51
|
Abdulghani A, Poghosyan M, Mehren A, Philipsen A, Anderzhanova E. Neuroplasticity to autophagy cross-talk in a therapeutic effect of physical exercises and irisin in ADHD. Front Mol Neurosci 2023; 15:997054. [PMID: 36776770 PMCID: PMC9909442 DOI: 10.3389/fnmol.2022.997054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Adaptive neuroplasticity is a pivotal mechanism for healthy brain development and maintenance, as well as its restoration in disease- and age-associated decline. Management of mental disorders such as attention deficit hyperactivity disorder (ADHD) needs interventions stimulating adaptive neuroplasticity, beyond conventional psychopharmacological treatments. Physical exercises are proposed for the management of ADHD, and also depression and aging because of evoked brain neuroplasticity. Recent progress in understanding the mechanisms of muscle-brain cross-talk pinpoints the role of the myokine irisin in the mediation of pro-cognitive and antidepressant activity of physical exercises. In this review, we discuss how irisin, which is released in the periphery as well as derived from brain cells, may interact with the mechanisms of cellular autophagy to provide protein recycling and regulation of brain-derived neurotrophic factor (BDNF) signaling via glia-mediated control of BDNF maturation, and, therefore, support neuroplasticity. We propose that the neuroplasticity associated with physical exercises is mediated in part by irisin-triggered autophagy. Since the recent findings give objectives to consider autophagy-stimulating intervention as a prerequisite for successful therapy of psychiatric disorders, irisin appears as a prototypic molecule that can activate autophagy with therapeutic goals.
Collapse
Affiliation(s)
- Alhasan Abdulghani
- C. and O. Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Henrich Heine University, Düsseldorf, Düsseldorf, Germany,*Correspondence: Alhasan Abdulghani,
| | - Mikayel Poghosyan
- Institute for Biology-Neurobiology, Freie University of Berlin, Berlin, Germany
| | - Aylin Mehren
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Elmira Anderzhanova
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
52
|
Benoit I, Burty-Valin E, Radman M. A Proteome-Centric View of Ageing, including that of the Skin and Age-Related Diseases: Considerations of a Common Cause and Common Preventative and Curative Interventions. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2023; 16:79-85. [PMID: 36660191 PMCID: PMC9842513 DOI: 10.2147/ccid.s397751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The proteome comprises all proteins of a cell or organism. To carry their catalytic and structure-related functions, proteins must be correctly folded into their unique native three-dimensional structures. Common oxidative protein damage affects their functionality by impairing their catalytic and interactive specificities. Oxidative damage occurs preferentially to misfolded proteins and fixes the misfolded state. This review provides an overview of the mechanism and consequences of oxidative proteome damage - specifically irreversible protein carbonylation - in relation to ageing, including that of the skin as well as to age-related degeneration and diseases (ARDD) and their mitigation. A literature review of published manuscripts, available from PubMed, focusing on proteome, proteostasis, proteotoxicity, protein carbonylation, related inflammatory diseases, ARDD and the impact of the damaged proteome on ageing. During ageing, proteome damage, especially protein carbonylation, correlates with biological age. Carbonylated proteins form aggregates which can be considered as markers and accelerators of ageing and are common markers of most ARDD. Protein carbonylation leads to general ageing of the organism and organs including the skin and potentially to diseases including Alzheimer and Parkinson disease, diabetes, psoriasis, and skin cancer. Current research is promising and may open new therapeutic approaches and perspectives by targeting proteome protection as an age and ARDD management strategy.
Collapse
Affiliation(s)
- Isabelle Benoit
- Medical Relations, NAOS-ILS, Aix-en-Provence, France,Correspondence: Isabelle Benoit, NAOS-ILS, Aix-en-Provence, 13593, France, Tel +33442163060, Email
| | | | - Miroslav Radman
- Faculté de Médecine, INSERM U1001, Université R.-Descartes Paris-5, Paris, France,Scientific Affairs, Mediterranean Institute for Life Science, Split, Croatia
| |
Collapse
|
53
|
Shen WC, Yuh CH, Lu YT, Lin YH, Ching TT, Wang CY, Wang HD. Reduced Ribose-5-Phosphate Isomerase A-1 Expression in Specific Neurons and Time Points Promotes Longevity in Caenorhabditis elegans. Antioxidants (Basel) 2023; 12:antiox12010124. [PMID: 36670987 PMCID: PMC9854458 DOI: 10.3390/antiox12010124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Deregulation of redox homeostasis is often associated with an accelerated aging process. Ribose-5-phosphate isomerase A (RPIA) mediates redox homeostasis in the pentose phosphate pathway (PPP). Our previous study demonstrated that Rpi knockdown boosts the healthspan in Drosophila. However, whether the knockdown of rpia-1, the Rpi ortholog in Caenorhabditis elegans, can improve the healthspan in C. elegans remains unknown. Here, we report that spatially and temporally limited knockdown of rpia-1 prolongs lifespan and improves the healthspan in C. elegans, reflecting the evolutionarily conserved phenotypes observed in Drosophila. Ubiquitous and pan-neuronal knockdown of rpia-1 both enhance tolerance to oxidative stress, reduce polyglutamine aggregation, and improve the deteriorated body bending rate caused by polyglutamine aggregation. Additionally, rpia-1 knockdown temporally in the post-developmental stage and spatially in the neuron display enhanced lifespan. Specifically, rpia-1 knockdown in glutamatergic or cholinergic neurons is sufficient to increase lifespan. Importantly, the lifespan extension by rpia-1 knockdown requires the activation of autophagy and AMPK pathways and reduced TOR signaling. Moreover, the RNA-seq data support our experimental findings and reveal potential novel downstream targets. Together, our data disclose the specific spatial and temporal conditions and the molecular mechanisms for rpia-1 knockdown-mediated longevity in C. elegans. These findings may help the understanding and improvement of longevity in humans.
Collapse
Affiliation(s)
- Wen-Chi Shen
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Mioali Country 35053, Taiwan
| | - Yu-Ting Lu
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Yen-Hung Lin
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Tsui-Ting Ching
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memory Hospital, Linkou Main Branch, Chang Gung University, Taoyuan 33305, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, HsinChu 300044, Taiwan
- Correspondence: ; Tel.: +886-3-5742470
| |
Collapse
|
54
|
Korchazhkina NB, Mikhailova AA, Reshetova IV, Dimova OV, Kotenko KV. [Modern approaches to developing a system of valid methods for monitoring individual health and maintaining active longevity]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2023; 100:6-13. [PMID: 38289299 DOI: 10.17116/kurort20231000616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Life expectancy In Russia in 2023, according to preliminary data, exceeded 73 years, returning to the pre-pandemic level. The increase in life expectancy is associated both with an improvement in the quality of medical care In Russia and with a more responsible attitude towards the health of citizens, which is confirmed by an improvement in the quality of nutrition, a decrease in alcohol consumption and an increase in the number of people involved in sports. At the same time, there are many signs of aging, both cellular and molecular, some of the main ones are genome stability, telomere shortening, epigenetic alterations, impaired proteostasis and nutrient recognition, mitochondrial dysfunction, depletion of the stem cell pool and changes in intercellular interactions, extracellular matrix rigidity, as well as retrotransposon activation and chronic inflammation. For these reasons, in modern healthcare, the tasks of preventing premature aging and treating age-related diseases are becoming priorities. MATERIAL AND METHODS In total, at the first stage of work (in 2023), we examined 80 people, whose average age was 59.6±0.7 years. When analyzing and assessing data, the study adopted a division into age groups (WHO). The following indicators were studied: HbA1, fructosamine, HDL cholesterol, LDL cholesterol, insulin, homocysteine, C-peptide, TSH, free T4, prolactin, total testosterone, cortisol, arginine, asymmetric dimethylarginine, leptin, TNF-a, ferritin, interleukin 1 and 6, telomere length, creatinine, uric acid and urea. RESULTS As a result of the study, it was revealed that the aging process of the body affects many indicators, while the main markers that changed in men aged 18 to 44 years were total testosterone, leptin and telomere length; aged 44 to 60 years - HbA1, fructosamine, HDL cholesterol, homocysteine, C-peptide, total testosterone, leptin and telomere length; from 60 to 75 years - fructosamine, HDL cholesterol and telomere length and for 75-90 years - HbA1, HDL cholesterol, insulin, total testosterone, leptin and telomere length, interleukin 6 and uric acid. In women aged 18 to 44 years, only an increase in leptin was observed against the background of shortening telomere length; at the age of 44 to 60 years, the main markers that changed were total testosterone, leptin and telomere length; for the age group 60-75 years - indicators of HbA1, homocysteine, C-peptide, prolactin, total testosterone and leptin, interleukin 6 and uric acid, telomere length was shorter by only 2%; in the age group of 75-90 years, the main markers that changed were insulin, total testosterone, leptin, interleukin 6, while the indicators of uric acid, urea and telomere length differed from the reference values by 2-4%. Shortening of telomere length in all age groups, both men and women, indicates the presence of signs of premature aging. In an individual analysis, data were obtained on a more dramatic shortening of telomeres in 16 subjects in the presence of impaired glucose tolerance and insulin secretion, especially in comparison with healthy subjects, which was confirmed by the data of glycated hemoglobin (HbA1c), while, with shortening of telomere length, the HbA1 indicator was significantly higher (6.8±0.5) than in individuals with long telomeres and no chronic pathology (5.1±0.4). CONCLUSION A system of highly valid methods and panels of markers has been developed that indicate the presence of aging processes, taking into account gender and age characteristics, which can be used to identify premature aging processes, monitor individual health and maintain active longevity, as well as for the prevention of age-associated diseases.
Collapse
Affiliation(s)
- N B Korchazhkina
- FSBSI «Petrovsky National Research Centre of Surgery», Moscow, Russia
| | - A A Mikhailova
- FSBSI «Petrovsky National Research Centre of Surgery», Moscow, Russia
| | - I V Reshetova
- FSBSI «Petrovsky National Research Centre of Surgery», Moscow, Russia
| | - O V Dimova
- FSBSI «Petrovsky National Research Centre of Surgery», Moscow, Russia
| | - K V Kotenko
- FSBSI «Petrovsky National Research Centre of Surgery», Moscow, Russia
| |
Collapse
|
55
|
Qiu Y, Fernández-García B, Lehmann HI, Li G, Kroemer G, López-Otín C, Xiao J. Exercise sustains the hallmarks of health. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:8-35. [PMID: 36374766 PMCID: PMC9923435 DOI: 10.1016/j.jshs.2022.10.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 05/23/2023]
Abstract
Exercise has long been known for its active role in improving physical fitness and sustaining health. Regular moderate-intensity exercise improves all aspects of human health and is widely accepted as a preventative and therapeutic strategy for various diseases. It is well-documented that exercise maintains and restores homeostasis at the organismal, tissue, cellular, and molecular levels to stimulate positive physiological adaptations that consequently protect against various pathological conditions. Here we mainly summarize how moderate-intensity exercise affects the major hallmarks of health, including the integrity of barriers, containment of local perturbations, recycling and turnover, integration of circuitries, rhythmic oscillations, homeostatic resilience, hormetic regulation, as well as repair and regeneration. Furthermore, we summarize the current understanding of the mechanisms responsible for beneficial adaptations in response to exercise. This review aimed at providing a comprehensive summary of the vital biological mechanisms through which moderate-intensity exercise maintains health and opens a window for its application in other health interventions. We hope that continuing investigation in this field will further increase our understanding of the processes involved in the positive role of moderate-intensity exercise and thus get us closer to the identification of new therapeutics that improve quality of life.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33011, Spain; Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo 33006, Spain
| | - H Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75231, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France.
