51
|
Kuijpers TW, van Leeuwen EMM, Barendregt BH, Klarenbeek P, aan de Kerk DJ, Baars PA, Jansen MH, de Vries N, van Lier RAW, van der Burg M. A reversion of an IL2RG mutation in combined immunodeficiency providing competitive advantage to the majority of CD8+ T cells. Haematologica 2013; 98:1030-8. [PMID: 23403317 DOI: 10.3324/haematol.2012.077511] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations in the common gamma chain (γc, CD132, encoded by the IL2RG gene) can lead to B(+)T(-)NK(-) X-linked severe combined immunodeficiency, as a consequence of unresponsiveness to γc-cytokines such as interleukins-2, -7 and -15. Hypomorphic mutations in CD132 may cause combined immunodeficiencies with a variety of clinical presentations. We analyzed peripheral blood mononuclear cells of a 6-year-old boy with normal lymphocyte counts, who suffered from recurrent pneumonia and disseminated mollusca contagiosa. Since proliferative responses of T cells and NK cells to γc -cytokines were severely impaired, we performed IL2RG gene analysis, showing a heterozygous mutation in the presence of a single X-chromosome. Interestingly, an IL2RG reversion to normal predominated in both naïve and antigen-primed CD8(+) T cells and increased over time. Only the revertant CD8(+) T cells showed normal expression of CD132 and the various CD8(+) T cell populations had a different T-cell receptor repertoire. Finally, a fraction of γδ(+) T cells and differentiated CD4(+)CD27(-) effector-memory T cells carried the reversion, whereas NK or B cells were repeatedly negative. In conclusion, in a patient with a novel IL2RG mutation, gene-reverted CD8(+) T cells accumulated over time. Our data indicate that selective outgrowth of particular T-cell subsets may occur following reversion at the level of committed T progenitor cells.
Collapse
Affiliation(s)
- Taco W Kuijpers
- Emma Children's Hospital, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Liu Y, Yang T, Li H, Li MH, Liu J, Wang YT, Yang SX, Zheng J, Luo XY, Lai Y, Yang P, Li LM, Zou Q. BD750, a benzothiazole derivative, inhibits T cell proliferation by affecting the JAK3/STAT5 signalling pathway. Br J Pharmacol 2013; 168:632-43. [PMID: 22906008 PMCID: PMC3579284 DOI: 10.1111/j.1476-5381.2012.02172.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/21/2012] [Accepted: 08/10/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE A series of benzothiazole derivatives were screened for immunosuppressive activity; of these compounds BD750 was found to be the most effective immunosuppressant. The purpose of the current study was to determine the immunosuppressive activity of BD750 on T cell proliferation and its potential mode of action. EXPERIMENTAL APPROACH T cell proliferation, CD25 and CD69 expression and cell cycle distribution were measured in vitro by flow cytometry. Cell viability was determined by CCK-8 assay. Cytokine levels were measured by elisa. The activation of signal-regulated molecules was assessed by Western blot analysis. The effects of BD750 were evaluated in vivo in a mouse model of delayed-type hypersensitivity. KEY RESULTS BD750 significantly inhibited mouse and human T cell proliferation, stimulated either by anti-CD3/anti-CD28 monoclonal antibodies or by an alloantigen, in a dose-dependent manner in vitro. No obvious cytotoxic effects of BD750 were observed in our experimental conditions. Furthermore, BD750 did not inhibit CD25 and CD69 expression or IL-2 and IL-4 secretion, but induced cell cycle arrest at the G(0) /G(1) phase in activated T cells. In IL-2-stimulated CTLL-2 cells and primary activated T cells, BD750 inhibited cell proliferation and STAT5 phosphorylation, but not Akt or p70S6K phosphorylation. BD750 also reduced the T cell-mediated delayed-type hypersensitivity response in mice in a dose-dependent manner. CONCLUSION AND IMPLICATIONS These data indicate that BD750 inhibits IL-2-induced JAK3/STAT5-dependent T cell proliferation. BD750 has the potential to be used as a lead compound for the design and development of new immunosuppressants for preventing graft rejection and treating autoimmune diseases.
