51
|
Zhang G, Liao C, Hu JR, Hu HM, Lei YM, Harput S, Ye HR. Nanodroplet-Based Super-Resolution Ultrasound Localization Microscopy. ACS Sens 2023; 8:3294-3306. [PMID: 37607403 DOI: 10.1021/acssensors.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Over the past decade, super-resolution ultrasound localization microscopy (SR-ULM) has revolutionized ultrasound imaging with its capability to resolve the microvascular structures below the ultrasound diffraction limit. The introduction of this imaging technique enables the visualization, quantification, and characterization of tissue microvasculature. The early implementations of SR-ULM utilize microbubbles (MBs) that require a long image acquisition time due to the requirement of capturing sparsely isolated microbubble signals. The next-generation SR-ULM employs nanodroplets that have the potential to significantly reduce the image acquisition time without sacrificing the resolution. This review discusses various nanodroplet-based ultrasound localization microscopy techniques and their corresponding imaging mechanisms. A summary is given on the preclinical applications of SR-ULM with nanodroplets, and the challenges in the clinical translation of nanodroplet-based SR-ULM are presented while discussing the future perspectives. In conclusion, ultrasound localization microscopy is a promising microvasculature imaging technology that can provide new diagnostic and prognostic information for a wide range of pathologies, such as cancer, heart conditions, and autoimmune diseases, and enable personalized treatment monitoring at a microlevel.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS, Paris 75015, France
| | - Chen Liao
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
- Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jun-Rui Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
| | - Sevan Harput
- Department of Electrical and Electronic Engineering, London South Bank University, London SE1 0AA, U.K
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
| |
Collapse
|
52
|
Feng L, Shi X, Zhou F, Chen Y, Zhou X. Technical note: Evaluation of the acoustic radiation force imaging for predicting HIFU focus with in vitro and ex vivo experiments. Med Phys 2023; 50:5449-5459. [PMID: 37345709 DOI: 10.1002/mp.16565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND High-intensity focused ultrasound (HIFU) is currently used for the treatment of various diseases, but it still lacks a reliable technique in the preoperative stage to accurately place its "energy blade" onto diseased targets. Acoustic radiation force imaging (ARFI) was recently introduced to tackle this issue, but its applicability and limitations were not clear. PURPOSE The aim of this study was to evaluate the performance of ARFI method in prediction of HIFU focal location at the preoperative stage. METHODS A point spread function (PSF) localization method, which was borrowed from the ultrasound super resolution field, was used to validate the core autocorrelation-based motion estimation algorithm in the ARFI procedure. Accuracy of the ARFI method for estimating the HIFU focus were tested with in vitro and ex vivo experiments with a clinically equivalent HIFU system. Comparisons were made between the estimated focal locations and those of the damaged area after the testing objects were cut open. RESULTS Results showed that the PSF localization was able to serve as a validating method for motion detection only when the tissue displacement was large. With the ARFI method, location of the HIFU focus could be accurately predicted by a 2D motion map preoperatively, and the axial spatial errors were less than 0.5 mm. However, the derived 2D motion maps can only be valuable when the acoustic stimulation in ARFI were strong enough, which was probably due to the fact that the HIFU focal locations were at large depths and the ultrasound imaging signal had low signal to noise ratio. CONCLUSION The ARFI method was indeed an accurate technique for preoperatively predicting HIFU focus in vitro and ex vivo. If clinical applications were to be considered, particularly in deep tissues, efforts might need to be made to improve ability of the ultrasound motion estimation technique.
Collapse
Affiliation(s)
- Lian Feng
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xinwang Shi
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Fang Zhou
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yanhua Chen
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaowei Zhou
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
53
|
Yan J, Wang B, Riemer K, Hansen-Shearer J, Lerendegui M, Toulemonde M, Rowlands CJ, Weinberg PD, Tang MX. Fast 3D Super-Resolution Ultrasound With Adaptive Weight-Based Beamforming. IEEE Trans Biomed Eng 2023; 70:2752-2761. [PMID: 37015124 PMCID: PMC7614997 DOI: 10.1109/tbme.2023.3263369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
OBJECTIVE Super-resolution ultrasound (SRUS) imaging through localising and tracking sparse microbubbles has been shown to reveal microvascular structure and flow beyond the wave diffraction limit. Most SRUS studies use standard delay and sum (DAS) beamforming, where high side lobes and broad main lobes make isolation and localisation of densely distributed bubbles challenging, particularly in 3D due to the typically small aperture of matrix array probes. METHOD This study aimed to improve 3D SRUS by implementing a new fast 3D coherence beamformer based on channel signal variance. Two additional fast coherence beamformers, that have been implemented in 2D were implemented in 3D for the first time as comparison: a nonlinear beamformer with p-th root compression and a coherence factor beamformer. The 3D coherence beamformers, together with DAS, were compared in computer simulation, on a microflow phantom and in vivo. RESULTS Simulation results demonstrated that all three adaptive weight-based beamformers can narrow the main lobe, suppress the side lobes, while maintaining the weaker scatter signals. Improved 3D SRUS images of microflow phantom and a rabbit kidney within a 3-second acquisition were obtained using the adaptive weight-based beamformers, when compared with DAS. CONCLUSION The adaptive weight-based 3D beamformers can improve the SRUS and the proposed variance-based beamformer performs best in simulations and experiments. SIGNIFICANCE Fast 3D SRUS would significantly enhance the potential utility of this emerging imaging modality in a broad range of biomedical applications.
Collapse
Affiliation(s)
- Jipeng Yan
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Bingxue Wang
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Kai Riemer
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Joseph Hansen-Shearer
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Marcelo Lerendegui
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Matthieu Toulemonde
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | | | - Peter D. Weinberg
- Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Meng-Xing Tang
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| |
Collapse
|
54
|
Dencks S, Schmitz G. Ultrasound localization microscopy. Z Med Phys 2023; 33:292-308. [PMID: 37328329 PMCID: PMC10517400 DOI: 10.1016/j.zemedi.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Ultrasound Localization Microscopy (ULM) is an emerging technique that provides impressive super-resolved images of microvasculature, i.e., images with much better resolution than the conventional diffraction-limited ultrasound techniques and is already taking its first steps from preclinical to clinical applications. In comparison to the established perfusion or flow measurement methods, namely contrast-enhanced ultrasound (CEUS) and Doppler techniques, ULM allows imaging and flow measurements even down to the capillary level. As ULM can be realized as a post-processing method, conventional ultrasound systems can be used for. ULM relies on the localization of single microbubbles (MB) of commercial, clinically approved contrast agents. In general, these very small and strong scatterers with typical radii of 1-3 µm are imaged much larger in ultrasound images than they actually are due to the point spread function of the imaging system. However, by applying appropriate methods, these MBs can be localized with sub-pixel precision. Then, by tracking MBs over successive frames of image sequences, not only the morphology of vascular trees but also functional information such as flow velocities or directions can be obtained and visualized. In addition, quantitative parameters can be derived to describe pathological and physiological changes in the microvasculature. In this review, the general concept of ULM and conditions for its applicability to microvessel imaging are explained. Based on this, various aspects of the different processing steps for a concrete implementation are discussed. The trade-off between complete reconstruction of the microvasculature and the necessary measurement time as well as the implementation in 3D are reviewed in more detail, as they are the focus of current research. Through an overview of potential or already realized preclinical and clinical applications - pathologic angiogenesis or degeneration of vessels, physiological angiogenesis, or the general understanding of organ or tissue function - the great potential of ULM is demonstrated.
Collapse
Affiliation(s)
- Stefanie Dencks
- Lehrstuhl für Medizintechnik, Fakultät für Elektrotechnik und Informationstechnik, Ruhr-Universität Bochum, Bochum, Germany.
| | - Georg Schmitz
- Lehrstuhl für Medizintechnik, Fakultät für Elektrotechnik und Informationstechnik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
55
|
Chen X, Lowerison MR, Dong Z, Chandra Sekaran NV, Llano DA, Song P. Localization Free Super-Resolution Microbubble Velocimetry Using a Long Short-Term Memory Neural Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2374-2385. [PMID: 37028074 PMCID: PMC10461750 DOI: 10.1109/tmi.2023.3251197] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ultrasound localization microscopy is a super-resolution imaging technique that exploits the unique characteristics of contrast microbubbles to side-step the fundamental trade-off between imaging resolution and penetration depth. However, the conventional reconstruction technique is confined to low microbubble concentrations to avoid localization and tracking errors. Several research groups have introduced sparsity- and deep learning-based approaches to overcome this constraint to extract useful vascular structural information from overlapping microbubble signals, but these solutions have not been demonstrated to produce blood flow velocity maps of the microcirculation. Here, we introduce Deep-SMV, a localization free super-resolution microbubble velocimetry technique, based on a long short-term memory neural network, that provides high imaging speed and robustness to high microbubble concentrations, and directly outputs blood velocity measurements at a super-resolution. Deep-SMV is trained efficiently using microbubble flow simulation on real in vivo vascular data and demonstrates real-time velocity map reconstruction suitable for functional vascular imaging and pulsatility mapping at super-resolution. The technique is successfully applied to a wide variety of imaging scenarios, include flow channel phantoms, chicken embryo chorioallantoic membranes, and mouse brain imaging. An implementation of Deep-SMV is openly available at https://github.com/chenxiptz/SR_microvessel_velocimetry, with two pre-trained models available at https://doi.org/10.7910/DVN/SECUFD.
Collapse
|
56
|
Song P, Rubin JM, Lowerison MR. Super-resolution ultrasound microvascular imaging: Is it ready for clinical use? Z Med Phys 2023; 33:309-323. [PMID: 37211457 PMCID: PMC10517403 DOI: 10.1016/j.zemedi.2023.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/23/2023]
Abstract
The field of super-resolution ultrasound microvascular imaging has been rapidly growing over the past decade. By leveraging contrast microbubbles as point targets for localization and tracking, super-resolution ultrasound pinpoints the location of microvessels and measures their blood flow velocity. Super-resolution ultrasound is the first in vivo imaging modality that can image micron-scale vessels at a clinically relevant imaging depth without tissue destruction. These unique capabilities of super-resolution ultrasound provide structural (vessel morphology) and functional (vessel blood flow) assessments of tissue microvasculature on a global and local scale, which opens new doors for many enticing preclinical and clinical applications that benefit from microvascular biomarkers. The goal of this short review is to provide an update on recent advancements in super-resolution ultrasound imaging, with a focus on summarizing existing applications and discussing the prospects of translating super-resolution imaging to clinical practice and research. In this review, we also provide brief introductions of how super-resolution ultrasound works, how does it compare with other imaging modalities, and what are the tradeoffs and limitations for an audience who is not familiar with the technology.