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain; Centro de Investigación Biomédica en Red Enfermedades Cáncer (CIBERONC), Oviedo 33006, Spain.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
56
|
Sil S, Thangaraj A, Oladapo A, Hu G, Kutchy NA, Liao K, Buch S, Periyasamy P. Role of Autophagy in HIV-1 and Drug Abuse-Mediated Neuroinflammaging. Viruses 2022; 15:44. [PMID: 36680084 PMCID: PMC9866731 DOI: 10.3390/v15010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Chronic low-grade inflammation remains an essential feature of HIV-1 infection under combined antiretroviral therapy (cART) and contributes to the accelerated cognitive defects and aging in HIV-1 infected populations, indicating cART limitations in suppressing viremia. Interestingly, ~50% of the HIV-1 infected population on cART that develops cognitive defects is complicated by drug abuse, involving the activation of cells in the central nervous system (CNS) and neurotoxin release, altogether leading to neuroinflammation. Neuroinflammation is the hallmark feature of many neurodegenerative disorders, including HIV-1-associated neurocognitive disorders (HAND). Impaired autophagy has been identified as one of the underlying mechanisms of HAND in treated HIV-1-infected people that also abuse drugs. Several lines of evidence suggest that autophagy regulates CNS cells' responses and maintains cellular hemostasis. The impairment of autophagy is associated with low-grade chronic inflammation and immune senescence, a known characteristic of pathological aging. Therefore, autophagy impairment due to CNS cells, such as neurons, microglia, astrocytes, and pericytes exposure to HIV-1/HIV-1 proteins, cART, and drug abuse could have combined toxicity, resulting in increased neuroinflammation, which ultimately leads to accelerated aging, referred to as neuroinflammaging. In this review, we focus on the potential role of autophagy in the mechanism of neuroinflammaging in the context of HIV-1 and drug abuse.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Centre for Excellence in Nanobio Translational Research, Anna University, BIT Campus, Tiruchirappalli 620024, Tamil Nadu, India
| | - Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA 90048, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
57
|
Chu JJ, Ji WB, Zhuang JH, Gong BF, Chen XH, Cheng WB, Liang WD, Li GR, Gao J, Yin Y. Nanoparticles-based anti-aging treatment of Alzheimer's disease. Drug Deliv 2022; 29:2100-2116. [PMID: 35850622 PMCID: PMC9302016 DOI: 10.1080/10717544.2022.2094501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Age is the strongest risk factor for Alzheimer's disease (AD). In recent years, the relationship between aging and AD has been widely studied, with anti-aging therapeutics as the treatment for AD being one of the mainstream research directions. Therapeutics targeting senescent cells have shown improvement in AD symptoms and cerebral pathological changes, suggesting that anti-aging strategies may be a promising alternative for AD treatment. Nanoparticles represent an excellent approach for efficiently crossing the blood-brain barrier (BBB) to achieve better curative function and fewer side effects. Thereby, nanoparticles-based anti-aging treatment may exert potent anti-AD therapeutic efficacy. This review discusses the relationship between aging and AD and the application and prospect of anti-aging strategies and nanoparticle-based therapeutics in treating AD.
Collapse
Affiliation(s)
- Jian-Jian Chu
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China.,Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen-Bo Ji
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China.,Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jian-Hua Zhuang
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Bao-Feng Gong
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Xiao-Han Chen
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wen-Bin Cheng
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wen-Danqi Liang
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Gen-Ru Li
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
58
|
Caponio D, Veverová K, Zhang SQ, Shi L, Wong G, Vyhnalek M, Fang EF. Compromised autophagy and mitophagy in brain ageing and Alzheimer's diseases. AGING BRAIN 2022; 2:100056. [PMID: 36908880 PMCID: PMC9997167 DOI: 10.1016/j.nbas.2022.100056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most persistent and devastating neurodegenerative disorders of old age, and is characterized clinically by an insidious onset and a gradual, progressive deterioration of cognitive abilities, ranging from loss of memory to impairment of judgement and reasoning. Despite years of research, an effective cure is still not available. Autophagy is the cellular 'garbage' clearance system which plays fundamental roles in neurogenesis, neuronal development and activity, and brain health, including memory and learning. A selective sub-type of autophagy is mitophagy which recognizes and degrades damaged or superfluous mitochondria to maintain a healthy and necessary cellular mitochondrial pool. However, emerging evidence from animal models and human samples suggests an age-dependent reduction of autophagy and mitophagy, which are also compromised in AD. Upregulation of autophagy/mitophagy slows down memory loss and ameliorates clinical features in animal models of AD. In this review, we give an overview of autophagy and mitophagy and their link to the progression of AD. We also summarize approaches to upregulate autophagy/mitophagy. We hypothesize that age-dependent compromised autophagy/mitophagy is a cause of brain ageing and a risk factor for AD, while restoration of autophagy/mitophagy to more youthful levels could return the brain to health.
Collapse
Affiliation(s)
- Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kateřina Veverová
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Shi-qi Zhang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
- Novo Nordisk Research Centre Oxford (NNRCO)
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
59
|
Wang H, Wang L, Hu F, Wang P, Xie Y, Li F, Guo B. Neuregulin-4 attenuates diabetic cardiomyopathy by regulating autophagy via the AMPK/mTOR signalling pathway. Cardiovasc Diabetol 2022; 21:205. [PMID: 36221104 PMCID: PMC9554973 DOI: 10.1186/s12933-022-01643-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background Diabetic cardiomyopathy is characterized by left ventricle dysfunction, cardiomyocyte apoptosis, and interstitial fibrosis and is a serious complication of diabetes mellitus (DM). Autophagy is a mechanism that is essential for maintaining normal heart morphology and function, and its dysregulation can produce pathological effects on diabetic hearts. Neuregulin-4 (Nrg4) is an adipokine that exerts protective effects against metabolic disorders and insulin resistance. The aim of this study was to explore whether Nrg4 could ameliorate DM-induced myocardial injury by regulating autophagy. Methods Four weeks after the establishment of a model of type 1 diabetes in mice, the mice received Nrg4 treatment (with or without an autophagy inhibitor) for another 4 weeks. The cardiac functions, histological structures and cardiomyocyte apoptosis were investigated. Autophagy-related protein levels along with related signalling pathways that regulate autophagy were evaluated. In addition, the effects of Nrg4 on autophagy were also determined in cultured primary cardiomyocytes. Results Nrg4 alleviated myocardial injury both in vivo and in vitro. The autophagy level was decreased in type 1 diabetic mice, and Nrg4 intervention reactivated autophagy. Furthermore, Nrg4 intervention was found to activate autophagy via the AMPK/mTOR signalling pathway. Moreover, when autophagy was suppressed or the AMPK/mTOR pathway was inhibited, the beneficial effects of Nrg4 were diminished. Conclusion Nrg4 intervention attenuated diabetic cardiomyopathy by promoting autophagy in type 1 diabetic mice. Additionally, Nrg4 induced autophagy via the AMPK/mTOR signalling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01643-0.
Collapse
Affiliation(s)
- Hongchao Wang
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China
| | - Lijie Wang
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China
| | - Fuli Hu
- Department of Cardiology, Shijiazhuang Great Wall Hospital of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050000, China
| | - Pengfei Wang
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China
| | - Yanan Xie
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China
| | - Fang Li
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China
| | - Bingyan Guo
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China. .,Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
60
|
Langeh U, Kumar V, Kumar A, Kumar P, Singh C, Singh A. Cellular and Mitochondrial Quality Control Mechanisms in Maintaining Homeostasis in Aging. Rejuvenation Res 2022; 25:208-222. [PMID: 35850516 DOI: 10.1089/rej.2022.0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aging is a natural process in all living organisms defined as destruction of cell function as a result of long-term accumulation of damages. Autophagy is a cellular house safeguard pathway that is responsible for degrading damaged cellular organelles. Moreover, it maintains cellular homeostasis, controls lifetime and longevity. Damaged mitochondrial accumulation is a characteristic of aging that is associated with neurodegeneration. Mitochondria function as a principal energy source through supplying adenosine-5'-triphosphate (ATP) through oxidative phosphorylation that serves as fuel for neuronal function. Mitophagy and mitochondrial-specific autophagy play an important role in maintenance of neuronal health through the removal of dysfunctional and aged mitochondria. The mitochondrial quality control system involves different strategies for protecting against mitochondrial dysfunction and maintaining healthy mitochondria in cells. Mitochondrial function protection could be a strategy for the promotion of neuroprotection. Mitophagy could be an effective target for drug discovery. Therefore, further detailed studies for mechanism of mitophagy will advance our mitochondrial phenotype knowledge and understanding to disease pathogenesis. This review mainly focuses on aging-mediated mechanism of autophagy and mitophagy for maintaining the cellular homeostasis and longevity.
Collapse
Affiliation(s)
- Urvashi Langeh
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Anoop Kumar
- Department of Pharmacology, DPSRU, New Delhi, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| |
Collapse
|
61
|
Zhang JJ, Chen KC, Zhou Y, Wei H, Qi MH, Wang Z, Zheng YN, Chen RX, Liu S, Li W. Evaluating the effects of mitochondrial autophagy flux on ginsenoside Rg2 for delaying D-galactose induced brain aging in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154341. [PMID: 35870376 DOI: 10.1016/j.phymed.2022.154341] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Aging is an inevitable gradual process of the body, which can cause dysfunction or degeneration of the nervous or immune system, thus becoming a critical pathogenic factor inducing neurodegenerative diseases. Previous reports have confirmed that saponins (ginsenosides) derived from Panax ginseng. C.A. Meyer exerted obvious memory-enhancing and anti-aging effects, and the simpler the structure of ginsenosides, the better the biological activity. Ginsenoside Rg2 (Rg2) is a prominent and representative panaxatriol-type ginsenoside produced during ginseng processing, which has been reported to have pretty good neuroprotective activity. PURPOSE The work was aimed at exploring the therapeutic effects and possible molecular mechanisms of Rg2 by establishing the subacute brain aging model induced by D-galactose (D-gal) in mice. METHODS The anti-aging activity of G-Rg2 (10, 20 mg/kg for 4 weeks) was assessed using the D-gal induced brain aging model (800 mg/kg for 8 weeks). The Morris water maze (MWM) and histopathological analysis were used to evaluate the cognitive function and pathological changes of the brain in mice, respectively. The protein expression levels of p53, p21, p16ink4α, IL-6, CDK4, ATG3, ATG5, ATG7, LC3, p62, LAMP2, and TFEB were quantified through western blot analysis. The degree of mitochondrial damage and the number of mitochondrial autophagolysosomes in hippocampal neurons were monitored using TEM analysis. RESULTS The results showed that Rg2 could significantly restore D-gal-induced impaired memory function, choline dysfunction, and redox system imbalance in mice. Rg2 treatment also considerably decreased the over-expression of aging-related proteins such as p53/p21/p16ink4α induced by D-galactose, which demonstrated that Rg2 possessed good anti-aging activity. Meanwhile, Rg2 could evidently reduce the pathological changes caused by D-gal exposure. Moreover, the results from transmission electron microscopy and western blot analysis indicated that Rg2 could delay the brain aging induced by D-gal in mice via promoting the degradation of the autophagy substrate p62 while increasing the protein expression level of LAMP2/TFEB to maintain mitochondrial function. CONCLUSION These results indicate that Rg2 could postpone brain aging by increasing mitochondrial autophagy flux to maintain mitochondrial function, which greatly enriched the research on the pharmacological activity of ginsenosides for delaying brain aging.
