51
|
Lundie RJ, Webb LM, Marley AK, Phythian-Adams AT, Cook PC, Jackson-Jones LH, Brown S, Maizels RM, Boon L, O'Keeffe M, MacDonald AS. A central role for hepatic conventional dendritic cells in supporting Th2 responses during helminth infection. Immunol Cell Biol 2015; 94:400-10. [PMID: 26657145 PMCID: PMC4817239 DOI: 10.1038/icb.2015.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 01/23/2023]
Abstract
Dendritic cells (DCs) are the key initiators of T-helper (Th) 2 immune responses against the parasitic helminth Schistosoma mansoni. Although the liver is one of the main sites of antigen deposition during infection with this parasite, it is not yet clear how distinct DC subtypes in this tissue respond to S. mansoni antigens in vivo, or how the liver microenvironment might influence DC function during establishment of the Th2 response. In this study, we show that hepatic DC subsets undergo distinct activation processes in vivo following murine infection with S. mansoni. Conventional DCs (cDCs) from schistosome-infected mice upregulated expression of the costimulatory molecule CD40 and were capable of priming naive CD4(+) T cells, whereas plasmacytoid DCs (pDCs) upregulated expression of MHC class II, CD86 and CD40 but were unable to support the expansion of either naive or effector/memory CD4(+) T cells. Importantly, in vivo depletion of pDCs revealed that this subset was dispensable for either maintenance or regulation of the hepatic Th2 effector response during acute S. mansoni infection. Our data provides strong evidence that S. mansoni infection favors the establishment of an immunogenic, rather than tolerogenic, liver microenvironment that conditions cDCs to initiate and maintain Th2 immunity in the context of ongoing antigen exposure.
Collapse
Affiliation(s)
- Rachel J Lundie
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK.,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Lauren M Webb
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Angela K Marley
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | | | - Peter C Cook
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Lucy H Jackson-Jones
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Sheila Brown
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Rick M Maizels
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Louis Boon
- EPIRUS Biopharmaceuticals, Utrecht, The Netherlands
| | - Meredith O'Keeffe
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| |
Collapse
|
52
|
de Rezende MC, Araújo ES, Moreira JMP, Rodrigues VF, Rodrigues JL, Pereira CADJ, Negrão-Corrêa D. Effect of different stages of Schistosoma mansoni infection on the parasite burden and immune response to Strongyloides venezuelensis in co-infected mice. Parasitol Res 2015; 114:4601-16. [DOI: 10.1007/s00436-015-4706-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/26/2015] [Indexed: 11/25/2022]
|
53
|
Onkoba NW, Chimbari MJ, Mukaratirwa S. Malaria endemicity and co-infection with tissue-dwelling parasites in Sub-Saharan Africa: a review. Infect Dis Poverty 2015; 4:35. [PMID: 26377900 PMCID: PMC4571070 DOI: 10.1186/s40249-015-0070-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/03/2015] [Indexed: 02/08/2023] Open
Abstract
Mechanisms and outcomes of host-parasite interactions during malaria co-infections with gastrointestinal helminths are reasonably understood. In contrast, very little is known about such mechanisms in cases of malaria co-infections with tissue-dwelling parasites. This is lack of knowledge is exacerbated by misdiagnosis, lack of pathognomonic clinical signs and the chronic nature of tissue-dwelling helminthic infections. A good understanding of the implications of tissue-dwelling parasitic co-infections with malaria will contribute towards the improvement of the control and management of such co-infections in endemic areas. This review summarises and discusses current information available and gaps in research on malaria co-infection with gastro-intestinal helminths and tissue-dwelling parasites with emphasis on helminthic infections, in terms of the effects of migrating larval stages and intra and extracellular localisations of protozoan parasites and helminths in organs, tissues, and vascular and lymphatic circulations.
Collapse
Affiliation(s)
- Nyamongo W Onkoba
- College of Health Sciences, School of Nursing and Public Health, University of KwaZulu-Natal, Howard Campus, Durban, South Africa.
- Departmet of Tropical Infectious Diseases, Institute of Primate Research, Karen, Nairobi, Kenya.
| | - Moses J Chimbari
- College of Health Sciences, School of Nursing and Public Health, University of KwaZulu-Natal, Howard Campus, Durban, South Africa.
| | - Samson Mukaratirwa
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| |
Collapse
|
54
|
Schistosoma mansoni Soluble Egg Antigens Induce Expression of the Negative Regulators SOCS1 and SHP1 in Human Dendritic Cells via Interaction with the Mannose Receptor. PLoS One 2015; 10:e0124089. [PMID: 25897665 PMCID: PMC4405200 DOI: 10.1371/journal.pone.0124089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/25/2015] [Indexed: 12/31/2022] Open
Abstract
Schistosomiasis is a common debilitating human parasitic disease in (sub)tropical areas, however, schistosome infections can also protect against a variety of inflammatory diseases. This has raised broad interest in the mechanisms by which Schistosoma modulate the immune system into an anti-inflammatory and regulatory state. Human dendritic cells (DCs) show many phenotypic changes upon contact with Schistosoma mansoni soluble egg antigens (SEA). We here show that oxidation of SEA glycans, but not heat-denaturation, abrogates the capacity of SEA to suppress both LPS-induced cytokine secretion and DC proliferation, indicating an important role of SEA glycans in these processes. Remarkably, interaction of SEA glycans with DCs results in a strongly increased expression of Suppressor Of Cytokine Signalling1 (SOCS1) and SH2-containing protein tyrosine Phosphatase-1 (SHP1), important negative regulators of TLR4 signalling. In addition, SEA induces the secretion of transforming growth factor β (TGF-β), and the surface expression of the costimulatory molecules Programmed Death Ligand-1 (PD-L1) and OX40 ligand (OX40L), which are known phenotypic markers for the capacity of DCs to polarize naïve T cells into Th2/Treg cell subsets. Inhibition of mannose receptor (MR)-mediated internalization of SEA into DCs by blocking with allyl α-D-mannoside or anti-MR antibodies, significantly reduced SOCS1 and SHP1 expression. In conclusion, we demonstrate that SEA glycans are essential for induction of enhanced SOCS1 and SHP1 levels in DCs via the MR. Our data provide novel mechanistic evidence for the potential of S. mansoni SEA glycans to modulate human DCs, which may contribute to the capacity of SEA to down-regulate inflammatory responses.
Collapse
|
55
|
Abstract
Complex carbohydrates are effective inducers of Th2 responses, and carbohydrate antigens can stimulate the production of glycan-specific antibodies. In instances where the antigen exposure occurs through the skin, the resulting antibody production can contain IgE class antibody. The glycan-stimulated IgE may be non-specific but may also be antigen specific. This review focuses on the production of cross-reactive carbohydrate determinants, the recently identified IgE antibody response to a mammalian oligosaccharide epitope, galactose-alpha-1,3-galactose (alpha-gal), as well as discusses practical implications of carbohydrates in allergy. In addition, the biological effects of carbohydrate antigens are reviewed in setting of receptors and host recognition.
Collapse
Affiliation(s)
- Scott P Commins
- Departments of Internal Medicine and Pediatrics, Divisions of Allergy, Asthma and Immunology and Gastroenterology, University of Virginia Health System, PO Box 801355, Charlottesville, VA, 22908, USA,
| |
Collapse
|
56
|
Hall BM. T Cells: Soldiers and Spies--The Surveillance and Control of Effector T Cells by Regulatory T Cells. Clin J Am Soc Nephrol 2015; 10:2050-64. [PMID: 25876770 DOI: 10.2215/cjn.06620714] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Traditionally, T cells were CD4+ helper or CD8+ cytotoxic T cells, and with antibodies, they were the soldiers of immunity. Now, many functionally distinct subsets of activated CD4+ and CD8+ T cells have been described, each with distinct cytokine and transcription factor expression. For CD4+ T cells, these include Th1 cells expressing the transcription factor T-bet and cytokines IL-2, IFN-γ, and TNF-β; Th2 cells expressing GATA-3 and the cytokines IL-4, IL-5, and IL-13; and Th17 cells expressing RORγt and cytokines IL-17A, IL-17F, IL-21, and IL-22. The cytokines produced determine the immune inflammation that they mediate. T cells of the effector lineage can be naïve T cells, recently activated T cells, or memory T cells that can be distinguished by cell surface markers. T regulatory cells or spies were characterized as CD8+ T cells expressing I-J in the 1970s. In the 1980s, suppressor cells fell into disrepute when the gene for I-J was not present in the mouse MHC I region. At that time, a CD4+ T cell expressing CD25, the IL-2 receptor-α, was identified to transfer transplant tolerance. This was the same phenotype of activated CD4+ CD25+ T cells that mediated rejection. Thus, the cells that could induce tolerance and undermine rejection had similar badges and uniforms as the cells effecting rejection. Later, FOXP3, a transcription factor that confers suppressor function, was described and distinguishes T regulatory cells from effector T cells. Many subtypes of T regulatory cells can be characterized by different expressions of cytokines and receptors for cytokines or chemokines. In intense immune inflammation, T regulatory cells express cytokines characteristic of effector cells; for example, Th1-like T regulatory cells express T-bet, and IFN-γ-like Th1 cells and effector T cells can change sides by converting to T regulatory cells. Effector T cells and T regulatory cells use similar molecules to be activated and mediate their function, and thus, it can be very difficult to distinguish soldiers from spies.
