51
|
The C-terminal region of the transcriptional regulator THAP11 forms a parallel coiled-coil domain involved in protein dimerization. J Struct Biol 2016; 194:337-46. [DOI: 10.1016/j.jsb.2016.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/15/2022]
|
52
|
|
53
|
Surkont J, Diekmann Y, Ryder PV, Pereira-Leal JB. Coiled-coil length: Size does matter. Proteins 2015; 83:2162-9. [PMID: 26387794 DOI: 10.1002/prot.24932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/23/2015] [Accepted: 09/14/2015] [Indexed: 11/09/2022]
Abstract
Protein evolution is governed by processes that alter primary sequence but also the length of proteins. Protein length may change in different ways, but insertions, deletions and duplications are the most common. An optimal protein size is a trade-off between sequence extension, which may change protein stability or lead to acquisition of a new function, and shrinkage that decreases metabolic cost of protein synthesis. Despite the general tendency for length conservation across orthologous proteins, the propensity to accept insertions and deletions is heterogeneous along the sequence. For example, protein regions rich in repetitive peptide motifs are well known to extensively vary their length across species. Here, we analyze length conservation of coiled-coils, domains formed by an ubiquitous, repetitive peptide motif present in all domains of life, that frequently plays a structural role in the cell. We observed that, despite the repetitive nature, the length of coiled-coil domains is generally highly conserved throughout the tree of life, even when the remaining parts of the protein change, including globular domains. Length conservation is independent of primary amino acid sequence variation, and represents a conservation of domain physical size. This suggests that the conservation of domain size is due to functional constraints.
Collapse
Affiliation(s)
| | - Yoan Diekmann
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal.,Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, 02543
| | - Pearl V Ryder
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, 02543.,Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Jose B Pereira-Leal
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal.,Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, 02543
| |
Collapse
|
54
|
Sangal V, Blom J, Sutcliffe IC, von Hunolstein C, Burkovski A, Hoskisson PA. Adherence and invasive properties of Corynebacterium diphtheriae strains correlates with the predicted membrane-associated and secreted proteome. BMC Genomics 2015; 16:765. [PMID: 26452736 PMCID: PMC4600297 DOI: 10.1186/s12864-015-1980-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Non-toxigenic Corynebacterium diphtheriae strains are emerging as a major cause of severe pharyngitis and tonsillitis as well as invasive diseases such as endocarditis, septic arthritis, splenic abscesses and osteomyelitis. C. diphtheriae strains have been reported to vary in their ability to adhere and invade different cell lines. To identify the genetic basis of variation in the degrees of pathogenicity, we sequenced the genomes of four strains of C. diphtheriae (ISS 3319, ISS 4060, ISS 4746 and ISS 4749) that are well characterised in terms of their ability to adhere and invade mammalian cells. RESULTS Comparative analyses of 20 C. diphtheriae genome sequences, including 16 publicly available genomes, revealed a pan-genome comprising 3,989 protein coding sequences that include 1,625 core genes and 2,364 accessory genes. Most of the genomic variation between these strains relates to uncharacterised genes encoding hypothetical proteins or transposases. Further analyses of protein sequences using an array of bioinformatic tools predicted most of the accessory proteome to be located in the cytoplasm. The membrane-associated and secreted proteins are generally involved in adhesion and virulence characteristics. The genes encoding membrane-associated proteins, especially the number and organisation of the pilus gene clusters (spa) including the number of genes encoding surface proteins with LPXTG motifs differed between different strains. Other variations were among the genes encoding extracellular proteins, especially substrate binding proteins of different functional classes of ABC transport systems and 'non-classical' secreted proteins. CONCLUSIONS The structure and organisation of the spa gene clusters correlates with differences in the ability of C. diphtheriae strains to adhere and invade the host cells. Furthermore, differences in the number of genes encoding membrane-associated proteins, e.g., additional proteins with LPXTG motifs could also result in variation in the adhesive properties between different strains. The variation in the secreted proteome may be associated with the degree of pathogenesis. While the role of the 'non-classical' secretome in virulence remains unclear, differences in the substrate binding proteins of various ABC transport systems and cytoplasmic proteins potentially suggest strain variation in nutritional requirements or a differential ability to utilize various carbon sources.
Collapse
Affiliation(s)
- Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jochen Blom
- Heinrich-Buff-Ring 58, Justus-Liebig-Universität, 35392, Gießen, Germany.
| | - Iain C Sutcliffe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | | | - Andreas Burkovski
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
55
|
Vicedo E, Schlessinger A, Rost B. Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes. PLoS One 2015; 10:e0133990. [PMID: 26252577 PMCID: PMC4529154 DOI: 10.1371/journal.pone.0133990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 07/03/2015] [Indexed: 12/24/2022] Open
Abstract
Many prokaryotic organisms have adapted to incredibly extreme habitats. The genomes of such extremophiles differ from their non-extremophile relatives. For example, some proteins in thermophiles sustain high temperatures by being more compact than homologs in non-extremophiles. Conversely, some proteins have increased volumes to compensate for freezing effects in psychrophiles that survive in the cold. Here, we revealed that some differences in organisms surviving in extreme habitats correlate with a simple single feature, namely the fraction of proteins predicted to have long disordered regions. We predicted disorder with different methods for 46 completely sequenced organisms from diverse habitats and found a correlation between protein disorder and the extremity of the environment. More specifically, the overall percentage of proteins with long disordered regions tended to be more similar between organisms of similar habitats than between organisms of similar taxonomy. For example, predictions tended to detect substantially more proteins with long disordered regions in prokaryotic halophiles (survive high salt) than in their taxonomic neighbors. Another peculiar environment is that of high radiation survived, e.g. by Deinococcus radiodurans. The relatively high fraction of disorder predicted in this extremophile might provide a shield against mutations. Although our analysis fails to establish causation, the observed correlation between such a simplistic, coarse-grained, microscopic molecular feature (disorder content) and a macroscopic variable (habitat) remains stunning.