Collapse
Affiliation(s)
- Jun-Jie Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Ke-Cheng Chen
- Looking Up Starry Sky Medical Research Center, Siping 136001, China
| | - Yue Zhou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Heng Wei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Meng-Han Qi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Yi-Nan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ri-Xin Chen
- Looking Up Starry Sky Medical Research Center, Siping 136001, China
| | - Shuang Liu
- Goldenwell Biotechnology, Inc., Reno 89501, United States
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China.
| |
Collapse
|
62
|
McCormick JJ, Côté MD, King KE, McManus MK, Goulet N, Dokladny K, Moseley PL, Kenny GP. The autophagic response to exercise in peripheral blood mononuclear cells from young men is intensity-dependent and is altered by exposure to environmental heat. Am J Physiol Regul Integr Comp Physiol 2022; 323:R467-R482. [PMID: 35993558 DOI: 10.1152/ajpregu.00110.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autophagy is essential to maintaining cellular homeostasis in all eukaryotic cells and to tolerance of acute stressors such as starvation, heat, and recovery following exercise. Limited information exists regarding the exercise intensity-dependent autophagic response in humans, and it is unknown how environmental heat stress may modulate this response. Therefore, we evaluated autophagy and accompanying pathways of cellular stress (the heat shock response [HSR], apoptosis, and acute inflammation) in peripheral blood mononuclear cells (PBMCs) from 10 young men (mean [SD]; 22 [2] years) before, immediately after and up to 6h post-exercise recovery from 30 minutes of low-, moderate-, and high-intensity semi-recumbent cycling (40, 55 and 70% of maximal oxygen consumption (VO2max), respectively)in a temperate environment (25°C) and at 70% of VO2max in a hot environment (40°C). Changes in protein content were analyzed via Western blot. Each increase in exercise intensity was associated with elevations in mean body temperature. LC3-II increased following moderate-intensity exercise, with further increases following high-intensity exercise (p < 0.05). However, an increase in beclin-2 and ULK1, with a decrease in p62 was only observed after high-intensity exercise, which was paralleled by elevated TNF-α and cleaved-caspase-3, with the HSR peaking at 6h after exercise (p < 0.05). When exercise was performed in the heat, greater LC3-II and cleaved-caspase-3 accumulation was observed, however beclin-2 declined in recovery (p < 0.05). Therefore, our findings indicate that autophagy in PBMCs during exercise may be associated with greater heat strain exhibited during increasing exercise intensities, which is modulated by exposure to heat.
Collapse
Affiliation(s)
- James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Melissa D Côté
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Morgan K McManus
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Nicholas Goulet
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Pope L Moseley
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,College of Health Solutions, Arizona State University, Phoenix, Arizona, United States
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
63
|
Zou HX, Qiu BQ, Zhang ZY, Hu T, Wan L, Liu JC, Huang H, Lai SQ. Dysregulated autophagy-related genes in septic cardiomyopathy: Comprehensive bioinformatics analysis based on the human transcriptomes and experimental validation. Front Cardiovasc Med 2022; 9:923066. [PMID: 35983185 PMCID: PMC9378994 DOI: 10.3389/fcvm.2022.923066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Septic cardiomyopathy (SCM) is severe organ dysfunction caused by sepsis that is associated with poor prognosis, and its pathobiological mechanisms remain unclear. Autophagy is a biological process that has recently been focused on SCM, yet the current understanding of the role of dysregulated autophagy in the pathogenesis of SCM remains limited and uncertain. Exploring the molecular mechanisms of disease based on the transcriptomes of human pathological samples may bring the closest insights. In this study, we analyzed the differential expression of autophagy-related genes in SCM based on the transcriptomes of human septic hearts, and further explored their potential crosstalk and functional pathways. Key functional module and hub genes were identified by constructing a protein–protein interaction network. Eight key genes (CCL2, MYC, TP53, SOD2, HIF1A, CTNNB1, CAT, and ADIPOQ) that regulate autophagy in SCM were identified after validation in a lipopolysaccharide (LPS)-induced H9c2 cardiomyoblast injury model, as well as the autophagic characteristic features. Furthermore, we found that key genes were associated with abnormal immune infiltration in septic hearts and have the potential to serve as biomarkers. Finally, we predicted drugs that may play a protective role in SCM by regulating autophagy based on our results. Our study provides evidence and new insights into the role of autophagy in SCM based on human septic heart transcriptomes, which would be of great benefit to reveal the molecular pathological mechanisms and explore the diagnostic and therapeutic targets for SCM.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ze-Yu Zhang
- Institute of Nanchang University Trauma Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tie Hu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Huang Huang,
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Song-Qing Lai,
| |
Collapse
|
64
|
Hughes DC, Baehr LM, Waddell DS, Sharples AP, Bodine SC. Ubiquitin Ligases in Longevity and Aging Skeletal Muscle. Int J Mol Sci 2022; 23:7602. [PMID: 35886949 PMCID: PMC9315556 DOI: 10.3390/ijms23147602] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/07/2022] Open
Abstract
The development and prevalence of diseases associated with aging presents a global health burden on society. One hallmark of aging is the loss of proteostasis which is caused in part by alterations to the ubiquitin-proteasome system (UPS) and lysosome-autophagy system leading to impaired function and maintenance of mass in tissues such as skeletal muscle. In the instance of skeletal muscle, the impairment of function occurs early in the aging process and is dependent on proteostatic mechanisms. The UPS plays a pivotal role in degradation of misfolded and aggregated proteins. For the purpose of this review, we will discuss the role of the UPS system in the context of age-related loss of muscle mass and function. We highlight the significant role that E3 ubiquitin ligases play in the turnover of key components (e.g., mitochondria and neuromuscular junction) essential to skeletal muscle function and the influence of aging. In addition, we will briefly discuss the contribution of the UPS system to lifespan. By understanding the UPS system as part of the proteostasis network in age-related diseases and disorders such as sarcopenia, new discoveries can be made and new interventions can be developed which will preserve muscle function and maintain quality of life with advancing age.
Collapse
Affiliation(s)
- David C. Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| | - Leslie M. Baehr
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| | - David S. Waddell
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA;
| | - Adam P. Sharples
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), 0863 Oslo, Norway;
| | - Sue C. Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| |
Collapse
|
65
|
Kuijpers M. Keeping synapses in shape: degradation pathways in the healthy and aging brain. Neuronal Signal 2022; 6:NS20210063. [PMID: 35813265 PMCID: PMC9208270 DOI: 10.1042/ns20210063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Synapses maintain their molecular composition, plasticity and function through the concerted action of protein synthesis and removal. The complex and polarized neuronal architecture poses specific challenges to the logistics of protein and organelle turnover since protein synthesis and degradation mainly happen in the cell soma. In addition, post-mitotic neurons accumulate damage over a lifetime, challenging neuronal degradative pathways and making them particularly susceptible to the effects of aging. This review will summarize the current knowledge on neuronal protein turnover mechanisms with a particular focus on the presynapse, including the proteasome, autophagy and the endolysosomal route and their roles in regulating presynaptic proteostasis and function. In addition, the author will discuss how physiological brain aging, which entails a progressive decline in cognitive functions, affects synapses and the degradative machinery.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
66
|
Exercise Enhances Branched-Chain Amino Acid Catabolism and Decreases Cardiac Vulnerability to Myocardial Ischemic Injury. Cells 2022; 11:cells11101706. [PMID: 35626742 PMCID: PMC9139679 DOI: 10.3390/cells11101706] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term exercise-induced metabolic adaptations occupy a central position in exercise-afforded cardiac benefits. Emerging evidence suggests that branched-chain amino acid (BCAA) catabolic defect contributes to cardiac dysfunction in multiple cardiometabolic diseases. However, the role of BCAA catabolism in exercise-afforded cardiac benefits remains unknown. Here, we show that exercise improves BCAA catabolism and thus reduce cardiac vulnerability to myocardial ischemic injury. Exercise increased circulating BCAA levels in both humans (male adolescent athletes) and mice (following an 8-week swimming intervention). It increased the expression of mitochondrial localized 2C-type serine-threonine protein phosphatase (PP2Cm), a key enzyme in regulating BCAA catabolism, and decreased BCAA accumulation in mouse hearts, indicating an increase in BCAA catabolism. Pharmacological promotion of BCAA catabolism protected the mouse heart against myocardial infarction (MI) induced by permanent ligation of the left descending coronary artery. Although cardiac-specific PP2Cm knockout showed no significant effects on cardiac structural and functional adaptations to exercise, it blunted the cardioprotective effects of exercise against MI. Mechanistically, exercise alleviated BCAA accumulation and subsequently inactivated the mammalian target of rapamycin in MI hearts. These results showed that exercise elevated BCAA catabolism and protected the heart against myocardial ischemic injury, reinforcing the role of exercise in the promotion of cardiac health.
Collapse
|
67
|
Aziz SGG, Pourheydar B, Chodari L, Hamidifar F. Effect of exercise and curcumin on cardiomyocyte molecular mediators associated with oxidative stress and autophagy in aged male rats. Microvasc Res 2022; 143:104380. [PMID: 35597271 DOI: 10.1016/j.mvr.2022.104380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
AIM Aging can origin changes in the heart that may increase risk of developing cardiovascular disease. This study aimed to characterize autophagy alterations and related molecular mediators in the heart tissue in the aging alone or in combination with exercise and curcumin treatment. METHODS Seven young and twenty-eight elderly male Wistar rats were assigned into five groups, namely: young control, age, exercise, curcumin, and curcumin+exercise. Aged rats in exercise group run on treadmill (17 m/min) and in the curcumin group received curcumin (50 mg/kg) by gavage daily for 8 weeks for 2 months. At the end, heart samples were collected and used for determination of autophagy by immunostaining for LC3-phosphatidylethanolamine conjugate (LC3-II), apoptosis by TUNEL assay, Malondialdehyde (MDA) level by enzymatic assay and determination of mediators' molecules by ELISA for NADPH Oxidase 4 (NOX4), sirtuin 1 (SIRT-1), phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (p-NF-Ƙb) protein levels and Sequestosome-1 (P62). Also, histological changes such as fibrosis evaluated by Masson trichrome staining. RESULTS Our results showed that autophagy, SIRT-1 level were significantly decreased and MDA, NOX4, p-NF-Ƙb and P62 levels were significantly increased in heart of aged group compared to young group. Also, significant increased apoptosis and fibrosis levels in the heart of aged rats were observed compared with young rats, whereas, these undesirable changes were improved by exercise and curcumin. Also, combination therapy of aged rats with curcumin and exercise showed more significant prominent effect on molecular mediators and histological changes in the heart compared with monotherapy. CONCLUSION These findings indicate that stress oxidative increase and autophagy decrease in the heart tissue of aged rats. The age induced the mentioned changes in the heart may in part be associated with down-expression of SIRT-1 and overexpression of NOX4 proteins. It was also showed that these age induced effects can be alleviated by treatment with exercise and curcumin. Since NF-Ƙb increased in both the age and treatment groups, it seems the age heart increased NF-Ƙb to be due to a compensatory mechanism.
Collapse
Affiliation(s)
| | - Bagher Pourheydar
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of anatomical sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Farhad Hamidifar
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
68
|
Tranchita E, Murri A, Grazioli E, Cerulli C, Emerenziani GP, Ceci R, Caporossi D, Dimauro I, Parisi A. The Beneficial Role of Physical Exercise on Anthracyclines Induced Cardiotoxicity in Breast Cancer Patients. Cancers (Basel) 2022; 14:cancers14092288. [PMID: 35565417 PMCID: PMC9104319 DOI: 10.3390/cancers14092288] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022] Open
Abstract
The increase in breast cancer (BC) survival has determined a growing survivor population that seems to develop several comorbidities and, specifically, treatment-induced cardiovascular disease (CVD), especially those patients treated with anthracyclines. Indeed, it is known that these compounds act through the induction of supraphysiological production of reactive oxygen species (ROS), which appear to be central mediators of numerous direct and indirect cardiac adverse consequences. Evidence suggests that physical exercise (PE) practised before, during or after BC treatments could represent a viable non-pharmacological strategy as it increases heart tolerance against many cardiotoxic agents, and therefore improves several functional, subclinical, and clinical parameters. At molecular level, the cardioprotective effects are mainly associated with an exercise-induced increase of stress response proteins (HSP60 and HSP70) and antioxidant (SOD activity, GSH), as well as a decrease in lipid peroxidation, and pro-apoptotic proteins such as Bax, Bax-to-Bcl-2 ratio. Moreover, this protection can potentially be explained by a preservation of myosin heavy chain (MHC) isoform distribution. Despite this knowledge, it is not clear which type of exercise should be suggested in BC patient undergoing anthracycline treatment. This highlights the lack of special guidelines on how affected patients should be managed more efficiently. This review offers a general framework for the role of anthracyclines in the physio-pathological mechanisms of cardiotoxicity and the potential protective role of PE. Finally, potential exercise-based strategies are discussed on the basis of scientific findings.