Collapse
Affiliation(s)
- Bruce M Hall
- Immune Tolerance Laboratory, Department of Medicine, University of New South Wales, Sydney, Australia; and Renal Unit, Liverpool Hospital, Sydney, Australia
| |
Collapse
|
57
|
Nausch N, Appleby LJ, Sparks AM, Midzi N, Mduluza T, Mutapi F. Group 2 innate lymphoid cell proportions are diminished in young helminth infected children and restored by curative anti-helminthic treatment. PLoS Negl Trop Dis 2015; 9:e0003627. [PMID: 25799270 PMCID: PMC4370749 DOI: 10.1371/journal.pntd.0003627] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/19/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Group 2 Innate lymphoid cells (ILC2s) are innate cells that produce the TH2 cytokines IL-5 and IL-13. The importance of these cells has recently been demonstrated in experimental models of parasitic diseases but there is a paucity of data on ILC2s in the context of human parasitic infections and in particular of the blood dwelling parasite Schistosoma haematobium. METHODOLOGY/PRINCIPAL FINDINGS In this case-control study human peripheral blood ILC2s were analysed in relation to infection with the helminth parasite Schistosoma haematobium. Peripheral blood mononuclear cells of 36 S. haematobium infected and 36 age and sex matched uninfected children were analysed for frequencies of ILC2s identified as Lin-CD45+CD127+CD294+CD161+. ILC2s were significantly lower particularly in infected children aged 6-9 years compared to healthy participants. Curative anti-helminthic treatment resulted in an increase in levels of the activating factor TSLP and restoration of ILC2 levels. CONCLUSION This study demonstrates that ILC2s are diminished in young helminth infected children and restored by removal of the parasites by treatment, indicating a previously undescribed association between a human parasitic infection and ILC2s and suggesting a role of ILC2s before the establishment of protective acquired immunity in human schistosomiasis.
Collapse
Affiliation(s)
- Norman Nausch
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Laura J. Appleby
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Alexandra M. Sparks
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Nicholas Midzi
- National Institute of Health Research, Causeway, Harare, Zimbabwe
| | - Takafira Mduluza
- University of Zimbabwe, Department of Biochemistry, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Francisca Mutapi
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| |
Collapse
|
58
|
Trigunaite A, Dimo J, Jørgensen TN. Suppressive effects of androgens on the immune system. Cell Immunol 2015; 294:87-94. [PMID: 25708485 DOI: 10.1016/j.cellimm.2015.02.004] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 12/14/2022]
Abstract
Sex-based disparities in immune responses are well known phenomena. The two most important factors accounting for the sex-bias in immunity are genetics and sex hormones. Effects of female sex hormones, estrogen and progesterone are well established, however the role of testosterone is not completely understood. Evidence from unrelated studies points to an immunosuppressive role of testosterone on different components of the immune system, but the underlying molecular mechanisms remains unknown. In this review we evaluate the effect of testosterone on key cellular components of innate and adaptive immunity. Specifically, we highlight the importance of testosterone in down-regulating the systemic immune response by cell type specific effects in the context of immunological disorders. Further studies are required to elucidate the molecular mechanisms of testosterone-induced immunosuppression, leading the way to the identification of novel therapeutic targets for immune disorders.
Collapse
Affiliation(s)
- Abhishek Trigunaite
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, OH, USA.
| | - Joana Dimo
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, OH, USA.
| | - Trine N Jørgensen
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, OH, USA.
| |
Collapse
|
59
|
Chatterjee S, Clark CE, Lugli E, Roederer M, Nutman TB. Filarial infection modulates the immune response to Mycobacterium tuberculosis through expansion of CD4+ IL-4 memory T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:2706-14. [PMID: 25667413 DOI: 10.4049/jimmunol.1402718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Exaggerated CD4(+) T helper 2-specific cytokine producing memory T cell responses developing concomitantly with a T helper 1 response might have a detrimental role in immunity to infection caused by Mycobacterium tuberculosis. To assess the dynamics of Ag-specific memory T cell compartments in the context of filarial infection, we used multiparameter flow cytometry on PBMCs from 25 microfilaremic filarial-infected (Inf) and 14 filarial-uninfected (Uninf) subjects following stimulation with filarial Ag (BmA) or with the M. tuberculosis-specific Ag culture filtrate protein-10 (CFP-10). Our data demonstrated that the Inf group had a marked increase in BmA-specific CD4(+)IL-4(+) cells (median net frequency compared with baseline [Fo] = 0.09% versus 0.01%; p = 0.038) but also to CFP-10 (Fo = 0.16% versus 0.007%; p = 0.04) and staphylococcal enterotoxin B (Fo = 0.49% versus 0.26%; p = 0.04). The Inf subjects showed a BmA-specific expansion of CD4(+)CD45RO(+)IL-4(+) producing central memory (TCM, CD45RO(+)CCR7(+)CD27(+); Fo = 1.1% versus 0.5%; p = 0.04) as well as effector memory (TEM, CD45RO(+)CCR7(-)CD27(-); Fo = 1.5% versus 0.2%; p = 0.03) with a similar but nonsignificant response to CFP-10. In addition, there was expansion of CD4(+)IL-4(+)CD45RA(+)CCR7(+)CD27(+) (naive-like) in Inf individuals compared with Uninf subjects. Among Inf subjects with definitive latent tuberculosis, there were no differences in frequencies of IL-4-producing cells within any of the memory compartments compared with the Uninf group. Our data suggest that filarial infection induces Ag-specific, exaggerated IL-4 responses in distinct T cell memory compartments to M. tuberculosis-specific Ags, which are attenuated in subjects who are able to mount a delayed type hypersensitivity reaction to M. tuberculosis.
Collapse
Affiliation(s)
- Soumya Chatterjee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Carolyn E Clark
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Enrico Lugli
- Immunotechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mario Roederer
- Immunotechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
60
|
Schistosoma mansoni soluble egg antigens enhance T cell responses to a newly identified HIV-1 Gag H-2b epitope. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:193-9. [PMID: 25520148 DOI: 10.1128/cvi.00514-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Schistosome infection induces significant T helper type 2 (Th2) and anti-inflammatory immune responses and has been shown to negatively impact vaccine efficacy. Our goal was to determine if the administration of schistosome soluble egg antigens (SEA) would negatively influence the induction of cytotoxic T lymphocyte (CTL) and Th1-type T cell responses to an HIV candidate vaccine in the Th1-biased C57BL/6 mouse strain. Initial experiments failed, as we were unable to detect any response to the defined class I epitope for HIV-1 IIIB Gag. Therefore, we initiated an epitope mapping study to identify C57BL/6 (H-2(b)) T cell epitopes in HIV-1 IIIB Gag in order to perform the experiments. This analysis defined two previously unreported minimal class I H-2(b) and class II I-A(b) epitopes for HIV-1 IIIB Gag. The newly defined HIV-1 IIIB Gag epitopes were used to evaluate the influence of SEA on the generation of CTL and Th1-type HIV-1 IIIB Gag responses. Surprisingly, in contrast to our hypothesis, we observed that the coadministration of SEA with a Listeria monocytogenes vector expressing HIV-1 IIIB Gag (Lm-Gag) led to a significantly increased frequency of gamma interferon (IFN-γ)-producing CD8(+) and CD4(+) T cells in C57BL/6 mice compared to mice immunized with Lm-Gag only. These observations suggest that SEA contains, in addition to Th2-type and immune-suppressive molecules, substances that can act with the Lm-Gag vaccine to increase CTL and Th1-type vaccine-specific immune responses.
Collapse
|
61
|
Schwartz C, Oeser K, Prazeres da Costa C, Layland LE, Voehringer D. T Cell–Derived IL-4/IL-13 Protects Mice against FatalSchistosoma mansoniInfection Independently of Basophils. THE JOURNAL OF IMMUNOLOGY 2014; 193:3590-9. [DOI: 10.4049/jimmunol.1401155] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
62
|
Schistosoma mansoni soluble egg antigens enhance Listeria monocytogenes vector HIV-1 vaccine induction of cytotoxic T cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1232-9. [PMID: 24990901 DOI: 10.1128/cvi.00138-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vaccines are an important public health measure for prevention and treatment of diseases. In addition to the vaccine immunogen, many vaccines incorporate adjuvants to stimulate the recipient's immune system and enhance vaccine-specific responses. While vaccine development has advanced from attenuated organism to recombinant protein or use of plasmid DNA, the development of new adjuvants that safely increase immune responses has not kept pace. Previous studies have shown that the complex mixture of molecules that comprise saline soluble egg antigens (SEA) from Schistosoma mansoni eggs functions to promote CD4(+) T helper 2 (Th2) responses. Therefore, we hypothesized that coadministration of SEA with a Listeria vector HIV-1 Gag (Lm-Gag) vaccine would suppress host cytotoxic T lymphocyte (CTL) and T helper 1 (Th1) responses to HIV-1 Gag epitopes. Surprisingly, instead of driving HIV-1 Gag-specific responses toward Th2 type, we found that coadministration of SEA with Lm-Gag vaccine significantly increased the frequency of gamma interferon (IFN-γ)-producing Gag-specific Th1 and CTL responses over that seen in mice administered Lm-Gag only. Analysis of the functionality and durability of vaccine responses suggested that SEA not only enlarged different memory T cell compartments but induced functional and long-lasting vaccine-specific responses as well. These results suggest there are components in SEA that can synergize with potent inducers of strong and durable Th1-type responses such as those to Listeria. We hypothesize that SEA contains moieties that, if defined, can be used to expand type 1 proinflammatory responses for use in vaccines.