Collapse
Affiliation(s)
- Esmeralda Vicedo
- TUM, Department of Informatics, Bioinformatics & Computational Biology—i12, Boltzmannstr. 3, 85748 Garching, Munich, Germany
- TUM Graduate School of Information Science in Health (GSISH), Boltzmannstr. 11, 85748 Garching, Munich, Germany
- * E-mail:
| | - Avner Schlessinger
- Icahn School of Medicine at Mount Sinai, Department of Pharmacology and Systems Therapeutics, One Gustave L. Levy Place, Box 1603, New York, New York, 10029, United States of America
| | - Burkhard Rost
- TUM, Department of Informatics, Bioinformatics & Computational Biology—i12, Boltzmannstr. 3, 85748 Garching, Munich, Germany
- Institute of Advanced Study (TUM-IAS), Lichtenbergstr. 2a, 85748 Garching, Munich, Germany
- Institute for Food and Plant Sciences WZW Weihenstephan, Alte Akademie 8, Freising, Germany
| |
Collapse
|
56
|
A Floor-Plate Extracellular Protein-Protein Interaction Screen Identifies Draxin as a Secreted Netrin-1 Antagonist. Cell Rep 2015; 12:694-708. [DOI: 10.1016/j.celrep.2015.06.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 04/28/2015] [Accepted: 06/11/2015] [Indexed: 11/20/2022] Open
|
57
|
Abstract
Elucidating the effects of naturally occurring genetic variation is one of the major challenges for personalized health and personalized medicine. Here, we introduce SNAP2, a novel neural network based classifier that improves over the state-of-the-art in distinguishing between effect and neutral variants. Our method's improved performance results from screening many potentially relevant protein features and from refining our development data sets. Cross-validated on >100k experimentally annotated variants, SNAP2 significantly outperformed other methods, attaining a two-state accuracy (effect/neutral) of 83%. SNAP2 also outperformed combinations of other methods. Performance increased for human variants but much more so for other organisms. Our method's carefully calibrated reliability index informs selection of variants for experimental follow up, with the most strongly predicted half of all effect variants predicted at over 96% accuracy. As expected, the evolutionary information from automatically generated multiple sequence alignments gave the strongest signal for the prediction. However, we also optimized our new method to perform surprisingly well even without alignments. This feature reduces prediction runtime by over two orders of magnitude, enables cross-genome comparisons, and renders our new method as the best solution for the 10-20% of sequence orphans. SNAP2 is available at: https://rostlab.org/services/snap2web
Collapse
|
58
|
Zhang R, Yang J, Chu TW, Hartley JM, Kopeček J. Multimodality imaging of coiled-coil mediated self-assembly in a "drug-free" therapeutic system. Adv Healthc Mater 2015; 4:1054-65. [PMID: 25612325 DOI: 10.1002/adhm.201400679] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/15/2014] [Indexed: 01/23/2023]
Abstract
Two complementary coiled-coil peptides CCE/CCK are used to develop a "drug free" therapeutic system, which can specifically kill cancer cells without a drug. CCE is attached to the Fab' fragment of anti-CD20 1F5 antibody (Fab'-CCE), and CCK is conjugated in multiple grafts to poly[N-(2-hydroxypropyl)methacrylamide] (P-(CCK)x ). Two conjugates are consecutively administered: First, Fab'-CCE coats peptide CCE at CD20 antigen of lymphoma cell surface; second, CCE/CCK biorecognition between Fab'-CCE and P-(CCK)x leads to coiled-coil formation, CD20 crosslinking, membrane reorganization, and ultimately cell apoptosis. To prove that two conjugates can assemble at cell surface, multiple fluorescence imaging studies are performed, including 2-channel FMT, 3D confocal microscopy, and 4-color FACS. Confocal microscopy shows colocalization of two fluorescently labeled conjugates on non-Hodgkin's lymphoma (NHL) Raji cell surface, indicating "two-step" targeting specificity. The fluorescent images also reveal that these two conjugates can disrupt normal membrane lipid distribution and form lipid raft clusters, leading to cancer cell apoptosis. This "two-step" biorecognition capacity is further demonstrated in a NHL xenograft model, using fluorescent images at whole-body, tissue and cell levels. It is also found that delaying injection of P-(CCK)x can significantly enhance targeting efficacy. This high-specificity therapeutics provide a safe option to treat NHL and other B cell malignancies.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Te-Wei Chu
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Jonathan M. Hartley
- Department of Bioengineering; University of Utah; Salt Lake City UT 84112 USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
- Department of Bioengineering; University of Utah; Salt Lake City UT 84112 USA
| |
Collapse
|
59
|
Reeb J, Kloppmann E, Bernhofer M, Rost B. Evaluation of transmembrane helix predictions in 2014. Proteins 2015; 83:473-84. [PMID: 25546441 DOI: 10.1002/prot.24749] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/02/2014] [Accepted: 12/13/2014] [Indexed: 11/05/2022]
Abstract
Experimental structure determination continues to be challenging for membrane proteins. Computational prediction methods are therefore needed and widely used to supplement experimental data. Here, we re-examined the state of the art in transmembrane helix prediction based on a nonredundant dataset with 190 high-resolution structures. Analyzing 12 widely-used and well-known methods using a stringent performance measure, we largely confirmed the expected high level of performance. On the other hand, all methods performed worse for proteins that could not have been used for development. A few results stood out: First, all methods predicted proteins in eukaryotes better than those in bacteria. Second, methods worked less well for proteins with many transmembrane helices. Third, most methods correctly discriminated between soluble and transmembrane proteins. However, several older methods often mistook signal peptides for transmembrane helices. Some newer methods have overcome this shortcoming. In our hands, PolyPhobius and MEMSAT-SVM outperformed other methods.
Collapse
Affiliation(s)
- Jonas Reeb
- Department of Informatics & Center for Bioinformatics & Computational Biology-i12, Technische Universität München (TUM), Garching/Munich, 85748, Germany
| | | | | | | |
Collapse
|
60
|
Ustyantsev K, Novikova O, Blinov A, Smyshlyaev G. Convergent evolution of ribonuclease h in LTR retrotransposons and retroviruses. Mol Biol Evol 2015; 32:1197-207. [PMID: 25605791 PMCID: PMC4408406 DOI: 10.1093/molbev/msv008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to retroviruses, many Ty3/Gypsy LTR retrotransposons harbor additional env-like genes, promoting concepts of the infective mode of these retrotransposons. Here, we provide a further line of evidence of similarity between retroviruses and some Ty3/Gypsy LTR retrotransposons. We identify that, together with their additional genes, plant Ty3/Gypsy LTR retrotransposons of the Tat group have a second RNH, as do retroviruses. Most importantly, we show that the resulting dual RNHs of Tat LTR retrotransposons and retroviruses emerged independently, providing strong evidence for their convergent evolution. The convergent resemblance of Tat LTR retrotransposons and retroviruses may indicate similar selection pressures acting on these diverse groups of elements and reveal potential evolutionary constraints on their structure. We speculate that dual RNH is required to accelerate retrotransposon evolution through increased rates of strand transfer events and subsequent recombination events.
Collapse
Affiliation(s)
- Kirill Ustyantsev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany
| | - Alexander Blinov
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Georgy Smyshlyaev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
61
|
Saidijam M, Patching SG. Amino acid composition analysis of secondary transport proteins from Escherichia coli with relation to functional classification, ligand specificity and structure. J Biomol Struct Dyn 2015; 33:2205-20. [DOI: 10.1080/07391102.2014.998283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Massoud Saidijam
- Department of Molecular Medicine and Genetics, Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan, Iran
| | - Simon G. Patching
- Department of Molecular Medicine and Genetics, Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan, Iran
| |
Collapse
|
62
|
Abstract
Models of protein evolution are used to describe evolutionary processes, for phylogenetic analyses and homology detection. Widely used general models of protein evolution are biased toward globular domains and lack resolution to describe evolutionary processes for other protein types. As three-dimensional structure is a major constraint to protein evolution, specific models have been proposed for other types of proteins. Here, we consider evolutionary patterns in coiled-coil forming proteins. Coiled-coils are widespread structural domains, formed by a repeated motif of seven amino acids (heptad repeat). Coiled-coil forming proteins are frequently rods and spacers, structuring both the intracellular and the extracellular spaces that often form protein interaction interfaces. We tested the hypothesis that due to their specific structure the associated evolutionary constraints differ from those of globular proteins. We showed that substitution patterns in coiled-coil regions are different than those observed in globular regions, beyond the simple heptad repeat. Based on these substitution patterns we developed a coiled-coil specific (CC) model that in the context of phylogenetic reconstruction outperforms general models in tree likelihood, often leading to different topologies. For multidomain proteins containing both a coiled-coil region and a globular domain, we showed that a combination of the CC model and a general one gives higher likelihoods than a single model. Finally, we showed that the model can be used for homology detection to increase search sensitivity for coiled-coil proteins. The CC model, software, and other supplementary materials are available at http://www.evocell.org/cgl/resources (last accessed January 29, 2015).
