61
|
Kong J, Zhang P, Liang Y, Teodoro G, Brat DJ, Wang F. Robust Cell Segmentation for Histological Images of Glioblastoma. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2016; 2016:1041-1045. [PMID: 28392891 DOI: 10.1109/isbi.2016.7493444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glioblastoma (GBM) is a malignant brain tumor with uniformly dismal prognosis. Quantitative analysis of GBM cells is an important avenue to extract latent histologic disease signatures to correlate with molecular underpinnings and clinical outcomes. As a prerequisite, a robust and accurate cell segmentation is required. In this paper, we present an automated cell segmentation method that can satisfactorily address segmentation of overlapped cells commonly seen in GBM histology specimens. This method first detects cells with seed connectivity, distance constraints, image edge map, and a shape-based voting image. Initialized by identified seeds, cell boundaries are deformed with an improved variational level set method that can handle clumped cells. We test our method on 40 histological images of GBM with human annotations. The validation results suggest that our cell segmentation method is promising and represents an advance in quantitative cancer research.
Collapse
Affiliation(s)
- Jun Kong
- Department of Biomedical Informatics, Emory University, Atlanta, GA, 30322, USA
| | - Pengyue Zhang
- Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yanhui Liang
- Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794, USA
| | - George Teodoro
- Department of Computer Science, University of Brasília, Brasília, DF, Brazil
| | - Daniel J Brat
- Department of Biomedical Informatics, Emory University, Atlanta, GA, 30322, USA; Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - Fusheng Wang
- Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
62
|
Evaluation of Different Irrigation Methods for an Apple Orchard Using an Aerial Imaging System. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2016. [DOI: 10.3390/ijgi5060079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
63
|
Su H, Xing F, Yang L. Robust Cell Detection of Histopathological Brain Tumor Images Using Sparse Reconstruction and Adaptive Dictionary Selection. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1575-1586. [PMID: 26812706 PMCID: PMC4922900 DOI: 10.1109/tmi.2016.2520502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Successful diagnostic and prognostic stratification, treatment outcome prediction, and therapy planning depend on reproducible and accurate pathology analysis. Computer aided diagnosis (CAD) is a useful tool to help doctors make better decisions in cancer diagnosis and treatment. Accurate cell detection is often an essential prerequisite for subsequent cellular analysis. The major challenge of robust brain tumor nuclei/cell detection is to handle significant variations in cell appearance and to split touching cells. In this paper, we present an automatic cell detection framework using sparse reconstruction and adaptive dictionary learning. The main contributions of our method are: 1) A sparse reconstruction based approach to split touching cells; 2) An adaptive dictionary learning method used to handle cell appearance variations. The proposed method has been extensively tested on a data set with more than 2000 cells extracted from 32 whole slide scanned images. The automatic cell detection results are compared with the manually annotated ground truth and other state-of-the-art cell detection algorithms. The proposed method achieves the best cell detection accuracy with a F1 score = 0.96.
Collapse
Affiliation(s)
- Hai Su
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, FL 32611, USA
| | - Fuyong Xing
- Department of Electrical and Computer Engineering, University of Florida, FL 32611, USA
| | - Lin Yang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, FL 32611, USA
| |
Collapse
|
64
|
Gao Y, Ratner V, Zhu L, Diprima T, Kurc T, Tannenbaum A, Saltz J. Hierarchical nucleus segmentation in digital pathology images. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9791. [PMID: 27375315 DOI: 10.1117/12.2217029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Extracting nuclei is one of the most actively studied topic in the digital pathology researches. Most of the studies directly search the nuclei (or seeds for the nuclei) from the finest resolution available. While the richest information has been utilized by such approaches, it is sometimes difficult to address the heterogeneity of nuclei in different tissues. In this work, we propose a hierarchical approach which starts from the lower resolution level and adaptively adjusts the parameters while progressing into finer and finer resolution. The algorithm is tested on brain and lung cancers images from The Cancer Genome Atlas data set.
Collapse
Affiliation(s)
- Yi Gao
- Department of Biomedical Informatics, Stony Brook University, NY, U.S.A; Department of Computer Science, Stony Brook University, NY, U.S.A; Department of Applied Mathematics & Statistics, Stony Brook University, NY, U.S.A
| | - Vadim Ratner
- Department of Computer Science, Stony Brook University, NY, U.S.A
| | - Liangjia Zhu
- Department of Computer Science, Stony Brook University, NY, U.S.A
| | - Tammy Diprima
- Department of Biomedical Informatics, Stony Brook University, NY, U.S.A
| | - Tahsin Kurc
- Department of Biomedical Informatics, Stony Brook University, NY, U.S.A; Department of Computer Science, Stony Brook University, NY, U.S.A
| | - Allen Tannenbaum
- Department of Computer Science, Stony Brook University, NY, U.S.A; Department of Applied Mathematics & Statistics, Stony Brook University, NY, U.S.A
| | - Joel Saltz
- Department of Biomedical Informatics, Stony Brook University, NY, U.S.A; Department of Computer Science, Stony Brook University, NY, U.S.A
| |
Collapse
|
65
|
Berendt R, Jha N, Mandal M. Automatic Nuclei Detection Based on Generalized Laplacian of Gaussian Filters. IEEE J Biomed Health Inform 2016; 21:826-837. [PMID: 28113876 DOI: 10.1109/jbhi.2016.2544245] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Efficient and accurate detection of cell nuclei is an important step toward automatic analysis in histopathology. In this work, we present an automatic technique based on generalized Laplacian of Gaussian (gLoG) filter for nuclei detection in digitized histological images. The proposed technique first generates a bank of gLoG kernels with different scales and orientations and then performs convolution between directional gLoG kernels and the candidate image to obtain a set of response maps. The local maxima of response maps are detected and clustered into different groups by mean-shift algorithm based on their geometrical closeness. The point which has the maximum response in each group is finally selected as the nucleus seed. Experimental results on two datasets show that the proposed technique provides a superior performance in nuclei detection compared to existing techniques.