Collapse
Affiliation(s)
- Y Liu
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Protein kinase antagonists as therapeutic agents for immunological and inflammatory disorders. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
54
|
|
55
|
LaBranche TP, Jesson MI, Radi ZA, Storer CE, Guzova JA, Bonar SL, Thompson JM, Happa FA, Stewart ZS, Zhan Y, Bollinger CS, Bansal PN, Wellen JW, Wilkie DP, Bailey SA, Symanowicz PT, Hegen M, Head RD, Kishore N, Mbalaviele G, Meyer DM. JAK inhibition with tofacitinib suppresses arthritic joint structural damage through decreased RANKL production. ACTA ACUST UNITED AC 2012; 64:3531-42. [DOI: 10.1002/art.34649] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
56
|
Tomashov-Matar R, Biran G, Lagovsky I, Kotler N, Stein A, Fisch B, Sapir O, Shohat M. Severe combined immunodeficiency (SCID): from the detection of a new mutation to preimplantation genetic diagnosis. J Assist Reprod Genet 2012; 29:687-92. [PMID: 22527898 DOI: 10.1007/s10815-012-9765-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To describe the identification of a new mutation responsible for causing human severe combined immunodeficiency syndrome (SCID). In a large consanguineous Israeli Arab family, this served as a diagnostic tool and enabled us to carry out preimplantation genetic diagnosis (PGD). We also demonstrated that PGD for homozygosity alleles is feasible. METHODS We carried out genome-wide screening followed by fine mapping and linkage analysis in order to identify the candidate genes. We then sequenced DCLRE1C in order to find the familial mutation. The family was anxious to avoid the birth of an affected child, and therefore, because of their religious beliefs, PGD was the only option open to them. The embryos were biopsied at day 3, and a single blastomere from each embryo was analyzed by multiplex polymerase chain reaction for the SCID mutation and 5 additional polymorphic markers flanking DCLRE1C. RESULTS Linkage analysis revealed linkage to chromosome 10p13, which harbors the DNA Cross-Link Repair Protein 1 C (DCLRE1C) ARTEMIS gene. Sequencing identified an 8 bp insertion in exon 14 (1306ins8) of DCLRE1C in all the affected patients; this causes an alteration in amino acid 330 of the protein from cysteine to a stop codon (p.C330X). One cycle of PGD was performed and two embryos were transferred, one homozygous wild-type and one a heterozygous carrier, and healthy twins were born. CONCLUSIONS Identifying the familial mutation enabled us to design a reliable and accurate PGD protocol, even in this case of a consanguineous family.
Collapse
Affiliation(s)
- Reut Tomashov-Matar
- The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, 49100, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Kontzias A, Laurence A, Gadina M, O’Shea JJ. Kinase inhibitors in the treatment of immune-mediated disease. F1000 MEDICINE REPORTS 2012; 4:5. [PMID: 22403586 PMCID: PMC3297200 DOI: 10.3410/m4-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinases are fundamental components of diverse signaling pathways, including immune cells. Their essential functions have made them effective therapeutic targets. Initially, the expectation was that a high degree of selectivity would be critical; however, with time, the use of "multikinase" inhibitors has expanded. Moreover, the spectrum of diseases in which kinase inhibitors are used has also expanded to include not only malignancies but also immune-mediated diseases. At present, thirteen kinase inhibitors have been approved in the United States, all for oncologic indications. However, there are a growing number of molecules, including several Janus kinase inhibitors, that are being tested in clinical trials for autoimmune diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel diseases. It appears likely that this new class of immunomodulatory drugs will have a major impact on the treatment of immune-mediated diseases in the near future.