Collapse
Affiliation(s)
- Pengfei Song
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, United States; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, United States.
| | - Jonathan M Rubin
- Department of Radiology, University of Michigan, Ann Arbor, United States
| | - Matthew R Lowerison
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, United States
| |
Collapse
|
57
|
Guo X, Ta D, Xu K. Frame rate effects and their compensation on super-resolution microvessel imaging using ultrasound localization microscopy. ULTRASONICS 2023; 132:107009. [PMID: 37060620 DOI: 10.1016/j.ultras.2023.107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 05/29/2023]
Abstract
Ultrasound localization microscopy (ULM) breaks the diffraction limit and allows imaging microvasculature at micrometric resolution while preserving the penetration depth. Frame rate plays an important role for high-quality ULM imaging, but there is still a lack of review and investigation of the frame rate effects on ULM. This work aims to clarify how frame rate influences the performance of ULM, including the effects of microbubble detection, localization and tracking. The performance of ULM was evaluated using an in vivo rat brain dataset (15.6 MHz, 3 tilted plane waves (-5°, 0°, +5°), at a compounded frame rate of 1000 Hz) with different frame rates. Quantification methods, including Fourier ring correlation and saturation parameter, were applied to analyze the spatial resolution and reconstruction efficiency, respectively. In addition, effects on each crucial step in ULM processing were further analyzed. Results showed that when frame rates dropped from 1000 Hz to 250 Hz, the spatial resolution deteriorated from 9.9 μm to 15.0 μm. Applying a velocity constraint was able to improve the ULM performance, but inappropriate constraint may artificially result in high apparent resolution. For the dataset, compared with the results of 1000 Hz frame rate, the velocity was underestimated at 100 Hz with 47.18% difference and the saturation was reduced from 55.00% at 1000 Hz to 43.34% at 100 Hz. Analysis showed that inadequate frame rate generated unreliable microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in the deterioration in spatial resolution, the underestimation in velocity measurement and the decrease in saturation. Finally, a guidance of determining the frame rate requirement was discussed by considering the required spatial sampling points based on vessel morphology, clutter filtering method, tracking algorithm and acquisition time, which provides indications for future clinical application of ULM method.
Collapse
Affiliation(s)
- Xingyi Guo
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China; Yiwu Research Institute of Fudan University, Zhejiang 322000, China
| | - Kailiang Xu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China; Yiwu Research Institute of Fudan University, Zhejiang 322000, China.
| |
Collapse
|
58
|
Pian Q, Alfadhel M, Tang J, Lee GV, Li B, Fu B, Ayata Y, Yaseen MA, Boas DA, Secomb TW, Sakadzic S. Cortical microvascular blood flow velocity mapping by combining dynamic light scattering optical coherence tomography and two-photon microscopy. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:076003. [PMID: 37484973 PMCID: PMC10362155 DOI: 10.1117/1.jbo.28.7.076003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023]
Abstract
Significance The accurate large-scale mapping of cerebral microvascular blood flow velocity is crucial for a better understanding of cerebral blood flow (CBF) regulation. Although optical imaging techniques enable both high-resolution microvascular angiography and fast absolute CBF velocity measurements in the mouse cortex, they usually require different imaging techniques with independent system configurations to maximize their performances. Consequently, it is still a challenge to accurately combine functional and morphological measurements to co-register CBF speed distribution from hundreds of microvessels with high-resolution microvascular angiograms. Aim We propose a data acquisition and processing framework to co-register a large set of microvascular blood flow velocity measurements from dynamic light scattering optical coherence tomography (DLS-OCT) with the corresponding microvascular angiogram obtained using two-photon microscopy (2PM). Approach We used DLS-OCT to first rapidly acquire a large set of microvascular velocities through a sealed cranial window in mice and then to acquire high-resolution microvascular angiograms using 2PM. The acquired data were processed in three steps: (i) 2PM angiogram coregistration with the DLS-OCT angiogram, (ii) 2PM angiogram segmentation and graphing, and (iii) mapping of the CBF velocities to the graph representation of the 2PM angiogram. Results We implemented the developed framework on the three datasets acquired from the mice cortices to facilitate the coregistration of the large sets of DLS-OCT flow velocity measurements with 2PM angiograms. We retrieved the distributions of red blood cell velocities in arterioles, venules, and capillaries as a function of the branching order from precapillary arterioles and postcapillary venules from more than 1000 microvascular segments. Conclusions The proposed framework may serve as a useful tool for quantitative analysis of large microvascular datasets obtained by OCT and 2PM in studies involving normal brain functioning, progression of various diseases, and numerical modeling of the oxygen advection and diffusion in the realistic microvascular networks.
Collapse
Affiliation(s)
- Qi Pian
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Mohammed Alfadhel
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Jianbo Tang
- Southern University of Science and Technology, Department of Biomedical Engineering, Shenzhen, China
| | - Grace V. Lee
- University of Arizona, Program in Applied Mathematics, Tucson, Arizona, United States
| | - Baoqiang Li
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Brain Cognition and Brain Disease Institute; Shenzhen Fundamental Research Institutions, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China
| | - Buyin Fu
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Yagmur Ayata
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Mohammad Abbas Yaseen
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Timothy W. Secomb
- University of Arizona, Program in Applied Mathematics, Tucson, Arizona, United States
- University of Arizona, Department of Mathematics, Tucson, Arizona, United States
- University of Arizona, Department of Physiology, Tucson, Arizona, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
59
|
Yan S, Shou J, Yu J, Song J, Mao Y, Xu K. Ultrafast Ultrasound Vector Doppler for Small Vasculature Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:613-624. [PMID: 37224370 DOI: 10.1109/tuffc.2023.3279452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ultrafast Doppler has been accepted as a novel modality for small vasculature imaging with high sensitivity, high spatiotemporal resolution, and high penetration. However, the conventional Doppler estimator adopted in studies of ultrafast ultrasound imaging is only sensitive to the velocity component along the beam direction and has angle-dependent limitations. Vector Doppler has been developed with the goal of angle-independent velocity estimation but is typically employed for relatively large vessels. In this study, combining multiangle vector Doppler strategy and ultrafast sequencing, ultrafast ultrasound vector Doppler (ultrafast UVD) is developed for small vasculature hemodynamic imaging. The validity of the technique is demonstrated through experiments on a rotational phantom, rat brain, human brain, and human spinal cord. A rat brain experiment shows that compared with the ultrasound localization microscopy (ULM) velocimetry, which is widely accepted as an accurate flow velocimetry technique, the average relative error (ARE) of the velocity magnitude estimated by ultrafast UVD is approximately 16.2%, with a root-mean-square error (RMSE) of the velocity direction of 26.7°. It is demonstrated that ultrafast UVD is a promising tool for accurate blood flow velocity measurement, especially for the organs, including brain and spinal cord with vasculature typically exhibiting tendential alignment of vascular trees.
Collapse
|
60
|
Park EY, Cai X, Foiret J, Bendjador H, Hyun D, Fite BZ, Wodnicki R, Dahl JJ, Boutin RD, Ferrara KW. Fast volumetric ultrasound facilitates high-resolution 3D mapping of tissue compartments. SCIENCE ADVANCES 2023; 9:eadg8176. [PMID: 37256942 PMCID: PMC10413648 DOI: 10.1126/sciadv.adg8176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Volumetric ultrasound imaging has the potential for operator-independent acquisition and enhanced field of view. Panoramic acquisition has many applications across ultrasound; spanning musculoskeletal, liver, breast, and pediatric imaging; and image-guided therapy. Challenges in high-resolution human imaging, such as subtle motion and the presence of bone or gas, have limited such acquisition. These issues can be addressed with a large transducer aperture and fast acquisition and processing. Programmable, ultrafast ultrasound scanners with a high channel count provide an unprecedented opportunity to optimize volumetric acquisition. In this work, we implement nonlinear processing and develop distributed beamformation to achieve fast acquisition over a 47-centimeter aperture. As a result, we achieve a 50-micrometer -6-decibel point spread function at 5 megahertz and resolve in-plane targets. A large volume scan of a human limb is completed in a few seconds, and in a 2-millimeter dorsal vein, the image intensity difference between the vessel center and surrounding tissue was ~50 decibels, facilitating three-dimensional reconstruction of the vasculature.
Collapse
Affiliation(s)
- Eun-Yeong Park
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Xiran Cai
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Josquin Foiret
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Hanna Bendjador
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Dongwoon Hyun
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Brett Z. Fite
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Robert Wodnicki
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jeremy J. Dahl
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Robert D. Boutin
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
61
|
Lei S, Zhang C, Zhu B, Gao Z, Zhang Q, Liu J, Li Y, Zheng H, Ma T. In vivo ocular microvasculature imaging in rabbits with 3D ultrasound localization microscopy. ULTRASONICS 2023; 133:107022. [PMID: 37178486 DOI: 10.1016/j.ultras.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Morphological and hemodynamic changes in the ocular vasculature are important signs of various ocular diseases. The evaluation of the ocular microvasculature with high resolution is valuable in comprehensive diagnoses. However, it is difficult for current optical imaging techniques to visualize the posterior segment and retrobulbar microvasculature due to the limited penetration depth of light, particularly when the refractive medium is opaque. Thus, we have developed a 3D ultrasound localization microscopy (ULM) imaging method to visualize the ocular microvasculature in rabbits with micron-scale resolution. We used a 32 × 32 matrix array transducer (center frequency: 8 MHz) with a compounding plane wave sequence and microbubbles. Block-wise singular value decomposition spatiotemporal clutter filtering and block-matching 3D denoising were implemented to extract the flowing microbubble signals at different imaging depths with high signal-to-noise ratios. The center points of microbubbles were localized and tracked in 3D space to achieve the micro-angiography. The in vivo results demonstrate the ability of 3D ULM to visualize the microvasculature of the eye in rabbits, where vessels down to 54 μm were successfully revealed. Moreover, the microvascular maps indicated the morphological abnormalities in the eye with retinal detachment. This efficient modality shows potential for use in the diagnosis of ocular diseases.
Collapse
Affiliation(s)
- Shuang Lei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Changlu Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Benpeng Zhu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zeping Gao
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China
| | - Jiamei Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China
| | - Yongchuan Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Teng Ma
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China.
| |
Collapse
|
62
|
Zhao S, Hartanto J, Joseph R, Wu CH, Zhao Y, Chen YS. Hybrid photoacoustic and fast super-resolution ultrasound imaging. Nat Commun 2023; 14:2191. [PMID: 37072402 PMCID: PMC10113238 DOI: 10.1038/s41467-023-37680-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
The combination of photoacoustic (PA) imaging and ultrasound localization microscopy (ULM) with microbubbles has great potential in various fields such as oncology, neuroscience, nephrology, and immunology. Here we developed an interleaved PA/fast ULM imaging technique that enables super-resolution vascular and physiological imaging in less than 2 seconds per frame in vivo. By using sparsity-constrained (SC) optimization, we accelerated the frame rate of ULM up to 37 times with synthetic data and 28 times with in vivo data. This allows for the development of a 3D dual imaging sequence with a commonly used linear array imaging system, without the need for complicated motion correction. Using the dual imaging scheme, we demonstrated two in vivo scenarios challenging to image with either technique alone: the visualization of a dye-labeled mouse lymph node showing nearby microvasculature, and a mouse kidney microangiography with tissue oxygenation. This technique offers a powerful tool for mapping tissue physiological conditions and tracking the contrast agent biodistribution non-invasively.
