51
|
Garcia-Mazcorro JF, Noratto G, Remes-Troche JM. The Effect of Gluten-Free Diet on Health and the Gut Microbiota Cannot Be Extrapolated from One Population to Others. Nutrients 2018; 10:E1421. [PMID: 30287726 PMCID: PMC6212913 DOI: 10.3390/nu10101421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023] Open
Abstract
Gluten-related disorders (GRD) affect millions of people worldwide and have been related to the composition and metabolism of the gut microbiota. These disorders present differently in each patient and the only treatment available is a strict life-long gluten-free diet (GFD). Several studies have investigated the effect of a GFD on the gut microbiota of patients afflicted with GRD as well as healthy people. The purpose of this review is to persuade the biomedical community to think that, while useful, the results from the effect of GFD on health and the gut microbiota cannot be extrapolated from one population to others. This argument is primarily based on the highly individualized pattern of gut microbial composition and metabolic activity in each person, the variability of the gut microbiota over time and the plethora of factors associated with this variation. In addition, there is wide variation in the composition, economic viability, and possible deleterious effects to health among different GFD, both within and among countries. Overall, this paper encourages the conception of more collaborative efforts to study local populations in an effort to reach biologically and medically useful conclusions that truly contribute to improve health in patients afflicted with GRD.
Collapse
Affiliation(s)
- Jose F Garcia-Mazcorro
- Instituto de Investigaciones Medico Biológicas, Universidad Veracruzana, Calle Agustín de Iturbide, Salvador Díaz Mirón, Veracruz 91700, Mexico.
| | - Giuliana Noratto
- Department of Nutrition and Food Science, Texas A&M University, 2253 TAMU, College Station, TX 77843, USA.
| | - Jose M Remes-Troche
- Instituto de Investigaciones Medico Biológicas, Universidad Veracruzana, Calle Agustín de Iturbide, Salvador Díaz Mirón, Veracruz 91700, Mexico.
| |
Collapse
|
52
|
Laing B, Barnett MPG, Marlow G, Nasef NA, Ferguson LR. An update on the role of gut microbiota in chronic inflammatory diseases, and potential therapeutic targets. Expert Rev Gastroenterol Hepatol 2018; 12:969-983. [PMID: 30052094 DOI: 10.1080/17474124.2018.1505497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human microbiome plays a critical role in human health, having metabolic, protective, and trophic functions, depending upon its' exact composition. This composition is affected by a number of factors, including the genetic background of the individual, early life factors (including method of birth, length of breastfeeding) and nature of the diet and other environmental exposures (including cigarette smoking) and general life habits. It plays a key role in the control of inflammation, and in turn, its' composition is significantly influenced by inflammation. Areas covered: We consider metabolic, protective, and trophic functions of the microbiome and influences through the lifespan from post-partum effects, to diet later in life in healthy older adults, the effects of aging on both its' composition, and influence on health and potential therapeutic targets that may have anti-inflammatory effects. Expert commentary: The future will see the growth of more effective therapies targeting the microbiome particularly with respect to the use of specific nutrients and diets personalized to the individual.
Collapse
Affiliation(s)
- Bobbi Laing
- a Discipline of Nutrition and Dietetics, Faculty of Medical Health Sciences , The University of Auckland , Auckland , New Zealand.,b School of Nursing, Faculty of Medical and Health Sciences , The University of Auckland , Auckland , New Zealand
| | - Matthew P G Barnett
- c Food Nutrition & Health Team, Food & Bio-Based Products Group , AgResearch Limited , Palmerston North , New Zealand.,d Liggins Institute , The High-Value Nutrition National Science Challenge , Auckland , New Zealand.,e Riddet Institute , Massey University , Palmerston North , New Zealand
| | - Gareth Marlow
- f Institute of Medical Genetics , Cardiff University , Cardiff , Wales , UK
| | - Noha Ahmed Nasef
- e Riddet Institute , Massey University , Palmerston North , New Zealand.,g College of Health, Massey Institute of Food Science and Technology , Palmerston North , New Zealand
| | - Lynnette R Ferguson
- a Discipline of Nutrition and Dietetics, Faculty of Medical Health Sciences , The University of Auckland , Auckland , New Zealand.,h Auckland Cancer Research Society, Faculty of Medical and Health Sciences, Grafton Campus , The University of Auckland , Auckland , New Zealand
| |
Collapse
|
53
|
Yu W, Wu JH, Zhang J, Yang W, Chen J, Xiong J. A meta-analysis reveals universal gut bacterial signatures for diagnosing the incidence of shrimp disease. FEMS Microbiol Ecol 2018; 94:5066164. [PMID: 30124839 DOI: 10.1093/femsec/fiy147] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/01/2018] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence indicates that dysbiosis in the gut microbiota contributes to disease pathogenesis. However, whether certain taxa are universally indicative of diverse shrimp diseases is unclear thus far. We conducted a meta-analysis to explore the divergences in gut microbiota between healthy and diseased shrimp. The gut bacterial communities of healthy shrimp varied significantly (P < 0.05 in each comparison) over ontogenetic stages, and were distinct from the corresponding diseased cohorts at each life stage. Both phylogenetic-based mean nearest taxon distance analysis and multivariate dispersion testing revealed that shrimp disease weakened the relative importance of deterministic processes in governing the gut microbiota. Partitioning beta diversity analysis indicated that temporal turnover governed the gut microbiota as healthy shrimp aged, whereas this trend was retarded in disease cohorts, concurrent with an increased nestedness. After ruling out the age-discriminatory and disease-specific orders, a high diagnosed accuracy (85.9%) of shrimp health status was achieved by using the profiles of the 11 universal disease-discriminatory orders as independent variables. These findings improve current understanding of how disease alters the ecological processes that govern the shrimp gut microbiota assembly, and exemplifies the potential application of universal bacterial signatures to diagnose the incidence of diverse shrimp diseases, irrespective of causal pathogens.
Collapse
Affiliation(s)
- Weina Yu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, 70101, Taiwan (ROC)
| | - Jinjie Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wen Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
54
|
Xiong J, Dai W, Qiu Q, Zhu J, Yang W, Li C. Response of host-bacterial colonization in shrimp to developmental stage, environment and disease. Mol Ecol 2018; 27:3686-3699. [PMID: 30070062 DOI: 10.1111/mec.14822] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023]
Abstract
The host-associated microbiota is increasingly recognized to facilitate host fitness, but the understanding of the underlying ecological processes that govern the host-bacterial colonization over development and, particularly, under disease remains scarce. Here, we tracked the gut microbiota of shrimp over developmental stages and in response to disease. The stage-specific gut microbiotas contributed parallel changes to the predicted functions, while shrimp disease decoupled this intimate association. After ruling out the age-discriminatory taxa, we identified key features indicative of shrimp health status. Structural equation modelling revealed that variations in rearing water led to significant changes in bacterioplankton communities, which subsequently affected the shrimp gut microbiota. However, shrimp gut microbiotas are not directly mirrored by the changes in rearing bacterioplankton communities. A neutral model analysis showed that the stochastic processes that govern gut microbiota tended to become more important as healthy shrimp aged, with 37.5% stochasticity in larvae linearly increasing to 60.4% in adults. However, this defined trend was skewed when disease occurred. This departure was attributed to the uncontrolled growth of two candidate pathogens (over-represented taxa). The co-occurrence patterns provided novel clues on how the gut commensals interact with candidate pathogens in sustaining shrimp health. Collectively, these findings offer updated insight into the ecological processes that govern the host-bacterial colonization in shrimp and provide a pathological understanding of polymicrobial infections.