Collapse
|
63
|
Hiemstra I, Klaver E, Vrijland K, Kringel H, Andreasen A, Bouma G, Kraal G, van Die I, den Haan J. Excreted/secreted Trichuris suis products reduce barrier function and suppress inflammatory cytokine production of intestinal epithelial cells. Mol Immunol 2014; 60:1-7. [DOI: 10.1016/j.molimm.2014.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 12/26/2022]
|
64
|
The human antibody response to the surface of Mycobacterium tuberculosis. PLoS One 2014; 9:e98938. [PMID: 24918450 PMCID: PMC4053328 DOI: 10.1371/journal.pone.0098938] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
Background Vaccine-induced human antibodies to surface components of Haemophilus influenzae and Streptococcus pneumonia are correlated with protection. Monoclonal antibodies to surface components of Mycobacterium tuberculosis are also protective in animal models. We have characterized human antibodies that bind to the surface of live M. tuberculosis. Methods Plasma from humans with latent tuberculosis (TB) infection (n = 23), active TB disease (n = 40), and uninfected controls (n = 9) were assayed by ELISA for reactivity to the live M. tuberculosis surface and to inactivated M. tuberculosis fractions (whole cell lysate, lipoarabinomannan, cell wall, and secreted proteins). Results When compared to uninfected controls, patients with active TB disease had higher antibody titers to the surface of live M. tuberculosis (Δ = 0.72 log10), whole cell lysate (Δ = 0.82 log10), and secreted proteins (Δ = 0.62 log10), though there was substantial overlap between the two groups. Individuals with active disease had higher relative IgG avidity (Δ = 1.4 to 2.6) to all inactivated fractions. Surprisingly, the relative IgG avidity to the live M. tuberculosis surface was lower in the active disease group than in uninfected controls (Δ = –1.53, p = 0.004). Patients with active disease had higher IgG than IgM titers for all inactivated fractions (ratios, 2.8 to 10.1), but equal IgG and IgM titers to the live M. tuberculosis surface (ratio, 1.1). Higher antibody titers to the M. tuberculosis surface were observed in active disease patients who were BCG-vaccinated (Δ = 0.55 log10, p = 0.008), foreign-born (Δ = 0.61 log10, p = 0.004), or HIV-seronegative (Δ = 0.60 log10, p = 0.04). Higher relative IgG avidity scores to the M. tuberculosis surface were also observed in active disease patients who were BCG-vaccinated (Δ = 1.12, p<0.001) and foreign-born (Δ = 0.87, p = 0.01). Conclusions/Significance Humans with active TB disease produce antibodies to the surface of M. tuberculosis with low avidity and with a low IgG/IgM ratio. Highly-avid IgG antibodies to the M. tuberculosis surface may be an appropriate target for future TB vaccines.
Collapse
|
65
|
Holzscheiter M, Layland LE, Loffredo-Verde E, Mair K, Vogelmann R, Langer R, Wagner H, Prazeres da Costa C. Lack of host gut microbiota alters immune responses and intestinal granuloma formation during schistosomiasis. Clin Exp Immunol 2014; 175:246-57. [PMID: 24168057 DOI: 10.1111/cei.12230] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2013] [Indexed: 11/28/2022] Open
Abstract
Fatalities from schistosome infections arise due to granulomatous, immune-mediated responses to eggs that become trapped in host tissues. Schistosome-specific immune responses are characterized by initial T helper type 1 (Th1) responses and our previous studies demonstrated that myeloid differentiation primary response gene 88 (Myd88)-deficient mice failed to initiate such responses in vivo. Paradoxically, schistosomal antigens fail to stimulate innate cells to release proinflammatory cytokines in vitro. Since Schistosoma mansoni infection is an intestinal disease, we hypothesized that commensal bacteria could act as bystander activators of the intestinal innate immune system to instigate Th1 responses. Using a broad spectrum of orally administered antibiotics and anti-mycotics we analysed schistosome-infected mice that were simultaneously depleted of gut bacteria. After depletion there was significantly less inflammation in the intestine, which was accompanied by decreased intestinal granuloma development. In contrast, liver pathology remained unaltered. In addition, schistosome-specific immune responses were skewed and faecal egg excretion was diminished. This study demonstrates that host microbiota can act as a third partner in instigating helminth-specific immune responses.
Collapse
Affiliation(s)
- M Holzscheiter
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene (MIH), Technische Universität München, München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
66
|
CD14 influences host immune responses and alternative activation of macrophages during Schistosoma mansoni infection. Infect Immun 2014; 82:3240-51. [PMID: 24866794 DOI: 10.1128/iai.01780-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antigen-presenting cell (APC) plasticity is critical for controlling inflammation in metabolic diseases and infections. The roles that pattern recognition receptors (PRRs) play in regulating APC phenotypes are just now being defined. We evaluated the expression of PRRs on APCs in mice infected with the helminth parasite Schistosoma mansoni and observed an upregulation of CD14 expression on macrophages. Schistosome-infected Cd14(-/-) mice showed significantly increased alternative activation of (M2) macrophages in the livers compared to infected wild-type (wt) mice. In addition, splenocytes from infected Cd14(-/-) mice exhibited increased production of CD4(+)-specific interleukin-4 (IL-4), IL-5, and IL-13 and CD4(+)Foxp3(+)IL-10(+) regulatory T cells compared to cells from infected wt mice. S. mansoni-infected Cd14(-/-) mice also presented with smaller liver egg granulomas associated with increased collagen deposition compared to granulomas in infected wt mice. The highest expression of CD14 was found on liver macrophages in infected mice. To determine if the Cd14(-/-) phenotype was in part due to increased M2 macrophages, we adoptively transferred wt macrophages into Cd14(-/-) mice and normalized the M2 and CD4(+) Th cell balance close to that observed in infected wt mice. Finally, we demonstrated that CD14 regulates STAT6 activation, as Cd14(-/-) mice had increased STAT6 activation in vivo, suggesting that lack of CD14 impacts the IL-4Rα-STAT6 pathway, altering macrophage polarization during parasite infection. Collectively, these data identify a previously unrecognized role for CD14 in regulating macrophage plasticity and CD4(+) T cell biasing during helminth infection.
Collapse
|
67
|
Adachi K, Nakamura R, Osada Y, Senba M, Tamada K, Hamano S. Involvement of IL-18 in the expansion of unique hepatic T cells with unconventional cytokine profiles during Schistosoma mansoni infection. PLoS One 2014; 9:e96042. [PMID: 24824897 PMCID: PMC4019514 DOI: 10.1371/journal.pone.0096042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 04/02/2014] [Indexed: 12/31/2022] Open
Abstract
Infection with schistosomes invokes severe fibrotic granulomatous responses in the liver of the host. Schistosoma mansoni infection induces dramatic fluctuations in Th1 or Th2 cytokine responses systemically; Th1 reactions are provoked in the early phase, whilst Th2 responses become dominant after oviposition begins. In the liver, various unique immune cells distinct from those of conventional immune competent organs or tissues exist, resulting in a unique immunological environment. Recently, we demonstrated that S. mansoni infection induces unique CD4+ T cell populations exhibiting unconventional cytokine profiles in the liver of mice during the period between Th1- and Th2-phases, which we term the transition phase. They produce both IFN-γ and IL-4 or both IFN-γ and IL-13 simultaneously. Moreover, T cells secreting triple cytokines IFN-γ, IL-13 and IL-4 were also induced. We term these cells Multiple Cytokine Producing Hepatic T cells (MCPHT cells). During the transition phase, when MCPHT cells increase, IL-18 secretion was up-regulated in the liver and sera. In S. mansoni-infected IL-18-deficient mice, expansion of MCPHT cells was curtailed. Thus our data suggest that IL-18 produced during S. mansoni infection play a role in the expansion of MCPHT cells.
Collapse
Affiliation(s)
- Keishi Adachi
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Global Center of Excellence Program, Nagasaki University, Nagasaki, Japan
| | - Risa Nakamura
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Yoshio Osada
- Department of Immunology and Parasitology, The University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masachika Senba
- Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Koji Tamada
- Department of Immunology and Cell Signaling Analysis, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Global Center of Excellence Program, Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
68
|
Abstract
AbstractTransmission success for helminths with free-living stages depends on the ability of eggs and larvae to develop and survive once in the environment. While environmental conditions are often suggested to influence egg phenology and hatching rate, immunity against parasite eggs might also play a role. We examined this hypothesis using the gastrointestinal helminths Trichostrongylus retortaeformis and Graphidium strigosum, two common infections of the European rabbit. Changes in egg hatching rate and volume were examined in relation to specific antibodies in the serum and bound to eggshells, using eggs shed in host faeces over a 15-week period. Hatching rate was consistently higher for T. retortaeformis than G. strigosum and no changes were observed between weeks. Egg volume increased for G. strigosum but decreased for T. retortaeformis. We did find evidence of egg-specific antibody responses and fewer antibodies were bound to eggs of T. retortaeformis compared to G. strigosum. Little to no association was found between antibodies and hatchability, or volume, for both helminths. We suggest that host antibodies play a relatively minor role in the egg hatching rate of these gastrointestinal helminths.
Collapse
|
69
|
Adachi K, Osada Y, Nakamura R, Tamada K, Hamano S. Unique T cells with unconventional cytokine profiles induced in the livers of mice during Schistosoma mansoni infection. PLoS One 2013; 8:e82698. [PMID: 24358216 PMCID: PMC3865148 DOI: 10.1371/journal.pone.0082698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/26/2013] [Indexed: 12/31/2022] Open
Abstract
During infection with Schistosoma, serious hepatic disorders are induced in the host. The liver possesses unique immune systems composed of specialized cells that differ from those of other immune competent organs or tissues. Host immune responses change dramatically during Schistosoma mansoni infection; in the early phase, Th1-related responses are induced, whereas during the late phase Th2 reactions dominate. Here, we describe unique T cell populations induced in the liver of mice during the period between Th1- and Th2-phases, which we term the transition phase. During this phase, varieties of immune cells including T lymphocytes increase in the liver. Subsets of CD4+ T cells exhibit unique cytokine production profiles, simultaneously producing both IFN-γ and IL-13 or both IFN-γ and IL-4. Furthermore, cells triply positive for IFN-γ, IL-13 and IL-4 also expand in the S. mansoni-infected liver. The induction of these unique cell populations does not occur in the spleen, indicating it is a phenomenon specific to the liver. In single hepatic CD4+ T cells showing the unique cytokine profiles, both T-bet and GATA-3 are expressed. Thus, our studies show that S. mansoni infection triggers the induction of hepatic T cell subsets with unique cytokine profiles.