Collapse
|
66
|
Koyuncu CF, Akhan E, Ersahin T, Cetin-Atalay R, Gunduz-Demir C. Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation. Cytometry A 2016; 89:338-49. [PMID: 26945784 DOI: 10.1002/cyto.a.22824] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/26/2015] [Accepted: 01/11/2016] [Indexed: 02/05/2023]
Abstract
Automated microscopy imaging systems facilitate high-throughput screening in molecular cellular biology research. The first step of these systems is cell nucleus segmentation, which has a great impact on the success of the overall system. The marker-controlled watershed is a technique commonly used by the previous studies for nucleus segmentation. These studies define their markers finding regional minima on the intensity/gradient and/or distance transform maps. They typically use the h-minima transform beforehand to suppress noise on these maps. The selection of the h value is critical; unnecessarily small values do not sufficiently suppress the noise, resulting in false and oversegmented markers, and unnecessarily large ones suppress too many pixels, causing missing and undersegmented markers. Because cell nuclei show different characteristics within an image, the same h value may not work to define correct markers for all the nuclei. To address this issue, in this work, we propose a new watershed algorithm that iteratively identifies its markers, considering a set of different h values. In each iteration, the proposed algorithm defines a set of candidates using a particular h value and selects the markers from those candidates provided that they fulfill the size requirement. Working with widefield fluorescence microscopy images, our experiments reveal that the use of multiple h values in our iterative algorithm leads to better segmentation results, compared to its counterparts. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Ece Akhan
- Molecular Biology and Genetics Department, Bilkent University, Ankara, TR-06800, Turkey
| | - Tulin Ersahin
- Medical Informatics Department, Graduate School of Informatics, Middle East Technical University, Ankara, TR-06800, Turkey
| | - Rengul Cetin-Atalay
- Medical Informatics Department, Graduate School of Informatics, Middle East Technical University, Ankara, TR-06800, Turkey
| | - Cigdem Gunduz-Demir
- Computer Engineering Department, Bilkent University, Ankara, TR-06800, Turkey.,Neuroscience Graduate Program, Bilkent University, Ankara, TR-06800, Turkey
| |
Collapse
|
67
|
Kaur S, Sahambi JS. Curvelet initialized level set cell segmentation for touching cells in low contrast images. Comput Med Imaging Graph 2016; 49:46-57. [PMID: 26922612 DOI: 10.1016/j.compmedimag.2016.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/31/2015] [Accepted: 01/14/2016] [Indexed: 11/29/2022]
Abstract
Cell segmentation is an important element of automatic cell analysis. This paper proposes a method to extract the cell nuclei and the cell boundaries of touching cells in low contrast images. First, the contrast of the low contrast cell images is improved by a combination of multiscale top hat filter and h-maxima. Then, a curvelet initialized level set method has been proposed to detect the cell nuclei and the boundaries. The image enhancement results have been verified using PSNR (Peak Signal to noise ratio) and the segmentation results have been verified using accuracy, sensitivity and precision metrics. The results show improved values of the performance metrics with the proposed method.
Collapse
Affiliation(s)
- Sarabpreet Kaur
- Department of Electrical Engineering, Indian Institute of Technology, Ropar, India.
| | - J S Sahambi
- Department of Electrical Engineering, Indian Institute of Technology, Ropar, India.
| |
Collapse
|
68
|
Xing F, Xie Y, Yang L. An Automatic Learning-Based Framework for Robust Nucleus Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:550-66. [PMID: 26415167 DOI: 10.1109/tmi.2015.2481436] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Computer-aided image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of diseases such as brain tumor, pancreatic neuroendocrine tumor (NET), and breast cancer. Automated nucleus segmentation is a prerequisite for various quantitative analyses including automatic morphological feature computation. However, it remains to be a challenging problem due to the complex nature of histopathology images. In this paper, we propose a learning-based framework for robust and automatic nucleus segmentation with shape preservation. Given a nucleus image, it begins with a deep convolutional neural network (CNN) model to generate a probability map, on which an iterative region merging approach is performed for shape initializations. Next, a novel segmentation algorithm is exploited to separate individual nuclei combining a robust selection-based sparse shape model and a local repulsive deformable model. One of the significant benefits of the proposed framework is that it is applicable to different staining histopathology images. Due to the feature learning characteristic of the deep CNN and the high level shape prior modeling, the proposed method is general enough to perform well across multiple scenarios. We have tested the proposed algorithm on three large-scale pathology image datasets using a range of different tissue and stain preparations, and the comparative experiments with recent state of the arts demonstrate the superior performance of the proposed approach.
Collapse
|
69
|
Xing F, Yang L. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review. IEEE Rev Biomed Eng 2016; 9:234-63. [PMID: 26742143 PMCID: PMC5233461 DOI: 10.1109/rbme.2016.2515127] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to interobserver variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literature. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast, fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation.
Collapse
|
70
|
An Object Splitting Model Using Higher-Order Active Contours for Single-Cell Segmentation. ADVANCES IN VISUAL COMPUTING 2016. [DOI: 10.1007/978-3-319-50835-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
71
|
Xu J, Xiang L, Liu Q, Gilmore H, Wu J, Tang J, Madabhushi A. Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:119-130. [PMID: 26208307 PMCID: PMC4729702 DOI: 10.1109/tmi.2015.2458702] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Automated nuclear detection is a critical step for a number of computer assisted pathology related image analysis algorithms such as for automated grading of breast cancer tissue specimens. The Nottingham Histologic Score system is highly correlated with the shape and appearance of breast cancer nuclei in histopathological images. However, automated nucleus detection is complicated by 1) the large number of nuclei and the size of high resolution digitized pathology images, and 2) the variability in size, shape, appearance, and texture of the individual nuclei. Recently there has been interest in the application of "Deep Learning" strategies for classification and analysis of big image data. Histopathology, given its size and complexity, represents an excellent use case for application of deep learning strategies. In this paper, a Stacked Sparse Autoencoder (SSAE), an instance of a deep learning strategy, is presented for efficient nuclei detection on high-resolution histopathological images of breast cancer. The SSAE learns high-level features from just pixel intensities alone in order to identify distinguishing features of nuclei. A sliding window operation is applied to each image in order to represent image patches via high-level features obtained via the auto-encoder, which are then subsequently fed to a classifier which categorizes each image patch as nuclear or non-nuclear. Across a cohort of 500 histopathological images (2200 × 2200) and approximately 3500 manually segmented individual nuclei serving as the groundtruth, SSAE was shown to have an improved F-measure 84.49% and an average area under Precision-Recall curve (AveP) 78.83%. The SSAE approach also out-performed nine other state of the art nuclear detection strategies.