Collapse
Affiliation(s)
- Shensheng Zhao
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jonathan Hartanto
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ritin Joseph
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Yang Zhao
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yun-Sheng Chen
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
63
|
Liang M, Liu J, Guo C, Zong Y, Wan M. Velocity field estimation in transcranial small vessel using super-resolution ultrasound imaging velocimetry. ULTRASONICS 2023; 132:107016. [PMID: 37094521 DOI: 10.1016/j.ultras.2023.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Based on the diameter and position information of small vessels obtained by transcranial super-resolution imaging using 3 MHz low-frequency chirp plane waves, a Gaussian-like non-linear compression was adopted to compress the blood flow signals in spatiotemporal filtering (STF) data to a precise region, and then estimate the blood flow velocity field inside the region over the adjacent time intervals using ultrasound imaging velocimetry (UIV). Imaging parameters, such as the mechanical index (MI), frame rate, and microbubble (MB) concentration, are critical during the estimation of velocity fields over a short time at high MB contrast agent concentrations. These were optimized through experiments and algorithms, in which dividing the connected domain was proposed to calculate MB cluster spot centroid spacing (SCS) and the spot-to-flow area ratio (SFAR) to determine the suitable MB concentration. The results of the in vitro experiments showed that the estimation of the small vessel flow velocity field was consistent with the theoretical results; the velocity field resolution for vessels with diameters of 0.5 mm and 0.3 mm was 36 μm and 21 μm, and the error between the mean velocity and the theoretical value was 0.7 % and 0.67 %, respectively.
Collapse
Affiliation(s)
- Meiling Liang
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiacheng Liu
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chao Guo
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yujin Zong
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Mingxi Wan
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
64
|
Riemer K, Toulemonde M, Yan J, Lerendegui M, Stride E, Weinberg PD, Dunsby C, Tang MX. Fast and Selective Super-Resolution Ultrasound In Vivo With Acoustically Activated Nanodroplets. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1056-1067. [PMID: 36399587 DOI: 10.1109/tmi.2022.3223554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perfusion by the microcirculation is key to the development, maintenance and pathology of tissue. Its measurement with high spatiotemporal resolution is consequently valuable but remains a challenge in deep tissue. Ultrasound Localization Microscopy (ULM) provides very high spatiotemporal resolution but the use of microbubbles requires low contrast agent concentrations, a long acquisition time, and gives little control over the spatial and temporal distribution of the microbubbles. The present study is the first to demonstrate Acoustic Wave Sparsely-Activated Localization Microscopy (AWSALM) and fast-AWSALM for in vivo super-resolution ultrasound imaging, offering contrast on demand and vascular selectivity. Three different formulations of acoustically activatable contrast agents were used. We demonstrate their use with ultrasound mechanical indices well within recommended safety limits to enable fast on-demand sparse activation and destruction at very high agent concentrations. We produce super-localization maps of the rabbit renal vasculature with acquisition times between 5.5 s and 0.25 s, and a 4-fold improvement in spatial resolution. We present the unique selectivity of AWSALM in visualizing specific vascular branches and downstream microvasculature, and we show super-localized kidney structures in systole (0.25 s) and diastole (0.25 s) with fast-AWSALM outperforming microbubble based ULM. In conclusion, we demonstrate the feasibility of fast and selective imaging of microvascular dynamics in vivo with subwavelength resolution using ultrasound and acoustically activatable nanodroplet contrast agents.
Collapse
|
65
|
Quan B, Liu X, Zhao S, Chen X, Zhang X, Chen Z. Detecting Early Ocular Choroidal Melanoma Using Ultrasound Localization Microscopy. Bioengineering (Basel) 2023; 10:bioengineering10040428. [PMID: 37106615 PMCID: PMC10136200 DOI: 10.3390/bioengineering10040428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Ocular choroidal melanoma (OCM) is the most common ocular primary malignant tumor in adults, and there is an increasing emphasis on its early detection and treatment worldwide. The main obstacle in early detection of OCM is its overlapping clinical features with benign choroidal nevus. Thus, we propose ultrasound localization microscopy (ULM) based on the image deconvolution algorithm to assist the diagnosis of small OCM in early stages. Furthermore, we develop ultrasound (US) plane wave imaging based on three-frame difference algorithm to guide the placement of the probe on the field of view. A high-frequency Verasonics Vantage system and an L22-14v linear array transducer were used to perform experiments on both custom-made modules in vitro and a SD rat with ocular choroidal melanoma in vivo. The results demonstrate that our proposed deconvolution method implement more robust microbubble (MB) localization, reconstruction of microvasculature network in a finer grid and more precise flow velocity estimation. The excellent performance of US plane wave imaging was successfully validated on the flow phantom and in an in vivo OCM model. In the future, the super-resolution ULM, a critical complementary imaging modality, can provide doctors with conclusive suggestions for early diagnosis of OCM, which is significant for the treatment and prognosis of patients.
Collapse
Affiliation(s)
- Biao Quan
- The College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiangdong Liu
- The College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shuang Zhao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuan Zhang
- The Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (X.Z.); (Z.C.)
| | - Zeyu Chen
- The College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- Correspondence: (X.Z.); (Z.C.)
| |
Collapse
|
66
|
Goudot G, Jimenez A, Mohamedi N, Sitruk J, Khider L, Mortelette H, Papadacci C, Hyafil F, Tanter M, Messas E, Pernot M, Mirault T. Assessment of Takayasu's arteritis activity by ultrasound localization microscopy. EBioMedicine 2023; 90:104502. [PMID: 36893585 PMCID: PMC10017361 DOI: 10.1016/j.ebiom.2023.104502] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Ultrasound localization microscopy (ULM) based on ultrafast ultrasound imaging of circulating microbubbles (MB) can image microvascular blood flows in vivo up to the micron scale. Takayasu arteritis (TA) has an increased vascularisation of the thickened arterial wall when active. We aimed to perform vasa vasorum ULM of the carotid wall and demonstrate that ULM can provide imaging markers to assess the TA activity. METHODS Patients with TA were consecutively included with assessment of activity by the National Institute of Health criteria: 5 had active TA (median age 35.8 [24.5-46.0] years) and 11 had quiescent TA (37.2 [31.7-47.3] years). ULM was performed using a 6.4 MHz probe and a dedicated imaging sequence (plane waves with 8 angles, frame rate 500 Hz), coupled with the intravenous injection of MB. Individual MB were localised at a subwavelength scale then tracked, allowing the reconstruction of the vasa vasorum flow anatomy and velocity. FINDINGS ULM allowed to show microvessels and to measure their flow velocity within the arterial wall. The number of MB detected per second in the wall was 121 [80-146] in active cases vs. 10 [6-15] in quiescent cases (p = 0.0005), with a mean velocity of 40.5 [39.0-42.9] mm.s-1 in active cases. INTERPRETATION ULM allows visualisation of microvessels within the thickened carotid wall in TA, with significantly greater MB density in active cases. ULM provides a precise visualisation in vivo of the vasa vasorum and gives access to the arterial wall vascularisation quantification. FUNDING French Society of Cardiology. ART (Technological Research Accelerator) biomedical ultrasound program of INSERM, France.
Collapse
Affiliation(s)
- Guillaume Goudot
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France; Université Paris Cité, INSERM U970 PARCC, F-75015 Paris, France.
| | - Anatole Jimenez
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Nassim Mohamedi
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France; Université Paris Cité, INSERM U970 PARCC, F-75015 Paris, France
| | - Jonas Sitruk
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France; Université Paris Cité, INSERM U970 PARCC, F-75015 Paris, France
| | - Lina Khider
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France; Université Paris Cité, INSERM U970 PARCC, F-75015 Paris, France
| | - Hélène Mortelette
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Clément Papadacci
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Fabien Hyafil
- Nuclear Medicine Department, Georges Pompidou European Hospital, APHP, Université Paris Cité, Paris, France
| | - Mickaël Tanter
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Emmanuel Messas
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France; Université Paris Cité, INSERM U970 PARCC, F-75015 Paris, France
| | - Mathieu Pernot
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Tristan Mirault
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France; Université Paris Cité, INSERM U970 PARCC, F-75015 Paris, France; French National Reference Centre for Rare Vascular Diseases, FAVA-MULTI, Member of the European Reference Network on Rare Multisystemic Vascular Diseases (VASCERN), F-75015 Paris, France
| |
Collapse
|
67
|
Øygard SH, Ommen ML, Tomov BG, Diederichsen SE, Thomsen EV, Stuart MB, Larsen NB, Jensen JA. Contrast-enhanced ultrasound imaging using capacitive micromachined ultrasonic transducers. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1887. [PMID: 37002075 DOI: 10.1121/10.0017533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) have a nonlinear relationship between the applied voltage and the emitted signal, which is detrimental to conventional contrast enhanced ultrasound (CEUS) techniques. Instead, a three-pulse amplitude modulation (AM) sequence has been proposed, which is not adversely affected by the nonlinearly emitted harmonics. In this paper, this is shown theoretically, and the performance of the sequence is verified using a 4.8 MHz linear capacitive micromachined ultrasonic transducer (CMUT) array, and a comparable lead zirconate titanate (PZT) array, across 6-60 V applied alternating current (AC) voltage. CEUS images of the contrast agent SonoVue flowing through a 3D printed hydrogel phantom showed an average enhancement in contrast-to-tissue ratio (CTR) between B-mode and CEUS images of 49.9 and 37.4 dB for the PZT array and CMUT, respectively. Furthermore, hydrophone recordings of the emitted signals showed that the nonlinear emissions from the CMUT did not significantly degrade the cancellation in the compounded AM signal, leaving an average of 2% of the emitted power between 26 and 60 V of AC. Thus, it is demonstrated that CMUTs are capable of CEUS imaging independent of the applied excitation voltage when using a three-pulse AM sequence.
Collapse
Affiliation(s)
- Sigrid Husebø Øygard
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Martin Lind Ommen
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | - Erik Vilain Thomsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Matthias Bo Stuart
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Niels Bent Larsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Jørgen Arendt Jensen
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
68
|
Microbubbles for human diagnosis and therapy. Biomaterials 2023; 294:122025. [PMID: 36716588 DOI: 10.1016/j.biomaterials.2023.122025] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Microbubbles (MBs) were observed for the first time in vivo as a curious consequence of quick saline injection during ultrasound (US) imaging of the aortic root, more than 50 years ago. From this serendipitous event, MBs are now widely used as contrast enhancers for US imaging. Their intrinsic properties described in this review, allow a multitude of designs, from shell to gas composition but also from grafting targeting agents to drug payload encapsulation. Indeed, the versatile MBs are deeply studied for their dual potential in imaging and therapy. As presented in this paper, new generations of MBs now opens perspectives for targeted molecular imaging along with the development of new US imaging systems. This review also presents an overview of the different therapeutic strategies with US and MBs for cancer, cardiovascular diseases, and inflammation. The overall aim is to overlap those fields in order to find similarities in the MBs application for treatment enhancement associated with US. To conclude, this review explores the new scales of MBs technologies with nanobubbles development, and along concurrent advances in the US imaging field. This review ends by discussing perspectives for the booming future uses of MBs.