Collapse
Affiliation(s)
- Eliana Tranchita
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| | - Arianna Murri
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| | - Elisa Grazioli
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-06-3673-3532
| | - Claudia Cerulli
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| | - Gian Pietro Emerenziani
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Roberta Ceci
- Laboratory of Biochemistry and Molecular Biology, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (D.C.); (I.D.)
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (D.C.); (I.D.)
| | - Attilio Parisi
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| |
Collapse
|
69
|
Sabet N, Soltani Z, Khaksari M. The effects of exercise on kidney injury: the role of SIRT1. Mol Biol Rep 2022; 49:4025-4038. [PMID: 35449317 DOI: 10.1007/s11033-022-07122-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
In patients with kidney injury, muscle mass and strength decrease with altered muscle protein synthesis and degradation along with complications such as inflammation and low physical activity. A treatment strategy to maintain muscle metabolism in kidney injury is important. One of the proposed strategies in this regard is exercise, which in addition to inducing muscle hypertrophy, reducing plasma creatinine and urea and decreasing the severity of tubal injuries, can boost immune function and has anti-inflammatory effects. One of the molecules that have been considered as a target in the treatment of many diseases is silent information regulator 1 (SIRT1). Exercise increases the expression of SIRT1 and improves its activity. Therefore, studies that examined the effect of exercise on kidney injury considering the role of SIRT1 in this effect were reviewed to determine the direction of kidney injury research in future regarding to its prevalence, especially following diabetes, and lack of definitive treatment. In this review, we found that SIRT1 can be one of renoprotective target pathways of exercise. However, further studies are needed to determine the role of SIRT1 in different kidney injuries following exercise according to the type and severity of exercise, and the type of kidney injury.
Collapse
Affiliation(s)
- Nazanin Sabet
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.,Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran. .,Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
70
|
Mosevitsky MI. Progerin and Its Role in Accelerated and Natural Aging. Mol Biol 2022. [DOI: 10.1134/s0026893322020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
71
|
The 90 plus: longevity and COVID-19 survival. Mol Psychiatry 2022; 27:1936-1944. [PMID: 35136227 DOI: 10.1038/s41380-022-01461-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 11/08/2022]
Abstract
The world population is getting older and studies aiming to enhance our comprehension of the underlying mechanisms responsible for health span are of utmost interest for longevity and as a measure for health care. In this review, we summarized previous genetic association studies (GWAS) and next-generation sequencing (NGS) of elderly cohorts. We also present the updated hypothesis for the aging process, together with the factors associated with healthy aging. We discuss the relevance of studying older individuals and build databanks to characterize the presence and resistance against late-onset disorders. The identification of about 2 million novel variants in our cohort of more than 1000 elderly Brazilians illustrates the importance of studying highly admixed populations of non-European ancestry. Finally, the ascertainment of nonagenarians and particularly of centenarians who were recovered from COVID-19 or remained asymptomatic opens new avenues of research aiming to enhance our comprehension of biological mechanisms associated with resistance against pathogens.
Collapse
|
72
|
Fukuda T, Wada-Hiraike O. The Two-Faced Role of Autophagy in Endometrial Cancer. Front Cell Dev Biol 2022; 10:839416. [PMID: 35433698 PMCID: PMC9008213 DOI: 10.3389/fcell.2022.839416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/17/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy, meaning “self-eating,” is a cellular catabolic process that involves lysosomal degradation of cytoplasmic materials. Autophagy contributes to both quality control and energy supply of cells, which are associated with tumorigenesis and tumor development, respectively. Endometrial cancer (EC) is the most common gynecologic cancer, and its incidence is increasing. Although autophagy plays crucial roles in several types of cancer, such as pancreatic ductal adenocarcinoma, its role in EC has not been clearly demonstrated. Activation of the PI3K/AKT/mTOR pathway, which functions to suppress autophagy, is an initial step in type 1 endometrial carcinogenesis, whereas a loss-of-function mutation of TP53, which augments autophagy via p16 induction, is the main cause of type 2 endometrial carcinogenesis. Mutations in autophagy-related genes, including ATG4C, RB1CC1/FIP200, and ULK4, have been reported in EC; thus, an aberrant autophagy mechanism may be involved in endometrial carcinogenesis. Furthermore, the biguanide diabetes drug metformin, treatment with which enhances autophagy via AMPK-mediated mTOR inactivation, has been reported to reduce the risk of EC. These findings suggest that autophagy negatively regulates endometrial carcinogenesis, and autophagy inducers may be useful for chemoprevention of EC. In contrast, autophagy appears to promote EC once it is established. Consistent with this, treatment with chloroquine, an autophagy inhibitor, is reported to attenuate EC cell proliferation. Moreover, chemotherapy-induced autophagy triggers chemoresistance in EC cells. As autophagy has a tumor-promoting function, the combination of chemotherapy and autophagy inhibitors such as chloroquine could be a potent therapeutic option for patients with EC. In conclusion, autophagy plays a dual role in the prevention and treatment of EC. Therefore, targeting autophagy to prevent and treat EC requires diametrically opposed strategies.
Collapse
Affiliation(s)
- Tomohiko Fukuda
- Department of Obstetrics and Gynecology, JR Tokyo General Hospital, Tokyo, Japan
- *Correspondence: Tomohiko Fukuda,
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
73
|
Ribarič S. Physical Exercise, a Potential Non-Pharmacological Intervention for Attenuating Neuroinflammation and Cognitive Decline in Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:ijms23063245. [PMID: 35328666 PMCID: PMC8952567 DOI: 10.3390/ijms23063245] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
This narrative review summarises the evidence for considering physical exercise (PE) as a non-pharmacological intervention for delaying cognitive decline in patients with Alzheimer’s disease (AD) not only by improving cardiovascular fitness but also by attenuating neuroinflammation. Ageing is the most important risk factor for AD. A hallmark of the ageing process is a systemic low-grade chronic inflammation that also contributes to neuroinflammation. Neuroinflammation is associated with AD, Parkinson’s disease, late-onset epilepsy, amyotrophic lateral sclerosis and anxiety disorders. Pharmacological treatment of AD is currently limited to mitigating the symptoms and attenuating progression of the disease. AD animal model studies and human studies on patients with a clinical diagnosis of different stages of AD have concluded that PE attenuates cognitive decline not only by improving cardiovascular fitness but possibly also by attenuating neuroinflammation. Therefore, low-grade chronic inflammation and neuroinflammation should be considered potential modifiable risk factors for AD that can be attenuated by PE. This opens the possibility for personalised attenuation of neuroinflammation that could also have important health benefits for patients with other inflammation associated brain disorders (i.e., Parkinson’s disease, late-onset epilepsy, amyotrophic lateral sclerosis and anxiety disorders). In summary, life-long, regular, structured PE should be considered as a supplemental intervention for attenuating the progression of AD in human. Further studies in human are necessary to develop optimal, personalised protocols, adapted to the progression of AD and the individual’s mental and physical limitations, to take full advantage of the beneficial effects of PE that include improved cardiovascular fitness, attenuated systemic inflammation and neuroinflammation, stimulated brain Aβ peptides brain catabolism and brain clearance.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
74
|
Biscaro RC, Mussi L, Sufi B, Padovani G, Camargo Junior FB, Magalhães WV, Di Stasi LC. Modulation of autophagy by an innovative phytocosmetic preparation (
Myrothamnus flabelifolia
and
Coffea arabica
) in human fibroblasts and its effects in a clinical randomized placebo‐controlled trial. J Cosmet Dermatol 2022; 21:4901-4912. [DOI: 10.1111/jocd.14888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/18/2022] [Accepted: 02/22/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Rafael C. Biscaro
- Research and Development Department Chemyunion Química Ltda Sorocaba Brazil
| | - Lilian Mussi
- Research and Development Department Chemyunion Química Ltda Sorocaba Brazil
| | - Bianca Sufi
- Research and Development Department Chemyunion Química Ltda Sorocaba Brazil
| | - Giovana Padovani
- Research and Development Department Chemyunion Química Ltda Sorocaba Brazil
| | | | | | - Luiz C. Di Stasi
- Laboratory of Phytomedicines, Pharmacology, and Biotechnology (PhytoPharmaTech) Department of Biophysics and Pharmacology Institute of Biosciences São Paulo State University (Unesp) Botucatu Brazil
| |
Collapse
|
75
|
Alpha B-Crystallin in Muscle Disease Prevention: The Role of Physical Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031147. [PMID: 35164412 PMCID: PMC8840510 DOI: 10.3390/molecules27031147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
HSPB5 or alpha B-crystallin (CRYAB), originally identified as lens protein, is one of the most widespread and represented of the human small heat shock proteins (sHSPs). It is greatly expressed in tissue with high rates of oxidative metabolism, such as skeletal and cardiac muscles, where HSPB5 dysfunction is associated with a plethora of human diseases. Since HSPB5 has a major role in protecting muscle tissues from the alterations of protein stability (i.e., microfilaments, microtubules, and intermediate filament components), it is not surprising that this sHSP is specifically modulated by exercise. Considering the robust content and the protective function of HSPB5 in striated muscle tissues, as well as its specific response to muscle contraction, it is then realistic to predict a specific role for exercise-induced modulation of HSPB5 in the prevention of muscle diseases caused by protein misfolding. After offering an overview of the current knowledge on HSPB5 structure and function in muscle, this review aims to introduce the reader to the capacity that different exercise modalities have to induce and/or activate HSPB5 to levels sufficient to confer protection, with the potential to prevent or delay skeletal and cardiac muscle disorders.
Collapse
|
76
|
Low Energy Status under Methionine Restriction Is Essentially Independent of Proliferation or Cell Contact Inhibition. Cells 2022; 11:cells11030551. [PMID: 35159360 PMCID: PMC8833905 DOI: 10.3390/cells11030551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Nonlimited proliferation is one of the most striking features of neoplastic cells. The basis of cell division is the sufficient presence of mass (amino acids) and energy (ATP and NADH). A sophisticated intracellular network permanently measures the mass and energy levels. Thus, in vivo restrictions in the form of amino acid, protein, or caloric restrictions strongly affect absolute lifespan and age-associated diseases such as cancer. The induction of permanent low energy metabolism (LEM) is essential in this process. The murine cell line L929 responds to methionine restriction (MetR) for a short time period with LEM at the metabolic level defined by a characteristic fingerprint consisting of the molecules acetoacetate, creatine, spermidine, GSSG, UDP-glucose, pantothenate, and ATP. Here, we used mass spectrometry (LC/MS) to investigate the influence of proliferation and contact inhibition on the energy status of cells. Interestingly, the energy status was essentially independent of proliferation or contact inhibition. LC/MS analyses showed that in full medium, the cells maintain active and energetic metabolism for optional proliferation. In contrast, MetR induced LEM independently of proliferation or contact inhibition. These results are important for cell behaviour under MetR and for the optional application of restrictions in cancer therapy.