Collapse
Affiliation(s)
- Jun Xu
- The corresponding authors (; )
| | - Lei Xiang
- the Jiangsu Key Laboratory of Big Data Analysis Technique and CICAEET, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qingshan Liu
- the Jiangsu Key Laboratory of Big Data Analysis Technique and CICAEET, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hannah Gilmore
- Department of Pathology-Anatomic, University Hospitals Case Medical Center, Case Western Reserve University, OH 44106-7207, USA
| | - Jianzhong Wu
- the Jiangsu Cancer Hospital, Nanjing 210000, China
| | - Jinghai Tang
- the Jiangsu Cancer Hospital, Nanjing 210000, China
| | | |
Collapse
|
72
|
John J, Nair MS, Anil Kumar P, Wilscy M. A novel approach for detection and delineation of cell nuclei using feature similarity index measure. Biocybern Biomed Eng 2016. [DOI: 10.1016/j.bbe.2015.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
73
|
MIAP – Web-based platform for the computer analysis of microscopic images to support the pathological diagnosis. Biocybern Biomed Eng 2016. [DOI: 10.1016/j.bbe.2016.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
74
|
Zhang X, Xing F, Su H, Yang L, Zhang S. High-throughput histopathological image analysis via robust cell segmentation and hashing. Med Image Anal 2015; 26:306-15. [PMID: 26599156 PMCID: PMC4679540 DOI: 10.1016/j.media.2015.10.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 05/13/2015] [Accepted: 10/16/2015] [Indexed: 11/27/2022]
Abstract
Computer-aided diagnosis of histopathological images usually requires to examine all cells for accurate diagnosis. Traditional computational methods may have efficiency issues when performing cell-level analysis. In this paper, we propose a robust and scalable solution to enable such analysis in a real-time fashion. Specifically, a robust segmentation method is developed to delineate cells accurately using Gaussian-based hierarchical voting and repulsive balloon model. A large-scale image retrieval approach is also designed to examine and classify each cell of a testing image by comparing it with a massive database, e.g., half-million cells extracted from the training dataset. We evaluate this proposed framework on a challenging and important clinical use case, i.e., differentiation of two types of lung cancers (the adenocarcinoma and squamous carcinoma), using thousands of lung microscopic tissue images extracted from hundreds of patients. Our method has achieved promising accuracy and running time by searching among half-million cells .
Collapse
Affiliation(s)
- Xiaofan Zhang
- Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Fuyong Xing
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Hai Su
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Lin Yang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Shaoting Zhang
- Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
75
|
Hameed KS, Banumathi A, Ulaganathan G. Performance evaluation of maximal separation techniques in immunohistochemical scoring of tissue images. Micron 2015; 79:29-35. [DOI: 10.1016/j.micron.2015.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
|
76
|
Xing F, Yang L. Fast Cell Segmentation Using Scalable Sparse Manifold Learning and Affine Transform-approximated Active Contour. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2015; 9351:332-339. [PMID: 27924317 PMCID: PMC5136469 DOI: 10.1007/978-3-319-24574-4_40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Efficient and effective cell segmentation of neuroendocrine tumor (NET) in whole slide scanned images is a difficult task due to a large number of cells. The weak or misleading cell boundaries also present significant challenges. In this paper, we propose a fast, high throughput cell segmentation algorithm by combining top-down shape models and bottom-up image appearance information. A scalable sparse manifold learning method is proposed to model multiple subpopulations of different cell shape priors. Followed by a shape clustering on the manifold, a novel affine transform-approximated active contour model is derived to deform contours without solving a large amount of computationally-expensive Euler-Lagrange equations, and thus dramatically reduces the computational time. To the best of our knowledge, this is the first report of a high throughput cell segmentation algorithm for whole slide scanned pathology specimens using manifold learning to accelerate active contour models. The proposed approach is tested using 12 NET images, and the comparative experiments with the state of the arts demonstrate its superior performance in terms of both efficiency and effectiveness.
Collapse
Affiliation(s)
- Fuyong Xing
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Lin Yang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
77
|
Su H, Xing F, Kong X, Xie Y, Zhang S, Yang L. Robust Cell Detection and Segmentation in Histopathological Images Using Sparse Reconstruction and Stacked Denoising Autoencoders. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2015; 9351:383-390. [PMID: 27796013 PMCID: PMC5081214 DOI: 10.1007/978-3-319-24574-4_46] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Computer-aided diagnosis (CAD) is a promising tool for accurate and consistent diagnosis and prognosis. Cell detection and segmentation are essential steps for CAD. These tasks are challenging due to variations in cell shapes, touching cells, and cluttered background. In this paper, we present a cell detection and segmentation algorithm using the sparse reconstruction with trivial templates and a stacked denoising autoencoder (sDAE). The sparse reconstruction handles the shape variations by representing a testing patch as a linear combination of shapes in the learned dictionary. Trivial templates are used to model the touching parts. The sDAE, trained with the original data and their structured labels, is used for cell segmentation. To the best of our knowledge, this is the first study to apply sparse reconstruction and sDAE with structured labels for cell detection and segmentation. The proposed method is extensively tested on two data sets containing more than 3000 cells obtained from brain tumor and lung cancer images. Our algorithm achieves the best performance compared with other state of the arts.