Collapse
Affiliation(s)
- Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Wenfang Dai
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wen Yang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| |
Collapse
|
55
|
Jašarević E, Howard CD, Morrison K, Misic A, Weinkopff T, Scott P, Hunter C, Beiting D, Bale TL. The maternal vaginal microbiome partially mediates the effects of prenatal stress on offspring gut and hypothalamus. Nat Neurosci 2018; 21:1061-1071. [PMID: 29988069 DOI: 10.1038/s41593-018-0182-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/23/2018] [Indexed: 01/03/2023]
Abstract
Early prenatal stress disrupts maternal-to-offspring microbiota transmission and has lasting effects on metabolism, physiology, cognition, and behavior in male mice. Here we show that transplantation of maternal vaginal microbiota from stressed dams into naive pups delivered by cesarean section had effects that partly resembled those seen in prenatally stressed males. However, transplantation of control maternal vaginal microbiota into prenatally stressed pups delivered by cesarean section did not rescue the prenatal-stress phenotype. Prenatal stress was associated with alterations in the fetal intestinal transcriptome and niche, as well as with changes in the adult gut that were altered by additional stress exposure in adulthood. Further, maternal vaginal transfer also partially mediated the effects of prenatal stress on hypothalamic gene expression, as observed after chronic stress in adulthood. These findings suggest that the maternal vaginal microbiota contribute to the lasting effects of prenatal stress on gut and hypothalamus in male mice.
Collapse
Affiliation(s)
- Eldin Jašarević
- Center for Host-Microbial Interactions, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pharmacology, University of Maryland, Baltimore, MD, USA.,Center for Epigenetic Research in Child Health and Brain Development, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Christopher D Howard
- Center for Host-Microbial Interactions, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen Morrison
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pharmacology, University of Maryland, Baltimore, MD, USA.,Center for Epigenetic Research in Child Health and Brain Development, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ana Misic
- Center for Host-Microbial Interactions, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tiffany Weinkopff
- Department of Pharmacology, University of Maryland, Baltimore, MD, USA
| | - Phillip Scott
- Center for Host-Microbial Interactions, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pharmacology, University of Maryland, Baltimore, MD, USA
| | - Christopher Hunter
- Center for Host-Microbial Interactions, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pharmacology, University of Maryland, Baltimore, MD, USA
| | - Daniel Beiting
- Center for Host-Microbial Interactions, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pharmacology, University of Maryland, Baltimore, MD, USA
| | - Tracy L Bale
- Center for Host-Microbial Interactions, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pharmacology, University of Maryland, Baltimore, MD, USA. .,Center for Epigenetic Research in Child Health and Brain Development, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
56
|
Affiliation(s)
- Jin-Bo Xiong
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China; E-mail:
| |
Collapse
|
57
|
Potential Micronutrients and Phytochemicals against the Pathogenesis of Chronic Obstructive Pulmonary Disease and Lung Cancer. Nutrients 2018; 10:nu10070813. [PMID: 29941777 PMCID: PMC6073117 DOI: 10.3390/nu10070813] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
Lung cancer and chronic obstructive pulmonary disease have shared etiology, including key etiological changes (e.g., DNA damage and epigenetics change) and lung function impairment. Focusing on those shared targets may help in the prevention of both. Certain micronutrients (vitamins and minerals) and phytochemicals (carotenoids and phenols) have potent antioxidant or methyl-donating properties and thus have received considerable interest. We reviewed recent papers probing into the potential of nutrients with respect to lung function preservation and prevention of lung cancer risk, and suggest several hypothetical intervention patterns. Intakes of vitamins (i.e., A, C, D, E, B12), carotenoids, flavonoids, curcumins, resveratrol, magnesium, and omega-3 fatty acids all show protective effects against lung function loss, some mainly by improving average lung function and others through reducing decline rate. Dietary interventions early in life may help lung function reserve over the lifespan. Protective nutrient interventions among smokers are likely to mitigate the effects of cigarettes on lung health. We also discuss their underlying mechanisms and some possible causes for the inconsistent results in observational studies and supplementation trials. The role of the lung microbiome on lung health and its potential utility in identifying protective nutrients are discussed as well. More prospective cohorts and well-designed clinical trials are needed to promote the transition of individualized nutrient interventions into health policy.
Collapse
|
58
|
Solano-Aguilar GI, Lakshman S, Jang S, Beshah E, Xie Y, Sikaroodi M, Gupta R, Vinyard B, Molokin A, Urban JF, Gillevet P, Davis CD. The Effect of Feeding Cocoa Powder and Lactobacillus rhamnosus on the Composition and Function of Pig Intestinal Microbiome. Curr Dev Nutr 2018; 2:nzy011. [PMID: 30019034 PMCID: PMC6041806 DOI: 10.1093/cdn/nzy011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/15/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dietary habits have been linked with variability of gut microbiota composition and disease risk. OBJECTIVE The aim of this study was to evaluate the effect of feeding a cocoa powder with or without a probiotic on the composition and function of the fecal microbiome of pigs. METHODS Four groups of 8 pigs each were fed a standard growth diet supplemented with cocoa powder, Lactobacillus rhamnosus (LGG), cocoa powder + LGG, or an equal amount of fiber similar to that found in cocoa powder (control group). Fecal samples were collected prior to and 4 wk after initiation of the dietary intervention. Microbiota composition was determined after amplification of the first 2 variable regions of the 16S ribosomal DNA (rDNA). Predictions of metagenomic function were calculated using 16S rDNA sequence data through Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). RESULTS After 4 wk of treatment, bacterial abundance analysis demonstrated a prebiotic effect of cocoa powder on endogenous Bifidobacteriaceae and Lactobacillaceae and increased abundance of saccharolytic butyrate-producing bacteria like Roseburia. An increased bacterial evenness, Shannon diversity index, and diverse metabolic profile were detected in microbiomes of pigs fed the cocoa powder + LGG (P < 0.05) but not in pigs in the other 3 groups. CONCLUSION The data generated from this work demonstrated that 4-wk dietary treatment with cocoa powder alone or in combination with LGG probiotic had an impact on the composition and function of the fecal microbiota of healthy pigs.