Collapse
|
63
|
Abstract
Ligand binding is required for many proteins to function properly. A large number of bioinformatics tools have been developed to predict ligand binding sites as a first step in understanding a protein's function or to facilitate docking computations in virtual screening based drug design. The prediction usually requires only the three-dimensional structure (experimentally determined or computationally modeled) of the target protein to be searched for ligand binding site(s), and Web servers have been built, allowing the free and simple use of prediction tools. In this chapter, we review the underlying concepts of the methods used by various tools, and discuss their different features and the related issues of ligand binding site prediction. Some cautionary notes about the use of these tools are also provided.
Collapse
Affiliation(s)
- Zhong-Ru Xie
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | | |
Collapse
|
64
|
Leman JK, Ulmschneider MB, Gray JJ. Computational modeling of membrane proteins. Proteins 2015; 83:1-24. [PMID: 25355688 PMCID: PMC4270820 DOI: 10.1002/prot.24703] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/01/2014] [Accepted: 10/18/2014] [Indexed: 02/06/2023]
Abstract
The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefited from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Martin B. Ulmschneider
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
65
|
Simm D, Hatje K, Kollmar M. Waggawagga: comparative visualization of coiled-coil predictions and detection of stable single α-helices (SAH domains). Bioinformatics 2014; 31:767-9. [PMID: 25338722 DOI: 10.1093/bioinformatics/btu700] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED Waggawagga is a web-based tool for the comparative visualization of coiled-coil predictions and the detection of stable single α-helices (SAH domains). Overview schemes show the predicted coiled-coil regions found in the query sequence and provide sliders, which can be used to select segments for detailed helical wheel and helical net views. A window-based score has been developed to predict SAH domains. Export to several bitmap and vector graphics formats is supported. AVAILABILITY AND IMPLEMENTATION http://waggawagga.motorprotein.de
Collapse
Affiliation(s)
- Dominic Simm
- Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Klas Hatje
- Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Martin Kollmar
- Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
66
|
Hausrath AC. Model for coupled insertion and folding of membrane-spanning proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022707. [PMID: 25215758 DOI: 10.1103/physreve.90.022707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Indexed: 06/03/2023]
Abstract
Current understanding of the forces directing the folding of integral membrane proteins is very limited compared to the detailed picture available for water-soluble proteins. While mechanistic studies of the folding process in vitro have been conducted for only a small number of membrane proteins, the available evidence indicates that their folding process is thermodynamically driven like that of soluble proteins. In vivo, however, the majority of integral membrane proteins are installed in membranes by dedicated machinery, suggesting that the cellular systems may act to facilitate and regulate the spontaneous physical process of folding. Both the in vitro folding process and the in vivo pathway must navigate an energy landscape dominated by the energetically favorable burial of hydrophobic segments in the membrane interior and the opposition to folding due to the need for passage of polar segments across the membrane. This manuscript describes a simple, exactly solvable model which incorporates these essential features of membrane protein folding. The model is used to compare the folding time under conditions which depict both the in vitro and in vivo pathways. It is proposed that the cellular complexes responsible for insertion of membrane proteins act by lowering the energy barrier for passage of polar regions through the membrane, thereby allowing the chain to more rapidly achieve the folded state.
Collapse
Affiliation(s)
- Andrew C Hausrath
- Department of Chemistry and Biochemistry and Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
67
|
Kalverda AP, Gowdy J, Thompson GS, Homans SW, Henderson PJF, Patching SG. TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor. Mol Membr Biol 2014; 31:131-40. [DOI: 10.3109/09687688.2014.911980] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
68
|
Higgins CD, Malashkevich VN, Almo SC, Lai JR. Influence of a heptad repeat stutter on the pH-dependent conformational behavior of the central coiled-coil from influenza hemagglutinin HA2. Proteins 2014; 82:2220-8. [PMID: 24753307 DOI: 10.1002/prot.24585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 11/05/2022]
Abstract
The coiled-coil is one of the most common protein structural motifs. Amino acid sequences of regions that participate in coiled-coils contain a heptad repeat in which every third then forth residue is occupied by a hydrophobic residue. Here we examine the consequences of a "stutter," a deviation of the idealized heptad repeat that is found in the central coiled-coil of influenza hemagluttinin HA2. Characterization of a peptide containing the native stutter-containing HA2 sequence, as well as several variants in which the stutter was engineered out to restore an idealized heptad repeat pattern, revealed that the stutter is important for allowing coiled-coil formation in the WT HA2 at both neutral and low pH (7.1 and 4.5). By contrast, all variants that contained idealized heptad repeats exhibited marked pH-dependent coiled-coil formation with structures forming much more stably at low pH. A crystal structure of one variant containing an idealized heptad repeat, and comparison to the WT HA2 structure, suggest that the stutter distorts the optimal interhelical core packing arrangement, resulting in unwinding of the coiled-coil superhelix. Interactions between acidic side chains, in particular E69 and E74 (present in all peptides studied), are suggested to play a role in mediating these pH-dependent conformational effects. This conclusion is partially supported by studies on HA2 variant peptides in which these positions were altered to aspartic acid. These results provide new insight into the structural role of the heptad repeat stutter in HA2.
Collapse
Affiliation(s)
- Chelsea D Higgins
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NewYork, 10461
| | | | | | | |
Collapse
|
69
|
Indiveri C, Galluccio M, Scalise M, Pochini L. Strategies of bacterial over expression of membrane transporters relevant in human health: the successful case of the three members of OCTN subfamily. Mol Biotechnol 2013; 54:724-36. [PMID: 22843325 PMCID: PMC3636443 DOI: 10.1007/s12033-012-9586-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The OCTN subfamily includes OCTN1, 2, and 3 which are structurally and functionally related. These transporters are involved in maintenance of the carnitine homeostasis, which is essential in mammals for fatty acid β-oxidation, VLDL assembly, post-translational modifications, and other essential functions. Indeed, defects of these transporters lead to severe pathologies. OCTN1 and OCTN2 are expressed in many human tissues, while OCTN3 gene has been identified only in mouse and rat. The transporters mediate transport of carnitine and other substrates with different efficiencies and mechanisms. In order to over express the three proteins, a screening of many combinations of E. coli strains with plasmid constructs has been conducted. Only Rosetta(DE3) or Rosettagami2(DE3) gave significant expression. Higher protein amounts were firstly obtained with pET-41a(+) or pGEX-4T1 carrying fusion protein tags which required additional purification passages. Vectors carrying only a 6His tag, suitable for single passage purification, were preferred even though they lead to lower initial expression levels. Expressions were then increased optimizing several critical parameters. hOCTN1 was obtained with pH6EX3 in RosettaGami2(DE3)pLysS. hOCTN2 and mOCTN3 were obtained using pET-21a(+) in Rosetta(DE3). In particular, hOCTN2 was expressed only after codon bias, substituting the second triplet CGG with AAA (R2K mutant). The best growth conditions for hOCTN1 and mOCTN3 were 28 °C and 6 h of induction, while 4 h of induction for hOCTN2R2K. The proteins collected in the insoluble fraction of cell lysates, solubilized with sarkosyl, were purified by Ni-chelating chromatography. Final yield was 2.0, 3.0, or 3.5 mg/l of cell culture for mOCTN3, hOCTN1, or hOCTN2R2K. The data indicated that, in spite of the close evolutionary relations, several factors play different critical roles in bacterial expression of the three proteins, thus general criteria cannot be underlined. However, the strategy of dealing with related proteins revealed to be finally successful for over expressing all the three subfamily members.