Collapse
|
69
|
Gu W, Li B, Luo J, Yan Z, Ta D, Liu X. Ultrafast Ultrasound Localization Microscopy by Conditional Generative Adversarial Network. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:25-40. [PMID: 36383598 DOI: 10.1109/tuffc.2022.3222534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrasound localization microscopy (ULM) overcomes the acoustic diffraction limit and enables the visualization of microvasculature at subwavelength resolution. However, challenges remain in ultrafast ULM implementation, where short data acquisition time, efficient data processing speed, and high imaging resolution need to be considered simultaneously. Recently, deep learning (DL)-based methods have exhibited potential in speeding up ULM imaging. Nevertheless, a certain number of ultrasound (US) data ( L frames) are still required to accumulate enough localized microbubble (MB) events, leading to an acquisition time within a time span of tens of seconds. To further speed up ULM imaging, in this article, we present a new DL-based method, termed as ULM-GAN. By using a modified conditional generative adversarial network (cGAN) framework, ULM-GAN is able to reconstruct a superresolution image directly from a temporal mean low-resolution (LR) image generated by averaging l -frame raw US images with l being significantly smaller than L . To evaluate the performance of ULM-GAN, a series of numerical simulations and phantom experiments are both implemented. The results of the numerical simulations demonstrate that when performing ULM imaging, ULM-GAN allows ∼ 40 -fold reduction in data acquisition time and ∼ 61 -fold reduction in computational time compared with the conventional Gaussian fitting method, without compromising spatial resolution according to the resolution scaled error (RSE). For the phantom experiments, ULM-GAN offers an implementation of ULM with ultrafast data acquisition time ( ∼ 0.33 s) and ultrafast data processing speed ( ∼ 0.60 s) that makes it promising to observe rapid biological activities in vivo.
Collapse
|
70
|
Lai TY, Averkiou MA. Contrast-Enhanced Ultrasound with Optimized Aperture Patterns and Bubble Segmentation Based on Echo Phase. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:186-202. [PMID: 36441029 PMCID: PMC9713587 DOI: 10.1016/j.ultrasmedbio.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Amplitude modulation (AM) suppresses tissue signals and detects microbubble signals in contrast-enhanced ultrasound (CEUS) and is often implemented with checkerboard apertures. However, possible crosstalk between transmitting and non-transmitting array elements may compromise tissue suppression in AM. Using AM aperture patterns other than the conventional checkerboard approach (one on, one off) may reduce the degree of crosstalk and increase the contrast-to-tissue-ratio (CTR) compared with conventional AM. Furthermore, previous studies have reported that the phase difference between the echoes in AM pulsing sequences may be used to segment tissue and microbubbles and improve tissue signal suppression and the CTR of CEUS images. However, the CTR of the image produced by alternative AM aperture patterns and the effect of segmentation approach on these alternative apertures have not been investigated. We evaluated a number of AM aperture patterns to find an optimal AM aperture pattern that provides the highest CTR. We found that the aperture that uses alternating groups of two elements, AM2, had the highest CTR for the probe evaluated. In addition, a segmentation technique based on echo phase differences (between the full and half-pulses, ΔΦAM, between the complementary half-pulses, ΔΦhalf, and the maximum of the two ΔΦmax) was also considered in the AM aperture optimization process. The segmentation approach increases the CTR by about 25 dB for all apertures. Finally, AM2 segmented with ΔΦmax had a 7-dB higher CTR in a flow phantom and a 6-dB higher contrast in a perfused pig liver than conventional AM segmented with ΔΦAM, and it is the optimal transmit aperture design.
Collapse
Affiliation(s)
- Ting-Yu Lai
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
71
|
Andersen SB, Sørensen CM, Jensen JA, Nielsen MB. Microvascular Imaging with Super-Resolution Ultrasound. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2022; 43:543-547. [PMID: 36470255 DOI: 10.1055/a-1937-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
72
|
Zhang G, Lei YM, Li N, Yu J, Jiang XY, Yu MH, Hu HM, Zeng SE, Cui XW, Ye HR. Ultrasound super-resolution imaging for differential diagnosis of breast masses. Front Oncol 2022; 12:1049991. [PMID: 36408165 PMCID: PMC9669901 DOI: 10.3389/fonc.2022.1049991] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 08/24/2023] Open
Abstract
OBJECTIVE Ultrasound imaging has been widely used in breast cancer screening. Recently, ultrasound super-resolution imaging (SRI) has shown the capability to break the diffraction limit to display microvasculature. However, the application of SRI on differential diagnosis of breast masses remains unknown. Therefore, this study aims to evaluate the feasibility and clinical value of SRI for visualizing microvasculature and differential diagnosis of breast masses. METHODS B mode, color-Doppler flow imaging (CDFI) and contrast-enhanced ultrasound (CEUS) images of 46 patients were collected respectively. SRI were generated by localizations of each possible contrast signals. Micro-vessel density (MVD) and microvascular flow rate (MFR) were calculated from SRI and time to peak (TTP), peak intensity (PI) and area under the curve (AUC) were obtained by quantitative analysis of CEUS images respectively. Pathological results were considered as the gold standard. Independent chi-square test and multivariate logistic regression analysis were performed using these parameters to examine the correlation. RESULTS The results showed that SRI technique could be successfully applied on breast masses and display microvasculature at a significantly higher resolution than the conventional CDFI and CEUS images. The results showed that the PI, AUC, MVD and MFR of malignant breast masses were significantly higher than those of benign breast masses, while TTP was significantly lower than that of benign breast masses. Among all five parameters, MVD showed the highest positive correlation with the malignancy of breast masses. CONCLUSIONS SRI is able to successfully display the microvasculature of breast masses. Compared with CDFI and CEUS, SRI can provide additional morphological and functional information for breast masses. MVD has a great potential in assisting the differential diagnosis of breast masses as an important imaging marker.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Nan Li
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jing Yu
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Xian-Yang Jiang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Mei-Hui Yu
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, China
| | - Shu-E Zeng
- Department of Medical Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
73
|
Zhang G, Ye HR, Sun Y, Guo ZZ. Ultrasound Molecular Imaging and Its Applications in Cancer Diagnosis and Therapy. ACS Sens 2022; 7:2857-2864. [PMID: 36190830 DOI: 10.1021/acssensors.2c01468] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ultrasound imaging is regarded as a highly sensitive imaging modality used in routine clinical examinations. Over the last several decades, ultrasound contrast agents have been widely applied in ultrasound molecular cancer imaging to improve the detection, characterization, and quantification of tumors. To date, a few new potential preclinical and clinical applications regarding ultrasound molecular cancer imaging are being investigated. This review presents an overview of the various kinds of ultrasound contrast agents employed in ultrasound molecular imaging and advanced imaging techniques using these contrast agents. Additionally, we discuss the recent enormous development of ultrasound contrast agents in the relevant preclinical and clinical applications, highlight the recent challenges which need to be overcome to accelerate the clinical translation, and discuss the future perspective of ultrasound molecular cancer imaging using various contrast agents. As a highly promising and valuable tumor-specific imaging technique, it is believed that ultrasound molecular imaging will pave an accurate and efficient way for cancer diagnosis.
Collapse
Affiliation(s)
- Ge Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China, 430070.,Department of Medical Ultrasound, China Resources and Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China, 430080
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources and Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China, 430080
| | - Yao Sun
- College of Chemistry, Central China Normal University, Wuhan, China, 430079
| | - Zhen-Zhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China, 430070
| |
Collapse
|
74
|
Zhang G, Yu J, Lei YM, Hu JR, Hu HM, Harput S, Guo ZZ, Cui XW, Ye HR. Ultrasound super-resolution imaging for the differential diagnosis of thyroid nodules: A pilot study. Front Oncol 2022; 12:978164. [PMID: 36387122 PMCID: PMC9647016 DOI: 10.3389/fonc.2022.978164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 08/24/2023] Open
Abstract
Objective Ultrasound imaging provides a fast and safe examination of thyroid nodules. Recently, the introduction of super-resolution imaging technique shows the capability of breaking the Ultrasound diffraction limit in imaging the micro-vessels. The aim of this study was to evaluate its feasibility and value for the differentiation of thyroid nodules. Methods In this study, B-mode, contrast-enhanced ultrasound, and color Doppler flow imaging examinations were performed on thyroid nodules in 24 patients. Super-resolution imaging was performed to visualize the microvasculature with finer details. Microvascular flow rate (MFR) and micro-vessel density (MVD) within thyroid nodules were computed. The MFR and MVD were used to differentiate the benign and malignant thyroid nodules with pathological results as a gold standard. Results Super-resolution imaging (SRI) technique can be successfully applied on human thyroid nodules to visualize the microvasculature with finer details and obtain the useful clinical information MVD and MFR to help differential diagnosis. The results suggested that the mean value of the MFR within benign thyroid nodule was 16.76 ± 6.82 mm/s whereas that within malignant thyroid was 9.86 ± 4.54 mm/s. The mean value of the MVD within benign thyroid was 0.78 while the value for malignant thyroid region was 0.59. MFR and MVD within the benign thyroid nodules were significantly higher than those within the malignant thyroid nodules respectively (p < 0.01). Conclusions This study demonstrates the feasibility of ultrasound super-resolution imaging to show micro-vessels of human thyroid nodules via a clinical ultrasound platform. The important imaging markers, such as MVD and MFR, can be derived from SRI to provide more useful clinical information. It has the potential to be a new tool for aiding differential diagnosis of thyroid nodules.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of science and technology, Wuhan, China
| | - Jing Yu
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jun-Rui Hu
- Department of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, United Kingdom
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, China
| | - Sevan Harput
- Department of Electrical and Electronic Engineering, London South Bank University, London, United Kingdom
| | - Zhen-Zhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of science and technology, Wuhan, China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
75
|
Kierski TM, Walmer RW, Tsuruta JK, Yin J, Chérin E, Foster FS, Demore CEM, Newsome IG, Pinton GF, Dayton PA. Acoustic Molecular Imaging Beyond the Diffraction Limit In Vivo. IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 2:237-249. [PMID: 38125957 PMCID: PMC10732349 DOI: 10.1109/ojuffc.2022.3212342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Ultrasound molecular imaging (USMI) is a technique used to noninvasively estimate the distribution of molecular markers in vivo by imaging microbubble contrast agents (MCAs) that have been modified to target receptors of interest on the vascular endothelium. USMI is especially relevant for preclinical and clinical cancer research and has been used to predict tumor malignancy and response to treatment. In the last decade, methods that improve the resolution of contrast-enhanced ultrasound by an order of magnitude and allow researchers to noninvasively image individual capillaries have emerged. However, these approaches do not translate directly to molecular imaging. In this work, we demonstrate super-resolution visualization of biomarker expression in vivo using superharmonic ultrasound imaging (SpHI) with dual-frequency transducers, targeted contrast agents, and localization microscopy processing. We validate and optimize the proposed method in vitro using concurrent optical and ultrasound microscopy and a microvessel phantom. With the same technique, we perform a proof-of-concept experiment in vivo in a rat fibrosarcoma model and create maps of biomarker expression co-registered with images of microvasculature. From these images, we measure a resolution of 23 μm, a nearly fivefold improvement in resolution compared to previous diffraction-limited molecular imaging studies.