Collapse
Affiliation(s)
- Gloria I Solano-Aguilar
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Northeast Area, US Department of Agriculture, Beltsville, MD
| | - Sukla Lakshman
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Northeast Area, US Department of Agriculture, Beltsville, MD
| | - Saebyeol Jang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Northeast Area, US Department of Agriculture, Beltsville, MD
| | - Ethiopia Beshah
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Northeast Area, US Department of Agriculture, Beltsville, MD
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | - Richi Gupta
- Microbiome Analysis Center, George Mason University, Manassas, VA
| | - Bryan Vinyard
- Biometrical Consulting Services, Agricultural Research Service, Northeast Area, US Department of Agriculture, Beltsville, MD
| | - Aleksey Molokin
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Northeast Area, US Department of Agriculture, Beltsville, MD
| | - Joseph F Urban
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Northeast Area, US Department of Agriculture, Beltsville, MD
| | - Patrick Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, VA
| | - Cindy D Davis
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD
| |
Collapse
|
59
|
Xiong J, Yu W, Dai W, Zhang J, Qiu Q, Ou C. Quantitative prediction of shrimp disease incidence via the profiles of gut eukaryotic microbiota. Appl Microbiol Biotechnol 2018; 102:3315-3326. [PMID: 29497796 DOI: 10.1007/s00253-018-8874-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/04/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
Abstract
One common notion is emerging that gut eukaryotes are commensal or beneficial, rather than detrimental. To date, however, surprisingly few studies have been taken to discern the factors that govern the assembly of gut eukaryotes, despite growing interest in the dysbiosis of gut microbiota-disease relationship. Herein, we firstly explored how the gut eukaryotic microbiotas were assembled over shrimp postlarval to adult stages and a disease progression. The gut eukaryotic communities changed markedly as healthy shrimp aged, and converged toward an adult-microbiota configuration. However, the adult-like stability was distorted by disease exacerbation. A null model untangled that the deterministic processes that governed the gut eukaryotic assembly tended to be more important over healthy shrimp development, whereas this trend was inverted as the disease progressed. After ruling out the baseline of gut eukaryotes over shrimp ages, we identified disease-discriminatory taxa (species level afforded the highest accuracy of prediction) that characteristic of shrimp health status. The profiles of these taxa contributed an overall 92.4% accuracy in predicting shrimp health status. Notably, this model can accurately diagnose the onset of shrimp disease. Interspecies interaction analysis depicted how the disease-discriminatory taxa interacted with one another in sustaining shrimp health. Taken together, our findings offer novel insights into the underlying ecological processes that govern the assembly of gut eukaryotes over shrimp postlarval to adult stages and a disease progression. Intriguingly, the established model can quantitatively and accurately predict the incidences of shrimp disease.
Collapse
Affiliation(s)
- Jinbo Xiong
- Faculty of Marine Science, Ningbo University, Ningbo, 315211, China. .,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China.
| | - Weina Yu
- Faculty of Marine Science, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Wenfang Dai
- Faculty of Marine Science, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Jinjie Zhang
- Faculty of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Qiongfen Qiu
- Faculty of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Changrong Ou
- Faculty of Marine Science, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
60
|
Acuña-Amador L, Primot A, Cadieu E, Roulet A, Barloy-Hubler F. Genomic repeats, misassembly and reannotation: a case study with long-read resequencing of Porphyromonas gingivalis reference strains. BMC Genomics 2018; 19:54. [PMID: 29338683 PMCID: PMC5771137 DOI: 10.1186/s12864-017-4429-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/29/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Without knowledge of their genomic sequences, it is impossible to make functional models of the bacteria that make up human and animal microbiota. Unfortunately, the vast majority of publicly available genomes are only working drafts, an incompleteness that causes numerous problems and constitutes a major obstacle to genotypic and phenotypic interpretation. In this work, we began with an example from the class Bacteroidia in the phylum Bacteroidetes, which is preponderant among human orodigestive microbiota. We successfully identify the genetic loci responsible for assembly breaks and misassemblies and demonstrate the importance and usefulness of long-read sequencing and curated reannotation. RESULTS We showed that the fragmentation in Bacteroidia draft genomes assembled from massively parallel sequencing linearly correlates with genomic repeats of the same or greater size than the reads. We also demonstrated that some of these repeats, especially the long ones, correspond to misassembled loci in three reference Porphyromonas gingivalis genomes marked as circularized (thus complete or finished). We prove that even at modest coverage (30X), long-read resequencing together with PCR contiguity verification (rrn operons and an integrative and conjugative element or ICE) can be used to identify and correct the wrongly combined or assembled regions. Finally, although time-consuming and labor-intensive, consistent manual biocuration of three P. gingivalis strains allowed us to compare and correct the existing genomic annotations, resulting in a more accurate interpretation of the genomic differences among these strains. CONCLUSIONS In this study, we demonstrate the usefulness and importance of long-read sequencing in verifying published genomes (even when complete) and generating assemblies for new bacterial strains/species with high genomic plasticity. We also show that when combined with biological validation processes and diligent biocurated annotation, this strategy helps reduce the propagation of errors in shared databases, thus limiting false conclusions based on incomplete or misleading information.
Collapse
Affiliation(s)
- Luis Acuña-Amador
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France.,Laboratorio de Investigación en Bacteriología Anaerobia, Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Aline Primot
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France
| | - Edouard Cadieu
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France
| | - Alain Roulet
- GenoToul Genome & Transcriptome (GeT-PlaGe), INRA, US1426, Castanet-Tolosan, France
| | - Frédérique Barloy-Hubler
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France.
| |
Collapse
|
61
|
A gut pathobiont synergizes with the microbiota to instigate inflammatory disease marked by immunoreactivity against other symbionts but not itself. Sci Rep 2017; 7:17707. [PMID: 29255158 PMCID: PMC5735134 DOI: 10.1038/s41598-017-18014-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are likely driven by aberrant immune responses directed against the resident microbiota. Although IBD is commonly associated with a dysbiotic microbiota enriched in putative pathobionts, the etiological agents of IBD remain unknown. Using a pathobiont-induced intestinal inflammation model and a defined bacterial community, we provide new insights into the immune-microbiota interactions during disease. In this model system, the pathobiont Helicobacter bilis instigates disease following sub-pathological dextran sulfate sodium treatment. We show that H. bilis causes mild inflammation in mono-associated mice, but severe disease in the presence of a microbiota, demonstrating synergy between the pathobiont and microbiota in exacerbating pathology. Remarkably, inflammation depends on the presence of H. bilis, but is marked by a predominant Th17 response against specific members of the microbiota and not the pathobiont, even upon the removal of the most immune-dominant taxa. Neither increases in pathobiont burden nor unique changes in immune-targeted microbiota member abundances are observed during disease. Collectively, our findings demonstrate that a pathobiont instigates inflammation without being the primary target of a Th17 response or by altering the microbiota community structure. Moreover, our findings point toward monitoring pathobiont-induced changes in microbiota immune targeting as a new concept in IBD diagnotics.
Collapse
|
62
|
Bartley JM, Zhou X, Kuchel GA, Weinstock GM, Haynes L. Impact of Age, Caloric Restriction, and Influenza Infection on Mouse Gut Microbiome: An Exploratory Study of the Role of Age-Related Microbiome Changes on Influenza Responses. Front Immunol 2017; 8:1164. [PMID: 28979265 PMCID: PMC5611400 DOI: 10.3389/fimmu.2017.01164] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/01/2017] [Indexed: 12/17/2022] Open
Abstract
Immunosenescence refers to age-related declines in the capacity to respond to infections such as influenza (flu). Caloric restriction represents a known strategy to slow many aging processes, including those involving the immune system. More recently, some changes in the microbiome have been described with aging, while the gut microbiome appears to influence responses to flu vaccination and infection. With these considerations in mind, we used a well-established mouse model of flu infection to explore the impact of flu infection, aging, and caloric restriction on the gut microbiome. Young, middle-aged, and aged caloric restricted (CR) and ad lib fed (AL) mice were examined after a sublethal flu infection. All mice lost 10–20% body weight and, as expected for these early time points, losses were similar at different ages and between diet groups. Cytokine and chemokine levels were also similar with the notable exception of IL-1α, which rose more than fivefold in aged AL mouse serum, while it remained unchanged in aged CR serum. Fecal microbiome phyla abundance profiles were similar in young, middle-aged, and aged AL mice at baseline and at 4 days post flu infection, while increases in Proteobacteria were evident at 7 days post flu infection in all three age groups. CR mice, compared to AL mice in each age group, had increased abundance of Proteobacteria and Verrucomicrobia at all time points. Interestingly, principal coordinate analysis determined that diet exerts a greater effect on the microbiome than age or flu infection. Percentage body weight loss correlated with the relative abundance of Proteobacteria regardless of age, suggesting flu pathogenicity is related to Proteobacteria abundance. Further, several microbial Operational Taxonomic Units from the Bacteroidetes phyla correlated with serum chemokine/cytokines regardless of both diet and age suggesting an interplay between flu-induced systemic inflammation and gut microbiota. These exploratory studies highlight the impact of caloric restriction on fecal microbiome in both young and aged animals, as well as the many complex relationships between flu responses and gut microbiota. Thus, these preliminary studies provide the necessary groundwork to examine how gut microbiota alterations may be leveraged to influence declining immune responses with aging.