Collapse
Affiliation(s)
- Cesare Indiveri
- Department of Cell Biology, University of Calabria, Arcavacata di Rende, Italy.
| | | | | | | |
Collapse
|
70
|
Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:43-55. [PMID: 23665295 DOI: 10.1016/j.bbamem.2013.04.028] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 11/22/2022]
Abstract
Surface plasmon resonance (SPR) spectroscopy is a rapidly developing technique for the study of ligand binding interactions with membrane proteins, which are the major molecular targets for validated drugs and for current and foreseeable drug discovery. SPR is label-free and capable of measuring real-time quantitative binding affinities and kinetics for membrane proteins interacting with ligand molecules using relatively small quantities of materials and has potential to be medium-throughput. The conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the other binding component in solution is flowed over the sensor surface; a binding interaction is detected using an optical method that measures small changes in refractive index at the sensor surface. This review first describes the basic SPR experiment and the challenges that have to be considered for performing SPR experiments that measure membrane protein-ligand binding interactions, most importantly having the membrane protein in a lipid or detergent environment that retains its native structure and activity. It then describes a wide-range of membrane protein systems for which ligand binding interactions have been characterised using SPR, including the major drug targets G protein-coupled receptors, and how challenges have been overcome for achieving this. Finally it describes some recent advances in SPR-based technology and future potential of the technique to screen ligand binding in the discovery of drugs. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
|
71
|
Brooks CL, Morrison M, Joanne Lemieux M. Rapid expression screening of eukaryotic membrane proteins in Pichia pastoris. Protein Sci 2013; 22:425-33. [PMID: 23339074 DOI: 10.1002/pro.2223] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/15/2013] [Indexed: 01/21/2023]
Abstract
The overexpression of milligram quantities of protein remains a key bottleneck in membrane protein structural biology. A challenge of particular difficulty has been the overproduction of eukaryotic membrane proteins. In order to cope with the frequently poor expression levels associated with these challenging proteins, it is often necessary to screen a large number of homologues to find a well expressing clone. To facilitate this process using the heterologous, eukaryotic expression host Pichia pastoris, we have developed a simple fluorescent induction plate-screening assay that allows for the rapid detection of well expressing clones of eukaryotic membrane proteins that have been fused to GFP. Using a eukaryotic membrane protein known to express well in P. pastoris (human aquaporin 4) and homologues of the ER associated membrane protein phosphatidylethanolamine N-methyltransferase (PEMT), we demonstrate that when a large number of clones are screened, a small number of highly expressing "jackpot" clones can be isolated. A jackpot PEMT clone resulted in 5 mg/L yield after purification. The method allows for the facile simultaneous screening of hundreds of clones providing an alternate to in-culture screening and will greatly accelerate the search for overexpressing eukaryotic membrane proteins.
Collapse
Affiliation(s)
- Cory L Brooks
- Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
72
|
Beck-García E, Beck-García K, Schlosser A, Schamel WW. Analysis of interactions between proteins and fatty acids or cholesterol using a fatty acid/cholesterol pull-down assay. Anal Biochem 2013; 436:75-7. [PMID: 23376572 DOI: 10.1016/j.ab.2013.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/06/2013] [Accepted: 01/22/2013] [Indexed: 11/26/2022]
Abstract
Specific interactions between the polar head groups of membrane lipids and proteins have been described previously. In contrast, the specificity of the interaction between lipid acyl chains with proteins is less understood. By combining a fatty acid or cholesterol pull-down assay with Western blot analysis or mass spectrometry, we identified transmembrane and cytosolic proteins that bound preferentially to short or long acyl chains or to cholesterol. Thus, this approach allows identification of specific fatty acid-protein or cholesterol-protein interactions.
Collapse
Affiliation(s)
- E Beck-García
- Department of Molecular Immunology, Institute for Biology III, BIOSS Center for Biological Signalling Studies, Centre for Chronic Immunodeficiency (CCI), Albert Ludwigs University Freiburg and Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | | | | | | |
Collapse
|
73
|
Yu B, Zhang Y. A simple method for predicting transmembrane proteins based on wavelet transform. Int J Biol Sci 2012; 9:22-33. [PMID: 23289014 PMCID: PMC3535531 DOI: 10.7150/ijbs.5371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/02/2012] [Indexed: 11/05/2022] Open
Abstract
The increasing protein sequences from the genome project require theoretical methods to predict transmembrane helical segments (TMHs). So far, several prediction methods have been reported, but there are some deficiencies in prediction accuracy and adaptability in these methods. In this paper, a method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1KQG is chosen as an example to describe the prediction process by this method. 80 proteins with known 3D structure from Mptopo database are chosen at random as data sets (including 325 TMHs) and 80 sequences are divided into 13 groups according to their function and type. TMHs prediction is carried out for each group of membrane protein sequences and obtain satisfactory result. To verify the feasibility of this method, 80 membrane protein sequences are treated as test sets, 308 TMHs can be predicted and the prediction accuracy is 96.3%. Compared with the main prediction results of seven popular prediction methods, the obtained results indicate that the proposed method in this paper has higher prediction accuracy.
Collapse
Affiliation(s)
- Bin Yu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, Shandong, China.
| | | |
Collapse
|
74
|
Costa TR, Amer AA, Fällman M, Fahlgren A, Francis MS. Coiled-coils in the YopD translocator family: A predicted structure unique to the YopD N-terminus contributes to full virulence of Yersinia pseudotuberculosis. INFECTION GENETICS AND EVOLUTION 2012; 12:1729-42. [DOI: 10.1016/j.meegid.2012.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/12/2012] [Accepted: 07/29/2012] [Indexed: 10/28/2022]
|
75
|
Karakaş M, Woetzel N, Staritzbichler R, Alexander N, Weiner BE, Meiler J. BCL::Fold--de novo prediction of complex and large protein topologies by assembly of secondary structure elements. PLoS One 2012; 7:e49240. [PMID: 23173050 PMCID: PMC3500284 DOI: 10.1371/journal.pone.0049240] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 10/07/2012] [Indexed: 01/10/2023] Open
Abstract
Computational de novo protein structure prediction is limited to small proteins of simple topology. The present work explores an approach to extend beyond the current limitations through assembling protein topologies from idealized α-helices and β-strands. The algorithm performs a Monte Carlo Metropolis simulated annealing folding simulation. It optimizes a knowledge-based potential that analyzes radius of gyration, β-strand pairing, secondary structure element (SSE) packing, amino acid pair distance, amino acid environment, contact order, secondary structure prediction agreement and loop closure. Discontinuation of the protein chain favors sampling of non-local contacts and thereby creation of complex protein topologies. The folding simulation is accelerated through exclusion of flexible loop regions further reducing the size of the conformational search space. The algorithm is benchmarked on 66 proteins with lengths between 83 and 293 amino acids. For 61 out of these proteins, the best SSE-only models obtained have an RMSD100 below 8.0 Å and recover more than 20% of the native contacts. The algorithm assembles protein topologies with up to 215 residues and a relative contact order of 0.46. The method is tailored to be used in conjunction with low-resolution or sparse experimental data sets which often provide restraints for regions of defined secondary structure.