Collapse
Affiliation(s)
- Thomas M Kierski
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - Rachel W Walmer
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - James K Tsuruta
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - Jianhua Yin
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | | | - F Stuart Foster
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Christine E M Demore
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Isabel G Newsome
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - Gianmarco F Pinton
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| |
Collapse
|
76
|
Jensen JA, Schou M, Jorgensen LT, Tomov BG, Stuart MB, Traberg MS, Taghavi I, Oygaard SH, Ommen ML, Steenberg K, Thomsen EV, Panduro NS, Nielsen MB, Sorensen CM. Anatomic and Functional Imaging Using Row-Column Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2722-2738. [PMID: 35839193 DOI: 10.1109/tuffc.2022.3191391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Row-column (RC) arrays have the potential to yield full 3-D ultrasound imaging with a greatly reduced number of elements compared to fully populated arrays. They, however, have several challenges due to their special geometry. This review article summarizes the current literature for RC imaging and demonstrates that full anatomic and functional imaging can attain a high quality using synthetic aperture (SA) sequences and modified delay-and-sum beamforming. Resolution can approach the diffraction limit with an isotropic resolution of half a wavelength with low sidelobe levels, and the field of view can be expanded by using convex or lensed RC probes. GPU beamforming allows for three orthogonal planes to be beamformed at 30 Hz, providing near real-time imaging ideal for positioning the probe and improving the operator's workflow. Functional imaging is also attainable using transverse oscillation and dedicated SA sequence for tensor velocity imaging for revealing the full 3-D velocity vector as a function of spatial position and time for both blood velocity and tissue motion estimation. Using RC arrays with commercial contrast agents can reveal super-resolution imaging (SRI) with isotropic resolution below [Formula: see text]. RC arrays can, thus, yield full 3-D imaging at high resolution, contrast, and volumetric rates for both anatomic and functional imaging with the same number of receive channels as current commercial 1-D arrays.
Collapse
|
77
|
You Q, Trzasko JD, Lowerison MR, Chen X, Dong Z, ChandraSekaran NV, Llano DA, Chen S, Song P. Curvelet Transform-Based Sparsity Promoting Algorithm for Fast Ultrasound Localization Microscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2385-2398. [PMID: 35344488 PMCID: PMC9496596 DOI: 10.1109/tmi.2022.3162839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ultrasound localization microscopy (ULM) based on microbubble (MB) localization was recently introduced to overcome the resolution limit of conventional ultrasound. However, ULM is currently challenged by the requirement for long data acquisition times to accumulate adequate MB events to fully reconstruct vasculature. In this study, we present a curvelet transform-based sparsity promoting (CTSP) algorithm that improves ULM imaging speed by recovering missing MB localization signal from data with very short acquisition times. CTSP was first validated in a simulated microvessel model, followed by the chicken embryo chorioallantoic membrane (CAM), and finally, in the mouse brain. In the simulated microvessel study, CTSP robustly recovered the vessel model to achieve an 86.94% vessel filling percentage from a corrupted image with only 4.78% of the true vessel pixels. In the chicken embryo CAM study, CTSP effectively recovered the missing MB signal within the vasculature, leading to marked improvement in ULM imaging quality with a very short data acquisition. Taking the optical image as reference, the vessel filling percentage increased from 2.7% to 42.2% using 50ms of data acquisition after applying CTSP. CTSP used 80% less time to achieve the same 90% maximum saturation level as compared with conventional MB localization. We also applied CTSP on the microvessel flow speed maps and found that CTSP was able to use only 1.6s of microbubble data to recover flow speed images that have similar qualities as those constructed using 33.6s of data. In the mouse brain study, CTSP was able to reconstruct the majority of the cerebral vasculature using 1-2s of data acquisition. Additionally, CTSP only needed 3.2s of microbubble data to generate flow velocity maps that are comparable to those using 129.6s of data. These results suggest that CTSP can facilitate fast and robust ULM imaging especially under the circumstances of inadequate microbubble localizations.
Collapse
|
78
|
Yan J, Zhang T, Broughton-Venner J, Huang P, Tang MX. Super-Resolution Ultrasound Through Sparsity-Based Deconvolution and Multi-Feature Tracking. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1938-1947. [PMID: 35171767 PMCID: PMC7614417 DOI: 10.1109/tmi.2022.3152396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ultrasound super-resolution imaging through localisation and tracking of microbubbles can achieve sub-wave-diffraction resolution in mapping both micro-vascular structure and flow dynamics in deep tissue in vivo. Currently, it is still challenging to achieve high accuracy in localisation and tracking particularly with limited imaging frame rates and in the presence of high bubble concentrations. This study introduces microbubble image features into a Kalman tracking framework, and makes the framework compatible with sparsity-based deconvolution to address these key challenges. The performance of the method is evaluated on both simulations using individual bubble signals segmented from in vivo data and experiments on a mouse brain and a human lymph node. The simulation results show that the deconvolution not only significantly improves the accuracy of isolating overlapping bubbles, but also preserves some image features of the bubbles. The combination of such features with Kalman motion model can achieve a significant improvement in tracking precision at a low frame rate over that using the distance measure, while the improvement is not significant at the highest frame rate. The in vivo results show that the proposed framework generates SR images that are significantly different from the current methods with visual improvement, and is more robust to high bubble concentrations and low frame rates.
Collapse
Affiliation(s)
- Jipeng Yan
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Tao Zhang
- Second Affiliate Hospital, Zhejiang University, Hangzhou, China, 313000
| | - Jacob Broughton-Venner
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Pintong Huang
- Second Affiliate Hospital, Zhejiang University, Hangzhou, China, 313000
| | - Meng-Xing Tang
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| |
Collapse
|
79
|
Renaudin N, Demené C, Dizeux A, Ialy-Radio N, Pezet S, Tanter M. Functional ultrasound localization microscopy reveals brain-wide neurovascular activity on a microscopic scale. Nat Methods 2022; 19:1004-1012. [PMID: 35927475 PMCID: PMC9352591 DOI: 10.1038/s41592-022-01549-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/14/2022] [Indexed: 12/02/2022]
Abstract
The advent of neuroimaging has increased our understanding of brain function. While most brain-wide functional imaging modalities exploit neurovascular coupling to map brain activity at millimeter resolutions, the recording of functional responses at microscopic scale in mammals remains the privilege of invasive electrophysiological or optical approaches, but is mostly restricted to either the cortical surface or the vicinity of implanted sensors. Ultrasound localization microscopy (ULM) has achieved transcranial imaging of cerebrovascular flow, up to micrometre scales, by localizing intravenously injected microbubbles; however, the long acquisition time required to detect microbubbles within microscopic vessels has so far restricted ULM application mainly to microvasculature structural imaging. Here we show how ULM can be modified to quantify functional hyperemia dynamically during brain activation reaching a 6.5-µm spatial and 1-s temporal resolution in deep regions of the rat brain.
Collapse
Affiliation(s)
- Noémi Renaudin
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Charlie Demené
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Alexandre Dizeux
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Nathalie Ialy-Radio
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Sophie Pezet
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Mickael Tanter
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France.
| |
Collapse
|
80
|
Bendjador H, Foiret J, Wodnicki R, Stephens DN, Krut Z, Park EY, Gazit Z, Gazit D, Pelled G, Ferrara KW. A theranostic 3D ultrasound imaging system for high resolution image-guided therapy. Theranostics 2022; 12:4949-4964. [PMID: 35836805 PMCID: PMC9274734 DOI: 10.7150/thno.71221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Microbubble contrast agents are a diagnostic tool with broad clinical impact and an increasing number of indications. Many therapeutic applications have also been identified. Yet, technologies for ultrasound guidance of microbubble-mediated therapy are limited. In particular, arrays that are capable of implementing and imaging microbubble-based therapy in three dimensions in real-time are lacking. We propose a system to perform and monitor microbubble-based therapy, capable of volumetric imaging over a large field-of-view. To propel the promise of the theranostic treatment strategies forward, we have designed and tested a unique array and system for 3D ultrasound guidance of microbubble-based therapeutic protocols based on the frequency, temporal and spatial requirements. Methods: Four 256-channel plane wave scanners (Verasonics, Inc, WA, USA) were combined to control a 1024-element planar array with 1.3 and 2.5 MHz therapeutic and imaging transmissions, respectively. A transducer aperture of ~40×15 mm was selected and Field II was applied to evaluate the point spread function. In vitro experiments were performed on commercial and custom phantoms to assess the spatial resolution, image contrast and microbubble-enhanced imaging capabilities. Results: We found that a 2D array configuration with 64 elements separated by λ-pitch in azimuth and 16 elements separated by 1.5λ-pitch in elevation ensured the required flexibility. This design, of 41.6 mm × 16 mm, thus provided both an extended field-of-view, up to 11 cm x 6 cm at 10 cm depth and steering of ±18° in azimuth and ±12° in elevation. At a depth of 16 cm, we achieved a volume imaging rate of 60 Hz, with a contrast ratio and resolution, respectively, of 19 dB, 0.8 mm at 3 cm and 20 dB and 2.1 mm at 12.5 cm. Conclusion: A single 2D array for both imaging and therapeutics, integrated with a 1024 channel scanner can guide microbubble-based therapy in volumetric regions of interest.
Collapse
Affiliation(s)
| | | | | | | | - Zoe Krut
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Zulma Gazit
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dan Gazit
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gadi Pelled
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | |
Collapse
|
81
|
Taghavi I, Andersen SB, Hoyos CAV, Schou M, Gran F, Hansen KL, Nielsen MB, Sørensen CM, Stuart MB, Jensen JA. Ultrasound super-resolution imaging with a hierarchical Kalman tracker. ULTRASONICS 2022; 122:106695. [PMID: 35149256 DOI: 10.1016/j.ultras.2022.106695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Microbubble (MB) tracking plays an important role in ultrasound super-resolution imaging (SRI) by enabling velocity estimation and improving image quality. This work presents a new hierarchical Kalman (HK) tracker to achieve better performance at scenarios with high concentrations of MBs and high localization uncertainty. The method attempts to follow MBs with different velocity ranges using different Kalman filters. An extended simulation framework for evaluating trackers is also presented and used for comparison of the proposed HK tracker with the nearest-neighbor (NN) and Kalman (K) trackers. The HK tracks were most similar to the ground truth with the highest Jaccard similarity coefficient in 79% of the scenarios and the lowest root-mean-square error in 72% of the scenarios. The HK tracker reconstructed vessels with a more accurate diameter. In a scenario with an uncertainty of 51.2μm in MB localization, a vessel diameter of 250μm was estimated as 257μm by HK tracker, compared with 329μm and 389μm for the K and NN trackers. In the same scenario, the HK tracker estimated MB velocities with a relative bias down to 1.7% and a relative standard deviation down to 8.3%. Finally, the different tracking techniques were applied to in vivo data from rat kidneys, and trends similar to the simulations were observed. Conclusively, the results showed an improvement in tracking performance, when the HK tracker was employed in comparison with the NN and K trackers.
Collapse
Affiliation(s)
- Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, DK 2800, Kgs. Lyngby Denmark.
| | - Sofie Bech Andersen
- Department of Biomedical Sciences, University of Copenhagen, DK 2200, Copenhagen, Denmark; Department of Diagnostic Radiology, Rigshospitalet, DK 2100, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, DK 2200, Copenhagen, Denmark.
| | | | - Mikkel Schou
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, DK 2800, Kgs. Lyngby Denmark.
| | | | - Kristoffer Lindskov Hansen
- Department of Diagnostic Radiology, Rigshospitalet, DK 2100, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, DK 2200, Copenhagen, Denmark.
| | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, Rigshospitalet, DK 2100, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, DK 2200, Copenhagen, Denmark.
| | | | - Matthias Bo Stuart
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, DK 2800, Kgs. Lyngby Denmark.