Collapse
Affiliation(s)
- Jenna M Bartley
- UConn Center on Aging, Farmington, CT, United States.,Department of Immunology, UConn Health, Farmington, CT, United States
| | - Xin Zhou
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - George A Kuchel
- UConn Center on Aging, Farmington, CT, United States.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - George M Weinstock
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - Laura Haynes
- UConn Center on Aging, Farmington, CT, United States.,Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
63
|
Nie L, Zhou QJ, Qiao Y, Chen J. Interplay between the gut microbiota and immune responses of ayu (Plecoglossus altivelis) during Vibrio anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2017; 68:479-487. [PMID: 28756287 DOI: 10.1016/j.fsi.2017.07.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Gut microbiota plays fundamental roles in protection against pathogen invasion. However, the mechanism and extent of responses of gut microbiota to pathogenic infection are poorly understood. This study investigated the gut bacterial communities and immune responses of ayu (Plecoglossus altivelis) upon exposure to Vibrio anguillarum. The succession of V. anguillarum infection was evidenced by increased expression of immune genes and bacterial loads in ayu tissues, which in turn altered the composition and predicted functions of gut bacterial community. The dynamics of gut bacterial diversity and evenness were temporally stable in control ayu but were reduced in infected subjects, particularly at the late stages of infection. Variations in the gut microbiota were significantly associated with the expression levels of TNF-α (P = 0.019) and IL-1 β (P = 0.013). The profiles of certain gut bacterial taxa were indicative of V. anguillarum infection. Compared with healthy controls, the ayu infected with V. anguillarum possessed less complex, fewer connected, and lower cooperative gut bacterial interspecies interaction, coinciding with significant shifts in keystone species. These findings imply that V. anguillarum infection substantially disrupted the compositions and interspecies interaction of ayu gut bacterial community, thereby altering gut microbial-mediated functions and inducing host immune responses. This study provides an integrated overview on the interaction between the gut microbiota and host immune responses to pathogen infection from an ecological perspective.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qian-Jin Zhou
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan Qiao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
64
|
Chabé M, Lokmer A, Ségurel L. Gut Protozoa: Friends or Foes of the Human Gut Microbiota? Trends Parasitol 2017; 33:925-934. [PMID: 28870496 DOI: 10.1016/j.pt.2017.08.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/17/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022]
Abstract
The importance of the gut microbiota for human health has sparked a strong interest in the study of the factors that shape its composition and diversity. Despite the growing evidence suggesting that helminths and protozoa significantly interact with gut bacteria, gut microbiome studies remain mostly focused on prokaryotes and on populations living in industrialized countries that typically have a low parasite burden. We argue that protozoa, like helminths, represent an important factor to take into account when studying the gut microbiome, and that their presence - especially considering their long coevolutionary history with humans - may be beneficial. From this perspective, we examine the relationship between the protozoa and their hosts, as well as their relevance for public health.
Collapse
Affiliation(s)
- Magali Chabé
- University of Lille, CNRS, Inserm, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Ana Lokmer
- UMR 7206 Eco-anthropologie et ethnobiologie, CNRS - MNHN - Paris Diderot University - Sorbonne Paris Cité, Paris, France
| | - Laure Ségurel
- UMR 7206 Eco-anthropologie et ethnobiologie, CNRS - MNHN - Paris Diderot University - Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
65
|
Litvak Y, Byndloss MX, Tsolis RM, Bäumler AJ. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr Opin Microbiol 2017; 39:1-6. [PMID: 28783509 DOI: 10.1016/j.mib.2017.07.003] [Citation(s) in RCA: 428] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/14/2017] [Indexed: 12/19/2022]
Abstract
A balanced gut microbiota is important for health, but the mechanisms maintaining homeostasis are incompletely understood. Anaerobiosis of the healthy colon drives the composition of the gut microbiota towards a dominance of obligate anaerobes, while dysbiosis is often associated with a sustained increase in the abundance of facultative anaerobic Proteobacteria, indicative of a disruption in anaerobiosis. The colonic epithelium is hypoxic, but intestinal inflammation or antibiotic treatment increases epithelial oxygenation in the colon, thereby disrupting anaerobiosis to drive a dysbiotic expansion of facultative anaerobic Proteobacteria through aerobic respiration. These observations suggest a dysbiotic expansion of Proteobacteria is a potential diagnostic microbial signature of epithelial dysfunction, a hypothesis that could spawn novel preventative or therapeutic strategies for a broad spectrum of human diseases.
Collapse
Affiliation(s)
- Yael Litvak
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
66
|
Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner. Sci Rep 2017; 7:44182. [PMID: 28266645 PMCID: PMC5339804 DOI: 10.1038/srep44182] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
The microbiome is a regulator of host immunity, metabolism, neurodevelopment, and behavior. During early life, bacterial communities within maternal gut and vaginal compartments can have an impact on directing these processes. Maternal stress experience during pregnancy may impact offspring development by altering the temporal and spatial dynamics of the maternal microbiome during pregnancy. To examine the hypothesis that maternal stress disrupts gut and vaginal microbial dynamics during critical prenatal and postnatal windows, we used high-resolution 16S rRNA marker gene sequencing to examine outcomes in our mouse model of early prenatal stress. Consistent with predictions, maternal fecal communities shift across pregnancy, a process that is disrupted by stress. Vaginal bacterial community structure and composition exhibit lasting disruption following stress exposure. Comparison of maternal and offspring microbiota revealed that similarities in bacterial community composition was predicted by a complex interaction between maternal body niche and offspring age and sex. Importantly, early prenatal stress influenced offspring bacterial community assembly in a temporal and sex-specific manner. Taken together, our results demonstrate that early prenatal stress may influence offspring development through converging modifications to gut microbial composition during pregnancy and transmission of dysbiotic vaginal microbiome at birth.
Collapse
|
67
|
Huffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol 2017; 10:299-306. [PMID: 27966551 PMCID: PMC5765541 DOI: 10.1038/mi.2016.108] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/17/2016] [Indexed: 02/04/2023]
Abstract
The lungs are not sterile or free from bacteria; rather, they harbor a distinct microbiome whose composition is driven by different ecological rules than for the gastrointestinal tract. During disease, there is often a shift in community composition towards Gammaproteobacteria, the bacterial class that contains many common lung-associated gram-negative "pathogens." Numerous byproducts of host inflammation are growth factors for these bacteria. The extracellular nutrient supply for bacteria in the lungs, which is severely limited during health, markedly increases due to the presence of mucus and vascular permeability. While Gammaproteobacteria benefit from airway inflammation, they also encode molecular components that promote inflammation, potentially creating a cyclical inflammatory mechanism. In contrast, Prevotella species that are routinely acquired via microaspiration from the oral cavity may participate in immunologic homeostasis of the airways.vAreas of future research include determining for specific lung diseases (1) whether an altered lung microbiome initiates disease pathogenesis, promotes chronic inflammation, or is merely a marker of injury and inflammation, (2) whether the lung microbiome can be manipulated therapeutically to change disease progression, (3) what molecules (metabolites) generated during an inflammatory response promote cross-kingdom signaling, and (4) how the lung "ecosystem" collapses during pneumonia, to be dominated by a single pathogen.