Collapse
Affiliation(s)
- Mert Karakaş
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nils Woetzel
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Rene Staritzbichler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nathan Alexander
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brian E. Weiner
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
76
|
Lobanov MY, Sokolovskiy IV, Galzitskaya OV. IsUnstruct: prediction of the residue status to be ordered or disordered in the protein chain by a method based on the Ising model. J Biomol Struct Dyn 2012; 31:1034-43. [PMID: 22963167 DOI: 10.1080/07391102.2012.718529] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Michail Yu Lobanov
- a Institute of Protein Research of the Russian Academy of Sciences , 4 Institutskaya str., Pushchino , Moscow Region , 142290 , Russia
| | | | | |
Collapse
|
77
|
Wang Y, Zhang X, Zhang H, Lu Y, Huang H, Dong X, Chen J, Dong J, Yang X, Hang H, Jiang T. Coiled-coil networking shapes cell molecular machinery. Mol Biol Cell 2012; 23:3911-22. [PMID: 22875988 PMCID: PMC3459866 DOI: 10.1091/mbc.e12-05-0396] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Coiled coil is a principal oligomerization motif. A comprehensive map of coiled-coil interactions (CCIs) in yeast is reported. Computational analysis reveals that CCIs are extensively involved in cell machinery organization. Disrupting the CCIs in the kinetochore leads to defects in kinetochore assembly and cell division. The highly abundant α-helical coiled-coil motif not only mediates crucial protein–protein interactions in the cell but is also an attractive scaffold in synthetic biology and material science and a potential target for disease intervention. Therefore a systematic understanding of the coiled-coil interactions (CCIs) at the organismal level would help unravel the full spectrum of the biological function of this interaction motif and facilitate its application in therapeutics. We report the first identified genome-wide CCI network in Saccharomyces cerevisiae, which consists of 3495 pair-wise interactions among 598 predicted coiled-coil regions. Computational analysis revealed that the CCI network is specifically and functionally organized and extensively involved in the organization of cell machinery. We further show that CCIs play a critical role in the assembly of the kinetochore, and disruption of the CCI network leads to defects in kinetochore assembly and cell division. The CCI network identified in this study is a valuable resource for systematic characterization of coiled coils in the shaping and regulation of a host of cellular machineries and provides a basis for the utilization of coiled coils as domain-based probes for network perturbation and pharmacological applications.
Collapse
Affiliation(s)
- Yongqiang Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Chae PS, Rasmussen SGF, Rana RR, Gotfryd K, Kruse AC, Manglik A, Cho KH, Nurva S, Gether U, Guan L, Loland CJ, Byrne B, Kobilka BK, Gellman SH. A new class of amphiphiles bearing rigid hydrophobic groups for solubilization and stabilization of membrane proteins. Chemistry 2012; 18:9485-90. [PMID: 22730191 PMCID: PMC3493560 DOI: 10.1002/chem.201200069] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Pil Seok Chae
- Department of Bionano Engineering, Hanyang University, Ansan, 426-791 (Korea)
| | | | - Rohini R. Rana
- Department of Life Sciences, Imperial College London, London, SW7 2AZ (UK)
| | - Kamil Gotfryd
- Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen (Denmark)
| | - Andrew C. Kruse
- Molecular and Cellular Physiology, Stanford University Stanford, CA 94305 (USA)
| | - Aashish Manglik
- Molecular and Cellular Physiology, Stanford University Stanford, CA 94305 (USA)
| | - Kyung Ho Cho
- Department of Bionano Engineering, Hanyang University, Ansan, 426-791 (Korea)
| | - Shailika Nurva
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (USA)
| | - Ulrik Gether
- Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen (Denmark)
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (USA)
| | - Claus J. Loland
- Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen (Denmark)
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ (UK)
| | - Brian K. Kobilka
- Molecular and Cellular Physiology, Stanford University Stanford, CA 94305 (USA)
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706 (USA)
| |
Collapse
|
79
|
Bolla JR, Su CC, Yu EW. Biomolecular membrane protein crystallization. PHILOSOPHICAL MAGAZINE (ABINGDON, ENGLAND) 2012; 92:2648-2661. [PMID: 23869195 PMCID: PMC3712538 DOI: 10.1080/14786435.2012.670734] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Integral membrane proteins comprise approximately 30% of the sequenced genomes, and there is an immediate need for their high-resolution structural information. Currently, the most reliable approach to obtain these structures is x-ray crystallography. However, obtaining crystals of membrane proteins that diffract to high resolution appears to be quite challenging, and remains a major obstacle in structural determination. This brief review summarizes a variety of methodologies for use in crystallizing these membrane proteins. Hopefully, by introducing the available methods, techniques, and providing a general understanding of membrane proteins, a rational decision can be made about now to crystallize these complex materials.
Collapse
Affiliation(s)
- Jani Reddy Bolla
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Chih-Chia Su
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Edward W. Yu
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
80
|
Kloppmann E, Punta M, Rost B. Structural genomics plucks high-hanging membrane proteins. Curr Opin Struct Biol 2012; 22:326-32. [PMID: 22622032 DOI: 10.1016/j.sbi.2012.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/28/2012] [Accepted: 05/01/2012] [Indexed: 01/21/2023]
Abstract
Recent years have seen the establishment of structural genomics centers that explicitly target integral membrane proteins. Here, we review the advances in targeting these extremely high-hanging fruits of structural biology in high-throughput mode. We observe that the experimental determination of high-resolution structures of integral membrane proteins is increasingly successful both in terms of getting structures and of covering important protein families, for example, from Pfam. Structural genomics has begun to contribute significantly toward this progress. An important component of this contribution is the set up of robotic pipelines that generate a wealth of experimental data for membrane proteins. We argue that prediction methods for the identification of membrane regions and for the comparison of membrane proteins largely suffice to meet the challenges of target selection for structural genomics of membrane proteins. In contrast, we need better methods to prioritize the most promising members in a family of closely related proteins and to annotate protein function from sequence and structure in absence of homology.