Collapse
Affiliation(s)
- Hai Su
- J. Crayton Pruitt Family Dept. of Biomedical Engineering, University of Florida, FL 32611
| | - Fuyong Xing
- Department of Electrical and Computer Engineering, University of Florida, FL 32611
| | - Xiangfei Kong
- J. Crayton Pruitt Family Dept. of Biomedical Engineering, University of Florida, FL 32611
| | - Yuanpu Xie
- J. Crayton Pruitt Family Dept. of Biomedical Engineering, University of Florida, FL 32611
| | - Shaoting Zhang
- Department of Computer Science, University of North Carolina at Charlotte, NC 28223
| | - Lin Yang
- J. Crayton Pruitt Family Dept. of Biomedical Engineering, University of Florida, FL 32611; Department of Electrical and Computer Engineering, University of Florida, FL 32611
| |
Collapse
|
78
|
Shu J, Fu H, Qiu G, Kaye P, Ilyas M. Segmenting overlapping cell nuclei in digital histopathology images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:5445-8. [PMID: 24110968 DOI: 10.1109/embc.2013.6610781] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Automatic quantification of cell nuclei in immunostained images is highly desired by pathologists in diagnosis. In this paper, we present a new approach for the segmentation of severely clustered overlapping nuclei. The proposed approach first involves applying a combined global and local threshold method to extract foreground regions. In order to segment clustered overlapping nuclei in the foreground regions, seed markers are obtained by utilizing morphological filtering and intensity based region growing. Seeded watershed is then applied and clustered nuclei are separated. As pixels corresponding to stained cellular cytoplasm can be falsely identified as belonging to nuclei, a post processing step identifying positive nuclei pixels is added to eliminate these false pixels. This new approach has been tested on a set of manually labeled Tissue Microarray (TMA) and Whole Slide Images (WSI) colorectal cancers stained for the biomarker P53. Experimental results show that it outperformed currently available state of the art methods in nuclei segmentation.
Collapse
|
79
|
Xing F, Yang L. UNSUPERVISED SHAPE PRIOR MODELING FOR CELL SEGMENTATION IN NEUROENDOCRINE TUMOR. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2015; 2015:1443-1446. [PMID: 27924189 DOI: 10.1109/isbi.2015.7164148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Automated and accurate cell segmentation provides support for many quantitative analyses on digitized neuroendocrine tumor (NET) images. It is a challenging task due to complex variations of cell characteristics. In this paper, we incorporate unsupervised shape priors into an efficient repulsive deformable model for automated cell segmentation on NET images. Unlike other supervised learning based shape models, which usually require a large number of annotated data for training, the proposed algorithm is an unsupervised approach that applies group similarity to shape constraints to avoid any labor intensive annotation. The algorithm is extensively tested on 51 NET images, and the comparative experiments with the state of the arts demonstrate the superior performance of this method using an unsupervised shape model.
Collapse
Affiliation(s)
- Fuyong Xing
- Department of Electrical and Computer Engineering, University of Florida; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida
| | - Lin Yang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida
| |
Collapse
|
80
|
iCut: an Integrative Cut Algorithm Enables Accurate Segmentation of Touching Cells. Sci Rep 2015; 5:12089. [PMID: 26168908 PMCID: PMC4501004 DOI: 10.1038/srep12089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 06/17/2015] [Indexed: 11/09/2022] Open
Abstract
Individual cells play essential roles in the biological processes of the brain. The number of neurons changes during both normal development and disease progression. High-resolution imaging has made it possible to directly count cells. However, the automatic and precise segmentation of touching cells continues to be a major challenge for massive and highly complex datasets. Thus, an integrative cut (iCut) algorithm, which combines information regarding spatial location and intervening and concave contours with the established normalized cut, has been developed. iCut involves two key steps: (1) a weighting matrix is first constructed with the abovementioned information regarding the touching cells and (2) a normalized cut algorithm that uses the weighting matrix is implemented to separate the touching cells into isolated cells. This novel algorithm was evaluated using two types of data: the open SIMCEP benchmark dataset and our micro-optical imaging dataset from a Nissl-stained mouse brain. It has achieved a promising recall/precision of 91.2 ± 2.1%/94.1 ± 1.8% and 86.8 ± 4.1%/87.5 ± 5.7%, respectively, for the two datasets. As quantified using the harmonic mean of recall and precision, the accuracy of iCut is higher than that of some state-of-the-art algorithms. The better performance of this fully automated algorithm can benefit studies of brain cytoarchitecture.
Collapse
|
81
|
Gonzalez-Hidalgo M, Guerrero-Pena FA, Herold-Garcia S, Jaume-i-Capo A, Marrero-Fernandez PD. Red Blood Cell Cluster Separation From Digital Images for Use in Sickle Cell Disease. IEEE J Biomed Health Inform 2015; 19:1514-25. [DOI: 10.1109/jbhi.2014.2356402] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
82
|
Xu J, Xiang L, Wang G, Ganesan S, Feldman M, Shih NN, Gilmore H, Madabhushi A. Sparse Non-negative Matrix Factorization (SNMF) based color unmixing for breast histopathological image analysis. Comput Med Imaging Graph 2015; 46 Pt 1:20-29. [PMID: 25958195 DOI: 10.1016/j.compmedimag.2015.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/06/2015] [Accepted: 04/12/2015] [Indexed: 12/14/2022]
Abstract
Color deconvolution has emerged as a popular method for color unmixing as a pre-processing step for image analysis of digital pathology images. One deficiency of this approach is that the stain matrix is pre-defined which requires specific knowledge of the data. This paper presents an unsupervised Sparse Non-negative Matrix Factorization (SNMF) based approach for color unmixing. We evaluate this approach for color unmixing of breast pathology images. Compared to Non-negative Matrix Factorization (NMF), the sparseness constraint imposed on coefficient matrix aims to use more meaningful representation of color components for separating stained colors. In this work SNMF is leveraged for decomposing pure stained color in both Immunohistochemistry (IHC) and Hematoxylin and Eosin (H&E) images. SNMF is compared with Principle Component Analysis (PCA), Independent Component Analysis (ICA), Color Deconvolution (CD), and Non-negative Matrix Factorization (NMF) based approaches. SNMF demonstrated improved performance in decomposing brown diaminobenzidine (DAB) component from 36 IHC images as well as accurately segmenting about 1400 nuclei and 500 lymphocytes from H & E images.