Collapse
Affiliation(s)
- GB Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - RP Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - NW Lukacs
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
68
|
Sassone-Corsi M, Nuccio SP, Liu H, Hernandez D, Vu CT, Takahashi AA, Edwards RA, Raffatellu M. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 2016; 540:280-283. [PMID: 27798599 PMCID: PMC5145735 DOI: 10.1038/nature20557] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023]
Abstract
The Enterobacteriaceae are a family of Gram-negative bacteria that include commensal organisms as well as primary and opportunistic pathogens that are among the leading causes of morbidity and mortality worldwide. Although Enterobacteriaceae often comprise less than 1% of a healthy intestine's microbiota, some of these organisms can bloom in the inflamed gut; expansion of enterobacteria is a hallmark of microbial imbalance known as dysbiosis. Microcins are small secreted proteins that possess antimicrobial activity in vitro, but whose role in vivo has been unclear. Here we demonstrate that microcins enable the probiotic bacterium Escherichia coli Nissle 1917 (EcN) to limit the expansion of competing Enterobacteriaceae (including pathogens and pathobionts) during intestinal inflammation. Microcin-producing EcN limits the growth of competitors in the inflamed intestine, including commensal E. coli, adherent-invasive E. coli and the related pathogen Salmonella enterica. Moreover, only therapeutic administration of the wild-type, microcin-producing EcN to mice previously infected with S. enterica substantially reduced intestinal colonization by the pathogen. Our work provides the first evidence that microcins mediate inter- and intraspecies competition among the Enterobacteriaceae in the inflamed gut. Moreover, we show that microcins can act as narrow-spectrum therapeutics to inhibit enteric pathogens and reduce enterobacterial blooms.
Collapse
Affiliation(s)
- Martina Sassone-Corsi
- Department of Microbiology, University of California Irvine, Irvine, CA 92697, USA
- Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA
| | - Sean-Paul Nuccio
- Department of Microbiology, University of California Irvine, Irvine, CA 92697, USA
- Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA
| | - Henry Liu
- Department of Microbiology, University of California Irvine, Irvine, CA 92697, USA
| | - Dulcemaria Hernandez
- Department of Microbiology, University of California Irvine, Irvine, CA 92697, USA
| | - Christine T. Vu
- Department of Microbiology, University of California Irvine, Irvine, CA 92697, USA
| | - Amy A. Takahashi
- Department of Microbiology, University of California Irvine, Irvine, CA 92697, USA
| | - Robert A. Edwards
- Department of Microbiology, University of California Irvine, Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Manuela Raffatellu
- Department of Microbiology, University of California Irvine, Irvine, CA 92697, USA
- Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
69
|
Sassone-Corsi M, Chairatana P, Zheng T, Perez-Lopez A, Edwards RA, George MD, Nolan EM, Raffatellu M. Siderophore-based immunization strategy to inhibit growth of enteric pathogens. Proc Natl Acad Sci U S A 2016; 113:13462-13467. [PMID: 27821741 PMCID: PMC5127304 DOI: 10.1073/pnas.1606290113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Infections with Gram-negative pathogens pose a serious threat to public health. This scenario is exacerbated by increases in antibiotic resistance and the limited availability of vaccines and therapeutic tools to combat these infections. Here, we report an immunization approach that targets siderophores, which are small molecules exported by enteric Gram-negative pathogens to acquire iron, an essential nutrient, in the host. Because siderophores are nonimmunogenic, we designed and synthesized conjugates of a native siderophore and the immunogenic carrier protein cholera toxin subunit B (CTB). Mice immunized with the CTB-siderophore conjugate developed anti-siderophore antibodies in the gut mucosa, and when mice were infected with the enteric pathogen Salmonella, they exhibited reduced intestinal colonization and reduced systemic dissemination of the pathogen. Moreover, analysis of the gut microbiota revealed that reduction of Salmonella colonization in the inflamed gut was accompanied by expansion of Lactobacillus spp., which are beneficial commensal organisms that thrive in similar locales as Enterobacteriaceae. Collectively, our results demonstrate that anti-siderophore antibodies inhibit Salmonella colonization. Because siderophore-mediated iron acquisition is a virulence trait shared by many bacterial and fungal pathogens, blocking microbial iron acquisition by siderophore-based immunization or other siderophore-targeted approaches may represent a novel strategy to prevent and ameliorate a broad range of infections.
Collapse
Affiliation(s)
- Martina Sassone-Corsi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697
- Institute for Immunology, University of California, Irvine, CA 92697
| | - Phoom Chairatana
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tengfei Zheng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Araceli Perez-Lopez
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697
- Institute for Immunology, University of California, Irvine, CA 92697
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697
| | - Michael D George
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697;
- Institute for Immunology, University of California, Irvine, CA 92697
| |
Collapse
|
70
|
Chiodini RJ, Dowd SE, Galandiuk S, Davis B, Glassing A. The predominant site of bacterial translocation across the intestinal mucosal barrier occurs at the advancing disease margin in Crohn's disease. MICROBIOLOGY-SGM 2016; 162:1608-1619. [PMID: 27418066 DOI: 10.1099/mic.0.000336] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Crohn's disease is characterized by increased permeability of the intestinal mucosal barriers and an abnormal or dysregulated immune response to specific and/or commensal bacteria arising from the intestinal lumen. To determine the types of bacteria that are transgressing the mucosal barrier and colonizing the intestinal submucosal tissues, we performed 16S rRNA gene microbiota sequencing of the submucosal and mucosal tissues at the advancing disease margin in ileal Crohn's disease. Microbial populations were compared between mucosa and submucosa and non-inflammatory bowel disease (non-IBD) controls, as well as to microbial populations previously found at the centre of the disease lesion. There was no significant increase in bacteria within the submucosa of non-IBD controls at any taxonomic level when compared to the corresponding superjacent mucosa, indicating an effective mucosal barrier within the non-IBD population. In contrast, there was a statistically significant increase in 13 bacterial families and 16 bacterial genera within the submucosa at the advancing disease margin in Crohn's disease when compared to the superjacent mucosa. Major increases within the submucosa included bacteria of the Families Sphingomonadaceae, Alicyclobacillaceae, Methylobacteriaceae, Pseudomonadaceae and Prevotellaceae. Data suggest that the primary site of bacterial translocation across the mucosal barrier occurs at the margin between diseased and normal tissue, the advancing disease margin. The heterogeneity of the bacterial populations penetrating the mucosal barrier and colonizing the submucosal intestinal tissues and, therefore, contributing to the inflammatory processes, suggests that bacterial translocation is secondary to a primary event leading to a breakdown of the mucosal barrier.