Collapse
Affiliation(s)
- Keishi Adachi
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Global Center of Excellence Program, Nagasaki University, Nagasaki, Japan
| | - Yoshio Osada
- Department of Immunology and Parasitology, The University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu, Japan
| | - Risa Nakamura
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Koji Tamada
- Department of Immunology and Cell Signaling Analysis, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Global Center of Excellence Program, Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
70
|
Olivier M, Foret B, Le Vern Y, Kerboeuf D, Guilloteau LA. Plasticity of migrating CD1b+ and CD1b- lymph dendritic cells in the promotion of Th1, Th2 and Th17 in response to Salmonella and helminth secretions. PLoS One 2013; 8:e79537. [PMID: 24223964 PMCID: PMC3818231 DOI: 10.1371/journal.pone.0079537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/30/2013] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) are pivotal in the development of specific T-cell responses to control pathogens, as they govern both the initiation and the polarization of adaptive immunity. To investigate the capacities of migrating DCs to respond to pathogens, we used physiologically generated lymph DCs (L-DCs). The flexible polarization of L-DCs was analysed in response to Salmonella or helminth secretions known to induce different T cell responses. Mature conventional CD1b+ L-DCs showed a predisposition to promote pro-inflammatory (IL-6), pro-Th1 (IL-12p40) and anti-inflammatory (IL-10) responses which were amplified by Salmonella, and limited to only IL-6 induction by helminth secretions. The other major population of L-DCs did not express the CD1b molecule and displayed phenotypic features of immaturity compared to CD1b+ L-DCs. Salmonella infection reduced the constitutive expression of TNF-α and IL-4 mRNA in CD1b- L-DCs, whereas this expression was not affected by helminth secretions. The cytokine response of T cells promoted by L-DCs was analysed in T cell subsets after co-culture with Salmonella or helminth secretion-driven CD1b+ or CD1b- L-DCs. T cells preferentially expressed the IL-17 gene, and to a lesser extent the IFN-γ and IL-10 genes, in response to Salmonella-driven CD1b+ L-DCs, whereas a preferential IL-10, IFN-γ and IL-17 gene expression was observed in response to Salmonella-driven CD1b- L-DCs. In contrast, a predominant IL-4 and IL-13 gene expression by CD4+ and CD8+ T cells was observed after stimulation of CD1b+ and CD1b- L-DCs with helminth secretions. These results show that mature conventional CD1b+ L-DCs maintain a flexible capacity to respond differently to pathogens, that the predisposition of CD1b- L-DCs to promote a Th2 response can be oriented towards other Th responses, and finally that the modulation of migrating L-DCs responses is controlled more by the pathogen encountered than the L-DC subsets.
Collapse
Affiliation(s)
- Michel Olivier
- UR1282 Infectiologie et Santé Publique, INRA, Nouzilly, France
| | - Benjamin Foret
- UR1282 Infectiologie et Santé Publique, INRA, Nouzilly, France
| | - Yves Le Vern
- Laboratoire de Cytométrie, Institut National de la Recherche Agronomique, Nouzilly, France
| | | | | |
Collapse
|
71
|
Riner DK, Ferragine CE, Maynard SK, Davies SJ. Regulation of innate responses during pre-patent schistosome infection provides an immune environment permissive for parasite development. PLoS Pathog 2013; 9:e1003708. [PMID: 24130499 PMCID: PMC3795041 DOI: 10.1371/journal.ppat.1003708] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/29/2013] [Indexed: 12/19/2022] Open
Abstract
Blood flukes of the genus Schistosoma infect over 200 million people, causing granulomatous pathology with accompanying morbidity and mortality. As a consequence of extensive host-parasite co-evolution, schistosomes exhibit a complex relationship with their hosts, in which immunological factors are intimately linked with parasite development. Schistosomes fail to develop normally in immunodeficient mice, an outcome specifically dependent on the absence of CD4⁺ T cells. The role of CD4⁺ T cells in parasite development is indirect and mediated by interaction with innate cells, as repeated toll-like receptor 4 stimulation is sufficient to restore parasite development in immunodeficient mice in the absence of CD4⁺ T cells. Here we show that repeated stimulation of innate immunity by an endogenous danger signal can also restore parasite development and that both these stimuli, when administered repeatedly, lead to the regulation of innate responses. Supporting a role for regulation of innate responses in parasite development, we show that regulation of inflammation by neutralizing anti-TNF antibodies also restores parasite development in immunodeficient mice. Finally, we show that administration of IL-4 to immunodeficient mice to regulate inflammation by induction of type 2 responses also restores parasite development. These findings suggest that the type 2 response driven by CD4⁺ T cells during pre-patent infection of immunocompetent hosts is exploited by schistosomes to complete their development to reproductively mature adult parasites.
Collapse
Affiliation(s)
- Diana K. Riner
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Christine E. Ferragine
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Sean K. Maynard
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Stephen J. Davies
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
72
|
Petersen HJ, Smith AM. The role of the innate immune system in granulomatous disorders. Front Immunol 2013; 4:120. [PMID: 23745122 PMCID: PMC3662972 DOI: 10.3389/fimmu.2013.00120] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/05/2013] [Indexed: 12/21/2022] Open
Abstract
The dynamic structure of the granuloma serves to protect the body from microbiological challenge. This organized aggregate of immune cells seeks to contain this challenge and protect against dissemination, giving host immune cells a chance to eradicate the threat. A number of systemic diseases are characterized by this specialized inflammatory process and granulomas have been shown to develop at multiple body sites and in various tissues. Central to this process is the macrophage and the arms of the innate immune response. This review seeks to explore how the innate immune response drives this inflammatory process in a contrast of diseases, particularly those with a component of immunodeficiency. By understanding the genes and inflammatory mechanisms behind this specialized immune response, will guide research in the development of novel therapeutics to combat granulomatous diseases.
Collapse
|
73
|
Dyarrheal Syndrome in a Patient Co-Infected with Leishmania infantum and Schistosoma mansoni. Case Rep Med 2012; 2012:240512. [PMID: 23213338 PMCID: PMC3505658 DOI: 10.1155/2012/240512] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/16/2012] [Indexed: 11/18/2022] Open
Abstract
This case report describes an atypical clinical presentation of visceral leishmaniasis affecting the digestive tract and causing malabsorption syndrome in a patient without recognized immunosuppressive condition. After appropriate treatment for the classical visceral form of the disease, diarrhea persisted as the main symptom and massive infection by Leishmania was detected by histopathology analysis of the duodenal mucosa. Schistosoma mansoni coinfection was also confirmed and treated without impact on diarrhea. New course of amphotericin B finally led to complete improvement of diarrhea. Atypical visceral leishmaniasis involving the gastrointestinal tract is well recognized in HIV coinfection but very rare in immunocompetent patients. The factors determining the control or evolution of the Leishmania infection have not been completely identified. This case stresses the importance of atypical symptoms and the unusual location of visceral leishmaniasis, not only in immunodepressed patients, and raises the possible influence of chronic infection by S. mansoni reducing the immune response to Leishmania.
Collapse
|
74
|
Smith KA, Harcus Y, Garbi N, Hämmerling GJ, MacDonald AS, Maizels RM. Type 2 innate immunity in helminth infection is induced redundantly and acts autonomously following CD11c(+) cell depletion. Infect Immun 2012; 80:3481-9. [PMID: 22851746 PMCID: PMC3457557 DOI: 10.1128/iai.00436-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/16/2012] [Indexed: 11/20/2022] Open
Abstract
Infection with gastrointestinal helminths generates a dominant type 2 response among both adaptive (Th2) and innate (macrophage, eosinophil, and innate lymphoid) immune cell types. Two additional innate cell types, CD11c(high) dendritic cells (DCs) and basophils, have been implicated in the genesis of type 2 immunity. Investigating the type 2 response to intestinal nematode parasites, including Heligmosomoides polygyrus and Nippostrongylus brasiliensis, we first confirmed the requirement for DCs in stimulating Th2 adaptive immunity against these helminths through depletion of CD11c(high) cells by administration of diphtheria toxin to CD11c.DOG mice. In contrast, responsiveness was intact in mice depleted of basophils by antibody treatment. Th2 responses can be induced by adoptive transfer of DCs, but not basophils, exposed to soluble excretory-secretory products from these helminths. However, innate type 2 responses arose equally strongly in the presence or absence of CD11c(high) cells or basophils; thus, in CD11c.DOG mice, the alternative activation of macrophages, as measured by expression of arginase-1, RELM-α, and Ym-1 (Chi3L3) in the intestine following H. polygyrus infection or in the lung following N. brasiliensis infection, was unaltered by depletion of CD11c-expressing DCs and alveolar macrophages or by antibody-mediated basophil depletion. Similarly, goblet cell-associated RELM-β in lung and intestinal tissues, lung eosinophilia, and expansion of innate lymphoid ("nuocyte") populations all proceeded irrespective of depletion of CD11c(high) cells or basophils. Thus, while CD11c(high) DCs initiate helminth-specific adaptive immunity, innate type 2 cells are able to mount an autonomous response to the challenge of parasite infection.
Collapse
Affiliation(s)
- Katherine A. Smith
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne Harcus
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Natalio Garbi
- Division of Molecular Immunology, German Cancer Research Center, Heidelberg, Germany
- Institutes of Molecular Medicine and Experimental Immunology (IMMEI), University of Bonn, Bonn, Germany
| | - Günter J Hämmerling
- Division of Molecular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Andrew S. MacDonald
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Rick M. Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
75
|
Rujeni N, Taylor DW, Mutapi F. Human schistosome infection and allergic sensitisation. J Parasitol Res 2012; 2012:154743. [PMID: 22970345 PMCID: PMC3434398 DOI: 10.1155/2012/154743] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/28/2012] [Indexed: 12/24/2022] Open
Abstract
Several field studies have reported an inverse relationship between the prevalence of helminth infections and that of allergic sensitisation/atopy. Recent studies show that immune responses induced by helminth parasites are, to an extent, comparable to allergic sensitisation. However, helminth products induce regulatory responses capable of inhibiting not only antiparasite immune responses, but also allergic sensitisation. The relative effects of this immunomodulation on the development of protective schistosome-specific responses in humans has yet to be demonstrated at population level, and the clinical significance of immunomodulation of allergic disease is still controversial. Nonetheless, similarities in immune responses against helminths and allergens pose interesting mechanistic and evolutionary questions. This paper examines the epidemiology, biology and immunology of allergic sensitisation/atopy, and schistosome infection in human populations.