Collapse
Affiliation(s)
- Jun Xu
- Jiangsu Key Laboratory of Big Data Analysis Technique, Nanjing University of Information Science and Technology, Nanjing 210044, China; CICAEET, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Lei Xiang
- Jiangsu Key Laboratory of Big Data Analysis Technique, Nanjing University of Information Science and Technology, Nanjing 210044, China; CICAEET, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guanhao Wang
- Jiangsu Key Laboratory of Big Data Analysis Technique, Nanjing University of Information Science and Technology, Nanjing 210044, China; CICAEET, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | | | - Michael Feldman
- Department of Pathology, Hospital of the University of Pennsylvania, PA 19104, USA
| | - Natalie Nc Shih
- Department of Pathology, Hospital of the University of Pennsylvania, PA 19104, USA
| | - Hannah Gilmore
- Institute for Pathology, University Hospitals Case Medical Center, Case Western Reserve University, OH 44106-7207, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, OH 44106, USA
| |
Collapse
|
83
|
Xu H, Lu C, Mandal M. An efficient technique for nuclei segmentation based on ellipse descriptor analysis and improved seed detection algorithm. IEEE J Biomed Health Inform 2015; 18:1729-41. [PMID: 25192578 DOI: 10.1109/jbhi.2013.2297030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this paper, we propose an efficient method for segmenting cell nuclei in the skin histopathological images. The proposed technique consists of four modules. First, it separates the nuclei regions from the background with an adaptive threshold technique. Next, an elliptical descriptor is used to detect the isolated nuclei with elliptical shapes. This descriptor classifies the nuclei regions based on two ellipticity parameters. Nuclei clumps and nuclei with irregular shapes are then localized by an improved seed detection technique based on voting in the eroded nuclei regions. Finally, undivided nuclei regions are segmented by a marked watershed algorithm. Experimental results on 114 different image patches indicate that the proposed technique provides a superior performance in nuclei detection and segmentation.
Collapse
|
84
|
Carneiro G, Bradley AP. An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2015; 24:1261-1272. [PMID: 25585419 DOI: 10.1109/tip.2015.2389619] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, we present an improved algorithm for the segmentation of cytoplasm and nuclei from clumps of overlapping cervical cells. This problem is notoriously difficult because of the degree of overlap among cells, the poor contrast of cell cytoplasm and the presence of mucus, blood, and inflammatory cells. Our methodology addresses these issues by utilizing a joint optimization of multiple level set functions, where each function represents a cell within a clump, that have both unary (intracell) and pairwise (intercell) constraints. The unary constraints are based on contour length, edge strength, and cell shape, while the pairwise constraint is computed based on the area of the overlapping regions. In this way, our methodology enables the analysis of nuclei and cytoplasm from both free-lying and overlapping cells. We provide a systematic evaluation of our methodology using a database of over 900 images generated by synthetically overlapping images of free-lying cervical cells, where the number of cells within a clump is varied from 2 to 10 and the overlap coefficient between pairs of cells from 0.1 to 0.5. This quantitative assessment demonstrates that our methodology can successfully segment clumps of up to 10 cells, provided the overlap between pairs of cells is <;0.2. Moreover, if the clump consists of three or fewer cells, then our methodology can successfully segment individual cells even when the overlap is ~0.5. We also evaluate our approach quantitatively and qualitatively on a set of 16 extended depth of field images, where we are able to segment a total of 645 cells, of which only ~10% are free-lying. Finally, we demonstrate that our method of cell nuclei segmentation is competitive when compared with the current state of the art.
Collapse
|
85
|
Cooper LA, Kong J, Gutman DA, Dunn WD, Nalisnik M, Brat DJ. Novel genotype-phenotype associations in human cancers enabled by advanced molecular platforms and computational analysis of whole slide images. J Transl Med 2015; 95:366-76. [PMID: 25599536 PMCID: PMC4465352 DOI: 10.1038/labinvest.2014.153] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 11/09/2022] Open
Abstract
Technological advances in computing, imaging, and genomics have created new opportunities for exploring relationships between histology, molecular events, and clinical outcomes using quantitative methods. Slide scanning devices are now capable of rapidly producing massive digital image archives that capture histological details in high resolution. Commensurate advances in computing and image analysis algorithms enable mining of archives to extract descriptions of histology, ranging from basic human annotations to automatic and precisely quantitative morphometric characterization of hundreds of millions of cells. These imaging capabilities represent a new dimension in tissue-based studies, and when combined with genomic and clinical endpoints, can be used to explore biologic characteristics of the tumor microenvironment and to discover new morphologic biomarkers of genetic alterations and patient outcomes. In this paper, we review developments in quantitative imaging technology and illustrate how image features can be integrated with clinical and genomic data to investigate fundamental problems in cancer. Using motivating examples from the study of glioblastomas (GBMs), we demonstrate how public data from The Cancer Genome Atlas (TCGA) can serve as an open platform to conduct in silico tissue-based studies that integrate existing data resources. We show how these approaches can be used to explore the relation of the tumor microenvironment to genomic alterations and gene expression patterns and to define nuclear morphometric features that are predictive of genetic alterations and clinical outcomes. Challenges, limitations, and emerging opportunities in the area of quantitative imaging and integrative analyses are also discussed.
Collapse
|
86
|
Chen X, Zhu Y, Li F, Zheng ZY, Chang EC, Ma J, Wong ST. Accurate segmentation of touching cells in multi-channel microscopy images with geodesic distance based clustering. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.01.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
87
|
Veta M, Pluim JPW, van Diest PJ, Viergever MA. Breast cancer histopathology image analysis: a review. IEEE Trans Biomed Eng 2015; 61:1400-11. [PMID: 24759275 DOI: 10.1109/tbme.2014.2303852] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper presents an overview of methods that have been proposed for the analysis of breast cancer histopathology images. This research area has become particularly relevant with the advent of whole slide imaging (WSI) scanners, which can perform cost-effective and high-throughput histopathology slide digitization, and which aim at replacing the optical microscope as the primary tool used by pathologist. Breast cancer is the most prevalent form of cancers among women, and image analysis methods that target this disease have a huge potential to reduce the workload in a typical pathology lab and to improve the quality of the interpretation. This paper is meant as an introduction for nonexperts. It starts with an overview of the tissue preparation, staining and slide digitization processes followed by a discussion of the different image processing techniques and applications, ranging from analysis of tissue staining to computer-aided diagnosis, and prognosis of breast cancer patients.