Collapse
|
77
|
Trushina E, Trushin S, Hasan MF. Mitochondrial complex I as a therapeutic target for Alzheimer's disease. Acta Pharm Sin B 2022; 12:483-495. [PMID: 35256930 PMCID: PMC8897152 DOI: 10.1016/j.apsb.2021.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/01/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD), the most prominent form of dementia in the elderly, has no cure. Strategies focused on the reduction of amyloid beta or hyperphosphorylated Tau protein have largely failed in clinical trials. Novel therapeutic targets and strategies are urgently needed. Emerging data suggest that in response to environmental stress, mitochondria initiate an integrated stress response (ISR) shown to be beneficial for healthy aging and neuroprotection. Here, we review data that implicate mitochondrial electron transport complexes involved in oxidative phosphorylation as a hub for small molecule-targeted therapeutics that could induce beneficial mitochondrial ISR. Specifically, partial inhibition of mitochondrial complex I has been exploited as a novel strategy for multiple human conditions, including AD, with several small molecules being tested in clinical trials. We discuss current understanding of the molecular mechanisms involved in this counterintuitive approach. Since this strategy has also been shown to enhance health and life span, the development of safe and efficacious complex I inhibitors could promote healthy aging, delaying the onset of age-related neurodegenerative diseases.
Collapse
Key Words
- AD, Alzheimer's disease
- ADP, adenosine diphosphate
- AIDS, acquired immunodeficiency syndrome
- AMP, adenosine monophosphate
- AMPK, AMP-activated protein kinase
- APP/PS1, amyloid precursor protein/presenilin 1
- ATP, adenosine triphosphate
- Alzheimer's disease
- Aβ, amyloid beta
- BBB, blood‒brain barrier
- BDNF, brain-derived neurotrophic factor
- CP2, tricyclic pyrone compound two
- Complex I inhibitors
- ER, endoplasmic reticulum
- ETC, electron transport chain
- FADH2, flavin adenine dinucleotide
- FDG-PET, fluorodeoxyglucose-positron emission tomography
- GWAS, genome-wide association study
- HD, Huntington's disease
- HIF-1α, hypoxia induced factor 1 α
- Healthy aging
- ISR, integrated stress response
- Integrated stress response
- LTP, long term potentiation
- MCI, mild cognitive impairment
- MPTP, 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine
- Mitochondria
- Mitochondria signaling
- Mitochondria targeted therapeutics
- NAD+ and NADH, nicotinamide adenine dinucleotide
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NRF2, nuclear factor E2-related factor 2
- Neuroprotection
- OXPHOS, oxidative phosphorylation
- PD, Parkinson's disease
- PGC1α, peroxisome proliferator-activated receptor gamma coactivator 1 alpha
- PMF, proton-motive force
- RNAi, RNA interference
- ROS, reactive oxygen species
- T2DM, type II diabetes mellitus
- TCA, the tricarboxylic acid cycle
- mtDNA, mitochondrial DNA
- mtUPR, mitochondrial unfolded protein response
- pTau, hyper-phosphorylated Tau protein
- ΔpH, proton gradient
- Δψm, mitochondrial membrane potential
Collapse
Affiliation(s)
- Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Md Fayad Hasan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
78
|
Mechanisms of autophagic responses to altered nutritional status. J Nutr Biochem 2022; 103:108955. [PMID: 35134508 DOI: 10.1016/j.jnutbio.2022.108955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/09/2021] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
|
79
|
Sun X, Harris KE, Hou L, Xia X, Liu X, Ge M, Jia S, Zhou L, Zhao W, Zhang Y, Zhao Y, Mei Y, Zhang G, Xin L, Hao Q, Shen Y, Xiao C, Yue J, Ge N, Li Y, Dong B, Xue Q. The prevalence and associated factors of motoric cognitive risk syndrome in multiple ethnic middle‐aged to older adults in west China: A cross‐sectional study. Eur J Neurol 2022; 29:1354-1365. [PMID: 35118760 DOI: 10.1111/ene.15255] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Xuelian Sun
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | | | - Lisha Hou
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Xin Xia
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Xiaolei Liu
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Meiling Ge
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Shuli Jia
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Lixing Zhou
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Wanyu Zhao
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Yan Zhang
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Yunli Zhao
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Yang Mei
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Gongchang Zhang
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Liuyi Xin
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Qiukui Hao
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Yanjiao Shen
- Department of Guideline and Rapid Recommendation Cochrane China Centre MAGIC China Centre Chinese Evidence‐Based Medicine Centre West China Hospital Sichuan University Chengdu Sichuan China
| | - Chun Xiao
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Jirong Yue
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Ning Ge
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Ying Li
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Birong Dong
- National Clinical Research Center of Geriatrics and Department of Geriatrics West China Hospital Sichuan University Chengdu Sichuan China
| | - Qianli Xue
- Departments of Medicine, Biostatistics, and Epidemiology Johns Hopkins University Baltimore USA
| |
Collapse
|
80
|
Li SJ, Lin YH, Chiang CH, Wang PY, Chen CY. Early-onset dietary restriction maintains mitochondrial health, autophagy and ER function in the left ventricle during aging. J Nutr Biochem 2022; 101:108944. [PMID: 35017002 DOI: 10.1016/j.jnutbio.2022.108944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022]
Abstract
Dietary restriction (DR) exerts healthy benefits, including heart functions. However, the cardioprotective role of DR is till controversial among researchers due to the variation of DR conditions. The present study focuses on the protective effect of early-onset DR on cardiac injury using mitochondrial structure and expression of protein associated with mitochondrial homeostasis, autophagy and endoplasmic reticulum (ER) function as measures. METHODS Two-month-old mice were fed with a breeding diet ad libitum (AL) or DR (60% of AL) for 3 (Young) or 20 (Aged) months. RESULTS Body weight increased with aging, whereas DR treatment kept body weight consistent. DR mice exhibited a higher relative heart weight than AL mice. DR mice displayed lower plasma glucose levels, compared with AL groups. Furthermore, Aged-AL, but not Aged-DR mice, had increased collagen content and morphological distortions in the left ventricle (LV). Aged-DR mice had a higher ATP and lower TBARS in the LV than Aged-AL mice. Mitochondrial morphology was detected by electron microscopy; Aged-AL mice had increased abnormal morphology of mitochondria. Treatment with DR reduced abnormal mitochondrial accumulation. Aging elevated the protein expressions of mitochondrial functions and ER-induced apoptosis. Aging downregulated autophagy-related proteins and chaperones in the heart. Dietary restriction reversed those protein expressions. CONCLUSIONS The present study demonstrated a beneficial effect of early onset DR on cardiac aging. The age-dependent mitochondrial dysfunction and protein quality control dysregulation was significantly reversed by long-term DR, demonstrating a concordance with the beneficial effect in the heart.
Collapse
Affiliation(s)
- Sin-Jin Li
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd, Taipei, 10672, Taiwan
| | - Yu-Han Lin
- General Research Service Center/ Department of Animal Science, National Pingtung University of Science and Technology, No. 1, Shuefu Rd, Neipu, Pingtung, 912301, Taiwan
| | - Chun-Hsien Chiang
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd, Taipei, 10672, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd, Taipei, 10672, Taiwan.
| |
Collapse
|
81
|
Salimi-Jeda A, Ghabeshi S, Gol Mohammad Pour Z, Jazaeri EO, Araiinejad M, Sheikholeslami F, Abdoli M, Edalat M, Abdoli A. Autophagy Modulation and Cancer Combination Therapy: A Smart Approach in Cancer Therapy. Cancer Treat Res Commun 2022; 30:100512. [PMID: 35026533 DOI: 10.1016/j.ctarc.2022.100512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
The autophagy pathway is the process whereby cells keep cellular homeostasis and respond to stress via recycling their damaged cellular proteins, organelles, and other cellular components. In the context of cancer, autophagy is a dual-edge sword pro- and anti-tumorigenic role depending on the oncogenic context and stage of tumorigenesis. Cancer cells have a higher dependency on autophagy compared with normal cells because of cellular damages and high demands for energy. The carbon, nitrogen, and molecular oxygen are building blocks for highly proliferative cancer cells which extremely depend on glutaminolysis and aerobic glycolysis; when a cancer cell is restricted to glucose and glutamine, it initiates to activate a stress response pathway using autophagy. Oncogenic tyrosine kinases (OncTKs) and receptor tyrosine kinases (RTKs) activation result in autophagy modulation through activation of the PI3K/AKT/mTORC1 and RAS/MAPK signaling pathways. Targeted inhibition of tyrosine kinases (TKs) and RTKs have recently been considered as cancer therapy but drug resistance and cancer relapse continue to be a major limitation of tyrosine kinase inhibitors (TKIs). Manipulation of autophagy pathway along with TKIs may be a promising strategy to circumvent unknown existing drug-resistance mechanisms that may emerge in a treated patient. In this way, clinical trials are ongoing to modulate autophagy to treat cancer. This review aims to summarize the combination therapy of autophagy affecting compounds with anticancer drugs which target cell signaling pathways, metabolism mechanisms, and epigenetics modification to improve therapeutic efficacy against cancers.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soad Ghabeshi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Ollah Jazaeri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Mehrdad Araiinejad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Farzaneh Sheikholeslami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Mohsen Abdoli
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Edalat
- Department of medical laboratory sciences, Paramedical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
| |
Collapse
|
82
|
Shen W, He J, Hou T, Si J, Chen S. Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions. Aging Dis 2022; 13:1063-1091. [PMID: 35855334 PMCID: PMC9286910 DOI: 10.14336/ad.2021.1208] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been an increase in the incidence of malignant tumors among the older population. Moreover, there is an association between aging and cancer. During the process of senescence, the human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and searching for novel methods to restore the junctions is of great importance to intervene against aging-related cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have common means of intervention, including novel uses of common medicine (metformin, resveratrol, and rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce metabolites. In addition, we have summarized the research progress of each intervention and revealed their bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study findings provide vital information for advanced research studies on age-related cancers. However, there is a need for further optimization of the described methods and more suitable methods for complicated clinical practices. In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers.
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
83
|
Sun J, Li Y, Yang X, Dong W, Yang J, Hu Q, Zhang C, Fang H, Liu A. Growth differentiation factor 11 accelerates liver senescence through the inhibition of autophagy. Aging Cell 2022; 21:e13532. [PMID: 34905649 PMCID: PMC8761011 DOI: 10.1111/acel.13532] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
The “rejuvenating” effect of growth differentiation factor 11 (GDF11) is called into question recently, and its role, as well as plausible signaling mechanisms in liver senescence, is unclear. To overexpress or knockdown GDF11, aged male mice are injected with a single dose of adeno‐associated viruses‐GDF11 or adenovirus‐small hairpin RNA‐GDF11, respectively. GDF11 overexpression significantly accelerates liver senescence in aged mice, whereas GDF11 knockdown has opposite effects. Concomitantly, autophagic flux is impaired in livers from GDF11 overexpression mice. Conversely, GDF11 knockdown increases autophagic flux. Moreover, rapamycin successfully restores the impaired autophagic flux and alleviates liver senescence in GDF11 overexpression mice, while the GDF11 knockdown‐mediated benefits are abolished by the autophagy inhibitor bafilomycin A1. GDF11 leads to a drop in lysosomal biogenesis resulting in defective autophagic flux at autophagosome clearance step. Mechanistically, GDF11 significantly activates mammalian target of rapamycin complex 1 (mTORC1) and subsequently represses transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy. Inhibition of mTORC1 or TFEB overexpression rescues the GDF11‐impaired autophagic flux and cellular senescence. Hepatocyte‐specific deletion of GDF11 does not alter serum GDF11 levels and liver senescence. Collectively, suppression of autophagic activity via mTORC1/TFEB signaling may be a critical molecular mechanism by which GDF11 exacerbates liver senescence. Rather than a “rejuvenating” agent, GDF11 may have a detrimental effect on liver senescence.