Collapse
Affiliation(s)
- Nadine Rujeni
- Institute of Immunology and Infection Research, Centre for Immunity, Infection, and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Rd, Edinburgh EH9 3JT, UK
| | - David W. Taylor
- Institute of Immunology and Infection Research, Centre for Immunity, Infection, and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Rd, Edinburgh EH9 3JT, UK
| | - Francisca Mutapi
- Institute of Immunology and Infection Research, Centre for Immunity, Infection, and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Rd, Edinburgh EH9 3JT, UK
| |
Collapse
|
76
|
Tundup S, Srivastava L, Harn Jr. DA. Polarization of host immune responses by helminth-expressed glycans. Ann N Y Acad Sci 2012; 1253:E1-E13. [DOI: 10.1111/j.1749-6632.2012.06618.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
77
|
Banfield S, Pascoe E, Thambiran A, Siafarikas A, Burgner D. Factors associated with the performance of a blood-based interferon-γ release assay in diagnosing tuberculosis. PLoS One 2012; 7:e38556. [PMID: 22701664 PMCID: PMC3373489 DOI: 10.1371/journal.pone.0038556] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/11/2012] [Indexed: 11/18/2022] Open
Abstract
Background Indeterminate results are a recognised limitation of interferon-γ release assays (IGRA) in the diagnosis of latent tuberculosis (TB) infection (LTBI) and TB disease, especially in children. We investigated whether age and common co-morbidities were associated with IGRA performance in an unselected cohort of resettled refugees. Methods A retrospective cross-sectional study of refugees presenting for their post-resettlement health assessment during 2006 and 2007. Refugees were investigated for prevalent infectious diseases, including TB, and for common nutritional deficiencies and haematological abnormalities as part of standard clinical screening protocols. Tuberculosis screening was performed by IGRA; QuantiFERON-TB Gold in 2006 and QuantiFERON-TBGold In-Tube in 2007. Results Complete data were available on 1130 refugees, of whom 573 (51%) were children less than 17 years and 1041 (92%) were from sub-Saharan Africa. All individuals were HIV negative. A definitive IGRA result was obtained in 1004 (89%) refugees, 264 (26%) of which were positive; 256 (97%) had LTBI and 8 (3%) had TB disease. An indeterminate IGRA result was obtained in 126 (11%) refugees (all failed positive mitogen control). In multivariate analysis, younger age (linear OR = 0.93 [95% CI 0.91–0.95], P<0.001), iron deficiency anaemia (2.69 [1.51–4.80], P = 0.001), malaria infection (3.04 [1.51–6.09], P = 0.002), and helminth infection (2.26 [1.48–3.46], P<0.001), but not vitamin D deficiency or insufficiency, were associated with an indeterminate IGRA result. Conclusions Younger age and a number of common co-morbidities are significantly and independently associated with indeterminate IGRA results in resettled predominantly African refugees.
Collapse
Affiliation(s)
- Sally Banfield
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
| | - Elaine Pascoe
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
- School of Medicine, University of Queensland, Queensland, Australia
| | - Aesen Thambiran
- The Migrant Health Unit, Perth, Western Australia, Australia
| | - Aris Siafarikas
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
- Endocrinology and Diabetes, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
- The Institute of Health and Rehabilitation Research, University of Notre Dame, Fremantle, Western Australia, Australia
| | - David Burgner
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
- Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
78
|
Rani R, Jordan MB, Divanovic S, Herbert DR. IFN-γ-driven IDO production from macrophages protects IL-4Rα-deficient mice against lethality during Schistosoma mansoni infection. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2001-8. [PMID: 22426339 DOI: 10.1016/j.ajpath.2012.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 11/23/2011] [Accepted: 01/09/2012] [Indexed: 01/22/2023]
Abstract
The balance between alternatively activated macrophages (AAMs)/M2 cells and classically activated macrophages (M1 cells) is largely dependent on the effects of IL-4 and interferon (IFN)-γ, respectively. Although AAM/M2 cells can suppress inflammation and repair damaged tissue, M1 cells produce an array of pro-inflammatory molecules. Macrophage effector functions are critical for host protection against many infectious diseases, but it remains unknown whether lethal immunopathological characteristics, caused by Schistosoma mansoni infection in IL-4 receptor α-deficient mice (IL-4Rα(-/-)), results from the absence of M2 cells or increased numbers of M1 cells. In this study, we generated mice that completely lack IL-4Rα signaling in the context of a macrophage-specific loss of IFN-γ responsiveness (MIIG × IL-4Rα(-/-)). Contrary to what we expected, acute schistosomiasis resulted in greater liver injury and mortality in MIIG × IL-4Rα(-/-) mice compared with IL-4Rα(-/-) mice. Greater tissue injury in MIIG × IL-4Rα(-/-) mice was likely because of a lack of indoleamine 2,3 dioxygenase (IDO), a critical regulator of immunosuppression. Indeed, MIIG × IL-4Rα(-/-) failed to up-regulate IDO expression, and IL-4Rα(-/-) mice treated with an IDO antagonist underwent greater liver damage and mortality compared with mock-treated IL-4Rα(-/-) mice. Thus, we propose that, in the absence of AAM/M2 cells, IFN-γ-induced M1 cells suppress tissue-damaging inflammation during acute schistosomiasis through an IDO-dependent mechanism.
Collapse
Affiliation(s)
- Reena Rani
- Division of Cellular and Molecular Immunology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
79
|
Mentink-Kane MM, Cheever AW, Wilson MS, Madala SK, Beers LM, Ramalingam TR, A.Wynn T. Accelerated and progressive and lethal liver fibrosis in mice that lack interleukin (IL)-10, IL-12p40, and IL-13Rα2. Gastroenterology 2011; 141:2200-9. [PMID: 21864478 PMCID: PMC3221932 DOI: 10.1053/j.gastro.2011.08.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 07/29/2011] [Accepted: 08/08/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Progressive fibrosis contributes to the morbidity of several chronic diseases; it typically develops slowly, so the mechanisms that control its progression and resolution have been difficult to model. The proteins interleukin (IL)-10, IL-12p40, and IL-13Rα2 regulate hepatic fibrosis following infection with the helminth parasite Schistosoma mansoni. We examined whether these mediators interact to slow the progression of hepatic fibrosis in mice with schistosomiasis. METHODS IL-10(-/-), IL-12/23(p40)(-/-), and IL-13Rα2(-/-) mice were crossed to generate triple knockout (TKO) mice. We studied these mice to determine whether the simultaneous deletion of these 3 negative regulators of the immune response accelerated mortality from liver fibrosis following infection with S mansoni. RESULTS Induction of inflammation by S mansoni, liver fibrosis, and mortality increased greatly in TKO mice compared with wild-type mice; 100% of the TKO mice died by 10 weeks after infection. Morbidity and mortality were associated with the development of portal hypertension, hepatosplenomegaly, gastrointestinal bleeding, ascites, thrombocytopenia, esophageal and gastric varices, anemia, and increased levels of liver enzymes, all features of advanced liver disease. IL-10, IL-12p40, and IL-13Rα2 reduced the production and activity of the profibrotic cytokine IL-13. A neutralizing antibody against IL-13 reduced the morbidity and mortality of the TKO mice following S mansoni infection. CONCLUSIONS IL-10, IL-12p40, and IL-13Rα2 act cooperatively to suppress liver fibrosis in mice following infection with S mansoni. This model rapidly reproduces many of the complications observed in patients with advanced cirrhosis, so it might be used to evaluate the efficacy of antifibrotic reagents being developed for schistosomiasis or other fibrotic diseases associated with a T-helper 2 cell-mediated immune response.
Collapse
Affiliation(s)
- Margaret M. Mentink-Kane
- Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | - Mark S. Wilson
- Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Satish K. Madala
- Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lara Megan Beers
- Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thirumalai R. Ramalingam
- Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas A.Wynn
- Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
80
|
Seidl A, Panzer M, Voehringer D. Protective immunity against the gastrointestinal nematode Nippostrongylus brasiliensis requires a broad T-cell receptor repertoire. Immunology 2011; 134:214-23. [PMID: 21896015 DOI: 10.1111/j.1365-2567.2011.03480.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The parasitic gastrointestinal nematode Nippostrongylus brasiliensis induces massive expansion of T helper type 2 (Th2) cells in the lung and small intestine. Th2 cells are a major source of interleukin-4 and interleukin-13, two cytokines that appear essential for rapid worm expulsion. It is unclear whether all Th2 cells induced during infection are pathogen-specific because Th2 cells might also be induced by parasite-derived superantigens or cytokine-mediated bystander activation. Bystander Th2 polarization could explain the largely unspecific B-cell response during primary infection. Furthermore, it is not known whether protective immunity depends on a polyclonal repertoire of T-cell receptor (TCR) specificities. To address these unresolved issues, we performed adoptive transfer experiments and analysed the TCR-Vβ repertoire before and after infection of mice with the helminth N. brasiliensis. The results demonstrate that all Th2 cells were generated by antigen-specific rather than superantigen-driven or cytokine-driven activation. Furthermore, we show that worm expulsion was impaired in mice with a limited repertoire of TCR specificities, indicating that a polyclonal T-cell response is required for protective immunity.