Collapse
|
88
|
Su H, Shen Y, Xing F, Qi X, Hirshfield KM, Yang L, Foran DJ. Robust automatic breast cancer staging using a combination of functional genomics and image-omics. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:7226-9. [PMID: 26737959 PMCID: PMC4918467 DOI: 10.1109/embc.2015.7320059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Breast cancer is one of the leading cancers worldwide. Precision medicine is a new trend that systematically examines molecular and functional genomic information within each patient's cancer to identify the patterns that may affect treatment decisions and potential outcomes. As a part of precision medicine, computer-aided diagnosis enables joint analysis of functional genomic information and image from pathological images. In this paper we propose an integrated framework for breast cancer staging using image-omics and functional genomic information. The entire biomedical imaging informatics framework consists of image-omics extraction, feature combination, and classification. First, a robust automatic nuclei detection and segmentation is presented to identify tumor regions, delineate nuclei boundaries and calculate a set of image-based morphological features; next, the low dimensional image-omics is obtained through principal component analysis and is concatenated with the functional genomic features identified by a linear model. A support vector machine for differentiating stage I breast cancer from other stages are learned. We experimentally demonstrate that compared with a single type of representation (image-omics), the combination of image-omics and functional genomic feature can improve the classification accuracy by 3%.
Collapse
Affiliation(s)
- Hai Su
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yong Shen
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Fuyong Xing
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Xin Qi
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Kim M. Hirshfield
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Lin Yang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - David J. Foran
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
89
|
Priya E, Srinivasan S. Separation of overlapping bacilli in microscopic digital TB images. Biocybern Biomed Eng 2015. [DOI: 10.1016/j.bbe.2014.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
90
|
Irshad H, Veillard A, Roux L, Racoceanu D. Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential. IEEE Rev Biomed Eng 2014; 7:97-114. [PMID: 24802905 DOI: 10.1109/rbme.2013.2295804] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Digital pathology represents one of the major evolutions in modern medicine. Pathological examinations constitute the gold standard in many medical protocols, and also play a critical and legal role in the diagnosis process. In the conventional cancer diagnosis, pathologists analyze biopsies to make diagnostic and prognostic assessments, mainly based on the cell morphology and architecture distribution. Recently, computerized methods have been rapidly evolving in the area of digital pathology, with growing applications related to nuclei detection, segmentation, and classification. In cancer research, these approaches have played, and will continue to play a key (often bottleneck) role in minimizing human intervention, consolidating pertinent second opinions, and providing traceable clinical information. Pathological studies have been conducted for numerous cancer detection and grading applications, including brain, breast, cervix, lung, and prostate cancer grading. Our study presents, discusses, and extracts the major trends from an exhaustive overview of various nuclei detection, segmentation, feature computation, and classification techniques used in histopathology imagery, specifically in hematoxylin-eosin and immunohistochemical staining protocols. This study also enables us to measure the challenges that remain, in order to reach robust analysis of whole slide images, essential high content imaging with diagnostic biomarkers and prognosis support in digital pathology.
Collapse
|
91
|
Wang H, Xing F, Su H, Stromberg A, Yang L. Novel image markers for non-small cell lung cancer classification and survival prediction. BMC Bioinformatics 2014; 15:310. [PMID: 25240495 PMCID: PMC4287550 DOI: 10.1186/1471-2105-15-310] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 08/14/2014] [Indexed: 02/05/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC), the most common type of lung cancer, is one of serious diseases causing death for both men and women. Computer-aided diagnosis and survival prediction of NSCLC, is of great importance in providing assistance to diagnosis and personalize therapy planning for lung cancer patients. Results In this paper we have proposed an integrated framework for NSCLC computer-aided diagnosis and survival analysis using novel image markers. The entire biomedical imaging informatics framework consists of cell detection, segmentation, classification, discovery of image markers, and survival analysis. A robust seed detection-guided cell segmentation algorithm is proposed to accurately segment each individual cell in digital images. Based on cell segmentation results, a set of extensive cellular morphological features are extracted using efficient feature descriptors. Next, eight different classification techniques that can handle high-dimensional data have been evaluated and then compared for computer-aided diagnosis. The results show that the random forest and adaboost offer the best classification performance for NSCLC. Finally, a Cox proportional hazards model is fitted by component-wise likelihood based boosting. Significant image markers have been discovered using the bootstrap analysis and the survival prediction performance of the model is also evaluated. Conclusions The proposed model have been applied to a lung cancer dataset that contains 122 cases with complete clinical information. The classification performance exhibits high correlations between the discovered image markers and the subtypes of NSCLC. The survival analysis demonstrates strong prediction power of the statistical model built from the discovered image markers.
Collapse
Affiliation(s)
| | | | | | | | - Lin Yang
- J, Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, 32611 Gainesville, FL, USA.
| |
Collapse
|
92
|
Qi X, Wang D, Rodero I, Diaz-Montes J, Gensure RH, Xing F, Zhong H, Goodell L, Parashar M, Foran DJ, Yang L. Content-based histopathology image retrieval using CometCloud. BMC Bioinformatics 2014; 15:287. [PMID: 25155691 PMCID: PMC4161917 DOI: 10.1186/1471-2105-15-287] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 08/12/2014] [Indexed: 11/12/2022] Open
Abstract
Background The development of digital imaging technology is creating extraordinary levels of accuracy that provide support for improved reliability in different aspects of the image analysis, such as content-based image retrieval, image segmentation, and classification. This has dramatically increased the volume and rate at which data are generated. Together these facts make querying and sharing non-trivial and render centralized solutions unfeasible. Moreover, in many cases this data is often distributed and must be shared across multiple institutions requiring decentralized solutions. In this context, a new generation of data/information driven applications must be developed to take advantage of the national advanced cyber-infrastructure (ACI) which enable investigators to seamlessly and securely interact with information/data which is distributed across geographically disparate resources. This paper presents the development and evaluation of a novel content-based image retrieval (CBIR) framework. The methods were tested extensively using both peripheral blood smears and renal glomeruli specimens. The datasets and performance were evaluated by two pathologists to determine the concordance. Results The CBIR algorithms that were developed can reliably retrieve the candidate image patches exhibiting intensity and morphological characteristics that are most similar to a given query image. The methods described in this paper are able to reliably discriminate among subtle staining differences and spatial pattern distributions. By integrating a newly developed dual-similarity relevance feedback module into the CBIR framework, the CBIR results were improved substantially. By aggregating the computational power of high performance computing (HPC) and cloud resources, we demonstrated that the method can be successfully executed in minutes on the Cloud compared to weeks using standard computers. Conclusions In this paper, we present a set of newly developed CBIR algorithms and validate them using two different pathology applications, which are regularly evaluated in the practice of pathology. Comparative experimental results demonstrate excellent performance throughout the course of a set of systematic studies. Additionally, we present and evaluate a framework to enable the execution of these algorithms across distributed resources. We show how parallel searching of content-wise similar images in the dataset significantly reduces the overall computational time to ensure the practical utility of the proposed CBIR algorithms.