Collapse
Affiliation(s)
- Apostolos Kontzias
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesda, MD 20892USA
| | - Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesda, MD 20892USA
| | - Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesda, MD 20892USA
| | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesda, MD 20892USA
| |
Collapse
|
58
|
Rosengren S, Corr M, Firestein GS, Boyle DL. The JAK inhibitor CP-690,550 (tofacitinib) inhibits TNF-induced chemokine expression in fibroblast-like synoviocytes: autocrine role of type I interferon. Ann Rheum Dis 2012; 71:440-7. [PMID: 22121136 DOI: 10.1136/ard.2011.150284] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The objective of this study was to investigate the effect of the novel Janus kinase inhibitor CP-690,550 in fibroblast-like synoviocytes (FLSs) from patients with rheumatoid arthritis (RA). METHODS RA FLSs were isolated from tissue obtained by arthroplasty, cultured and serum-starved 48 h prior to stimulation. Messenger RNA and protein levels were determined by quantitative PCR and ELISA or multiplex bead assay, respectively. Phosphorylation of STAT (signal transducers and activators of transcription) proteins was determined by western blot. RESULTS Interleukin-6-induced phosphorylation of STAT1 and STAT3 was inhibited by CP-690,550 with IC(50) values of 23 and 77 nM, respectively. Unexpectedly, although tumour necrosis factor (TNF) did not induce immediate phosphorylation of either STAT, CP-690,550 inhibited TNF-induced expression of several chemokines (IP-10, RANTES and MCP1) at the messenger RNA and protein levels. Chemokine expression was inhibited by cycloheximide, implying a need for de novo protein synthesis, and cycloheximide abolished the effect of CP-690,550 (tofacitinib). TNF induced early interferon (IFN) β expression and STAT1 phosphorylation beginning at 3 h, which was blocked by CP-690,550. The dependence of TNF-induced chemokine expression on type I IFN was confirmed in FLSs from mice lacking type I IFN receptors (IFNARs) and in RA FLSs using an IFNAR blocking antibody. CONCLUSIONS The Janus kinase/STAT pathway in FLS is indirectly activated by TNF through autocrine expression of type I IFN, resulting in IFNAR engagement and production of T cell chemokines. These findings illuminate a novel role of CP-690,550 in the treatment of RA: the reduction of chemokine synthesis by FLS, thereby limiting recruitment of T cells and other infiltrating leucocytes.
Collapse
Affiliation(s)
- Sanna Rosengren
- Division of Rheumatology, Allergy and Immunology, University of California at San Diego School of Medicine, La Jolla, California 92093-0656, USA
| | | | | | | |
Collapse
|
59
|
Gudjonsson JE, Johnston A, Ellis CN. Novel systemic drugs under investigation for the treatment of psoriasis. J Am Acad Dermatol 2012; 67:139-47. [PMID: 22305044 DOI: 10.1016/j.jaad.2011.06.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/15/2011] [Accepted: 06/23/2011] [Indexed: 01/01/2023]
Abstract
In the last few years, there has been progress in identifying some of the risk genes for psoriasis. This has resulted in a major impetus toward drug development as many of the same pathways and processes identified in psoriasis have been shown to have major roles in other chronic inflammatory diseases, suggesting that psoriasis can be used as a treatment model for many other diseases. This has resulted in a shift in research toward a select number of biological processes and has been accompanied by a surge in drug development with over 20 systemic agents currently in clinical testing for psoriasis, many of which target the pathways identified through genetic and basic research. Although it is too early to tell for many of these agents how effective and safe they will be, and where they will fit into treatment algorithms, it is evident that our range of options in treating this often perplexing disease will greatly increase in the future.
Collapse
Affiliation(s)
- Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5314.
| | | | | |
Collapse
|
60
|
Laurence A, Ghoreschi K, Hirahara K, Yang X, O'Shea JJ. Therapeutic inhibition of the Janus kinases. Inflamm Regen 2012. [DOI: 10.2492/inflammregen.32.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
61
|
Cohen S. Small molecular therapies for rheumatoid arthritis: where do we stand? Expert Opin Investig Drugs 2011; 21:23-31. [DOI: 10.1517/13543784.2011.622748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
62
|
de Martino M, Gigante M, Cormio L, Prattichizzo C, Cavalcanti E, Gigante M, Ariano V, Netti GS, Montemurno E, Mancini V, Battaglia M, Gesualdo L, Carrieri G, Ranieri E. JAK3 in clear cell renal cell carcinoma: mutational screening and clinical implications. Urol Oncol 2011; 31:930-7. [PMID: 21868263 DOI: 10.1016/j.urolonc.2011.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/03/2011] [Accepted: 07/05/2011] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Janus Kinase 3 (JAK3) mediates cytokine signaling and T-cell activation. We hypothesized that JAK3 mutations may contribute to the development and progression of clear cell renal cell carcinoma (ccRCC). To test this hypothesis, we performed mutational screening and functional studies. PATIENTS AND METHODS This hospital-based case-control study included 50 patients with ccRCC and 100 age- and gender-matched controls. Both genomic and tumor DNA were extracted. All 23 JAK3 exons were amplified by PCR and analyzed by denaturing high-performance liquid chromatography and automatic sequencing. Effects of JAK3 mutations on interleukin-2-stimulated peripheral T-cells were analyzed by confocal laser-scanning microscopy and immunoprecipitation. RESULTS Four different JAK3 germline missense mutations (p.Gln13Lys; p.Arg925Ser; p.Ala677Thr, p.Val722Ile) were found in a total of 7 ccRCC patients (14%), but in none of the controls (P = 0.0006). All germline mutations were similarly detected in the tumors. An additional somatic missense mutation (p.Tyr238Cys) was found in a patient who had a germline mutation. Four of the mutations have not been previously described (p.Gln13Lys; p.Arg925Ser; p.Ala677Thr, p.Tyr238Cys). Patients with JAK3 mutations more frequently presented with metastases (3 out of 4 [75%] vs. 4 out of 46 [9%]; P = 0.004) and had poorer survival (P = 0.049). In p.Arg925Ser and p.Ala677Thr/p.Val722Ile, functional analyses showed abnormal JAK3 and STAT5 tyrosine phosphorylation and a reduction of JAK3/STAT5 interaction. CONCLUSIONS JAK3 mutations are found in a subset of ccRCC patients and may be associated with ccRCC development and a greater risk of metastases. JAK3 function is compromised in p.Arg925Ser and p.Ala677Thr/p.Val722Ile. Future studies with a larger number of patients need to confirm these findings.