Collapse
Affiliation(s)
- Jian Sun
- Department of Biliopancreatic Surgery Sun Yat‐sen Memorial Hospital,Sun Yat‐sen University Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Sun Yat‐sen Memorial Hospital,Sun Yat‐sen University Guangzhou, Guangdong China
| | - Ying Li
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Xiao Yang
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Wei Dong
- Hepatic Surgery Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary Diseases Hubei Clinical Medicine Research Center of Hepatic Surgery Wuhan, Hubei China
- Key Laboratory of Organ Transplantation,Ministry of Education;NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan, Hubei China
| | - Jiankun Yang
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Qi Hu
- Department of Geriatrics Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Cuntai Zhang
- Department of Geriatrics Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Haoshu Fang
- Department of Pathophysiology Anhui Medical University Hefei, Anhui China
| | - Anding Liu
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| |
Collapse
|
84
|
Du Y, Mao L, Wang Z, Yan K, Zhang L, Zou J. Osteopontin - The stirring multifunctional regulatory factor in multisystem aging. Front Endocrinol (Lausanne) 2022; 13:1014853. [PMID: 36619570 PMCID: PMC9813443 DOI: 10.3389/fendo.2022.1014853] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional noncollagenous matrix phosphoprotein that is expressed both intracellularly and extracellularly in various tissues. As a growth regulatory protein and proinflammatory immunochemokine, OPN is involved in the pathological processes of many diseases. Recent studies have found that OPN is widely involved in the aging processes of multiple organs and tissues, such as T-cell senescence, atherosclerosis, skeletal muscle regeneration, osteoporosis, neurodegenerative changes, hematopoietic stem cell reconstruction, and retinal aging. However, the regulatory roles and mechanisms of OPN in the aging process of different tissues are not uniform, and OPN even has diverse roles in different developmental stages of the same tissue, generating uncertainty for the future study and utilization of OPN. In this review, we will summarize the regulatory role and molecular mechanism of OPN in different tissues and cells, such as the musculoskeletal system, central nervous system, cardiovascular system, liver, and eye, during senescence. We believe that a better understanding of the mechanism of OPN in the aging process will help us develop targeted and comprehensive therapeutic strategies to fight the spread of age-related diseases.
Collapse
|
85
|
Liu R, Cui J, Sun Y, Xu W, Wang Z, Wu M, Dong H, Yang C, Hong S, Yin S, Wang H. Autophagy deficiency promotes M1 macrophage polarization to exacerbate acute liver injury via ATG5 repression during aging. Cell Death Dis 2021; 7:397. [PMID: 34930917 PMCID: PMC8688512 DOI: 10.1038/s41420-021-00797-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
Aging disrupts the maintenance of liver homeostasis, which impairs hepatocyte regeneration and aggravates acute liver injury (ALI), ultimately leading to the development of acute liver failure (ALF), a systemic inflammatory response, and even death. Macrophages influence the progression and outcome of ALI through the innate immune system. However, it is still unclear how macrophages regulate ALI during aging. The variation in macrophage autophagy with aging and the influence on macrophage polarization and cytokine release were assessed in BMDMs in vitro. Then, after BMDMs subjected to several treatments were intravenously or intraperitoneally injected into mice, thioacetamide (TAA)-induced ALI (TAA-ALI) was established, and its effects on inflammation, injury, and mortality were assessed. We found that aging aggravated the liver injury, along with increases in the levels of proinflammatory mediators, presenting a senescence-associated secretory phenotype (SASP), which promoted macrophage polarization to the M1 phenotype. In addition, autophagy levels decreased significantly in aged mice, which was ascribed to ATG5 repression during aging. Notably, enhancing autophagy levels in aged BMDMs restored macrophage polarization to that observed under young conditions. Finally, autophagy restoration in aged BMDMs enhanced the protective effect against TAA-ALI, similar to M2 macrophages induced by IL-4. Overall, we demonstrated that the influence of aging on macrophage polarization is an important aggravating factor in TAA-ALI, and the autophagy in macrophages is associated with the aging phenotype.
Collapse
Affiliation(s)
- Rui Liu
- grid.412679.f0000 0004 1771 3402Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China ,grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China
| | - Juanjuan Cui
- grid.412679.f0000 0004 1771 3402Department of Stomatology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Yating Sun
- grid.186775.a0000 0000 9490 772XDepartment of Genetics, School of Life Science, Anhui Medical University, Hefei, 230032 China
| | - Wentao Xu
- grid.412679.f0000 0004 1771 3402Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China ,grid.186775.a0000 0000 9490 772XFirst Clinical Medical College of Anhui Medical University, Hefei, 230036 China
| | - Ziming Wang
- grid.412679.f0000 0004 1771 3402Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Miaomiao Wu
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China
| | - Huke Dong
- grid.186775.a0000 0000 9490 772XFirst Clinical Medical College of Anhui Medical University, Hefei, 230036 China
| | - Congcong Yang
- grid.186775.a0000 0000 9490 772XDepartment of Genetics, School of Life Science, Anhui Medical University, Hefei, 230032 China
| | - Shaocheng Hong
- grid.186775.a0000 0000 9490 772XFirst Clinical Medical College of Anhui Medical University, Hefei, 230036 China
| | - Shi Yin
- grid.59053.3a0000000121679639Department of Geriatrics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. .,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
86
|
Aydin Y, Koksal AR, Thevenot P, Chava S, Heidari Z, Lin D, Sandow T, Moroz K, Parsi MA, Scott J, Cohen A, Dash S. Experimental Validation of Novel Glypican 3 Exosomes for the Detection of Hepatocellular Carcinoma in Liver Cirrhosis. J Hepatocell Carcinoma 2021; 8:1579-1596. [PMID: 34917553 PMCID: PMC8671108 DOI: 10.2147/jhc.s327339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) developing in the context of preexisting cirrhosis is characterized by impaired autophagy that results in increased exosome release. This study was conducted to determine whether circulating exosomes expressing glypican 3 (GPC3) could be utilized as a biomarker for HCC detection and treatment response in patients with cirrhosis. METHODS Immunohistochemistry was performed to assess p62 and GPC3 expression in the lesion and adjacent tissue from cirrhosis with HCC. GPC3-enriched exosomes were captured by an enzyme-linked immunosorbent assay (ELISA). The diagnostic specificity of serum exosome-derived GPC3 (eGPC3) was determined using samples obtained from malignancy-free controls, malignancy-free cirrhotics, cirrhotics with confirmed HCC, and patients with a non-HCC malignancy. The performance of eGPC3 was validated using serum samples of HCC patients received chemotherapy. RESULTS We found that the expression of p62 and GPC3 was significantly increased in HCC tissues compared to adjacent cirrhotic liver. Impaired autophagy and exosome shedding were confirmed in HCC cell lines. Mass spectroscopic analysis revealed that GPC3 was enriched in exosomes isolated from HCC cell lines. An affinity ELISA assay was developed that specifically captures GPC3 positive exosomes in the serum. Total exosome concentration and eGPC3 were significantly elevated in cirrhotic patients with HCC as compared to the reference control groups. Furthermore, decreases in post-treatment exosome concentration and eGPC3 levels were more closely correlated with response to locoregional chemotherapy compared to change in serum AFP in HCC patients awaiting liver transplantation. CONCLUSION We developed an affinity exosome capture assay to detect GPC3 enriched exosomes. Our preliminary assessment shows that GPC3 positive exosomes can be used for HCC detection and prediction of treatment outcomes.
Collapse
Affiliation(s)
- Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Ali Riza Koksal
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Paul Thevenot
- Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
| | - Srinivas Chava
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Zahra Heidari
- Chemical and Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Dong Lin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Tyler Sandow
- Department of Radiology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Mansour A Parsi
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - John Scott
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Ari Cohen
- Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
- Multi-Organ Transplant Institute, Ochsner Health, New Orleans, LA, USA
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| |
Collapse
|
87
|
Carosi JM, Fourrier C, Bensalem J, Sargeant TJ. The mTOR-lysosome axis at the centre of ageing. FEBS Open Bio 2021; 12:739-757. [PMID: 34878722 PMCID: PMC8972043 DOI: 10.1002/2211-5463.13347] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Age‐related diseases represent some of the largest unmet clinical needs of our time. While treatment of specific disease‐related signs has had some success (for example, the effect of statin drugs on slowing progression of atherosclerosis), slowing biological ageing itself represents a target that could significantly increase health span and reduce the prevalence of multiple age‐related diseases. Mechanistic target of rapamycin complex 1 (mTORC1) is known to control fundamental processes in ageing: inhibiting this signalling complex slows biological ageing, reduces age‐related disease pathology and increases lifespan in model organisms. How mTORC1 inhibition achieves this is still subject to ongoing research. However, one mechanism by which mTORC1 inhibition is thought to slow ageing is by activating the autophagy–lysosome pathway. In this review, we examine the special bidirectional relationship between mTORC1 and the lysosome. In cells, mTORC1 is located on lysosomes. From this advantageous position, it directly controls the autophagy–lysosome pathway. However, the lysosome also controls mTORC1 activity in numerous ways, creating a special two‐way relationship. We then explore specific examples of how inhibition of mTORC1 and activation of the autophagy–lysosome pathway slow the molecular hallmarks of ageing. This body of literature demonstrates that the autophagy–lysosome pathway represents an excellent target for treatments that seek to slow biological ageing and increase health span in humans.
Collapse
Affiliation(s)
- Julian M Carosi
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Célia Fourrier
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Julien Bensalem
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Timothy J Sargeant
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| |
Collapse
|
88
|
Kaushik S, Tasset I, Arias E, Pampliega O, Wong E, Martinez-Vicente M, Cuervo AM. Autophagy and the hallmarks of aging. Ageing Res Rev 2021; 72:101468. [PMID: 34563704 DOI: 10.1016/j.arr.2021.101468] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
Autophagy, an essential cellular process that mediates degradation of proteins and organelles in lysosomes, has been tightly linked to cellular quality control for its role as part of the proteostasis network. The current interest in identifying the cellular and molecular determinants of aging, has highlighted the important contribution of malfunctioning of autophagy with age to the loss of proteostasis that characterizes all old organisms. However, the diversity of cellular functions of the different types of autophagy and the often reciprocal interactions of autophagy with other determinants of aging, is placing autophagy at the center of the aging process. In this work, we summarize evidence for the contribution of autophagy to health- and lifespan and provide examples of the bidirectional interplay between autophagic pathways and several of the so-called hallmarks of aging. This central role of autophagy in aging, and the dependence on autophagy of many geroprotective interventions, has motivated a search for direct modulators of autophagy that could be used to slow aging and extend healthspan. Here, we review some of those ongoing therapeutic efforts and comment on the potential of targeting autophagy in aging.
Collapse
|
89
|
Camphorquinone Promotes the Antisenescence Effect via Activating AMPK/SIRT1 in Stem Cells and D-Galactose-Induced Aging Mice. Antioxidants (Basel) 2021; 10:antiox10121916. [PMID: 34943019 PMCID: PMC8750771 DOI: 10.3390/antiox10121916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/10/2023] Open
Abstract
Terpenoids are a wide class of secondary metabolites with geroprotective properties that can alter the mechanism of aging and aging-related diseases. Camphorquinone (CQ) is a bicyclic monoterpenoid compound that can be efficiently synthesized through the continuous bromination and oxidation reaction of camphor. The purpose of this study is to investigate the effects of CQ on oxidative-stress-induced senescence and its underlying mechanisms. To generate oxidative stress in human bone marrow mesenchymal stem cells (hBM-MSCs) and mice, we used hydrogen peroxide (200 μM twice) and D-galactose (D-Gal) (150 mg/kg for 10 weeks), respectively. Our findings suggest that CQ potentially reduces senescence in hBM-MSCs and mouse heart tissue. In addition, we found that CQ boosted AMPK/SIRT1 activation and autophagy in both models. These results were subsequently verified in hBM-MSCs using compound C (an AMPK inhibitor) but AMPK inhibition by CC did not significantly reduce the SIRT1 and the autophagy markers. CQ treatment also reduced the gene expression of inflammation markers in D-Gal-induced aging mouse heart tissue. Furthermore, we determined that CQ fits all of the pharmacological parameters using the freely available SwissADME Web tool. Collectively, our findings demonstrate that CQ possesses antisenescence and cardioprotective properties, and that oxidative-stress-induced senescence could be suppressed by AMPK/SIRT1 and autophagy mechanisms.