Collapse
Affiliation(s)
- Edda Kloppmann
- Department of Bioinformatics and Computational Biology, Technical University Munich, Germany.
| | | | | |
Collapse
|
81
|
Fernandez-Rodriguez J, Marlovits TC. Induced heterodimerization and purification of two target proteins by a synthetic coiled-coil tag. Protein Sci 2012; 21:511-9. [PMID: 22362668 DOI: 10.1002/pro.2035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/23/2012] [Indexed: 11/09/2022]
Abstract
A synthetic de novo designed heterodimeric coiled-coil was used to copurify two target fluorescent proteins, Venus and enhanced cyan fluorescent protein (ECFP). The coiled-coil consists of two 21-amino acid repetitive sequences, (EIAALEK)(3) and (KIAALKE)(3), named E3 and K3, respectively. These sequences were fused to the C-termini of ECFP or Venus followed by either a strep- or a his-tag, respectively, for affinity purification. Mixed lysates of Venus-K3 and ECFP-E3 were subjected to consecutive affinity purification and showed highly specific association between the coiled-coil pair by SDS-PAGE, gel filtration, isothermal titration calorimetry (ITC), and fluorescence resonance energy transfer (FRET). The tagged proteins eluted as heterodimers at the concentrations tested. FRET analysis further showed that the coiled-coil pair was stable in buffers commonly used for protein purification, including those containing high salt concentration and detergent. This study shows that the E3/K3 pair is very well suited for the copurification of two target proteins expressed in vivo because of its high specificity: it forms exclusively heterodimers in solution, it does not interact with any cellular proteins and it is stable under different buffer conditions.
Collapse
|
82
|
Schweitzer-Stenner R. Conformational propensities and residual structures in unfolded peptides and proteins. ACTA ACUST UNITED AC 2012; 8:122-33. [DOI: 10.1039/c1mb05225j] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
83
|
Aung K, Hu J. The Arabidopsis tail-anchored protein PEROXISOMAL AND MITOCHONDRIAL DIVISION FACTOR1 is involved in the morphogenesis and proliferation of peroxisomes and mitochondria. THE PLANT CELL 2011; 23:4446-61. [PMID: 22147290 PMCID: PMC3269876 DOI: 10.1105/tpc.111.090142] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/20/2011] [Accepted: 11/18/2011] [Indexed: 05/19/2023]
Abstract
Peroxisomes and mitochondria are multifunctional eukaryotic organelles that are not only interconnected metabolically but also share proteins in division. Two evolutionarily conserved division factors, dynamin-related protein (DRP) and its organelle anchor FISSION1 (FIS1), mediate the fission of both peroxisomes and mitochondria. Here, we identified and characterized a plant-specific protein shared by these two types of organelles. The Arabidopsis thaliana PEROXISOMAL and MITOCHONDRIAL DIVISION FACTOR1 (PMD1) is a coiled-coil protein tethered to the membranes of peroxisomes and mitochondria by its C terminus. Null mutants of PMD1 contain enlarged peroxisomes and elongated mitochondria, and plants overexpressing PMD1 have an increased number of these organelles that are smaller in size and often aggregated. PMD1 lacks physical interaction with the known division proteins DRP3 and FIS1; it is also not required for DRP3's organelle targeting. Affinity purifications pulled down PMD1's homolog, PMD2, which exclusively targets to mitochondria and plays a specific role in mitochondrial morphogenesis. PMD1 and PMD2 can form homo- and heterocomplexes. Organelle targeting signals reside in the C termini of these proteins. Our results suggest that PMD1 facilitates peroxisomal and mitochondrial proliferation in a FIS1/DRP3-independent manner and that the homologous proteins PMD1 and PMD2 perform nonredundant functions in organelle morphogenesis.
Collapse
Affiliation(s)
- Kyaw Aung
- Michigan State University–Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Jianping Hu
- Michigan State University–Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
84
|
Sadovskaya NS, Sutormin RA, Gelfand MS. RECOGNITION OF TRANSMEMBRANE SEGMENTS IN PROTEINS: REVIEW AND CONSISTENCY-BASED BENCHMARKING OF INTERNET SERVERS. J Bioinform Comput Biol 2011; 4:1033-56. [PMID: 17099940 DOI: 10.1142/s0219720006002326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 11/18/2022]
Abstract
Membrane proteins perform a number of crucial functions as transporters, receptors, and components of enzyme complexes. Identification of membrane proteins and prediction of their topology is thus an important part of genome annotation. We present here an overview of transmembrane segments in protein sequences, summarize data from large-scale genome studies, and report results of benchmarking of several popular internet servers.
Collapse
Affiliation(s)
- Nataliya S Sadovskaya
- Institute for Information Transmission Problems, Russian Academy of Science, Bolshoi Karetny per. 19, Moscow 127994, Russia.
| | | | | |
Collapse
|
85
|
Knodler LA, Ibarra JA, Pérez-Rueda E, Yip CK, Steele-Mortimer O. Coiled-coil domains enhance the membrane association of Salmonella type III effectors. Cell Microbiol 2011; 13:1497-517. [PMID: 21679290 PMCID: PMC3418822 DOI: 10.1111/j.1462-5822.2011.01635.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coiled-coil domains in eukaryotic and prokaryotic proteins contribute to diverse structural and regulatory functions. Here we have used in silico analysis to predict which proteins in the proteome of the enteric pathogen, Salmonella enterica serovar Typhimurium, harbour coiled-coil domains. We found that coiled-coil domains are especially prevalent in virulence-associated proteins, including type III effectors. Using SopB as a model coiled-coil domain type III effector, we have investigated the role of this motif in various aspects of effector function including chaperone binding, secretion and translocation, protein stability, localization and biological activity. Compared with wild-type SopB, SopB coiled-coil mutants were unstable, both inside bacteria and after translocation into host cells. In addition, the putative coiled-coil domain was required for the efficient membrane association of SopB in host cells. Since many other Salmonella effectors were predicted to contain coiled-coil domains, we also investigated the role of this motif in their intracellular targeting in mammalian cells. Mutation of the predicted coiled-coil domains in PipB2, SseJ and SopD2 also eliminated their membrane localization in mammalian cells. These findings suggest that coiled-coil domains represent a common membrane-targeting determinant for Salmonella type III effectors.
Collapse
Affiliation(s)
- Leigh A Knodler
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA.