Collapse
Affiliation(s)
- Michela de Martino
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
TG02, a novel oral multi-kinase inhibitor of CDKs, JAK2 and FLT3 with potent anti-leukemic properties. Leukemia 2011; 26:236-43. [PMID: 21860433 DOI: 10.1038/leu.2011.218] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
TG02 is a novel pyrimidine-based multi-kinase inhibitor that inhibits CDKs 1, 2, 7 and 9 together with JAK2 and FLT3. It dose-dependently inhibits signaling pathways downstream of CDKs, JAK2 and FLT3 in cancer cells with the main targets being CDKs. TG02 is anti-proliferative in a broad range of tumor cell lines, inducing G1 cell cycle arrest and apoptosis. Primary cultures of progenitor cells derived from acute myeloid leukemia (AML) and polycythemia vera patients are very sensitive to TG02. Comparison with reference inhibitors that block only one of the main targets of TG02 demonstrate the benefit of combined CDK and JAK2/FLT3 inhibition in cell lines as well as primary cells. In vivo, TG02 exhibits favorable pharmacokinetics after oral dosing in xenograft models and accumulates in tumor tissues, inducing an effective blockade of both CDK and STAT signaling. TG02 induces tumor regression after oral dosing on both daily and intermittent schedules in a murine model of mutant-FLT3 leukemia (MV4-11) and prolongs survival in a disseminated AML model with wild-type FLT3 and JAK2 (HL-60). These data demonstrate that TG02 is active in various models of leukemia and provide a rationale for the ongoing clinical evaluation of TG02 in patients with advanced leukemias.
Collapse
|
64
|
Abstract
Janus kinases are important signaling proteins implicated in cytokine signaling. In particular, Janus kinase 3 (JAK3) has gained attention as a target for inhibition of the immune system, due to its importance for T and B cell development and function. In this issue however, Haan et al. (2011) show that inhibition of JAK3 activity may not be sufficient for this purpose.
Collapse
Affiliation(s)
- Luk Cox
- Center for Human Genetics, K.U.Leuven, Leuven, B-3000, Belgium
| | | |
Collapse
|
65
|
Haan C, Rolvering C, Raulf F, Kapp M, Drückes P, Thoma G, Behrmann I, Zerwes HG. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. ACTA ACUST UNITED AC 2011; 18:314-23. [PMID: 21439476 DOI: 10.1016/j.chembiol.2011.01.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/28/2010] [Accepted: 01/05/2011] [Indexed: 02/09/2023]
Abstract
Genetic deficiency of Jak3 leads to abrogation of signal transduction through the common gamma chain (γc) and thus to immunodeficiency suggesting that specific inhibition of Jak3 kinase may result in immunosuppression. Jak1 cooperates with Jak3 in signaling through γc-containing receptors. Unexpectedly, a Jak3-selective inhibitor was less efficient in abolishing STAT5 phosphorylation than pan-Jak inhibitors. We therefore explored the roles of Jak1 and Jak3 kinase functionality in signaling using a reconstituted system. The presence of kinase-inactive Jak1 but not kinase-inactive Jak3 resulted in complete abolishment of STAT5 phosphorylation. Specific inhibition of the "analog-sensitive" mutant AS-Jak1 but not AS-Jak3 by the ATP-competitive analog 1NM-PP1 abrogated IL-2 signaling, corroborating the data with the selective Jak3 inhibitor. Jak1 thus plays a dominant role over Jak3 and these data challenge the notion that selective ATP-competitive Jak3 kinase inhibitors will be effective.