Collapse
Affiliation(s)
- Rodrick J Chiodini
- St Vincent Healthcare, Sisters of Charity of Leavenworth Health System, Billings, MT, USA.,Department of Biological and Physical Sciences, Montana State University-Billings, Billings, MT, USA
| | - Scot E Dowd
- Molecular Research (Mr. DNA), Shallowater, TX, USA
| | - Susan Galandiuk
- Hiram C. Polk, Jr. MD, Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Brian Davis
- Department of Surgery, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Angela Glassing
- Department of Biological and Physical Sciences, Montana State University-Billings, Billings, MT, USA
| |
Collapse
|
71
|
Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016; 535:85-93. [PMID: 27383983 PMCID: PMC5114849 DOI: 10.1038/nature18849] [Citation(s) in RCA: 926] [Impact Index Per Article: 102.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/22/2016] [Indexed: 02/07/2023]
Abstract
The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases.
Collapse
Affiliation(s)
- Andreas J Bäumler
- Department of Medical Microbiology and Immunology, University of California, Davis, School of Medicine, Davis, California 95616, USA
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9048, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA
| |
Collapse
|
72
|
Scales BS, Dickson RP, Huffnagle GB. A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs. J Leukoc Biol 2016; 100:943-950. [PMID: 27365534 DOI: 10.1189/jlb.3mr0316-106r] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022] Open
Abstract
Inflammation can directly and indirectly modulate the bacterial composition of the microbiome. Although studies of inflammation primarily focus on its function to negatively select against potential pathogens, some bacterial species have the ability to exploit inflammatory byproducts for their benefit. Inflammatory cells release reactive nitrogen species as antimicrobial effectors against infection, but some facultative anaerobes can also utilize the increase in extracellular nitrate in their environment for anaerobic respiration and growth. This phenomenon has been studied in the gastrointestinal tract, where blooms of facultative anaerobic Gammaproteobacteria, primarily Escherichia coli, often occur during colonic inflammation. In cystic fibrosis, Pseudomonas aeruginosa, another Gammaproteobacteria facultative anaerobe, can reduce nitrogen for anaerobic respiration and it blooms in the airways of the chronically inflamed cystic fibrosis lung. This review focuses on the evidence that inflammation can provide terminal electron acceptors for anaerobic respiration and can support blooms of facultative anaerobes, such as E. coli and P. aeruginosa in distinct, but similar, environments of the inflamed gastrointestinal and respiratory tracts.
Collapse
Affiliation(s)
- Brittan S Scales
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gary B Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
73
|
Andersen K, Kesper MS, Marschner JA, Konrad L, Ryu M, Kumar Vr S, Kulkarni OP, Mulay SR, Romoli S, Demleitner J, Schiller P, Dietrich A, Müller S, Gross O, Ruscheweyh HJ, Huson DH, Stecher B, Anders HJ. Intestinal Dysbiosis, Barrier Dysfunction, and Bacterial Translocation Account for CKD-Related Systemic Inflammation. J Am Soc Nephrol 2016; 28:76-83. [PMID: 27151924 DOI: 10.1681/asn.2015111285] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 11/03/2022] Open
Abstract
CKD associates with systemic inflammation, but the underlying cause is unknown. Here, we investigated the involvement of intestinal microbiota. We report that collagen type 4 α3-deficient mice with Alport syndrome-related progressive CKD displayed systemic inflammation, including increased plasma levels of pentraxin-2 and activated antigen-presenting cells, CD4 and CD8 T cells, and Th17- or IFNγ-producing T cells in the spleen as well as regulatory T cell suppression. CKD-related systemic inflammation in these mice associated with intestinal dysbiosis of proteobacterial blooms, translocation of living bacteria across the intestinal barrier into the liver, and increased serum levels of bacterial endotoxin. Uremia did not affect secretory IgA release into the ileum lumen or mucosal leukocyte subsets. To test for causation between dysbiosis and systemic inflammation in CKD, we eradicated facultative anaerobic microbiota with antibiotics. This eradication prevented bacterial translocation, significantly reduced serum endotoxin levels, and fully reversed all markers of systemic inflammation to the level of nonuremic controls. Therefore, we conclude that uremia associates with intestinal dysbiosis, intestinal barrier dysfunction, and bacterial translocation, which trigger the state of persistent systemic inflammation in CKD. Uremic dysbiosis and intestinal barrier dysfunction may be novel therapeutic targets for intervention to suppress CKD-related systemic inflammation and its consequences.
Collapse
Affiliation(s)
- Kirstin Andersen
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Marie Sophie Kesper
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Julian A Marschner
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Lukas Konrad
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Mi Ryu
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Santhosh Kumar Vr
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Onkar P Kulkarni
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Shrikant R Mulay
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Simone Romoli
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Jana Demleitner
- Walther Straub Institut für Pharmakologie und Toxikologie and
| | - Patrick Schiller
- Max von Pettenkofer Institut, Universität München, Munich, Germany.,German Center for Infection Research, Ludwig Maximilians University Munich, Munich, Germany
| | | | - Susanna Müller
- Pathologisches Institut, Ludwig Maximilians Universität, Munich, Germany
| | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University Medical Centre Göttingen, Göttingen, Germany; and
| | | | - Daniel H Huson
- Centre for Bioinformatics, Tübingen University, Tübingen, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institut, Universität München, Munich, Germany.,German Center for Infection Research, Ludwig Maximilians University Munich, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| |
Collapse
|
74
|
Audebert C, Even G, Cian A, Loywick A, Merlin S, Viscogliosi E, Chabé M. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci Rep 2016; 6:25255. [PMID: 27147260 PMCID: PMC4857090 DOI: 10.1038/srep25255] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/13/2016] [Indexed: 12/16/2022] Open
Abstract
Alterations in the composition of commensal bacterial populations, a phenomenon known as dysbiosis, are linked to multiple gastrointestinal disorders, such as inflammatory bowel disease and irritable bowel syndrome, or to infections by diverse enteric pathogens. Blastocystis is one of the most common single-celled eukaryotes detected in human faecal samples. However, the clinical significance of this widespread colonization remains unclear, and its pathogenic potential is controversial. To address the issue of Blastocystis pathogenicity, we investigated the impact of colonization by this protist on the composition of the human gut microbiota. For that purpose, we conducted a cross-sectional study including 48 Blastocystis-colonized patients and 48 Blastocystis-free subjects and performed an Ion Torrent 16S rDNA gene sequencing to decipher the Blastocystis-associated gut microbiota. Here, we report a higher bacterial diversity in faecal microbiota of Blastocystis colonized patients, a higher abundance of Clostridia as well as a lower abundance of Enterobacteriaceae. Our results contribute to suggesting that Blastocystis colonization is usually associated with a healthy gut microbiota, rather than with gut dysbiosis generally observed in metabolic or infectious inflammatory diseases of the lower gastrointestinal tract.