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, DK 2800, Kgs. Lyngby Denmark.
| |
Collapse
|
82
|
Qian X, Huang C, Li R, Song BJ, Tchelepi H, Shung KK, Chen S, Humayun MS, Zhou Q. Super-Resolution Ultrasound Localization Microscopy for Visualization of the Ocular Blood Flow. IEEE Trans Biomed Eng 2022; 69:1585-1594. [PMID: 34652993 PMCID: PMC9113921 DOI: 10.1109/tbme.2021.3120368] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The ocular vascular system plays an important role in preserving the visual function. Alterations in either anatomy or hemodynamics of the eye may have adverse effects on vision. Thus, an imaging approach that can monitor alterations of ocular blood flow of the deep eye vasculature ranging from capillary-level vessels to large supporting vessels would be advantageous for detection of early stage retinal and optic nerve diseases. METHODS We propose a super-resolution ultrasound localization microscopy (ULM) technique that can assess both the microvessel and flow velocity of the deep eye with high resolution. Ultrafast plane wave imaging was acquired using an L22-14v linear array on a high frequency Verasonics Vantage system. A robust microbubble localization and tracking technique was applied to reconstruct ULM images. The experiment was first performed on pre-designed flow phantoms in vitro and then tested on a New Zealand white rabbit eye in vivo calibrated to various intraocular pressures (IOP) - 10 mmHg, 30 mmHg and 50 mmHg. RESULTS We demonstrated that retinal/choroidal vessels, central retinal artery, posterior ciliary artery, and vortex vein were all visible at high resolution. In addition, reduction of vascular density and flow velocity were observed with elevated IOPs. CONCLUSION These results indicate that super-resolution ULM is able to image the deep ocular tissue while maintaining high resolution that is comparable with optical coherence tomography angiography. SIGNIFICANCE Capability to detect subtle changes of blood flow may be clinically important in detecting and monitoring eye diseases such as glaucoma.
Collapse
|
83
|
Heiles B, Chavignon A, Hingot V, Lopez P, Teston E, Couture O. Performance benchmarking of microbubble-localization algorithms for ultrasound localization microscopy. Nat Biomed Eng 2022; 6:605-616. [PMID: 35177778 DOI: 10.1038/s41551-021-00824-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/29/2021] [Indexed: 12/18/2022]
Abstract
Ultrafast ultrasound localization microscopy can be used to detect the subwavelength acoustic scattering of intravenously injected microbubbles to obtain haemodynamic maps of the vasculature of animals and humans. The quality of the haemodynamic maps depends on signal-to-noise ratios and on the algorithms used for the localization of the microbubbles and the rendering of their trajectories. Here we report the results of benchmarking of the performance of seven microbubble-localization algorithms. We used metrics for localization errors, localization success rates, processing times and a measure of the reprojection of the localization of the microbubbles on the original beamformed grid. We combined eleven metrics into an overall score and tested the algorithms in three simulated microcirculation datasets, and in angiography datasets of the brain of a live rat after craniotomy, an excised rat kidney and a mammary tumour in a live mouse. The algorithms, metrics and datasets, which we have made openly available at https://github.com/AChavignon/PALA and https://doi.org/10.5281/zenodo.4343435 , will facilitate the identification or generation of optimal microbubble-localization algorithms for specific applications.
Collapse
Affiliation(s)
- Baptiste Heiles
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France.
- ESPCI, CNRS, INSERM, PhysMedParis, Paris, France.
| | - Arthur Chavignon
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - Vincent Hingot
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
- ESPCI, CNRS, INSERM, PhysMedParis, Paris, France
| | - Pauline Lopez
- ESPCI, CNRS, INSERM, PhysMedParis, Paris, France
- Institut Cochin, INSERM U1016, Paris, France
| | | | - Olivier Couture
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| |
Collapse
|
84
|
Demeulenaere O, Bertolo A, Pezet S, Ialy-Radio N, Osmanski B, Papadacci C, Tanter M, Deffieux T, Pernot M. In vivo whole brain microvascular imaging in mice using transcranial 3D Ultrasound Localization Microscopy. EBioMedicine 2022; 79:103995. [PMID: 35460988 PMCID: PMC9048085 DOI: 10.1016/j.ebiom.2022.103995] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Non-invasive high-resolution imaging of the cerebral vascular anatomy and function is key for the study of intracranial aneurysms, stenosis, arteriovenous malformations, and stroke, but also neurological pathologies, such as degenerative diseases. Direct visualization of the microvascular networks in the whole brain remains however challenging in vivo. Methods In this work, we performed 3D ultrafast ultrasound localization microscopy (ULM) using a 2D ultrasound matrix array and mapped the whole-brain microvasculature and flow at microscopic resolution in C57Bl6 mice in vivo. Findings We demonstrated that the mouse brain vasculature can be imaged directly through the intact skull at a spatial resolution of 20 µm and over the whole brain depth and at high temporal resolution (750 volumes.s−1). Individual microbubbles were tracked to estimate the flow velocities that ranged from 2 mm.s−1 in arterioles and venules up to 100 mm.s−1 in large vessels. The vascular maps were registered automatically with the Allen atlas in order to extract quantitative vascular parameters such as local flow rates and velocities in regions of interest. Interpretation We show the potential of 3D ULM to provide new insights into whole-brain vascular flow in mice models at unprecedented vascular scale for an in vivo technique. This technology is highly translational and has the potential to become a major tool for the clinical investigation of the cerebral microcirculation. Funding This study was supported by the European Research Council under the European Union's Seventh Framework Program (FP/2007-2013) / ERC Grant Agreement n° 311025 and by the Fondation Bettencourt-Schueller under the program “Physics for Medicine”. We acknowledge the ART (Technological Research Accelerator) biomedical ultrasound program of INSERM.
Collapse
Affiliation(s)
- Oscar Demeulenaere
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France
| | - Adrien Bertolo
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France; Iconeus, Paris 75014, France
| | - Sophie Pezet
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France
| | - Nathalie Ialy-Radio
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France
| | | | - Clément Papadacci
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France
| | - Mickael Tanter
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France
| | - Thomas Deffieux
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France
| | - Mathieu Pernot
- Physics for Medicine, ESPCI, Inserm, CNRS, Institute of Physics for Medicine Paris, PSL University, ESPCI Paris, 17 rue Moreau, Paris 75012, France.
| |
Collapse
|
85
|
Andersen SB, Taghavi I, Søgaard SB, Hoyos CAV, Nielsen MB, Jensen JA, Sørensen CM. Super-Resolution Ultrasound Imaging Can Quantify Alterations in Microbubble Velocities in the Renal Vasculature of Rats. Diagnostics (Basel) 2022; 12:1111. [PMID: 35626267 PMCID: PMC9140053 DOI: 10.3390/diagnostics12051111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Super-resolution ultrasound imaging, based on the localization and tracking of single intravascular microbubbles, makes it possible to map vessels below 100 µm. Microbubble velocities can be estimated as a surrogate for blood velocity, but their clinical potential is unclear. We investigated if a decrease in microbubble velocity in the arterial and venous beds of the renal cortex, outer medulla, and inner medulla was detectable after intravenous administration of the α1-adrenoceptor antagonist prazosin. The left kidneys of seven rats were scanned with super-resolution ultrasound for 10 min before, during, and after prazosin administration using a bk5000 ultrasound scanner and hockey-stick probe. The super-resolution images were manually segmented, separating cortex, outer medulla, and inner medulla. Microbubble tracks from arteries/arterioles were separated from vein/venule tracks using the arterial blood flow direction. The mean microbubble velocities from each scan were compared. This showed a significant prazosin-induced velocity decrease only in the cortical arteries/arterioles (from 1.59 ± 0.38 to 1.14 ± 0.31 to 1.18 ± 0.33 mm/s, p = 0.013) and outer medulla descending vasa recta (from 0.70 ± 0.05 to 0.66 ± 0.04 to 0.69 ± 0.06 mm/s, p = 0.026). Conclusively, super-resolution ultrasound imaging makes it possible to detect and differentiate microbubble velocity responses to prazosin simultaneously in the renal cortical and medullary vascular beds.
Collapse
Affiliation(s)
- Sofie Bech Andersen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Stinne Byrholdt Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | | | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Charlotte Mehlin Sørensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
| |
Collapse
|
86
|
Robin J, Ozbek A, Reiss M, Dean-Ben XL, Razansky D. Dual-Mode Volumetric Optoacoustic and Contrast Enhanced Ultrasound Imaging With Spherical Matrix Arrays. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:846-856. [PMID: 34735340 DOI: 10.1109/tmi.2021.3125398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spherical matrix arrays represent an advantageous tomographic detection geometry for non-invasive deep tissue mapping of vascular networks and oxygenation with volumetric optoacoustic tomography (VOT). Hybridization of VOT with ultrasound (US) imaging remains difficult with this configuration due to the relatively large inter-element pitch of spherical arrays. We suggest a new approach for combining VOT and US contrast-enhanced 3D imaging employing injection of clinically-approved microbubbles. Power Doppler (PD) and US localization imaging were enabled with a sparse US acquisition sequence and model-based inversion based on infimal convolution of total variation (ICTV) regularization. In vitro experiments in tissue-mimicking phantoms and in living mouse brain demonstrate the powerful capabilities of the new dual-mode imaging approach attaining 80 μm spatial resolution and a more than 10 dB signal to noise improvement with respect to a classical delay and sum beamformer. Microbubble localization and tracking allowed for flow velocity mapping up to 40 mm/s.
Collapse
|
87
|
Chen X, Lowerison MR, Dong Z, Han A, Song P. Deep Learning-Based Microbubble Localization for Ultrasound Localization Microscopy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1312-1325. [PMID: 35171770 PMCID: PMC9116497 DOI: 10.1109/tuffc.2022.3152225] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultrasound localization microscopy (ULM) is an emerging vascular imaging technique that overcomes the resolution-penetration compromise of ultrasound imaging. Accurate and robust microbubble (MB) localization is essential for successful ULM. In this study, we present a deep learning (DL)-based localization technique that uses both Field-II simulation and in vivo chicken embryo chorioallantoic membrane (CAM) data for training. Both radio frequency (RF) and in-phase and quadrature (IQ) data were tested in this study. The simulation experiment shows that the proposed DL-based localization was able to reduce both missing MB localization rate and MB localization error. In general, RF data showed better performance than IQ. For the in vivo CAM study with high MB concentration, DL-based localization was able to reduce the vessel MB saturation time by more than 50% compared to conventional localization. In addition, we propose a DL-based framework for real-time visualization of the high-resolution microvasculature. The findings of this article support the use of DL for more robust and faster MB localization, especially under high MB concentrations. The results indicate that further improvement could be achieved by incorporating temporal information of the MB data.