Collapse
Affiliation(s)
- Claude Haan
- Life Sciences Research Unit-Signal Transduction Laboratory, University of Luxembourg, Luxembourg, L-1511, Luxembourg.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Quintás-Cardama A, Verstovsek S. New JAK2 inhibitors for myeloproliferative neoplasms. Expert Opin Investig Drugs 2011; 20:961-72. [PMID: 21521147 DOI: 10.1517/13543784.2011.579560] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The discovery of the JAK(V617F) kinase established a common pathogenetic link to the most important types of Philadelphia-chromosome-negative myeloproliferative neoplasms (MPNs): polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). More importantly, the demonstration of constitutive kinase activity emanating from the JAK2 protein provided the rationale for the development of small-molecule JAK2 kinase inhibitors. AREAS COVERED Several JAK2 kinase inhibitors are being tested in clinical trials for patients with MPNs. In PMF trials, JAK2 inhibitors have been shown to produce rapid reductions in spleen size and marked improvements in constitutional symptoms and quality of life. In ET and/or PV, JAK2 inhibitors normalize hematocrit, platelets and WBC, and spleen size in a large number of patients that are resistant or intolerant to hydroxyurea. JAK2 inhibitors are not specific for the JAK2V617F mutant protein. Rather, they inhibit the JAK2- signal transducer and activator of transcription (STAT) pathway and therefore any patient with MPN may benefit from therapy regardless of JAK2 mutational status. EXPERT OPINION JAK2 inhibitors induce clinically relevant responses in a large proportion of patients with MPNs. Because JAK kinase activation underlies the pathogenesis of other disorders, such as autoimmune and rheumatological disorders, the paradigm of JAK inhibition may translate into novel therapies for a variety of human diseases.
Collapse
|
67
|
Alicea-Velázquez NL, Boggon TJ. The use of structural biology in Janus kinase targeted drug discovery. Curr Drug Targets 2011; 12:546-55. [PMID: 21126226 DOI: 10.2174/138945011794751528] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/04/2010] [Indexed: 12/12/2022]
Abstract
The Janus kinases (or Jak kinases) mediate cytokine and growth factor signal transduction. Acquired or inherited Jak mutations can result in dysregulation of Jak-mediated signal transduction and can be critical to disease acquisition in neoplasias including acute myeloid, acute lymphoblastic and acute megakaryoblastic leukemias, and in rare X-linked severe combined immunodeficiency. The discovery of an acquired Jak2 point mutation, V617F, in significant numbers of patients with classical myeloproliferative disorders has increased the interest in development of Jak2-specific tyrosine kinase inhibitors and consequently there are now over 20 publically available structures of Jak kinase domains that describe all four family members, Jak1, Jak2, Jak3, and Tyk2. Here we review the recent advances in understanding the druggable structure and function of the Jak family, with a focus on the structural biology of the Jak kinase domain. We will discuss how these advances impact the development of Jak-targeted therapeutics.