Collapse
|
90
|
Schmitz W, Ries E, Koderer C, Völter MF, Wünsch AC, El-Mesery M, Frackmann K, Kübler AC, Linz C, Seher A. Cysteine Restriction in Murine L929 Fibroblasts as an Alternative Strategy to Methionine Restriction in Cancer Therapy. Int J Mol Sci 2021; 22:ijms222111630. [PMID: 34769059 PMCID: PMC8583874 DOI: 10.3390/ijms222111630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Methionine restriction (MetR) is an efficient method of amino acid restriction (AR) in cells and organisms that induces low energy metabolism (LEM) similar to caloric restriction (CR). The implementation of MetR as a therapy for cancer or other diseases is not simple since the elimination of a single amino acid in the diet is difficult. However, the in vivo turnover rate of cysteine is usually higher than the rate of intake through food. For this reason, every cell can enzymatically synthesize cysteine from methionine, which enables the use of specific enzymatic inhibitors. In this work, we analysed the potential of cysteine restriction (CysR) in the murine cell line L929. This study determined metabolic fingerprints using mass spectrometry (LC/MS). The profiles were compared with profiles created in an earlier work under MetR. The study was supplemented by proliferation studies using D-amino acid analogues and inhibitors of intracellular cysteine synthesis. CysR showed a proliferation inhibition potential comparable to that of MetR. However, the metabolic footprints differed significantly and showed that CysR does not induce classic LEM at the metabolic level. Nevertheless, CysR offers great potential as an alternative for decisive interventions in general and tumour metabolism at the metabolic level.
Collapse
Affiliation(s)
- Werner Schmitz
- Department of Biochemistry and Molecular Biology, Biocenter, D-97074 Wuerzburg, Germany;
| | - Elena Ries
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
| | - Corinna Koderer
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
| | - Maximilian Friedrich Völter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
| | - Anna Chiara Wünsch
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Kyra Frackmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
| | - Alexander Christian Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
| | - Christian Linz
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
- Correspondence: ; Tel.: +49-931-201-74841
| |
Collapse
|
91
|
Hassanpour M, Cheraghi O, Rahbarghazi R, Nouri M. Autophagy stimulation delayed biological aging and decreased cardiac differentiation in rabbit mesenchymal stem cells. J Cardiovasc Thorac Res 2021; 13:234-240. [PMID: 34630972 PMCID: PMC8493233 DOI: 10.34172/jcvtr.2021.43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/18/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction: Cardiovascular disease (CVD) is a type of disease that affects the function of cardiac-vascular tissues. This study aimed to consider the possible effects of autophagy, as an intrinsic catabolic pathway of cells, on the differentiation and aging process of mesenchymal stem cells (MSCs). Methods: In this study, bone marrow-derived MSCs were obtained from rabbit bone marrow aspirates. The stemness feature was confirmed by using flow cytometry analysis Cells at passage three were treated with 50 μM Metformin and 15μM hydroxychloroquine (HCQ) for 72 hours. The intracellular accumulation of autophagolysosomes was imaged using LysoTracker staining. Protein levels of autophagy (LC3II/I ratio), aging (Klotho, PARP-1, and Sirt-1) effectors, and cardiomyocyte-like phenotype (α-actinin) were studied by western blotting. Results: Based on our findings, flow cytometry analysis showed that the obtained cells expressed CD44 and CD133 strongly, and CD31 and CD34 dimly, showing a typical characteristic of MSCs. Our data confirmed an increased LC3II/I ratio in the metformin-received group compared to the untreated and HCQ-treated cells (P < 0.05). Besides, we showed that the incubation of rabbit MSCs with HCQ increased cellular aging by induction of PARP-1 while Metformin increased rejuvenating factor Sirt-1 comparing with the normal group (P < 0.05). Western blotting data showed that the autophagy stimulation response in rabbit MSCs postponed the biological aging and decreased the differentiation potential to the cardiac cells by diminishing α-actinin comparing with control cells (P < 0.05). Conclusion: In summary, for the informants in this study, it could be noted that autophagy inhibition/stimulation could alter rabbit MSCs aging and differentiation capacity.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Cheraghi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Science, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
92
|
Pan JA, Zhang H, Lin H, Gao L, Zhang HL, Zhang JF, Wang CQ, Gu J. Irisin ameliorates doxorubicin-induced cardiac perivascular fibrosis through inhibiting endothelial-to-mesenchymal transition by regulating ROS accumulation and autophagy disorder in endothelial cells. Redox Biol 2021; 46:102120. [PMID: 34479089 PMCID: PMC8413906 DOI: 10.1016/j.redox.2021.102120] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
The dose-dependent toxicity to cardiomyocytes has been well recognized as a central characteristic of doxorubicin (DOX)-induced cardiotoxicity (DIC), however, the pathogenesis of DIC in the cardiac microenvironment remains elusive. Irisin is a new hormone-like myokine released into the circulation in response to exercise with distinct functions in regulating apoptosis, inflammation, and oxidative stress. Recent advances revealed the role of irisin as a novel therapeutic method and an important mediator of the beneficial effects of exercise in cardioprotection. Here, by using a low-dose long-term mouse DIC model, we found that the perivascular fibrosis was involved in its myocardial toxicity with the underlying mechanism of endothelial-to-mesenchymal transition (EndMT). Irisin treatment could partially reverse DOX-induced perivascular fibrosis and cardiotoxicity compared to endurance exercise. Mechanistically, DOX stimulation led to excessive accumulation of ROS, which activated the NF-κB-Snail pathway and resulted in EndMT. Besides, dysregulation of autophagy was also found in DOX-treated endothelial cells. Restoring autophagy flux could ameliorate EndMT and eliminate ROS. Irisin treatment significantly alleviated ROS accumulation, autophagy disorder, NF-κB-Snail pathway activation as well as the phenotype of EndMT by targeting uncoupling protein 2 (UCP2). Our results also initially found that irisin was mainly secreted by cardiomyocytes in the cardiac microenvironment, which was significantly reduced by DOX intervention, and had a protective effect on endothelial cells in a paracrine manner. In summary, our study indicated that DOX-induced ROS accumulation and autophagy disorders caused an EndMT in CMECs, which played a role in the perivascular fibrosis of DIC. Irisin treatment could partially reverse this phenomenon by regulating UCP2. Cardiomyocytes were the main source of irisin in the cardiac microenvironment. The current study provides a novel perspective elucidating the pathogenesis and the potential treatment of DIC.
Collapse
Affiliation(s)
- Jian-An Pan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Hui Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hao Lin
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Lin Gao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Hui-Li Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jun-Feng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Chang-Qian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
93
|
Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, Palikaras K, Simonsen A, Johansen T, Tavernarakis N, Rubinsztein DC, Partridge L, Kroemer G, Labbadia J, Fang EF. Autophagy in healthy aging and disease. NATURE AGING 2021; 1:634-650. [PMID: 34901876 PMCID: PMC8659158 DOI: 10.1038/s43587-021-00098-4] [Citation(s) in RCA: 721] [Impact Index Per Article: 180.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Autophagy is a fundamental cellular process that eliminates molecules and subcellular elements, including nucleic acids, proteins, lipids and organelles, via lysosome-mediated degradation to promote homeostasis, differentiation, development and survival. While autophagy is intimately linked to health, the intricate relationship among autophagy, aging and disease remains unclear. This Review examines several emerging features of autophagy and postulates how they may be linked to aging as well as to the development and progression of disease. In addition, we discuss current preclinical evidence arguing for the use of autophagy modulators as suppressors of age-related pathologies such as neurodegenerative diseases. Finally, we highlight key questions and propose novel research avenues that will likely reveal new links between autophagy and the hallmarks of aging. Understanding the precise interplay between autophagy and the risk of age-related pathologies across organisms will eventually facilitate the development of clinical applications that promote long-term health.
Collapse
Affiliation(s)
- Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- These authors contributed equally: Yahyah Aman, Tomas Schmauck-Medina
| | - Tomas Schmauck-Medina
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- These authors contributed equally: Yahyah Aman, Tomas Schmauck-Medina
| | - Malene Hansen
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA
| | | | - Ivana Bjedov
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Konstantinos Palikaras
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, The University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, Heraklion, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - John Labbadia
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
94
|
Choi MS, Chae YJ, Choi JW, Chang JE. Potential Therapeutic Approaches through Modulating the Autophagy Process for Skin Barrier Dysfunction. Int J Mol Sci 2021; 22:7869. [PMID: 34360634 PMCID: PMC8345957 DOI: 10.3390/ijms22157869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Autophagy is an attractive process to researchers who are seeking novel potential treatments for various diseases. Autophagy plays a critical role in degrading damaged cellular organelles, supporting normal cell development, and maintaining cellular homeostasis. Because of the various effects of autophagy, recent human genome research has focused on evaluating the relationship between autophagy and a wide variety of diseases, such as autoimmune diseases, cancers, and inflammatory diseases. The skin is the largest organ in the body and provides the first line of defense against environmental hazards, including UV damage, chemical toxins, injuries, oxidative stress, and microorganisms. Autophagy takes part in endogenous defense mechanisms by controlling skin homeostasis. In this manner, regulating autophagy might contribute to the treatment of skin barrier dysfunctions. Various studies are ongoing to elucidate the association between autophagy and skin-related diseases in order to find potential therapeutic approaches. However, little evidence has been gathered about the relationship between autophagy and the skin. In this review, we highlight the previous findings of autophagy and skin barrier disorders and suggest potential therapeutic strategies. The recent research regarding autophagy in acne and skin aging is also discussed.
Collapse
Affiliation(s)
- Min Sik Choi
- Lab of Pharmacology, College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea;
| | - Yoon-Jee Chae
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Korea;
| | - Ji Woong Choi
- College of Pharmacy, Gachon University, Incheon 21936, Korea;
| | - Ji-Eun Chang
- Lab of Pharmaceutics, College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea
| |
Collapse
|
95
|
Aguiar SS, Rosa TS, Neves RVP, Leite PLA, Maciel LA, Gutierrez SD, Rosa EC, Andrade RV, Degens H, Korhonen MT, Lewis JE, Simões HG. Telomere Length, SIRT1, and Insulin in Male Master Athletes: The Path to Healthy Longevity? Int J Sports Med 2021; 43:29-33. [PMID: 34256387 DOI: 10.1055/a-1510-9259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Lower SIRT1 and insulin resistance are associated with accelerated telomere shortening. This study investigated whether the lifestyle of master athletes can attenuate these age-related changes and thereby slow aging. We compared insulin, SIRT1, and telomere length in highly trained male master athletes (n=52; aged 49.9±7.2 yrs) and age-matched non-athletes (n=19; aged 47.3±8.9 yrs). This is a cross-sectional study, in which all data were collected in one visit. Overnight fasted SIRT1 and insulin levels in whole blood were assessed using commercial kits. Relative telomere length was determined in leukocytes through qPCR analyses. Master athletes had higher SIRT1, lower insulin, and longer telomere length than age-matched non-athletes (p<0.05 for all). Insulin was inversely associated with SIRT1 (r=-0.38; p=0.001). Telomere length correlated positively with SIRT1 (r=0.65; p=0.001), whereas telomere length and insulin were not correlated (r=0.03; p=0.87). In conclusion, master athletes have higher SIRT1, lower insulin, and longer telomeres than age-matched non-athletes. Furthermore, SIRT1 was negatively associated with insulin and positively associated with telomere length. These findings suggest that in this sample of middle-aged participants reduced insulin, increased SIRT1 activity, and attenuation of biological aging are connected.