Collapse
Affiliation(s)
- Alexander Seidl
- Institute for Immunology, Ludwig-Maximilians-University, Munich, Germany
| | | | | |
Collapse
|
81
|
Zaccone P, Burton OT, Gibbs SE, Miller N, Jones FM, Schramm G, Haas H, Doenhoff MJ, Dunne DW, Cooke A. The S. mansoni glycoprotein ω-1 induces Foxp3 expression in NOD mouse CD4⁺ T cells. Eur J Immunol 2011; 41:2709-18. [PMID: 21710488 DOI: 10.1002/eji.201141429] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/18/2011] [Accepted: 06/10/2011] [Indexed: 11/08/2022]
Abstract
Immunization with Schistosoma mansoni soluble antigen preparations protects non-obese diabetic (NOD) mice against the development of type 1 diabetes. These preparations have long been known to induce Th2 responses in vitro and in vivo. Recently, two separate groups have reported that ω-1, a well-characterized glycoprotein in S. mansoni soluble egg antigens (SEA), which with IL-4 inducing principle of S. mansoni eggs (IPSE/α-1) is one of the two major glycoproteins secreted by live eggs, is a major SEA component responsible for this effect. We found that ω-1 induces Foxp3 as well as IL-4 expression when injected in vivo. We confirmed that ω-1 conditions DCs to drive Th2 responses and further demonstrated that ω-1 induces Foxp3(+) T cells from NOD mouse naïve T cells. In contrast, IPSE/α-1 did not drive Foxp3 responses. The in vitro development of Foxp3-expressing T cells by ω-1 was TGF-β- and retinoic acid-dependent. Our work, therefore, identifies ω-1 as an important factor for the induction of Foxp3(+) T cells by SEA in NOD mice.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
p16INK4a deficiency promotes IL-4-induced polarization and inhibits proinflammatory signaling in macrophages. Blood 2011; 118:2556-66. [PMID: 21636855 DOI: 10.1182/blood-2010-10-313106] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The CDKN2A locus, which contains the tumor suppressor gene p16(INK4a), is associated with an increased risk of age-related inflammatory diseases, such as cardiovascular disease and type 2 diabetes, in which macrophages play a crucial role. Monocytes can polarize toward classically (CAMϕ) or alternatively (AAMϕ) activated macrophages. However, the molecular mechanisms underlying the acquisition of these phenotypes are not well defined. Here, we show that p16(INK4a) deficiency (p16(-/-)) modulates the macrophage phenotype. Transcriptome analysis revealed that p16(-/-) BM-derived macrophages (BMDMs) exhibit a phenotype resembling IL-4-induced macrophage polarization. In line with this observation, p16(-/-) BMDMs displayed a decreased response to classically polarizing IFNγ and LPS and an increased sensitivity to alternative polarization by IL-4. Furthermore, mice transplanted with p16(-/-) BM displayed higher hepatic AAMϕ marker expression levels on Schistosoma mansoni infection, an in vivo model of AAMϕ phenotype skewing. Surprisingly, p16(-/-) BMDMs did not display increased IL-4-induced STAT6 signaling, but decreased IFNγ-induced STAT1 and lipopolysaccharide (LPS)-induced IKKα,β phosphorylation. This decrease correlated with decreased JAK2 phosphorylation and with higher levels of inhibitory acetylation of STAT1 and IKKα,β. These findings identify p16(INK4a) as a modulator of macrophage activation and polarization via the JAK2-STAT1 pathway with possible roles in inflammatory diseases.
Collapse
|
83
|
Lack of protective efficacy in buffaloes vaccinated with Fasciola gigantica leucine aminopeptidase and peroxiredoxin recombinant proteins. Acta Trop 2011; 118:217-22. [PMID: 21376699 DOI: 10.1016/j.actatropica.2011.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 11/21/2022]
Abstract
Gene coding for leucine aminopeptidase (LAP), a metalloprotease, was identified in the tropical liver fluke, Fasciola gigantica; that on sequence analysis showed a close homology (98.6%) with leucine aminopeptidase of the temperate liver fluke, Fasciola hepatica. The recombinant leucine aminopeptidase protein was expressed in Escherichia coli. F. gigantica peroxiredoxin, a hydrogen peroxide scavenger and an immunomodulating protein, was also cloned and expressed in E. coli. A vaccination trial in buffaloes was conducted with these two recombinant proteins, with 150 and 300 μg of leucine aminopeptidase and a cocktail of 150 μg each of recombinant leucine aminopeptidase and peroxiredoxin in three groups, respectively. Both Th1- and Th2-associated humoral immune responses were elicited to immunization with these antigens. A challenge study with 400 metacercariae did not show a significant protection in terms of reduction in the worm burden (8.4%) or anti-fecundity/embryonation effect in the immunized groups, as to the non-immunized control animals. Our observations in this buffalo vaccination trial are contrary to the earlier promise shown by leucine aminopeptidase of F. hepatica as a leading candidate vaccine molecule. Identification of leucine aminopeptidase gene and evaluation of the protein for its protective efficacy in buffaloes is the first scientific report on this protein in F. gigantica.
Collapse
|
84
|
Frantz FG, Ito T, Cavassani KA, Hogaboam CM, Lopes Silva C, Kunkel SL, Faccioli LH. Therapeutic DNA vaccine reduces schistosoma mansoni-induced tissue damage through cytokine balance and decreased migration of myofibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:223-9. [PMID: 21703404 DOI: 10.1016/j.ajpath.2011.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/04/2011] [Accepted: 03/15/2011] [Indexed: 01/11/2023]
Abstract
Helminths are known to elicit a wide range of immunomodulation characterized by dominant Th2-type immune responses. Our group previously showed that a DNA vaccine encoding the mycobacterial 65-kDa heat shock protein (DNA-hsp65) showed immunomodulatory properties. We also showed, using a helminth-tuberculosis (TB) co-infection model, that the DNA-hsp65 vaccine protected mice against TB. We next investigated the mechanistic role of the vaccine during helminth-TB co-infection. Clinically, helminth infection causes type 2 granulomas in the lung. Mice were immunized with DNA-hsp65 while they were submitted to the type 2 granuloma induction protocol by Schistosoma mansoni eggs infusion. In this work we investigated the effects of DNA-hsp65 on the pathology and immune response during the development of type 2 granuloma induced by S. mansoni eggs. Histologic analyses of lung parenchyma showed that the DNA-hsp65 vaccine protected mice against exacerbated fibrosis induced by Schistosoma eggs, and decreased the size of the granulomas. These changes were correlated with a reduction in the number of T cells specific for the egg antigens in the lung and also with modulation of Th2 cytokine expression. Taken together, our results showed that the adjuvant properties of the DNA-hsp65 vaccine regulated the immune response in this Th2 model, and resulted in a preserved lung parenchyma.
Collapse
Affiliation(s)
- Fabiani Gai Frantz
- Department of Clinical Analyses, Toxicology and Bromatologics, Ribeirão Preto College of Pharmaceutical Sciences, University of São Paulo-Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
85
|
Ghoshal UC, Ranjan P. Post-infectious irritable bowel syndrome: the past, the present and the future. J Gastroenterol Hepatol 2011; 26 Suppl 3:94-101. [PMID: 21443719 DOI: 10.1111/j.1440-1746.2011.06643.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS), once thought to be a psychosomatic disease, is being considered to be more organic. Post-infectious IBS (PI-IBS), defined as acute onset IBS (by Rome criteria) after gastrointestinal infection in an individual without prior IBS with two or more of the followings: fever, vomiting, diarrhea, a positive stool culture. The recent and old literature of PI-IBS will be reviewed. Future directions for research will be presented. METHODS Literature on PI-IBS was reviewed by electronic search and cross references of these papers. RESULTS Interest in studies on PI-IBS, which was described five to six decades ago, re-surfaced recently. 3.6 to 32% patients with acute gastroenteritis develop PI-IBS during 3-12 month follow-up. PI-IBS is commonly diarrhea predominant. Factors implicated in development include nature of pathogens, duration and severity of diarrhea, younger age, female gender and psychological co-morbidities like anxiety and depression. The pathogenesis of PI-IBS is largely related to continuing gut inflammation due to inability of the host to contain the inflammatory reaction, altered gut microbiota, increased intestinal permeability, muscle hyper-contractility and visceral hypersensitivity. There could be an overlap between PI-IBS and post-infectious malabsorption syndrome (PI-MAS), popularly known as tropical sprue. CONCLUSIONS Development of IBS in a subset of patients with acute gastroenteritis is uncontested. This is expected to open a paradigm shift in understanding the pathogenesis of IBS. Future studies should address the issue of overlap of PI-IBS and PI-MAS. Exploring the molecular mechanisms of pathogenesis of PI-IBS may help to design preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | | |
Collapse
|
86
|
|
87
|
Bodammer P, Waitz G, Loebermann M, Holtfreter MC, Maletzki C, Krueger MR, Nizze H, Emmrich J, Reisinger EC. Schistosoma mansoni infection but not egg antigen promotes recovery from colitis in outbred NMRI mice. Dig Dis Sci 2011; 56:70-8. [PMID: 20428947 DOI: 10.1007/s10620-010-1237-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 04/06/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND The ability of intestinal helminths to manipulate the immune system of their host towards a Th2 response has been proposed to modulate auto-immune and allergic diseases. AIMS This initial study investigated the anti-inflammatory potential of S. mansoni and soluble egg antigen (SEA) in a murine model of colitis. METHODS Colitis was induced in female NMRI mice by 5% dextran sulfate sodium (DSS) for 7 days, either 9 weeks post-infection with S. mansoni or during treatment with SEA. In addition to clinical signs of colitis, colon histology, immunohistochemistry, and flow cytometry of leukocytes were performed. Colon cytokines were measured using a quantitative real-time technique. RESULTS Infection with cercariae of S. mansoni attenuated DSS-induced colitis. Clinical symptoms such as weight loss and shortening of colon length were significantly prevented. Histological scores and cell infiltration were affected and expression of pro-inflammatory cytokines in the colons of infected DSS colitis mice was reduced. In contrast, application of SEA failed to improve colitis, even though some findings like earlier manifestation of inflammation and local induction of Th2 cytokines were similar to the effects of cercarial infection. CONCLUSIONS The results presented here suggest that SEA treatment could not protect mice from acute colitis. However, both infection with S. mansoni and injection of SEA affect mucosal immune responses.