Collapse
Affiliation(s)
- Xin Qi
- Department of Pathology and Laboratory Medicine, Rutger Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Optimization of a cell counting algorithm for mobile point-of-care testing platforms. SENSORS 2014; 14:15244-61. [PMID: 25195851 PMCID: PMC4179089 DOI: 10.3390/s140815244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/04/2014] [Accepted: 08/08/2014] [Indexed: 11/17/2022]
Abstract
In a point-of-care (POC) setting, it is critically important to reliably count the number of specific cells in a blood sample. Software-based cell counting, which is far faster than manual counting, while much cheaper than hardware-based counting, has emerged as an attractive solution potentially applicable to mobile POC testing. However, the existing software-based algorithm based on the normalized cross-correlation (NCC) method is too time- and, thus, energy-consuming to be deployed for battery-powered mobile POC testing platforms. In this paper, we identify inefficiencies in the NCC-based algorithm and propose two synergistic optimization techniques that can considerably reduce the runtime and, thus, energy consumption of the original algorithm with negligible impact on counting accuracy. We demonstrate that an Android™ smart phone running the optimized algorithm consumes 11.5× less runtime than the original algorithm.
Collapse
|
94
|
He Y, Meng Y, Gong H, Chen S, Zhang B, Ding W, Luo Q, Li A. An automated three-dimensional detection and segmentation method for touching cells by integrating concave points clustering and random walker algorithm. PLoS One 2014; 9:e104437. [PMID: 25111442 PMCID: PMC4128780 DOI: 10.1371/journal.pone.0104437] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 07/14/2014] [Indexed: 11/25/2022] Open
Abstract
Characterizing cytoarchitecture is crucial for understanding brain functions and neural diseases. In neuroanatomy, it is an important task to accurately extract cell populations' centroids and contours. Recent advances have permitted imaging at single cell resolution for an entire mouse brain using the Nissl staining method. However, it is difficult to precisely segment numerous cells, especially those cells touching each other. As presented herein, we have developed an automated three-dimensional detection and segmentation method applied to the Nissl staining data, with the following two key steps: 1) concave points clustering to determine the seed points of touching cells; and 2) random walker segmentation to obtain cell contours. Also, we have evaluated the performance of our proposed method with several mouse brain datasets, which were captured with the micro-optical sectioning tomography imaging system, and the datasets include closely touching cells. Comparing with traditional detection and segmentation methods, our approach shows promising detection accuracy and high robustness.
Collapse
Affiliation(s)
- Yong He
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunlong Meng
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangbin Chen
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Zhang
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenxiang Ding
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
95
|
Tafavogh S, Catchpoole DR, Kennedy PJ. Cellular quantitative analysis of neuroblastoma tumor and splitting overlapping cells. BMC Bioinformatics 2014; 15:272. [PMID: 25109603 PMCID: PMC4139617 DOI: 10.1186/1471-2105-15-272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroblastoma Tumor (NT) is one of the most aggressive types of infant cancer. Essential to accurate diagnosis and prognosis is cellular quantitative analysis of the tumor. Counting enormous numbers of cells under an optical microscope is error-prone. There is therefore an urgent demand from pathologists for robust and automated cell counting systems. However, the main challenge in developing these systems is the inability of them to distinguish between overlapping cells and single cells, and to split the overlapping cells. We address this challenge in two stages by: 1) distinguishing overlapping cells from single cells using the morphological differences between them such as area, uniformity of diameters and cell concavity; and 2) splitting overlapping cells into single cells. We propose a novel approach by using the dominant concave regions of cells as markers to identify the overlap region. We then find the initial splitting points at the critical points of the concave regions by decomposing the concave regions into their components such as arcs, chords and edges, and the distance between the components is analyzed using the developed seed growing technique. Lastly, a shortest path determination approach is developed to determine the optimum splitting route between two candidate initial splitting points. RESULTS We compare the cell counting results of our system with those of a pathologist as the ground-truth. We also compare the system with three state-of-the-art methods, and the results of statistical tests show a significant improvement in the performance of our system compared to state-of-the-art methods. The F-measure obtained by our system is 88.70%. To evaluate the generalizability of our algorithm, we apply it to images of follicular lymphoma, which has similar histological regions to NT. Of the algorithms tested, our algorithm obtains the highest F-measure of 92.79%. CONCLUSION We develop a novel overlapping cell splitting algorithm to enhance the cellular quantitative analysis of infant neuroblastoma. The performance of the proposed algorithm promises a reliable automated cell counting system for pathology laboratories. Moreover, the high performance obtained by our algorithm for images of follicular lymphoma demonstrates the generalization of the proposed algorithm for cancers with similar histological regions and histological structures.
Collapse
Affiliation(s)
- Siamak Tafavogh
- Centre for Quantum Computation and Intelligent Systems (QCIS), Faculty of Engineering and IT, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007 Sydney, Australia.
| | | | | |
Collapse
|
96
|
Labate D, Laezza F, Negi P, Ozcan B, Papadakis M. Efficient processing of fluorescence images using directional multiscale representations. MATHEMATICAL MODELLING OF NATURAL PHENOMENA 2014; 9:177-193. [PMID: 28804225 PMCID: PMC5553129 DOI: 10.1051/mmnp/20149512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent advances in high-resolution fluorescence microscopy have enabled the systematic study of morphological changes in large populations of cells induced by chemical and genetic perturbations, facilitating the discovery of signaling pathways underlying diseases and the development of new pharmacological treatments. In these studies, though, due to the complexity of the data, quantification and analysis of morphological features are for the vast majority handled manually, slowing significantly data processing and limiting often the information gained to a descriptive level. Thus, there is an urgent need for developing highly efficient automated analysis and processing tools for fluorescent images. In this paper, we present the application of a method based on the shearlet representation for confocal image analysis of neurons. The shearlet representation is a newly emerged method designed to combine multiscale data analysis with superior directional sensitivity, making this approach particularly effective for the representation of objects defined over a wide range of scales and with highly anisotropic features. Here, we apply the shearlet representation to problems of soma detection of neurons in culture and extraction of geometrical features of neuronal processes in brain tissue, and propose it as a new framework for large-scale fluorescent image analysis of biomedical data.