Collapse
|
88
|
Qiu L, Zhang J, Yang Y, Zhang H, Lee FF, He Q, Huang C, Huang L, Qian L, Luo J. In Vivo assessment of hypertensive nephrosclerosis using ultrasound localization microscopy. Med Phys 2022; 49:2295-2308. [PMID: 35218672 DOI: 10.1002/mp.15583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE As a typical chronic kidney disease (CKD), hypertensive nephrosclerosis (HN) is a common syndrome of hypertension, characterized by chronic kidney microvascular damage. Early diagnosis of microvascular damage using conventional ultrasound imaging encounters challenges in sensitivity and specificity owing to the inherent diffraction limit. Ultrasound localization microscopy (ULM) has been developed to obtain microvasculature and microvascular hemodynamics within the kidney, and would be a promising tool for early diagnosis of CKD. METHODS In this study, the advantage of quantitative indexes obtained by using ULM (mean arterial blood flow speeds of different segments of interlobular arteries) over indexes obtained using conventional clinical serum (β2-microglobulin, serum urea nitrogen and creatinine) and urine (24-hour urine volume and urine protein) tests and ultrasound Doppler imaging [peak systolic velocity (PSV), end-diastolic velocity (EDV) and resistance index (RI)] and contrast-enhanced ultrasound imaging [CEUS; rise time (RT), peak intensity (IMAX), mean transit time (mTT) and area under the time-intensity curve (AUC)] for early diagnosis of HN was investigated. Examinations were carried out on 6 spontaneously hypertensive rats (SHR) and 5 normal Wistar-Kyoto (WKY) rats at the age of 10 weeks. RESULTS The experimental results showed that the indicators derived from conventional clinical inspections (serum and urine tests) and ultrasound imaging (PSV, EDV, RI, RT, IMAX, mTT and AUC) did not show significant difference between hypertensive and healthy rats (p > 0.05), while the TTP of the SHR group (28.52 ± 5.52 s) derived from CEUS is significantly higher than that of the WKY group (18.68 ± 7.32 s; p < 0.05). The mean blood flow speed in interlobular artery of SHR (12.47 ± 1.06 mm/s) derived from ULM is significantly higher than that of WKY rats (10.13 ± 1.17 mm/s; p < 0.01). CONCLUSION The advantages of ULM over conventional clinical inspections and ultrasound imaging methods for early diagnosis of HN were validated. The quantitative results showed that ULM can effectively diagnose HN at the early stage by detecting the blood flow speed changes of interlobular arteries. ULM may promise a reliable technique for early diagnosis of HN in the future. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lanyan Qiu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jingke Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yi Yang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Hong Zhang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Fu-Feng Lee
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Lijie Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
89
|
Yi HM, Lowerison MR, Song PF, Zhang W. A Review of Clinical Applications for Super-resolution Ultrasound Localization Microscopy. Curr Med Sci 2022; 42:1-16. [PMID: 35167000 DOI: 10.1007/s11596-021-2459-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022]
Abstract
Microvascular structure and hemodynamics are important indicators for the diagnosis and assessment of many diseases and pathologies. The structural and functional imaging of tissue microvasculature in vivo is a clinically significant objective for the development of many imaging modalities. Contrast-enhanced ultrasound (CEUS) is a popular clinical tool for characterizing tissue microvasculature, due to the moderate cost, wide accessibility, and absence of ionizing radiation of ultrasound. However, in practice, it remains challenging to demonstrate microvasculature using CEUS, due to the resolution limit of conventional ultrasound imaging. In addition, the quantification of tissue perfusion by CEUS remains hindered by high operator-dependency and poor reproducibility. Inspired by super-resolution optical microscopy, super-resolution ultrasound localization microscopy (ULM) was recently developed. ULM uses the same ultrasound contrast agent (i.e. microbubbles) in CEUS. However, different from CEUS, ULM uses the location of the microbubbles to construct images, instead of using the backscattering intensity of microbubbles. Hence, ULM overcomes the classic compromise between imaging resolution and penetration, allowing for the visualization of capillary-scale microvasculature deep within tissues. To date, many in vivo ULM results have been reported, including both animal (kidney, brain, spinal cord, xenografted tumor, and ear) and human studies (prostate, tibialis anterior muscle, and breast cancer tumors). Furthermore, a variety of useful biomarkers have been derived from using ULM for different preclinical and clinical applications. Due to the high spatial resolution and accurate blood flow speed estimation (approximately 1 mm/s to several cm/s), ULM presents as an enticing alternative to CEUS for characterizing tissue microvasculature in vivo. This review summarizes the principles and present applications of CEUS and ULM, and discusses areas where ULM can potentially provide a better alternative to CEUS in clinical practice and areas where ULM may not be a better alternative. The objective of the study is to provide clinicians with an up-to-date review of ULM technology, and a practical guide for implementing ULM in clinical research and practice.
Collapse
Affiliation(s)
- Hui-Ming Yi
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Peng-Fei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Wei Zhang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA. .,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.
| |
Collapse
|
90
|
Zhang Z, Hwang M, Kilbaugh TJ, Sridharan A, Katz J. Cerebral microcirculation mapped by echo particle tracking velocimetry quantifies the intracranial pressure and detects ischemia. Nat Commun 2022; 13:666. [PMID: 35115552 PMCID: PMC8814032 DOI: 10.1038/s41467-022-28298-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Affecting 1.1‰ of infants, hydrocephalus involves abnormal accumulation of cerebrospinal fluid, resulting in elevated intracranial pressure (ICP). It is the leading cause for brain surgery in newborns, often causing long-term neurologic disabilities or even death. Since conventional invasive ICP monitoring is risky, early neurosurgical interventions could benefit from noninvasive techniques. Here we use clinical contrast-enhanced ultrasound (CEUS) imaging and intravascular microbubble tracking algorithms to map the cerebral blood flow in hydrocephalic pediatric porcine models. Regional microvascular perfusions are quantified by the cerebral microcirculation (CMC) parameter, which accounts for the concentration of micro-vessels and flow velocity in them. Combining CMC with hemodynamic parameters yields functional relationships between cortical micro-perfusion and ICP, with correlation coefficients exceeding 0.85. For cerebral ischemia cases, the nondimensionalized cortical micro-perfusion decreases by an order of magnitude when ICP exceeds 50% of the MAP. These findings suggest that CEUS-based CMC measurement is a plausible noninvasive method for assessing the ICP and detecting ischemia.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anush Sridharan
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
91
|
Lei S, Zhang G, Zhu B, Long X, Jiang Z, Liu Y, Hu D, Sheng Z, Zhang Q, Wang C, Gao Z, Zheng H, Ma T. In Vivo Ultrasound Localization Microscopy Imaging of the Kidney's Microvasculature With Block-Matching 3-D Denoising. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:523-533. [PMID: 34727030 DOI: 10.1109/tuffc.2021.3125010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Structural abnormalities and functional changes of renal microvascular networks play a significant pathophysiologic role in the occurrence of kidney diseases. Super-resolution ultrasound imaging has been successfully utilized to visualize the microvascular network and provide valuable diagnostic information. To prevent the burst of microbubbles, a lower mechanical index (MI) is generally used in ultrasound localization microscopy (ULM) imaging. However, high noise levels lead to incorrect signal localizations in relatively low-MI settings and deep tissue. In this study, we implemented a block-matching 3-D (BM3D) image-denoising method, after the application of singular value decomposition filtering, to further suppress the noise at various depths. The in vitro flow-phantom results show that the BM3D method helps the significant reduction of the error localizations, thus improving the localization accuracy. In vivo rhesus macaque experiments help conclude that the BM3D method improves the resolution more than other image-based denoising techniques, such as the nonlocal means method. The obtained clutter-filtered images with fewer incorrect localizations can enable robust ULM imaging, thus helping in establishing an effective diagnostic tool.
Collapse
|
92
|
Lowerison MR, Sekaran NVC, Zhang W, Dong Z, Chen X, Llano DA, Song P. Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse. Sci Rep 2022; 12:619. [PMID: 35022482 PMCID: PMC8755738 DOI: 10.1038/s41598-021-04712-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
Aging-related cognitive decline is an emerging health crisis; however, no established unifying mechanism has been identified for the cognitive impairments seen in an aging population. A vascular hypothesis of cognitive decline has been proposed but is difficult to test given the requirement of high-fidelity microvascular imaging resolution with a broad and deep brain imaging field of view, which is restricted by the fundamental trade-off of imaging penetration depth and resolution. Super-resolution ultrasound localization microscopy (ULM) offers a potential solution by exploiting circulating microbubbles to achieve a vascular resolution approaching the capillary scale without sacrificing imaging depth. In this report, we apply ULM imaging to a mouse model of aging and quantify differences in cerebral vascularity, blood velocity, and vessel tortuosity across several brain regions. We found significant decreases in blood velocity, and significant increases in vascular tortuosity, across all brain regions in the aged cohort, and significant decreases in blood volume in the cerebral cortex. These data provide the first-ever ULM measurements of subcortical microvascular dynamics in vivo within the context of the aging brain and reveal that aging has a major impact on these measurements.
Collapse
Affiliation(s)
- Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Nathiya Vaithiyalingam Chandra Sekaran
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Wei Zhang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Wuhan City, Hubei Province, China
| | - Zhijie Dong
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Xi Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Daniel A Llano
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA.
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
93
|
Kurochkin MA, German SV, Abalymov A, Vorontsov DА, Gorin DA, Novoselova MV. Sentinel lymph node detection by combining nonradioactive techniques with contrast agents: State of the art and prospects. JOURNAL OF BIOPHOTONICS 2022; 15:e202100149. [PMID: 34514735 DOI: 10.1002/jbio.202100149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The status of sentinel lymph nodes (SLNs) has a substantial prognostic value because these nodes are the first place where cancer cells accumulate along their spreading route. Routine SLN biopsy ("gold standard") involves peritumoral injections of radiopharmaceuticals, such as technetium-99m, which has obvious disadvantages. This review examines the methods used as "gold standard" analogs to diagnose SLNs. Nonradioactive preoperative and intraoperative methods of SLN detection are analyzed. Promising photonic tools for SLNs detection are reviewed, including NIR-I/NIR-II fluorescence imaging, photoswitching dyes for SLN detection, in vivo photoacoustic detection, imaging and biopsy of SLNs. Also are discussed methods of SLN detection by magnetic resonance imaging, ultrasonic imaging systems including as combined with photoacoustic imaging, and methods based on the magnetometer-aided detection of superparamagnetic nanoparticles. The advantages and disadvantages of nonradioactive SLN-detection methods are shown. The review concludes with prospects for the use of conservative diagnostic methods in combination with photonic tools.
Collapse
Affiliation(s)
| | - Sergey V German
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Spectroscopy of the Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry А Vorontsov
- State Budgetary Institution of Health Care of Nizhny Novgorod "Nizhny Novgorod Regional Clinical Oncological Dispensary", Nizhny Novgorod, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | |
Collapse
|
94
|
Chavignon A, Heiles B, Hingot V, Orset C, Vivien D, Couture O. 3D Transcranial Ultrasound Localization Microscopy in the Rat Brain with a Multiplexed Matrix Probe. IEEE Trans Biomed Eng 2021; 69:2132-2142. [PMID: 34932470 DOI: 10.1109/tbme.2021.3137265] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Ultrasound Localization Microscopy (ULM) provides images of the microcirculation in-depth in living tissue. However, its implementation in two-dimension is limited by the elevation projection and tedious plane-by-plane acquisition. Volumetric ULM alleviates these issues and can map the vasculature of entire organs in one acquisition with isotropic resolution. However, its optimal implementation requires many independent acquisition channels, leading to complex custom hardware. METHODS In this article, we implemented volumetric ultrasound imaging with a multiplexed 32 x 32 probe driven by a single commercial ultrasound scanner. We propose and compare three different sub-aperture multiplexing combinations for localization microscopy in silico and in vitro with a flow of microbubbles in a canal. Finally, we evaluate the approach for micro-angiography of the rat brain.The "light" combination allows a higher maximal volume rate than the "full" combination while maintaining the field of view and resolution. RESULTS In the rat brain, 100,000 volumes were acquired within 7 min with a dedicated ultrasound sequence and revealed vessels down to 31 m in diameter with flows from 4.3 mm/s to 28.4 mm/s. CONCLUSION This work demonstrates the ability to perform a complete angiography with unprecedented resolution in the living rats brain with a simple and light setup through the intact skull. SIGNIFICANCE We foresee that it might contribute to democratize 3D ULM for both preclinical and clinical studies.