Collapse
Affiliation(s)
- Peggy Bodammer
- Division of Tropical Medicine and Infectious Diseases, Department of Internal Medicine, University of Rostock, Rostock, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Schramm G, Haas H. Th2 immune response against Schistosoma mansoni infection. Microbes Infect 2010; 12:881-8. [DOI: 10.1016/j.micinf.2010.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 01/28/2023]
|
89
|
BluePort: a platform to study the eosinophilic response of mice to the bite of a vector of Leishmania parasites, Lutzomyia longipalpis sand flies. PLoS One 2010; 5:e13546. [PMID: 21048957 PMCID: PMC2965088 DOI: 10.1371/journal.pone.0013546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 09/30/2010] [Indexed: 12/25/2022] Open
Abstract
Background Visceral Leishmaniasis is a serious human disease transmitted, in the New World, by Lutzomyia longipalpis sand flies. Natural resistance to Leishmania transmission in residents of endemic areas has been attributed to the acquisition of immunity to sand fly salivary proteins. One theoretical way to accelerate the acquisition of this immunity is to increase the density of antigen-presenting cells at the sand fly bite site. Here we describe a novel tissue platform that can be used for this purpose. Methodology/Principal Findings BluePort is a well-vascularized and macrophage-rich compartment induced in the subcutaneous tissue of mice via injection of agarose beads covered with Cibacron blue. We describe the sequence of inflammatory events leading to its formation and how it can be used to study the dermal response to the bite of L. longipalpis sand flies. Results presented indicate that a shift in the inflammatory response, from neutrophilic to eosinophilic, is the main histopathological feature associated with the immunity acquired through repeated exposure to the bite of sand flies, and that the BluePort tissue compartment could be used to accelerate this process. In addition, changes observed inside the BluePort parenchyma indicate that it could be used to study complex immunobiological processes, and to develop ectopic secondary lymphoid structures. Conclusions/Significance Understanding the characteristics of the dermal response to the bite of sand flies is a critical element of strategies to control leishmaniasis using vaccines that target salivary proteins. Finding that dermal eosinophilia is such a prominent component of the anti-salivary immunity induced by repeated exposure to sand fly bites raises one important consideration: how to avoid the immunological conflict derived from a protective Th2-driven immunity directed to sand fly saliva with a protective Th1-driven immunity directed to the parasite. The BluePort platform is an ideal tool to address experimentally this conundrum.
Collapse
|
90
|
Saric J, Li JV, Swann JR, Utzinger J, Calvert G, Nicholson JK, Dirnhofer S, Dallman MJ, Bictash M, Holmes E. Integrated cytokine and metabolic analysis of pathological responses to parasite exposure in rodents. J Proteome Res 2010; 9:2255-64. [PMID: 20092362 PMCID: PMC2865884 DOI: 10.1021/pr901019z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Parasitic infections cause a myriad of responses in their mammalian hosts, on immune as well as on metabolic level. A multiplex panel of cytokines and metabolites derived from four parasite-rodent models, namely, Plasmodium berghei−mouse, Trypanosoma brucei brucei−mouse, Schistosoma mansoni−mouse, and Fasciola hepatica−rat were statistically coanalyzed. 1H NMR spectroscopy and multivariate statistical analysis were used to characterize the urine and plasma metabolite profiles in infected and noninfected animals. Each parasite generated a unique metabolic signature in the host. Plasma cytokine concentrations were obtained using the ‘Meso Scale Discovery’ multi cytokine assay platform. Multivariate data integration methods were subsequently used to elucidate the component of the metabolic signature which is associated with inflammation and to determine specific metabolic correlates with parasite-induced changes in plasma cytokine levels. For example, the relative levels of acetyl glycoproteins extracted from the plasma metabolite profile in the P. berghei-infected mice were statistically correlated with IFN-γ, whereas the same cytokine was anticorrelated with glucose levels. Both the metabolic and the cytokine data showed a similar spatial distribution in principal component analysis scores plots constructed for the combined murine data, with samples from all infected animals clustering according to the parasite species and whereby the protozoan infections (P. berghei and T. b. brucei) grouped separately from the helminth infection (S. mansoni). For S. mansoni, the main infection-responsive cytokines were IL-4 and IL-5, which covaried with lactate, choline, and d-3-hydroxybutyrate. This study demonstrates that the inherently differential immune response to single- and multicellular parasites not only manifests in the cytokine expression, but also consequently imprints on the metabolic signature, and calls for in-depth analysis to further explore direct links between immune features and biochemical pathways. Parasitic infections cause a myriad of responses in their mammalian hosts, including a range of immune reactions and metabolic perturbations. Here, a multiplex panel of cytokines and metabolites derived from four parasite-rodent models, namely, Plasmodium berghei−mouse, Trypanosoma brucei brucei−mouse, Schistosoma mansoni−mouse, and Fasciola hepatica−rat were statistically coanalyzed. 1H NMR spectroscopy and multivariate statistical analysis were used to characterize the urine and plasma metabolite profiles in infected and noninfected control animals.
Collapse
Affiliation(s)
- Jasmina Saric
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Frantz FG, Rosada RS, Peres-Buzalaf C, Perusso FRT, Rodrigues V, Ramos SG, Kunkel SL, Silva CL, Faccioli LH. Helminth coinfection does not affect therapeutic effect of a DNA vaccine in mice harboring tuberculosis. PLoS Negl Trop Dis 2010; 4:e700. [PMID: 20544012 PMCID: PMC2882318 DOI: 10.1371/journal.pntd.0000700] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/08/2010] [Indexed: 11/29/2022] Open
Abstract
Background Helminthiasis and tuberculosis (TB) coincide geographically and there is much interest in exploring how concurrent worm infections might alter immune responses against bacilli and might necessitate altered therapeutic approaches. A DNA vaccine that codifies heat shock protein Hsp65 from M. leprae (DNAhsp65) has been used in therapy during experimental tuberculosis. This study focused on the impact of the co-existence of worms and TB on the therapeutic effects of DNAhsp65. Methodology/Principal Findings Mice were infected with Toxocara canis or with Schistosoma mansoni, followed by coinfection with M. tuberculosis and treatment with DNAhsp65. While T. canis infection did not increase vulnerability to pulmonary TB, S. mansoni enhanced susceptibility to TB as shown by higher numbers of bacteria in the lungs and spleen, which was associated with an increase in Th2 and regulatory cytokines. However, in coinfected mice, the therapeutic effect of DNAhsp65 was not abrogated, as indicated by colony forming units and analysis of histopathological changes. In vitro studies indicated that Hsp65-specific IFN-γ production was correlated with vaccine-induced protection in coinfected mice. Moreover, in S. mansoni-coinfected mice, DNA treatment inhibited in vivo TGF-β and IL-10 production, which could be associated with long-term protection. Conclusions/Significance We have demonstrated that the therapeutic effects of DNAhsp65 in experimental TB infection are persistent in the presence of an unrelated Th2 immune response induced by helminth infections. From 14 diseases considered by WHO as Neglected Tropical Diseases, four involve helminth infections, such as schistosomiasis and soil-transmitted helminthiasis. Toxocariasis is a soil-transmitted worm highly prevalent in many developing countries, while schistosomiasis causes an annual mortality of 14,000 deaths per year, with 200–300 million infected people and 10% at risk of infection worldwide. Additionally, tuberculosis (TB) remains one of the leading causes of morbidity and mortality in many settings, particularly in the world's poorest countries. Mycobacteria and helminths are co-endemic and induce opposing patterns of immune responses in the host, recognized as Th1 and Th2 respectively. These co-existing patterns could be associated with the failure of TB vaccines. In this sense, we investigated the inflammatory and immune response in a coinfection model with T. canis or S. mansoni and M. tuberculosis analyzing the effects of an immunotherapy that has previously shown efficacy in experimental TB. This immunotherapy is based on a DNA vaccine that codifies a mycobacterial heat shock protein (hsp65), which can prevent TB in a prophylactic and also therapeutic setting. In this work, we show that helminth coinfection does not abrogate the therapeutic effects of DNAhsp65 vaccine against TB.
Collapse
Affiliation(s)
- Fabiani G Frantz
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Oboki K, Ohno T, Kajiwara N, Saito H, Nakae S. IL-33 and IL-33 receptors in host defense and diseases. Allergol Int 2010; 59:143-60. [PMID: 20414050 DOI: 10.2332/allergolint.10-rai-0186] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Indexed: 12/20/2022] Open
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 cytokine family, which includes IL-1 and IL-18. IL-33 is considered to be crucial for induction of Th2-type cytokine-associated immune responses such as host defense against nematodes and allergic diseases by inducing production of such Th2-type cytokines as IL-5 and IL-13 by Th2 cells, mast cells, basophils and eosinophils. In addition, IL-33 is involved in the induction of non-Th2-type acute and chronic inflammation as a proinflammatory cytokine, similar to IL-1 and IL-18. In this review, we summarize and discuss the current knowledge regarding the roles of IL-33 and IL-33 receptors in host defense and disease development.