Collapse
Affiliation(s)
- Nilda L Alicea-Velázquez
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., SHM B-316A, New Haven, CT 06520, USA
| | | |
Collapse
|
68
|
Riera L, Lasorsa E, Bonello L, Sismondi F, Tondat F, Di Bello C, Di Celle PF, Chiarle R, Godio L, Pich A, Facchetti F, Ponzoni M, Marmont F, Zanon C, Bardelli A, Inghirami G. Description of a novel Janus kinase 3 P132A mutation in acute megakaryoblastic leukemia and demonstration of previously reported Janus kinase 3 mutations in normal subjects. Leuk Lymphoma 2011; 52:1742-50. [DOI: 10.3109/10428194.2011.574757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
69
|
Migita K, Komori A, Torigoshi T, Maeda Y, Izumi Y, Jiuchi Y, Miyashita T, Nakamura M, Motokawa S, Ishibashi H. CP690,550 inhibits oncostatin M-induced JAK/STAT signaling pathway in rheumatoid synoviocytes. Arthritis Res Ther 2011; 13:R72. [PMID: 21548952 PMCID: PMC3218881 DOI: 10.1186/ar3333] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 03/31/2011] [Accepted: 05/06/2011] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Interleukin (IL)-6-type cytokines exert their effects through activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade. The JAK/STAT pathways play an important role in rheumatoid arthritis, since JAK inhibitors have exhibited dramatic effects on rheumatoid arthritis (RA) in clinical trials. In this study, we investigated the molecular effects of a small molecule JAK inhibitor, CP690,550 on the JAK/STAT signaling pathways and examined the role of JAK kinases in rheumatoid synovitis. METHODS Fibroblast-like synoviocytes (FLS) were isolated from RA patients and stimulated with recombinant oncostatin M (OSM). The cellular supernatants were analyzed using cytokine protein chips. IL-6 mRNA and protein expression were analyzed by real-time PCR method and ELISA, respectively. Protein phosphorylation of rheumatoid synoviocytes was assessed by Western blot using phospho-specific antibodies. RESULTS OSM was found to be a potent inducer of IL-6 in FLS. OSM stimulation elicited rapid phosphorylation of STATs suggesting activation of the JAK/STAT pathway in FLS. CP690,550 pretreatment completely abrogated the OSM-induced production of IL-6, as well as OSM-induced JAK/STAT, and activation of mitogen-activated kinases (MAPKs) in FLS. CONCLUSIONS These findings suggest that IL-6-type cytokines contribute to rheumatoid synovitis through activation of the JAK/STAT pathway in rheumatoid synoviocytes. Inhibition of these pro-inflammatory signaling pathways by CP690,550 could be important in the treatment of RA.
Collapse
Affiliation(s)
- Kiyoshi Migita
- Department of Rheumatology and Clinical Research Center, Nagasaki Medical Center, Kubara 2-1001-1, Omura 856-8652, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond. Nat Rev Drug Discov 2011; 10:127-40. [PMID: 21283107 DOI: 10.1038/nrd3264] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in our understanding of the pathogenesis of the Philadelphia chromosome-negative myeloproliferative neoplasms, polycythaemia vera, essential thrombocythaemia and myelofibrosis have led to the identification of the mutation V617F in Janus kinase (JAK) as a potential therapeutic target. This information has prompted the development of ATP-competitive JAK2 inhibitors. Therapy with JAK2 inhibitors may induce rapid and marked reductions in spleen size and can lead to remarkable improvements in constitutional symptoms and overall quality of life. Because JAKs are involved in the pathogenesis of inflammatory and immune-mediated disorders, JAK inhibitors are also being tested in clinical trials in patients with rheumatoid arthritis and psoriasis, as well as for the treatment of other autoimmune diseases and for the prevention of allograft rejection. Preliminary results indicate that these agents hold great promise for the treatment of JAK-driven disorders.
Collapse
|
71
|
Hashii Y, Yoshida H, Kuroda S, Kusuki S, Sato E, Tokimasa S, Ohta H, Matsubara Y, Kinoshita S, Nakagawa N, Imai K, Nonoyama S, Oshima K, Ohara O, Ozono K. Hemophagocytosis after bone marrow transplantation for JAK3-deficient severe combined immunodeficiency. Pediatr Transplant 2010; 14:E105-9. [PMID: 19659508 DOI: 10.1111/j.1399-3046.2009.01217.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
HSCT is the optimal treatment for patients with SCID. In particular, HSCT from a HLA-identical donor gives rise to successful engraftment with long survival. We report a six-month-old girl with JAK3-deficient SCID who developed hemophagocytosis after BMT without conditioning from her HLA-identical father. She had suffered from pneumonia and hepatitis before BMT. Prophylaxis for GVHD was short-term methotrexate and tacrolimus. On day 18 after BMT, the patient developed hemophagocytosis in bone marrow when donor lymphocytes were increasing in peripheral blood. Analysis of chimerism confirmed host origin of macrophages and donor origin of lymphocytes. Thus, host macrophage activation was presumably induced in response to donor lymphocytes through immunoreaction to infections and/or alloantigens. HSCT for SCID necessitates caution with respect to hemophagocytosis.