| | | | | | | | | |
Collapse
|
86
|
Li E, Wimley WC, Hristova K. Transmembrane helix dimerization: beyond the search for sequence motifs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:183-93. [PMID: 21910966 DOI: 10.1016/j.bbamem.2011.08.031] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 01/07/2023]
Abstract
Studies of the dimerization of transmembrane (TM) helices have been ongoing for many years now, and have provided clues to the fundamental principles behind membrane protein (MP) folding. Our understanding of TM helix dimerization has been dominated by the idea that sequence motifs, simple recognizable amino acid sequences that drive lateral interaction, can be used to explain and predict the lateral interactions between TM helices in membrane proteins. But as more and more unique interacting helices are characterized, it is becoming clear that the sequence motif paradigm is incomplete. Experimental evidence suggests that the search for sequence motifs, as mediators of TM helix dimerization, cannot solve the membrane protein folding problem alone. Here we review the current understanding in the field, as it has evolved from the paradigm of sequence motifs into a view in which the interactions between TM helices are much more complex. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Edwin Li
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | | | | |
Collapse
|
87
|
Affiliation(s)
- Simon G Patching
- Astbury Centre for Structural Molecular Biology and Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
88
|
Ramón A, Marín M. Advances in the production of membrane proteins in Pichia pastoris. Biotechnol J 2011; 6:700-6. [DOI: 10.1002/biot.201100146] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/24/2011] [Accepted: 03/31/2011] [Indexed: 11/07/2022]
|
89
|
Mitrofanova A, Pavlovic V, Mishra B. Prediction of protein functions with gene ontology and interspecies protein homology data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2011; 8:775-784. [PMID: 21393654 DOI: 10.1109/tcbb.2010.15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Accurate computational prediction of protein functions increasingly relies on network-inspired models for the protein function transfer. This task can become challenging for proteins isolated in their own network or those with poor or uncharacterized neighborhoods. Here, we present a novel probabilistic chain-graph-based approach for predicting protein functions that builds on connecting networks of two (or more) different species by links of high interspecies sequence homology. In this way, proteins are able to "exchange" functional information with their neighbors-homologs from a different species. The knowledge of interspecies relationships, such as the sequence homology, can become crucial in cases of limited information from other sources of data, including the protein-protein interactions or cellular locations of proteins. We further enhance our model to account for the Gene Ontology dependencies by linking multiple but related functional ontology categories within and across multiple species. The resulting networks are of significantly higher complexity than most traditional protein network models. We comprehensively benchmark our method by applying it to two largest protein networks, the Yeast and the Fly. The joint Fly-Yeast network provides substantial improvements in precision, accuracy, and false positive rate over networks that consider either of the sources in isolation. At the same time, the new model retains the computational efficiency similar to that of the simpler networks.
Collapse
Affiliation(s)
- Antonina Mitrofanova
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, 715 Broadway, 10th floor, New York, NY 10003, USA.
| | | | | |
Collapse
|
90
|
Deniaud A, Bernaudat F, Frelet-Barrand A, Juillan-Binard C, Vernet T, Rolland N, Pebay-Peyroula E. Expression of a chloroplast ATP/ADP transporter in E. coli membranes: behind the Mistic strategy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2059-66. [PMID: 21550334 DOI: 10.1016/j.bbamem.2011.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/11/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
Eukaryotic membrane protein expression is still a major bottleneck for structural studies. Production in E. coli often leads to low expression level and/or aggregated proteins. In the last decade, strategies relying on new fusion protein expression revealed promising results. Fusion with the amphipatic Mistic protein has been described to favor expression in E. coli membranes. Although, this approach has already been reported for a few membrane proteins, little is known about the activity of the fused proteins. We used this strategy and obtained high expression levels of a chloroplast ATP/ADP transporter from A. thaliana (NTT1) and characterized its transport properties. NTT1 fused to Mistic has a very low transport activity which can be recovered after in vivo Mistic fusion cleavage. Moreover, detailed molecular characterization of purified NTT1 mature form, NTT1 fused to Mistic or NTT1 cleaved-off from this fusion highlights the correct fold of the latter one. Therefore, considering the higher quantity of purified NTT1 mature form obtained via the Mistic fusion approach, this is a valuable strategy for obtaining quantities of pure and active proteins that are adequate for structural studies.
Collapse
Affiliation(s)
- Aurélien Deniaud
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, 41 rue Jules Horowitz, F-38027 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
91
|
Protein disorder--a breakthrough invention of evolution? Curr Opin Struct Biol 2011; 21:412-8. [PMID: 21514145 DOI: 10.1016/j.sbi.2011.03.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 11/21/2022]
Abstract
As an operational definition, we refer to regions in proteins that do not adopt regular three-dimensional structures in isolation, as disordered regions. An antipode to disorder would be 'well-structured' rather than 'ordered'. Here, we argue for the following three hypotheses. Firstly, it is more useful to picture disorder as a distinct phenomenon in structural biology than as an extreme example of protein flexibility. Secondly, there are many very different flavors of protein disorder, nevertheless, it seems advantageous to portray the universe of all possible proteins in terms of two main types: well-structured, disordered. There might be a third type 'other' but we have so far no positive evidence for this. Thirdly, nature uses protein disorder as a tool to adapt to different environments. Protein disorder is evolutionarily conserved and this maintenance of disorder is highly nontrivial. Increasingly integrating protein disorder into the toolbox of a living cell was a crucial step in the evolution from simple bacteria to complex eukaryotes. We need new advanced computational methods to study this new milestone in the advance of protein biology.
Collapse
|
92
|
Dehoux P, Flores R, Dauga C, Zhong G, Subtil A. Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins. BMC Genomics 2011; 12:109. [PMID: 21324157 PMCID: PMC3048545 DOI: 10.1186/1471-2164-12-109] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 02/16/2011] [Indexed: 12/13/2022] Open
Abstract
Background Chlamydiae are obligate intracellular bacteria that multiply in a vacuolar compartment, the inclusion. Several chlamydial proteins containing a bilobal hydrophobic domain are translocated by a type III secretion (TTS) mechanism into the inclusion membrane. They form the family of Inc proteins, which is specific to this phylum. Based on their localization, Inc proteins likely play important roles in the interactions between the microbe and the host. In this paper we sought to identify and analyze, using bioinformatics tools, all putative Inc proteins in published chlamydial genomes, including an environmental species. Results Inc proteins contain at least one bilobal hydrophobic domain made of two transmembrane helices separated by a loop of less than 30 amino acids. Using bioinformatics tools we identified 537 putative Inc proteins across seven chlamydial proteomes. The amino-terminal segment of the putative Inc proteins was recognized as a functional TTS signal in 90% of the C. trachomatis and C. pneumoniae sequences tested, validating the data obtained in silico. We identified a macro domain in several putative Inc proteins, and observed that Inc proteins are enriched in segments predicted to form coiled coils. A surprisingly large proportion of the putative Inc proteins are not constitutively translocated to the inclusion membrane in culture conditions. Conclusions The Inc proteins represent 7 to 10% of each proteome and show a great degree of sequence diversity between species. The abundance of segments with a high probability for coiled coil conformation in Inc proteins support the hypothesis that they interact with host proteins. While the large majority of Inc proteins possess a functional TTS signal, less than half may be constitutively translocated to the inclusion surface in some species. This suggests the novel finding that translocation of Inc proteins may be regulated by as-yet undetermined mechanisms.
Collapse
Affiliation(s)
- Pierre Dehoux
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
| | | | | | | | | |
Collapse
|
93
|
Chae PS, Rasmussen SGF, Rana R, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva S, Loland CJ, Pierre Y, Drew D, Popot JL, Picot D, Fox BG, Guan L, Gether U, Byrne B, Kobilka B, Gellman SH. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 2010; 7:1003-8. [PMID: 21037590 PMCID: PMC3063152 DOI: 10.1038/nmeth.1526] [Citation(s) in RCA: 334] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 09/30/2010] [Indexed: 11/09/2022]
Abstract
The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.