Collapse
Affiliation(s)
- Keisuke Oboki
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | |
Collapse
|
93
|
Marillier RG, Brombacher TM, Dewals B, Leeto M, Barkhuizen M, Govender D, Kellaway L, Horsnell WGC, Brombacher F. IL-4R{alpha}-responsive smooth muscle cells increase intestinal hypercontractility and contribute to resistance during acute Schistosomiasis. Am J Physiol Gastrointest Liver Physiol 2010; 298:G943-51. [PMID: 20360135 DOI: 10.1152/ajpgi.00321.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interleukin-(IL)-4 and IL-13 signal through heterodimeric receptors containing a common IL-4 receptor-alpha (IL-4Ralpha) subunit, which is important for protection against helminth infections, including schistosomiasis. Previous studies demonstrated important roles for IL-4Ralpha-responsive hematopoietic cells, including T cells and macrophages in schistosomiasis. In this study, we examined the role of IL-4Ralpha responsiveness by nonhematopoietic smooth muscle cells during experimental acute murine schistosomiasis. Comparative Schistosoma mansoni infection studies with smooth muscle cell-specific IL-4Ralpha-deficient (SM-MHC(cre)IL-4Ralpha(-/flox)) mice, heterozygous control (IL-4Ralpha(-/flox)) mice, and global IL-4Ralpha-deficient (IL-4Ralpha(-/-)) mice were conducted. S. mansoni-infected SM-MHC(cre)IL-4Ralpha(-/flox) mice showed increased weight loss and earlier mortalities compared with IL-4Ralpha(-/flox) mice, despite comparable T(H)2/type 2 immune responses. In contrast to highly susceptible IL-4Ralpha-deficient mice, increased susceptibility in SM-MHC(cre)IL-4Ralpha(-/flox) mice was not accompanied by intestinal tissue damage and subsequent sepsis. However, both susceptible mutant mouse strains failed to efficiently expel eggs, demonstrated by egg reduction in the feces compared with control mice. Reduced egg expulsion was accompanied by impaired IL-4/IL-13-mediated hypercontractile intestinal responses, which was present in the more resistant control mice. Together, we conclude that IL-4Ralpha responsiveness by smooth muscle cells and subsequent IL-4- and IL-13-mediated hypercontractility are required for host protection during acute schistosomiasis to efficiently expel S. mansoni eggs and to prevent premature mortality.
Collapse
Affiliation(s)
- Reece G Marillier
- International Centre for Genetic Engineering and Biotechnology (ICGEB Univ. of Cape Town Campus, Wernher Beit South, 7925 Cape Town, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Herbert DR, Orekov T, Roloson A, Ilies M, Perkins C, O'Brien W, Cederbaum S, Christianson DW, Zimmermann N, Rothenberg ME, Finkelman FD. Arginase I suppresses IL-12/IL-23p40-driven intestinal inflammation during acute schistosomiasis. THE JOURNAL OF IMMUNOLOGY 2010; 184:6438-46. [PMID: 20483789 DOI: 10.4049/jimmunol.0902009] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alternatively activated macrophages prevent lethal intestinal pathology caused by worm ova in mice infected with the human parasite Schistosoma mansoni through mechanisms that are currently unclear. This study demonstrates that arginase I (Arg I), a major product of IL-4- and IL-13-induced alternatively activated macrophages, prevents cachexia, neutrophilia, and endotoxemia during acute schistosomiasis. Specifically, Arg I-positive macrophages promote TGF-beta production and Foxp3 expression, suppress Ag-specific T cell proliferation, and limit Th17 differentiation. S. mansoni-infected Arg I-deficient bone marrow chimeras develop a marked accumulation of worm ova within the ileum but impaired fecal egg excretion compared with infected wild-type bone marrow chimeras. Worm ova accumulation in the intestines of Arg I-deficient bone marrow chimeras was associated with intestinal hemorrhage and production of molecules associated with classical macrophage activation (increased production of IL-6, NO, and IL-12/IL-23p40), but whereas inhibition of NO synthase-2 has marginal effects, IL-12/IL-23p40 neutralization abrogates both cachexia and intestinal inflammation and reduces the number of ova within the gut. Thus, macrophage-derived Arg I protects hosts against excessive tissue injury caused by worm eggs during acute schistosomiasis by suppressing IL-12/IL-23p40 production and maintaining the Treg/Th17 balance within the intestinal mucosa.
Collapse
Affiliation(s)
- De'Broski R Herbert
- Research Service, Cincinnati Veterans Administration Medical Center, Cincinnati, OH 45220, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Chronic intestinal helminth infections are associated with immune hyporesponsiveness and induction of a regulatory network. Infect Immun 2010; 78:3160-7. [PMID: 20404082 DOI: 10.1128/iai.01228-09] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helminth infections have been associated with protection against allergy and autoimmune diseases. We investigated the effects of chronic infections with Ascaris lumbricoides and Trichuris trichiura (measured twice over a 5-year period) on cytokine and antibody responses. We collected blood from 1,060 children aged 4 to 11 years living in a poor urban area of Brazil and measured Th1 (gamma interferon [IFN-gamma]) and Th2 (interleukin-5 [IL-5] and IL-13) cytokines and the regulatory cytokine IL-10 in unstimulated and stimulated (with mitogen or A. lumbricoides antigens) cultures of peripheral blood leukocytes and levels of total IgE and anti-A. lumbricoides IgG4 and IgE in serum. Intestinal helminth infections were associated with an increased proportion of children producing IL-5 in response to A. lumbricoides and producing IL-10 spontaneously, especially among coinfected and chronically infected children. Helminth infections were associated with a generalized suppression of cytokine responses to mitogen. Levels of total IgE and anti-A. lumbricoides IgG4 and IgE were especially elevated in chronically infected children. In conclusion, intestinal helminth infections were associated with a typical Th2 immune response profile and with the induction of immune hyporesponsiveness that was associated with greater frequencies of the production of spontaneous IL-10.
Collapse
|
96
|
Immune modulation by Schistosoma mansoni antigens in NOD mice: effects on both innate and adaptive immune systems. J Biomed Biotechnol 2010; 2010:795210. [PMID: 20204176 PMCID: PMC2830582 DOI: 10.1155/2010/795210] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/10/2009] [Indexed: 12/27/2022] Open
Abstract
We have shown that Schistosoma mansoni egg soluble antigen (SEA) prevents diabetes in the nonobese diabetic (NOD) mouse inducing functional changes in antigen presenting cells (APCs) and expanding T helper (Th) 2 and regulatory T cell (Treg) responses. A Th2 response to S. mansoni infection or its antigens is key to both the establishment of tolerance and successfully reproduction in the host. More recently we demonstrated that SEA treatment upregulates bioactive TGFβ on T cells with consequent expansion of Foxp3+ Tregs, and these cells might be important in SEA-mediated diabetes prevention together with Th2 cells. In this study we profile further the phenotypic changes that SEA induces on APCs, with particular attention to cytokine expression and markers of macrophage alternative activation. Our studies suggest that TGFβ from T cells is important not just for Treg expansion but also for the successful Th2 response to SEA, and therefore, for diabetes prevention in the NOD mouse.
Collapse
|
97
|
Immunity against helminths: interactions with the host and the intercurrent infections. J Biomed Biotechnol 2010; 2010:428593. [PMID: 20150967 PMCID: PMC2817558 DOI: 10.1155/2010/428593] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/25/2009] [Indexed: 01/15/2023] Open
Abstract
Helminth parasites are of considerable medical and economic importance. Studies
of the immune response against helminths are of great interest in understanding
interactions between the host immune system and parasites. Effector immune
mechanisms against tissue-dwelling helminths and helminths localized in the
lumen of organs, and their regulation, are reviewed. Helminth infections are
characterized by an association of Th2-like and Treg responses. Worms are able
to persist in the host and are mainly responsible for chronic infection despite a
strong immune response developed by the parasitized host. Two types of
protection against the parasite, namely, premune and partial immunities, have been
described. Immune responses against helminths can also participate in
pathogenesis. Th2/Treg-like immunomodulation allows the survival of both host
and parasite by controlling immunopathologic disorders and parasite persistence.
Consequences of the modified Th2-like responses on co-infection, vaccination, and
inflammatory diseases are discussed.
Collapse
|
98
|
Abstract
Recently, there has been strong interest in the therapeutic potential of probiotics for irritable bowel syndrome (IBS). At the same time, there is a rapidly growing body of evidence to support an etiological role for gastrointestinal infection and the associated immune activation in the development of post-infectious IBS. In a more controversial area, small intestinal bacterial overgrowth has been associated with a subset of patients with IBS; the issue of whether it is appropriate to treat a subset of IBS patients with antibiotics and probiotics is currently a matter for debate. Thus, it appears that the gastrointestinal microbial flora may exert beneficial effects for symptoms of IBS under some circumstances, while in other situations gut microbes could give rise to symptoms of IBS. How do we make sense of the apparently diverse roles that 'bugs' may play in IBS? To address this question, we have conducted an in-depth review, attempting where possible to draw lessons from Asian studies.
Collapse
Affiliation(s)
- Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | | | | |
Collapse
|
99
|
de Oliveira Fraga LA, Torrero MN, Tocheva AS, Mitre E, Davies SJ. Induction of type 2 responses by schistosome worms during prepatent infection. J Infect Dis 2010; 201:464-72. [PMID: 20043751 DOI: 10.1086/649841] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During natural schistosome infection, the induction of T helper type 2 (Th2) responses has been ascribed to parasite eggs, because exposure of the host to this life-cycle stage elicits a polarized Th2 response to egg antigens. In the present study, we show that schistosome worms also elicit systemic, antigen-specific type 2 responses during prepatent infection, before egg deposition begins. CD4(+) T cells producing interleukin (IL)-4 were induced by both male and female worms during single-sex infections, demonstrating that this response is independent of exposure to eggs. The Th2 response was accompanied by production of immunoglobulin E and the sensitization of circulating basophils to produce additional IL-4 in response to schistosome antigens. Together, our data show that schistosome worms establish an immunologic milieu where CD4(+) T cells and basophils are both primed to produce IL-4 before eggs are laid, suggesting that worms play a role in establishment of the Th2 response that is critical for host survival and parasite transmission.
Collapse
Affiliation(s)
- Lucia Alves de Oliveira Fraga
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
100
|
Anyan WK, Kumagai T, Shimogawara RF, Seki T, Akao N, Obata K, Kwansa-Bentum B, Bosompem KM, Boakye DA, Wilson MD, Karasuyama H, Ohta N. Schistosome eggs have a direct role in the induction of basophils capable of a high level of IL-4 production: Comparative study of single- and bisexual infection of Schistosoma mansoni in vivo. Trop Med Health 2010. [DOI: 10.2149/tmh.2009-24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|