Collapse
Affiliation(s)
- D. Labate
- Dept. of Mathematics, University of Houston, Houston, Texas 77204, USA
| | - F. Laezza
- Dept. of Pharmacology and Toxicology, UT Medical Branch, Galveston, TX 77555, USA
| | - P. Negi
- Dept. of Mathematics, University of Houston, Houston, Texas 77204, USA
| | - B. Ozcan
- Dept. of Mathematics, University of Houston, Houston, Texas 77204, USA
| | - M. Papadakis
- Dept. of Mathematics, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
97
|
Su H, Xing F, Lee JD, Peterson CA, Yang L. Automatic Myonuclear Detection in Isolated Single Muscle Fibers Using Robust Ellipse Fitting and Sparse Representation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:714-726. [PMID: 26356342 PMCID: PMC4669954 DOI: 10.1109/tcbb.2013.151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Accurate and robust detection of myonuclei in isolated single muscle fibers is required to calculate myonuclear domain size. However, this task is challenging because: 1) shape and size variations of the nuclei, 2) overlapping nuclear clumps, and 3) multiple z-stack images with out-of-focus regions. In this paper, we have proposed a novel automatic detection algorithm to robustly quantify myonuclei in isolated single skeletal muscle fibers. The original z-stack images are first converted into one all-in-focus image using multi-focus image fusion. A sufficient number of ellipse fitting hypotheses are then generated from the myonuclei contour segments using heteroscedastic errors-in-variables (HEIV) regression. A set of representative training samples and a set of discriminative features are selected by a two-stage sparse model. The selected samples with representative features are utilized to train a classifier to select the best candidates. A modified inner geodesic distance based mean-shift clustering algorithm is used to produce the final nuclei detection results. The proposed method was extensively tested using 42 sets of z-stack images containing over 1,500 myonuclei. The method demonstrates excellent results that are better than current state-of-the-art approaches.
Collapse
|
98
|
Quan T, Li J, Zhou H, Li S, Zheng T, Yang Z, Luo Q, Gong H, Zeng S. Digital reconstruction of the cell body in dense neural circuits using a spherical-coordinated variational model. Sci Rep 2014; 4:4970. [PMID: 24829141 PMCID: PMC4021323 DOI: 10.1038/srep04970] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/09/2014] [Indexed: 02/03/2023] Open
Abstract
Mapping the neuronal circuits is essential to understand brain function. Recent technological advancements have made it possible to acquire the brain atlas at single cell resolution. Digital reconstruction of the neural circuits down to this level across the whole brain would significantly facilitate brain studies. However, automatic reconstruction of the dense neural connections from microscopic image still remains a challenge. Here we developed a spherical-coordinate based variational model to reconstruct the shape of the cell body i.e. soma, as one of the procedures for this purpose. When intuitively processing the volumetric images in the spherical coordinate system, the reconstruction of somas with variational model is no longer sensitive to the interference of the complicated neuronal morphology, and could automatically and robustly achieve accurate soma shape regardless of the dense spatial distribution, and diversity in cell size, and morphology. We believe this method would speed drawing the neural circuits and boost brain studies.
Collapse
Affiliation(s)
- Tingwei Quan
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Mathematics and Statistics, Hubei University of Education, Wuhan 430205, China
- These authors contributed equally to this work
| | - Jing Li
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- These authors contributed equally to this work
| | - Hang Zhou
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiwei Li
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ting Zheng
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhongqing Yang
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
99
|
Schmitz C, Eastwood BS, Tappan SJ, Glaser JR, Peterson DA, Hof PR. Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting. Front Neuroanat 2014; 8:27. [PMID: 24847213 PMCID: PMC4019880 DOI: 10.3389/fnana.2014.00027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/16/2014] [Indexed: 12/27/2022] Open
Abstract
Stereologic cell counting has had a major impact on the field of neuroscience. A major bottleneck in stereologic cell counting is that the user must manually decide whether or not each cell is counted according to three-dimensional (3D) stereologic counting rules by visual inspection within hundreds of microscopic fields-of-view per investigated brain or brain region. Reliance on visual inspection forces stereologic cell counting to be very labor-intensive and time-consuming, and is the main reason why biased, non-stereologic two-dimensional (2D) “cell counting” approaches have remained in widespread use. We present an evaluation of the performance of modern automated cell detection and segmentation algorithms as a potential alternative to the manual approach in stereologic cell counting. The image data used in this study were 3D microscopic images of thick brain tissue sections prepared with a variety of commonly used nuclear and cytoplasmic stains. The evaluation compared the numbers and locations of cells identified unambiguously and counted exhaustively by an expert observer with those found by three automated 3D cell detection algorithms: nuclei segmentation from the FARSIGHT toolkit, nuclei segmentation by 3D multiple level set methods, and the 3D object counter plug-in for ImageJ. Of these methods, FARSIGHT performed best, with true-positive detection rates between 38 and 99% and false-positive rates from 3.6 to 82%. The results demonstrate that the current automated methods suffer from lower detection rates and higher false-positive rates than are acceptable for obtaining valid estimates of cell numbers. Thus, at present, stereologic cell counting with manual decision for object inclusion according to unbiased stereologic counting rules remains the only adequate method for unbiased cell quantification in histologic tissue sections.
Collapse
Affiliation(s)
- Christoph Schmitz
- Department of Neuroanatomy, Ludwig-Maximilians-University of Munich Munich, Germany
| | | | - Susan J Tappan
- MBF Bioscience Williston, VT, USA ; MBF Laboratories Williston, VT, USA
| | - Jack R Glaser
- MBF Bioscience Williston, VT, USA ; MBF Laboratories Williston, VT, USA
| | - Daniel A Peterson
- Center for Stem Cell and Regenerative Medicine, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
100
|
Fuyong Xing, Hai Su, Neltner J, Lin Yang. Automatic Ki-67 Counting Using Robust Cell Detection and Online Dictionary Learning. IEEE Trans Biomed Eng 2014; 61:859-70. [DOI: 10.1109/tbme.2013.2291703] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|