Collapse
Affiliation(s)
- Pil Seok Chae
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Rohini Rana
- Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Kamil Gotfryd
- Molecular Neuropharmacology Group Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Richa Chandra
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Michael A. Goren
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew C. Kruse
- Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Shailika Nurva
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Claus J. Loland
- Molecular Neuropharmacology Group Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Yves Pierre
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, Paris, France
| | - David Drew
- Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Jean-Luc Popot
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, Paris, France
| | - Daniel Picot
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, Paris, France
| | - Brian G. Fox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ulrik Gether
- Molecular Neuropharmacology Group Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Bernadette Byrne
- Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Brian Kobilka
- Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
94
|
Rackham OJL, Madera M, Armstrong CT, Vincent TL, Woolfson DN, Gough J. The evolution and structure prediction of coiled coils across all genomes. J Mol Biol 2010; 403:480-93. [PMID: 20813113 DOI: 10.1016/j.jmb.2010.08.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 08/06/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
Coiled coils are α-helical interactions found in many natural proteins. Various sequence-based coiled-coil predictors are available, but key issues remain: oligomeric state and protein-protein interface prediction and extension to all genomes. We present SpiriCoil (http://supfam.org/SUPERFAMILY/spiricoil), which is based on a novel approach to the coiled-coil prediction problem for coiled coils that fall into known superfamilies: hundreds of hidden Markov models representing coiled-coil-containing domain families. Using whole domains gives the advantage that sequences flanking the coiled coils help. SpiriCoil performs at least as well as existing methods at detecting coiled coils and significantly advances the state of the art for oligomer state prediction. SpiriCoil has been run on over 16 million sequences, including all completely sequenced genomes (more than 1200), and a resulting Web interface supplies data downloads, alignments, scores, oligomeric state classifications, three-dimensional homology models and visualisation. This has allowed, for the first time, a genomewide analysis of coiled-coil evolution. We found that coiled coils have arisen independently de novo well over a hundred times, and these are observed in 16 different oligomeric states. Coiled coils in almost all oligomeric states were present in the last universal common ancestor of life. The vast majority of occasions that individual coiled coils have arisen de novo were before the last universal common ancestor of life; we do, however, observe scattered instances throughout subsequent evolutionary history, mostly in the formation of the eukaryote superkingdom. Coiled coils do not change their oligomeric state over evolution and did not evolve from the rearrangement of existing helices in proteins; coiled coils were forged in unison with the fold of the whole protein.
Collapse
Affiliation(s)
- Owen J L Rackham
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | | | | | | | | | | |
Collapse
|
95
|
Schwalbe M, Dutta K, Libich DS, Venugopal H, Claridge JK, Gell DA, Mackay JP, Edwards PJB, Pascal SM. Two-state conformational equilibrium in the Par-4 leucine zipper domain. Proteins 2010; 78:2433-49. [PMID: 20602362 DOI: 10.1002/prot.22752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostate apoptosis response factor-4 (Par-4) is a pro-apoptotic and tumor-suppressive protein. A highly conserved heptad repeat sequence at the Par-4 C-terminus suggests the presence of a leucine zipper (LZ). This C-terminal region is essential for Par-4 self-association and interaction with various effector proteins. We have used nuclear magnetic resonance (NMR) spectroscopy to fully assign the chemical shift resonances of a peptide comprising the LZ domain of Par-4 at neutral pH. Further, we have investigated the properties of the Par-4 LZ domain and two point mutants under a variety of conditions using NMR, circular dichroism (CD), light scattering, and bioinformatics. Results indicate an environment-dependent conformational equilibrium between a partially ordered monomer (POM) and a predominantly coiled coil dimer (CCD). The combination of techniques used allows the time scales of the equilibrium to be probed and also helps to identify features of the amino acid sequence that may influence the equilibrium.
Collapse
Affiliation(s)
- Martin Schwalbe
- Centre for Structural Biology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Khabibullina NF, Lyukmanova EN, Kopeina GS, Shenkarev ZO, Arsen’ev AS, Dolgikh DA, Kirpichnikov MP. Development and optimization of a coupled cell-free system for the synthesis of the transmembrane domain of the receptor tyrosine kinase ErbB3. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:654-60. [DOI: 10.1134/s1068162010050080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
97
|
Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, Stumpf MPH, Buck M. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 2010; 34:797-827. [PMID: 20636484 DOI: 10.1111/j.1574-6976.2010.00240.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The bacterial phage shock protein (Psp) response functions to help cells manage the impacts of agents impairing cell membrane function. The system has relevance to biotechnology and to medicine. Originally discovered in Escherichia coli, Psp proteins and homologues are found in Gram-positive and Gram-negative bacteria, in archaea and in plants. Study of the E. coli and Yersinia enterocolitica Psp systems provides insights into how membrane-associated sensory Psp proteins might perceive membrane stress, signal to the transcription apparatus and use an ATP-hydrolysing transcription activator to produce effector proteins to overcome the stress. Progress in understanding the mechanism of signal transduction by the membrane-bound Psp proteins, regulation of the psp gene-specific transcription activator and the cell biology of the system is presented and discussed. Many features of the action of the Psp system appear to be dominated by states of self-association of the master effector, PspA, and the transcription activator, PspF, alongside a signalling pathway that displays strong conditionality in its requirement.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Imperial College London, South Kensington, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Predicting malaria interactome classifications from time-course transcriptomic data along the intraerythrocytic developmental cycle. Artif Intell Med 2010; 49:167-76. [DOI: 10.1016/j.artmed.2010.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 03/28/2010] [Accepted: 03/29/2010] [Indexed: 12/15/2022]
|
99
|
Ahmed R, Rangwala H, Karypis G. TOPTMH: topology predictor for transmembrane alpha-helices. J Bioinform Comput Biol 2010; 8:39-57. [PMID: 20183873 DOI: 10.1142/s0219720010004501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 10/22/2009] [Indexed: 11/18/2022]
Abstract
Alpha-helical transmembrane proteins mediate many key biological processes and represent 20%-30% of all genes in many organisms. Due to the difficulties in experimentally determining their high-resolution 3D structure, computational methods to predict the location and orientation of transmembrane helix segments using sequence information are essential. We present TOPTMH, a new transmembrane helix topology prediction method that combines support vector machines, hidden Markov models, and a widely used rule-based scheme. The contribution of this work is the development of a prediction approach that first uses a binary SVM classifier to predict the helix residues and then it employs a pair of HMM models that incorporate the SVM predictions and hydropathy-based features to identify the entire transmembrane helix segments by capturing the structural characteristics of these proteins. TOPTMH outperforms state-of-the-art prediction methods and achieves the best performance on an independent static benchmark.
Collapse
Affiliation(s)
- Rezwan Ahmed
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
100
|
Mancia F, Love J. High-throughput expression and purification of membrane proteins. J Struct Biol 2010; 172:85-93. [PMID: 20394823 DOI: 10.1016/j.jsb.2010.03.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/11/2010] [Accepted: 03/17/2010] [Indexed: 11/17/2022]
Abstract
High-throughput (HT) methodologies have had a tremendous impact on structural biology of soluble proteins. High-resolution structure determination relies on the ability of the macromolecule to form ordered crystals that diffract X-rays. While crystallization remains somewhat empirical, for a given protein, success is proportional to the number of conditions screened and to the number of variants trialed. HT techniques have greatly increased the number of targets that can be trialed and the rate at which these can be produced. In terms of number of structures solved, membrane proteins appear to be lagging many years behind their soluble counterparts. Likewise, HT methodologies for production and characterization of these hydrophobic macromolecules are only now emerging. Presented here is an HT platform designed exclusively for membrane proteins that has processed over 5000 targets.
Collapse
Affiliation(s)
- Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | | |
Collapse
|