Collapse
|
95
|
Andersen SB, Taghavi I, Kjer HM, Søgaard SB, Gundlach C, Dahl VA, Nielsen MB, Dahl AB, Jensen JA, Sørensen CM. Evaluation of 2D super-resolution ultrasound imaging of the rat renal vasculature using ex vivo micro-computed tomography. Sci Rep 2021; 11:24335. [PMID: 34934089 PMCID: PMC8692475 DOI: 10.1038/s41598-021-03726-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022] Open
Abstract
Super-resolution ultrasound imaging (SRUS) enables in vivo microvascular imaging of deeper-lying tissues and organs, such as the kidneys or liver. The technique allows new insights into microvascular anatomy and physiology and the development of disease-related microvascular abnormalities. However, the microvascular anatomy is intricate and challenging to depict with the currently available imaging techniques, and validation of the microvascular structures of deeper-lying organs obtained with SRUS remains difficult. Our study aimed to directly compare the vascular anatomy in two in vivo 2D SRUS images of a Sprague-Dawley rat kidney with ex vivo μCT of the same kidney. Co-registering the SRUS images to the μCT volume revealed visually very similar vascular features of vessels ranging from ~ 100 to 1300 μm in diameter and illustrated a high level of vessel branching complexity captured in the 2D SRUS images. Additionally, it was shown that it is difficult to use μCT data of a whole rat kidney specimen to validate the super-resolution capability of our ultrasound scans, i.e., validating the actual microvasculature of the rat kidney. Lastly, by comparing the two imaging modalities, fundamental challenges for 2D SRUS were demonstrated, including the complexity of projecting a 3D vessel network into 2D. These challenges should be considered when interpreting clinical or preclinical SRUS data in future studies.
Collapse
Affiliation(s)
- Sofie Bech Andersen
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark.
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Hans Martin Kjer
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Stinne Byrholdt Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Vedrana Andersen Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Michael Bachmann Nielsen
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | | |
Collapse
|
96
|
Hingot V, Chavignon A, Heiles B, Couture O. Measuring Image Resolution in Ultrasound Localization Microscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3812-3819. [PMID: 34280094 DOI: 10.1109/tmi.2021.3097150] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The resolution of an imaging system is usually determined by the width of its point spread function and is measured using the Rayleigh criterion. For most system, it is in the order of the imaging wavelength. However, super resolution techniques such as localization microscopy in optical and ultrasound imaging can resolve features an order of magnitude finer than the wavelength. The classical description of spatial resolution no longer applies and new methods need to be developed. In optical localization microscopy, the Fourier Ring Correlation has showed to be an effective and practical way to estimate spatial resolution for Single Molecule Localization Microscopy data. In this work, we wish to investigate how this tool can provide a direct and universal estimation of spatial resolution in Ultrasound Localization Microscopy. Moreover, we discuss the concept of spatial sampling in Ultrasound Localization Microscopy and demonstrate how the Nyquist criterion for sampling drives the spatial/temporal resolution tradeoff. We measured spatial resolution on five different datasets over rodent's brain, kidney and tumor finding values between [Formula: see text] and [Formula: see text] for precision of localization between [Formula: see text] and [Formula: see text]. Eventually, we discuss from those in vivo datasets how spatial resolution in Ultrasound Localization Microscopy depends on both the localization precision and the total number of detected microbubbles. This study aims to offer a practical and theoretical framework for image resolution in Ultrasound Localization Microscopy.
Collapse
|
97
|
Kim J, Wang Q, Zhang S, Yoon S. Compressed Sensing-Based Super-Resolution Ultrasound Imaging for Faster Acquisition and High Quality Images. IEEE Trans Biomed Eng 2021; 68:3317-3326. [PMID: 33793396 PMCID: PMC8609474 DOI: 10.1109/tbme.2021.3070487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GOAL Typical SRUS images are reconstructed by localizing ultrasound microbubbles (MBs) injected in a vessel using normalized 2-dimensional cross-correlation (2DCC) between MBs signals and the point spread function of the system. However, current techniques require isolated MBs in a confined area due to inaccurate localization of densely populated MBs. To overcome this limitation, we developed the ℓ1-homotopy based compressed sensing (L1H-CS) based SRUS imaging technique which localizes densely populated MBs to visualize microvasculature in vivo. METHODS To evaluate the performance of L1H-CS, we compared the performance of 2DCC, interior-point method based compressed sensing (CVX-CS), and L1H-CS algorithms. Localization efficiency was compared using axially and laterally aligned point targets (PTs) with known distances and randomly distributed PTs generated by simulation. We developed post-processing techniques including clutter reduction, noise equalization, motion compensation, and spatiotemporal noise filtering for in vivo imaging. We then validated the capabilities of L1H-CS based SRUS imaging technique with high-density MBs in a mouse tumor model, kidney, and zebrafish dorsal trunk, and brain. RESULTS Compared to 2DCC and CVX-CS algorithms, L1H-CS achieved faster data acquisition time and considerable improvement in SRUS image quality. CONCLUSIONS AND SIGNIFICANCE These results demonstrate that the L1H-CS based SRUS imaging technique has the potential to examine microvasculature with reduced acquisition and reconstruction time to acquire enhanced SRUS image quality, which may be necessary to translate it into clinics.
Collapse
|
98
|
Brown KG, Hoyt K. Evaluation of Nonlinear Contrast Pulse Sequencing for Use in Super-Resolution Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3347-3361. [PMID: 34181537 PMCID: PMC8588781 DOI: 10.1109/tuffc.2021.3092172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The use of super-resolution ultrasound (SR-US) imaging greatly improves visualization of microvascular structures, but clinical adoption is limited by long imaging times. This method depends on detecting and localizing isolated microbubbles (MBs), forcing the use of a dilute contrast agent concentration. Contrast-enhanced ultrasound (CEUS) image acquisition times as long as minutes arise as the localization of thousands of MBs are acquired to form a complete SR-US image. In this article, we explore the use of nonlinear CEUS strategies using nonlinear fundamental contrast pulse sequencing (CPS) to increase the contrast-to-tissue ratio (CTR) and compare MB detection effectiveness to linear B-mode CEUS imaging. The CPS compositions of amplitude modulation (AM), pulse inversion (PI), and a combination of the two (AMPI) were studied. A simulation study combined the Rayleigh-Plesset-Marmottant (RPM) model of MB characteristics and a nonlinear tissue model using the k-Wave toolbox for MATLAB (MathWorks Inc., Natick, MA, USA). Validation was conducted using an in vitro flow phantom and in vivo in the rat hind-limb. Imaging was performed with a programmable US scanner (Vantage 256, Verasonics Inc., Kirkland, WA, USA) and customized to transmit a set of basis US pulses from which both B-mode US (frame rate (FR) of 800 Hz) and multiple nonlinear CPS compositions (FR of 200 Hz) could be assessed from identical in vitro and in vivo datasets using a near simultaneous method. The simulations suggest that MB characteristics, such as diameter and motion, help to predict which US imaging strategy will enhance MB detection. The in vitro and in vivo US imaging studies revealed that different subpopulations of polydisperse MB contrast agents were detected by linear imaging and by each different nonlinear CPS composition. The most effective single imaging strategy at a 200-Hz FR was found to be B-mode US imaging. However, a combination of B-mode US imaging with a nonlinear CPS imaging strategy was more effective in detecting MBs in vivo at all depths and was shown to shorten image acquisition time by an average of 33.3%-76.7% when combining one or more CPS sequences.
Collapse
|
99
|
Nielsen MB, Søgaard SB, Bech Andersen S, Skjoldbye B, Hansen KL, Rafaelsen S, Nørgaard N, Carlsen JF. Highlights of the development in ultrasound during the last 70 years: A historical review. Acta Radiol 2021; 62:1499-1514. [PMID: 34791887 DOI: 10.1177/02841851211050859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review looks at highlights of the development in ultrasound, ranging from interventional ultrasound and Doppler to the newest techniques like contrast-enhanced ultrasound and elastography, and gives reference to some of the valuable articles in Acta Radiologica. Ultrasound equipment is now available in any size and for any purpose, ranging from handheld devices to high-end devices, and the scientific societies include ultrasound professionals of all disciplines publishing guidelines and recommendations. Interventional ultrasound is expanding the field of use of ultrasound-guided interventions into nearly all specialties of medicine, from ultrasound guidance in minimally invasive robotic procedures to simple ultrasound-guided punctures performed by general practitioners. Each medical specialty is urged to define minimum requirements for equipment, education, training, and maintenance of skills, also for medical students. The clinical application of contrast-enhanced ultrasound and elastography is a topic often seen in current research settings.
Collapse
Affiliation(s)
- Michael Bachmann Nielsen
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stinne Byrholdt Søgaard
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Bech Andersen
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn Skjoldbye
- Department of Radiology, Aleris-Hamlet Hospitals, Copenhagen Denmark
| | - Kristoffer Lindskov Hansen
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Rafaelsen
- Department of Radiology, University Hospital of Southern Denmark, Vejle, Denmark
- Faculty of Health Sciences, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Nis Nørgaard
- Department of Urology, Herlev Gentofte Hospital, Copenhagen, Denmark
| | - Jonathan F. Carlsen
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
100
|
Yin J, Zhang J, Zhu Y, Dong F, An J, Wang D, Li N, Luo Y, Wang Y, Wang X, Zhang J. Ultrasound microvasculature imaging with entropy-based radiality super-resolution (ERSR). Phys Med Biol 2021; 66. [PMID: 34592723 DOI: 10.1088/1361-6560/ac2bb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Objective:Microvasculature is highly relevant to the occurrence and development of pathologies such as cancer and diabetes. Ultrasound localization microscopy (ULM) has bypassed the diffraction limit and demonstrated its great potential to provide new imaging modality and establish new diagnostic criteria in clinical application. However, sparse microbubble distribution can be a significant bottleneck for improving temporal resolution, even for further clinical translation. Other important challenges for ULM to tackle in clinic also include high microbubble concentration and low frame rate.Approach:As part of the efforts to facilitate clinical translation, this paper focused on the low frame rate and the high microbubble distribution issue and proposed a new super-resolution imaging strategy called entropy-based radiality super-resolution (ERSR). The feasibility of ERSR is validated with simulations, phantom experiment and contrast-enhanced ultrasound scan of rabbit sciatic nerve with clinical accessible ultrasound system.Main results:ERSR can achieve 10 times improvement in spatial resolution compared to conventional ultrasound imaging, higher temporal resolution (∼10 times higher) and contrast-to-noise ratio under high-density microbubbles, compared with ULM under low-density microbubbles.Significance:We conclude ERSR could be a valuable imaging tool with high spatio-temporal resolution for clinical diagnosis and assessment of diseases potentially.
Collapse
Affiliation(s)
- Jingyi Yin
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Jiabin Zhang
- Institute of Molecular Medicine, Peking University, Beijing, People's Republic of China
| | - Yaqiong Zhu
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Feihong Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China.,Institute of Molecular Medicine, Peking University, Beijing, People's Republic of China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Di Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Nan Li
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yukun Luo
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yuexiang Wang
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, Beijing, People's Republic of China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China.,College of Engineering, Peking University, Beijing, People's Republic of China
| |
Collapse
|