Collapse
Affiliation(s)
- Christophe Audebert
- GENES DIFFUSION, Douai, France.,PEGASE-Biosciences, Institut Pasteur de Lille, Lille, France
| | - Gaël Even
- GENES DIFFUSION, Douai, France.,PEGASE-Biosciences, Institut Pasteur de Lille, Lille, France
| | - Amandine Cian
- Univ. Lille, CNRS, Inserm, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | | | - Alexandre Loywick
- GENES DIFFUSION, Douai, France.,PEGASE-Biosciences, Institut Pasteur de Lille, Lille, France
| | - Sophie Merlin
- GENES DIFFUSION, Douai, France.,PEGASE-Biosciences, Institut Pasteur de Lille, Lille, France
| | - Eric Viscogliosi
- Univ. Lille, CNRS, Inserm, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Magali Chabé
- Univ. Lille, CNRS, Inserm, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
75
|
Mon KKZ, Saelao P, Halstead MM, Chanthavixay G, Chang HC, Garas L, Maga EA, Zhou H. Salmonella enterica Serovars Enteritidis Infection Alters the Indigenous Microbiota Diversity in Young Layer Chicks. Front Vet Sci 2015; 2:61. [PMID: 26664988 PMCID: PMC4672283 DOI: 10.3389/fvets.2015.00061] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022] Open
Abstract
Avian gastrointestinal (GI) tracts are highly populated with a diverse array of microorganisms that share a symbiotic relationship with their hosts and contribute to the overall health and disease state of the intestinal tract. The microbiome of the young chick is easily prone to alteration in its composition by both exogenous and endogenous factors, especially during the early posthatch period. The genetic background of the host and exposure to pathogens can impact the diversity of the microbial profile that consequently contributes to the disease progression in the host. The objective of this study was to profile the composition and structure of the gut microbiota in young chickens from two genetically distinct highly inbred lines. Furthermore, the effect of the Salmonella Enteritidis infection on altering the composition makeup of the chicken microbiome was evaluated through the 16S rRNA gene sequencing analysis. One-day-old layer chicks were challenged with S. Enteritidis and the host cecal microbiota profile as well as the degree of susceptibility to Salmonella infection was examined at 2 and 7 days post infection. Our result indicated that host genotype had a limited effect on resistance to S. Enteritidis infection. Alpha diversity, beta diversity, and overall microbiota composition were analyzed for four factors: host genotype, age, treatment, and postinfection time points. S. Enteritidis infection in young chicks was found to significantly reduce the overall diversity of the microbiota population with expansion of Enterobacteriaceae family. These changes indicated that Salmonella colonization in the GI tract of the chickens has a direct effect on altering the natural development of the GI microbiota. The impact of S. Enteritidis infection on microbial communities was also more substantial in the late stage of infection. Significant inverse correlation between Enterobacteriaceae and Lachnospiraceae family in both non-infected and infected groups, suggested possible antagonistic interaction between members of these two taxa, which could potentially influences the overall microbial population in the gut. Our results also revealed that genetic difference between two lines had minimal effect on the establishment of microbiota population. Overall, this study provided preliminary insights into the contributing role of S. Enteritidis in influencing the overall makeup of chicken’s gut microbiota.
Collapse
Affiliation(s)
- Khin K Z Mon
- Department of Animal Science, University of California Davis , Davis, CA , USA
| | - Perot Saelao
- Department of Animal Science, University of California Davis , Davis, CA , USA
| | - Michelle M Halstead
- Department of Animal Science, University of California Davis , Davis, CA , USA
| | - Ganrea Chanthavixay
- Department of Animal Science, University of California Davis , Davis, CA , USA
| | - Huai-Chen Chang
- Department of Animal Science, University of California Davis , Davis, CA , USA
| | - Lydia Garas
- Department of Animal Science, University of California Davis , Davis, CA , USA
| | - Elizabeth A Maga
- Department of Animal Science, University of California Davis , Davis, CA , USA
| | - Huaijun Zhou
- Department of Animal Science, University of California Davis , Davis, CA , USA
| |
Collapse
|
76
|
Tomkovich S, Jobin C. Microbiota and host immune responses: a love-hate relationship. Immunology 2015; 147:1-10. [PMID: 26439191 DOI: 10.1111/imm.12538] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022] Open
Abstract
A complex relationship between the microbiota and the host emerges early at birth and continues throughout life. The microbiota includes the prokaryotes, viruses and eukaryotes living among us, all of which interact to different extents with various organs and tissues in the body, including the immune system. Although the microbiota is most dense in the lower intestine, its influence on host immunity extends beyond the gastrointestinal tract. These interactions with the immune system operate through the actions of various microbial structures and metabolites, with outcomes ranging from beneficial to deleterious for the host. These differential outcomes are dictated by host factors, environment, and the type of microbes or products present in a specific ecosystem. It is also becoming clear that the microbes are in turn affected and respond to the host immune system. Disruption of this complex dialogue between host and microbiota can lead to immune pathologies such as inflammatory bowel diseases, diabetes and obesity. This review will discuss recent advances regarding the ways in which the host immune system and microbiota interact and communicate with one another.
Collapse
Affiliation(s)
- Sarah Tomkovich
- Department of Medicine, University of Florida, Gainesville, FL, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL, USA.,Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
77
|
The Human Gut Microbiome as a Transporter of Antibiotic Resistance Genes between Continents. Antimicrob Agents Chemother 2015; 59:6551-60. [PMID: 26259788 DOI: 10.1128/aac.00933-15] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/28/2015] [Indexed: 01/10/2023] Open
Abstract
Previous studies of antibiotic resistance dissemination by travel have, by targeting only a select number of cultivable bacterial species, omitted most of the human microbiome. Here, we used explorative shotgun metagenomic sequencing to address the abundance of >300 antibiotic resistance genes in fecal specimens from 35 Swedish students taken before and after exchange programs on the Indian peninsula or in Central Africa. All specimens were additionally cultured for extended-spectrum beta-lactamase (ESBL)-producing enterobacteria, and the isolates obtained were genome sequenced. The overall taxonomic diversity and composition of the gut microbiome remained stable before and after travel, but there was an increasing abundance of Proteobacteria in 25/35 students. The relative abundance of antibiotic resistance genes increased, most prominently for genes encoding resistance to sulfonamide (2.6-fold increase), trimethoprim (7.7-fold), and beta-lactams (2.6-fold). Importantly, the increase observed occurred without any antibiotic intake. Of 18 students visiting the Indian peninsula, 12 acquired ESBL-producing Escherichia coli, while none returning from Africa were positive. Despite deep sequencing efforts, the sensitivity of metagenomics was not sufficient to detect acquisition of the low-abundant genes responsible for the observed ESBL phenotype. In conclusion, metagenomic sequencing of the intestinal microbiome of Swedish students returning from exchange programs in Central Africa or the Indian peninsula showed increased abundance of genes encoding resistance to widely used antibiotics.
Collapse
|
78
|
Chiodini RJ, Dowd SE, Chamberlin WM, Galandiuk S, Davis B, Glassing A. Microbial Population Differentials between Mucosal and Submucosal Intestinal Tissues in Advanced Crohn's Disease of the Ileum. PLoS One 2015. [PMID: 26222621 PMCID: PMC4519195 DOI: 10.1371/journal.pone.0134382] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Since Crohn's disease is a transmural disease, we hypothesized that examination of deep submucosal tissues directly involved in the inflammatory disease process may provide unique insights into bacterial populations transgressing intestinal barriers and bacterial populations more representative of the causes and agents of the disease. We performed deep 16s microbiota sequencing on isolated ilea mucosal and submucosal tissues on 20 patients with Crohn's disease and 15 non-inflammatory bowel disease controls with a depth of coverage averaging 81,500 sequences in each of the 70 DNA samples yielding an overall resolution down to 0.0001% of the bacterial population. Of the 4,802,328 total sequences generated, 98.9% or 4,749,183 sequences aligned with the Kingdom Bacteria that clustered into 8545 unique sequences with <3% divergence or operational taxonomic units enabling the identification of 401 genera and 698 tentative bacterial species. There were significant differences in all taxonomic levels between the submucosal microbiota in Crohn's disease compared to controls, including organisms of the Order Desulfovibrionales that were present within the submucosal tissues of most Crohn's disease patients but absent in the control group. A variety of organisms of the Phylum Firmicutes were increased in the subjacent submucosa as compared to the parallel mucosal tissue including Ruminococcus spp., Oscillospira spp., Pseudobutyrivibrio spp., and Tumebacillus spp. In addition, Propionibacterium spp. and Cloacibacterium spp. were increased as well as large increases in Proteobacteria including Parasutterella spp. and Methylobacterium spp. This is the first study to examine the microbial populations within submucosal tissues of patients with Crohn's disease and to compare microbial communities found deep within the submucosal tissues with those present on mucosal surfaces. Our data demonstrate the existence of a distinct submucosal microbiome and ecosystem that is not well reflected in the mucosa and/or downstream fecal material.