Collapse
Affiliation(s)
- Samuel S Aguiar
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil.,Physical Education Department, University Center - UDF, DF, Brazil
| | - Thiago S Rosa
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| | - Rodrigo V P Neves
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| | - Patrício L A Leite
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| | - Larissa A Maciel
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| | - Sara D Gutierrez
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| | - Erica C Rosa
- Graduate Program in Health Sciences, Laboratory of Molecular Pharmacology, University of Brasilia, Federal District, Brazil
| | - Rosângela V Andrade
- Graduate Program in Biotechnology, Catholic University of Brasília, Federal District, Brazil
| | - Hans Degens
- Department of Life Sciences, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University.,Lithuanian Sports University, Kaunas
| | - Marko T Korhonen
- Faculty of Sport and Health Sciences, Gerontology Research Center, University of Jyvaskyla, Finland
| | - John E Lewis
- Departments of Psychiatry and Behavioral Sciences and Psychology, University of Miami, Coral Gables Florida, United States
| | - Herbert G Simões
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| |
Collapse
|
96
|
Nahata M, Mogami S, Sekine H, Iizuka S, Okubo N, Fujitsuka N, Takeda H. Bcl-2-dependent autophagy disruption during aging impairs amino acid utilization that is restored by hochuekkito. NPJ Aging Mech Dis 2021; 7:13. [PMID: 34210978 PMCID: PMC8249599 DOI: 10.1038/s41514-021-00065-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic undernutrition contributes to the increase in frailty observed among elderly adults, which is a pressing issue in the sector of health care for older people worldwide. Autophagy, an intracellular recycling system, is closely associated with age-related pathologies. Therefore, decreased autophagy in aging could be involved in the disruption of energy homeostasis that occurs during undernutrition; however, the physiological mechanisms underlying this process remain unknown. Here, we showed that 70% daily food restriction (FR) induced fatal hypoglycemia in 23–26-month-old (aged) mice, which exhibited significantly lower hepatic autophagy than 9-week-old (young) mice. The liver expressions of Bcl-2, an autophagy-negative regulator, and Beclin1–Bcl-2 binding, were increased in aged mice compared with young mice. The autophagy inducer Tat-Beclin1 D11, not the mTOR inhibitor rapamycin, decreased the plasma levels of the glucogenic amino acid and restored the blood glucose levels in aged FR mice. Decreased liver gluconeogenesis, body temperature, physical activity, amino acid metabolism, and hepatic mitochondrial dynamics were observed in the aged FR mice. These changes were restored by treatment with hochuekkito that is a herbal formula containing several autophagy-activating ingredients. Our results indicate that Bcl-2 upregulation in the liver during the aging process disturbs autophagy activation, which increases the vulnerability to undernutrition. The promotion of liver autophagy may offer clinical therapeutic benefits to frail elderly patients.
Collapse
Affiliation(s)
- Miwa Nahata
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Sachiko Mogami
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Hitomi Sekine
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Naoto Okubo
- Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Hiroshi Takeda
- Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan. .,Hokkaido University Hospital Gastroenterological Medicine, Sapporo, Hokkaido, Japan.
| |
Collapse
|
97
|
Jiménez-Saucedo T, Berlanga JJ, Rodríguez-Gabriel M. Translational control of gene expression by eIF2 modulates proteostasis and extends lifespan. Aging (Albany NY) 2021; 13:10989-11009. [PMID: 33901016 PMCID: PMC8109070 DOI: 10.18632/aging.203018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/31/2021] [Indexed: 01/14/2023]
Abstract
Although the stress response in eukaryotes depends on early events triggered in cells by environmental insults, long-term processes such as aging are also affected. The loss of cellular proteostasis greatly impacts aging, which is regulated by the balancing of protein synthesis and degradation systems. As translation is the input event in proteostasis, we decided to study the role of translational activity on cell lifespan. Our hypothesis was that a reduction on translational activity or specific changes in translation may increase cellular longevity. Using mutant strains of Schizosaccharomyces pombe and various stress conditions, we showed that translational reduction caused by phosphorylation of eukaryotic translation initiation factor 2 (eIF2) during the exponential growth phase enhances chronological lifespan (CLS). Furthermore, through next-generation sequence analysis, we found eIF2α phosphorylation-dependent translational activation of some specific genes, especially those involved in autophagy. This fact, together with the observed regulation of autophagy, points to a conserved mechanism involving general and specific control of translation and autophagy as mediators of the role of eIF2α phosphorylation in aging.
Collapse
Affiliation(s)
- Tamara Jiménez-Saucedo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan José Berlanga
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Rodríguez-Gabriel
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
98
|
Lyngbaek MPP, Legaard GE, Bennetsen SL, Feineis CS, Rasmussen V, Moegelberg N, Brinkløv CF, Nielsen AB, Kofoed KS, Lauridsen CA, Ewertsen C, Poulsen HE, Christensen R, Van Hall G, Karstoft K, Solomon TPJ, Ellingsgaard H, Almdal TP, Pedersen BK, Ried-Larsen M. The effects of different doses of exercise on pancreatic β-cell function in patients with newly diagnosed type 2 diabetes: study protocol for and rationale behind the "DOSE-EX" multi-arm parallel-group randomised clinical trial. Trials 2021; 22:244. [PMID: 33794975 PMCID: PMC8017660 DOI: 10.1186/s13063-021-05207-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/18/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lifestyle intervention, i.e. diet and physical activity, forms the basis for care of type 2 diabetes (T2D). The current physical activity recommendation for T2D is aerobic training for 150 min/week of moderate to vigorous intensity, supplemented with resistance training 2-3 days/week, with no more than two consecutive days without physical activity. The rationale for the recommendations is based on studies showing a reduction in glycated haemoglobin (HbA1c). This reduction is supposed to be caused by increased insulin sensitivity in muscle and adipose tissue, whereas knowledge about effects on abnormalities in the liver and pancreas are scarce, with the majority of evidence stemming from in vitro and animal studies. The aim of this study is to investigate the role of the volume of exercise training as an adjunct to dietary therapy in order to improve the pancreatic β-cell function in T2D patients less than 7 years from diagnosis. The objective of this protocol for the DOSE-EX trial is to describe the scientific rationale in detail and to provide explicit information about study procedures and planned analyses. METHODS/DESIGN In a parallel-group, 4-arm assessor-blinded randomised clinical trial, 80 patients with T2D will be randomly allocated (1:1:1:1, stratified by sex) to 16 weeks in either of the following groups: (1) no intervention (CON), (2) dietary intervention (DCON), (3) dietary intervention and supervised moderate volume exercise (MED), or (4) dietary intervention and supervised high volume exercise (HED). Enrolment was initiated December 15th, 2018, and will continue until N = 80 or December 1st, 2021. Primary outcome is pancreatic beta-cell function assessed as change in late-phase disposition index (DI) from baseline to follow-up assessed by hyperglycaemic clamp. Secondary outcomes include measures of cardiometabolic risk factors and the effect on subsequent complications related to T2D. The study was approved by The Scientific Ethical Committee at the Capital Region of Denmark (H-18038298). TRIAL REGISTRATION The Effects of Different Doses of Exercise on Pancreatic β-cell Function in Patients With Newly Diagnosed Type 2 Diabetes (DOSE-EX), NCT03769883, registered 10 December 2018 https://clinicaltrials.gov/ct2/show/NCT03769883 ). Any modification to the protocol, study design, and changes in written participant information will be approved by The Scientific Ethical Committee at the Capital Region of Denmark before effectuation. DISCUSSION The data from this study will add knowledge to which volume of exercise training in combination with a dietary intervention is needed to improve β-cell function in T2D. Secondarily, our results will elucidate mechanisms of physical activity mitigating the development of micro- and macrovascular complications correlated with T2D.
Collapse
Affiliation(s)
- Mark P. P. Lyngbaek
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Grit E. Legaard
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sebastian L. Bennetsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Camilla S. Feineis
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Villads Rasmussen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Nana Moegelberg
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Cecilie F. Brinkløv
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anette B. Nielsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Katja S. Kofoed
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Carsten A. Lauridsen
- Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Bachelor’s Degree Programme in Radiography, Copenhagen University College, Copenhagen, Denmark
| | - Caroline Ewertsen
- Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Henrik E. Poulsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Robin Christensen
- Musculoskeletal Statistics Unit, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Research, Research Unit of Rheumatology, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Gerrit Van Hall
- Biomedical Sciences, Faculty of Health & Medical Science, University of Copenhagen & Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Kristian Karstoft
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Helga Ellingsgaard
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas P. Almdal
- Department of Endocrinology PE, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bente K. Pedersen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
99
|
Yu M, Zhang H, Wang B, Zhang Y, Zheng X, Shao B, Zhuge Q, Jin K. Key Signaling Pathways in Aging and Potential Interventions for Healthy Aging. Cells 2021; 10:cells10030660. [PMID: 33809718 PMCID: PMC8002281 DOI: 10.3390/cells10030660] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a fundamental biological process accompanied by a general decline in tissue function. Indeed, as the lifespan increases, age-related dysfunction, such as cognitive impairment or dementia, will become a growing public health issue. Aging is also a great risk factor for many age-related diseases. Nowadays, people want not only to live longer but also healthier. Therefore, there is a critical need in understanding the underlying cellular and molecular mechanisms regulating aging that will allow us to modify the aging process for healthy aging and alleviate age-related disease. Here, we reviewed the recent breakthroughs in the mechanistic understanding of biological aging, focusing on the adenosine monophosphate-activated kinase (AMPK), Sirtuin 1 (SIRT1) and mammalian target of rapamycin (mTOR) pathways, which are currently considered critical for aging. We also discussed how these proteins and pathways may potentially interact with each other to regulate aging. We further described how the knowledge of these pathways may lead to new interventions for antiaging and against age-related disease.
Collapse
Affiliation(s)
- Mengdi Yu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Hongxia Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Brian Wang
- Pathnova Laboratories Pte. Ltd. 1 Research Link, Singapore 117604, Singapore;
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Xiaoying Zheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Bei Shao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| |
Collapse
|
100
|
Metabolic Fingerprinting of Murine L929 Fibroblasts as a Cell-Based Tumour Suppressor Model System for Methionine Restriction. Int J Mol Sci 2021; 22:ijms22063039. [PMID: 33809777 PMCID: PMC8002350 DOI: 10.3390/ijms22063039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Since Otto Warburg reported in 1924 that cancer cells address their increased energy requirement through a massive intake of glucose, the cellular energy level has offered a therapeutic anticancer strategy. Methionine restriction (MetR) is one of the most effective approaches for inducing low-energy metabolism (LEM) due to the central position in metabolism of this amino acid. However, no simple in vitro system for the rapid analysis of MetR is currently available, and this study establishes the murine cell line L929 as such a model system. L929 cells react rapidly and efficiently to MetR, and the analysis of more than 150 different metabolites belonging to different classes (amino acids, urea and tricarboxylic acid cycle (TCA) cycles, carbohydrates, etc.) by liquid chromatography/mass spectrometry (LC/MS) defines a metabolic fingerprint and enables the identification of specific metabolites representing normal or MetR conditions. The system facilitates the rapid and efficient testing of potential cancer therapeutic metabolic targets. To date, MS studies of MetR have been performed using organisms and yeast, and the current LC/MS analysis of the intra- and extracellular metabolites in the murine cell line L929 over a period of 5 days thus provides new insights into the effects of MetR at the cellular metabolic level.
Collapse
|