Collapse
Affiliation(s)
- Rodrick J. Chiodini
- St. Vincent Healthcare, Sisters of Charity of Leavenworth Health System, Billings, Montana, United States of America
- Department of Biological and Physical Sciences, Montana State University-Billings, Billings, Montana, United States of America
- * E-mail:
| | - Scot E. Dowd
- Mr. DNA Molecular Research Laboratory, Shallowater, Texas, United States of America
| | - William M. Chamberlin
- St. Vincent Healthcare, Sisters of Charity of Leavenworth Health System, Billings, Montana, United States of America
| | - Susan Galandiuk
- Department of Surgery, University of Louisville, Louisville, Kentucky, United States of America
| | - Brian Davis
- Department of Surgery, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
| | - Angela Glassing
- Department of Biological and Physical Sciences, Montana State University-Billings, Billings, Montana, United States of America
| |
Collapse
|
79
|
Derrien M, van Hylckama Vlieg JE. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 2015; 23:354-66. [DOI: 10.1016/j.tim.2015.03.002] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/28/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023]
|
80
|
Singh V, Yeoh BS, Xiao X, Kumar M, Bachman M, Borregaard N, Joe B, Vijay-Kumar M. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. coli survival in the inflamed gut. Nat Commun 2015; 6:7113. [PMID: 25964185 DOI: 10.1038/ncomms8113] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/07/2015] [Indexed: 12/15/2022] Open
Abstract
During an inflammatory response in the gut, some commensal bacteria such as E. coli can thrive and contribute to disease. Here we demonstrate that enterobactin (Ent), a catecholate siderophore released by E. coli, is a potent inhibitor of myeloperoxidase (MPO), a bactericidal enzyme of the host. Glycosylated Ent (salmochelin) and non-catecholate siderophores (yersiniabactin and ferrichrome) fail to inhibit MPO activity. An E. coli mutant (ΔfepA) that overproduces Ent, but not an Ent-deficient double mutant (ΔaroB/ΔfepA), inhibits MPO activity and exhibits enhanced survival in inflamed guts. This survival advantage is counter-regulated by lipocalin 2, a siderophore-binding host protein, which rescues MPO from Ent-mediated inhibition. Spectral analysis reveals that Ent interferes with compound I [oxoiron, Fe(IV)=O] and reverts the enzyme back to its native ferric [Fe(III)] state. These findings define a fundamental mechanism by which E. coli surpasses the host innate immune responses during inflammatory gut diseases and gains a distinct survival advantage.
Collapse
Affiliation(s)
- Vishal Singh
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Beng San Yeoh
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Xia Xiao
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Manish Kumar
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael Bachman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109-5602, USA
| | - Niels Borregaard
- Department of Hematology, The Granulocyte Research Laboratory, National University Hospital, University of Copenhagen, Copenhagen 2100, Denmark
| | - Bina Joe
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Matam Vijay-Kumar
- 1] Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA [2] Department of Medicine, Pennsylvania State University Medical Center, Hershey, Pennsylvania 17033, USA
| |
Collapse
|
81
|
The fecal microbiota of semi-free-ranging wood bison (Bison bison athabascae). BMC Vet Res 2014; 10:120. [PMID: 24884592 PMCID: PMC4048625 DOI: 10.1186/1746-6148-10-120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The intestinal tract harbours a complex and diverse microbial population that is important for health, yet has been poorly described in many species. This study explored the fecal microbiota of semi-free-ranging Wood bison (Bison bison athabascae). RESULTS A total of 2081936 16S rRNA (V4) sequences from 40 bison were evaluated. CatchAll analysis of richness predicted a mean of 10685 species per sample (range 5428-24764, SD 4136). Diversity was high, with an average inverse Simpson's index of 31.78 (SD 15.3, range 8.55-86.7). Twenty-one different phyla were identified; however, only Firmicutes and Proteobacteria, Actinobacteria accounted for >1% of sequences. Two distinct population clusters (Group A, n = 19 and Group B, n = 21) were evident based on both community membership and population structure. Group A had a significantly lower relative abundance of Actinobacteria (6.4 vs 11.8%, P = 0.002), Chloroflexi (0.002 vs 0.013%, P = 0.014), Gemmatimonadetes (0.007 vs 0.15%, P = 0.038) and Proteobacteria (18.7 vs 42.5%, P = <0.0001) and a greater relative abundance of Firmicutes (70.9 vs 39.3%, P < 0.0001) than Group B. Within Group B, Alphaproteobacteria was the most common class of Proteobacteria (28% of all sequences), while Caulobacteraceae (18.5%), Pseudomonadaceae (3.5%), Hyphomicrobiaceae (3.5%), Alcaligenaceae (3.1%) and Xanthomonadaceae (2.6%) were the most abundant families. The twenty (3.1%) most abundant genera accounted for 71% of sequences. No operational taxon units (OTUs) were found in all samples at a relative abundance of 1% or greater. One OTU (Clostridium cluster XI) was present at 1% or more in all Group A samples, with two other Clostridium cluster XI OTUs in 18/19 (95%) samples. No OTUs were found at that abundance in all Group B sample, but an unclassified Lachnospiraceae was present in 20/21 (95%) and Clostridium cluster XI and Brevundimonas were found in 19 (90%) samples. CONCLUSIONS The fecal microbiota of Wood bison is rich and diverse. The presence of two distinct populations not associated with housing, age or gender suggest that enterotypes, distinctly different microbial population compositions that can achieve the same ultimate function, might be present in bison, as has been suggested in humans.
Collapse
|
82
|
Faber F, Bäumler AJ. The impact of intestinal inflammation on the nutritional environment of the gut microbiota. Immunol Lett 2014; 162:48-53. [PMID: 24803011 DOI: 10.1016/j.imlet.2014.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/23/2014] [Indexed: 12/18/2022]
Abstract
The intestinal epithelium is a single cell barrier separating a sterile mucosal tissue from a large microbial community dominated by obligate anaerobic bacteria, which inhabit the gut lumen. To maintain mucosal integrity, any breach in the epithelial barrier needs to be met with an inflammatory host response designed to repel microbial intruders from the tissue, protect the mucosal surface and repair injuries to the epithelium. In addition, inflammation induces mechanisms of nutritional immunity, which limit the availability of metals in the intestinal lumen, thereby imposing new selective forces on microbial growth. However, the inflammatory host response also has important side effects. A by-product of producing reactive oxygen and nitrogen species aimed at eradicating microbial intruders is the luminal generation of exogenous electron acceptors. The presence of these electron acceptors creates a new metabolic niche that is filled by facultative anaerobic bacteria. Here we review the changes in microbial nutrient utilization that accompany intestinal inflammation and the consequent changes in the composition of gut-associated microbial communities.
Collapse
Affiliation(s)
- Franziska Faber
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|