Collapse
Affiliation(s)
- Yoshiko Hashii
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Flanagan ME, Blumenkopf TA, Brissette WH, Brown MF, Casavant JM, Shang-Poa C, Doty JL, Elliott EA, Fisher MB, Hines M, Kent C, Kudlacz EM, Lillie BM, Magnuson KS, McCurdy SP, Munchhof MJ, Perry BD, Sawyer PS, Strelevitz TJ, Subramanyam C, Sun J, Whipple DA, Changelian PS. Discovery of CP-690,550: a potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. J Med Chem 2010; 53:8468-84. [PMID: 21105711 DOI: 10.1021/jm1004286] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a critical need for safer and more convenient treatments for organ transplant rejection and autoimmune disorders such as rheumatoid arthritis. Janus tyrosine kinases (JAK1, JAK3) are expressed in lymphoid cells and are involved in the signaling of multiple cytokines important for various T cell functions. Blockade of the JAK1/JAK3-STAT pathway with a small molecule was anticipated to provide therapeutic immunosuppression/immunomodulation. The Pfizer compound library was screened against the catalytic domain of JAK3 resulting in the identification of a pyrrolopyrimidine-based series of inhibitors represented by CP-352,664 (2a). Synthetic analogues of 2a were screened against the JAK enzymes and evaluated in an IL-2 induced T cell blast proliferation assay. Select compounds were evaluated in rodent efficacy models of allograft rejection and destructive inflammatory arthritis. Optimization within this chemical series led to identification of CP-690,550 1, a potential first-in-class JAK inhibitor for treatment of autoimmune diseases and organ transplant rejection.
Collapse
Affiliation(s)
- Mark E Flanagan
- Groton Laboratories, Pfizer Global Research & Development, Groton, Connecticut 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
Human SCID (Severe Combined Immunodeficiency) is a prenatal disorder of T lymphocyte development, that depends on the expression of numerous genes. The knowledge of the genetic basis of SCID is essential for diagnosis (e.g., clinical phenotype, lymphocyte profile) and treatment (e.g., use and type of pre-hematopoietic stem cell transplant conditioning).Over the last years novel genetic defects causing SCID have been discovered, and the molecular and immunological mechanisms of SCID have been better characterized. Distinct forms of SCID show both common and peculiar (e.g., absence or presence of nonimmunological features) aspects, and they are currently classified into six groups according to prevalent pathophysiological mechanisms: impaired cytokine-mediated signaling; pre-T cell receptor defects; increased lymphocyte apoptosis; defects in thymus embryogenesis; impaired calcium flux; other mechanisms.This review is the updated, extended and largely modified translation of the article "Cossu F: Le basi genetiche delle SCID", originally published in Italian language in the journal "Prospettive in Pediatria" 2009, 156:228-238.
Collapse
Affiliation(s)
- Fausto Cossu
- Pediatric HSCT Unit, 2 Pediatric Clinic of University, Ospedale Microcitemico, Via Jenner s/n, 09121 Cagliari, Sardinia, Italy.
| |
Collapse
|
74
|
Meyer DM, Jesson MI, Li X, Elrick MM, Funckes-Shippy CL, Warner JD, Gross CJ, Dowty ME, Ramaiah SK, Hirsch JL, Saabye MJ, Barks JL, Kishore N, Morris DL. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. JOURNAL OF INFLAMMATION-LONDON 2010; 7:41. [PMID: 20701804 PMCID: PMC2928212 DOI: 10.1186/1476-9255-7-41] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/11/2010] [Indexed: 01/10/2023]
Abstract
Background The Janus kinase (JAK) family of tyrosine kinases includes JAK1, JAK2, JAK3 and TYK2, and is required for signaling through Type I and Type II cytokine receptors. CP-690,550 is a potent and selective JAK inhibitor currently in clinical trials for rheumatoid arthritis (RA) and other autoimmune disease indications. In RA trials, dose-dependent decreases in neutrophil counts (PBNC) were observed with CP-690,550 treatment. These studies were undertaken to better understand the relationship between JAK selectivity and PBNC decreases observed with CP-690,550 treatment. Methods Potency and selectivity of CP-690,550 for mouse, rat and human JAKs was evaluated in a panel of in vitro assays. The effect of CP-690,550 on granulopoiesis from progenitor cells was also assessed in vitro using colony forming assays. In vivo the potency of orally administered CP-690,550 on arthritis (paw edema), plasma cytokines, PBNC and bone marrow differentials were evaluated in the rat adjuvant-induced arthritis (AIA) model. Results CP-690,550 potently inhibited signaling through JAK1 and JAK3 with 5-100 fold selectivity over JAK2 in cellular assays, despite inhibiting all four JAK isoforms with nM potency in in vitro enzyme assays. Dose-dependent inhibition of paw edema was observed in vivo with CP-690,550 treatment. Plasma cytokines (IL-6 and IL-17), PBNC, and bone marrow myeloid progenitor cells were elevated in the context of AIA disease. At efficacious exposures, CP-690,550 returned all of these parameters to pre-disease levels. The plasma concentration of CP-690,550 at efficacious doses was above the in vitro whole blood IC50 of JAK1 and JAK3 inhibition, but not that of JAK2. Conclusion Results from this investigation suggest that CP-690,550 is a potent inhibitor of JAK1 and JAK3 with potentially reduced cellular potency for JAK2. In rat AIA, as in the case of human RA, PBNC were decreased at efficacious exposures of CP-690,550. Inflammatory end points were similarly reduced, as judged by attenuation of paw edema and cytokines IL-6 and IL-17. Plasma concentration at these exposures was consistent with inhibition of JAK1 and JAK3 but not JAK2. Decreases in PBNC following CP-690,550 treatment may thus be related to attenuation of inflammation and are likely not due to suppression of granulopoiesis through JAK2 inhibition.
Collapse
Affiliation(s)
- Debra M Meyer
- Worldwide Research, Pfizer Global Research & Development, Chesterfield, MO, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Flaherty MS, Salis P, Evans CJ, Ekas LA, Marouf A, Zavadil J, Banerjee U, Bach EA. chinmo is a functional effector of the JAK/STAT pathway that regulates eye development, tumor formation, and stem cell self-renewal in Drosophila. Dev Cell 2010; 18:556-68. [PMID: 20412771 DOI: 10.1016/j.devcel.2010.02.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/24/2009] [Accepted: 02/18/2010] [Indexed: 12/21/2022]
Abstract
The Drosophila STAT transcription factor Stat92E regulates diverse functions, including organ development and stem cell self-renewal. However, the Stat92E functional effectors that mediate these processes are largely unknown. Here we show that chinmo is a cell-autonomous, downstream mediator of Stat92E that shares numerous functions with this protein. Loss of either gene results in malformed eyes and head capsules due to defects in eye progenitor cells. Hyperactivation of Stat92E or misexpression of Chinmo results in blood cell tumors. Both proteins are expressed in germline (GSCs) and cyst stem cells (CySCs) in the testis. While Stat92E is required for the self-renewal of both populations, chinmo is only required in CySCs, indicating that Stat92E regulates self-renewal in different stem cells through independent effectors. Like hyperactivated Stat92E, Chinmo misexpression in CySCs is sufficient to maintain GSCs nonautonomously. Chinmo is therefore a key effector of JAK/STAT signaling in a variety of developmental and pathological contexts.
Collapse
Affiliation(s)
- Maria Sol Flaherty
- Pharmacology Department, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Chaplin DD. Overview of the immune response. J Allergy Clin Immunol 2010; 125:S3-23. [PMID: 20176265 DOI: 10.1016/j.jaci.2009.12.980] [Citation(s) in RCA: 1169] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 12/12/2022]
Abstract
The immune system has evolved to protect the host from a universe of pathogenic microbes that are themselves constantly evolving. The immune system also helps the host eliminate toxic or allergenic substances that enter through mucosal surfaces. Central to the immune system's ability to mobilize a response to an invading pathogen, toxin, or allergen is its ability to distinguish self from nonself. The host uses both innate and adaptive mechanisms to detect and eliminate pathogenic microbes, and both of these mechanisms include self-nonself discrimination. This overview identifies key mechanisms used by the immune system to respond to invading microbes and other exogenous threats and identifies settings in which disturbed immune function exacerbates tissue injury.
Collapse
Affiliation(s)
- David D Chaplin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
77
|
Kim BH, Jee JG, Yin CH, Sandoval C, Jayabose S, Kitamura D, Bach EA, Baeg GH. NSC114792, a novel small molecule identified through structure-based computational database screening, selectively inhibits JAK3. Mol Cancer 2010; 9:36. [PMID: 20149240 PMCID: PMC2830973 DOI: 10.1186/1476-4598-9-36] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/11/2010] [Indexed: 01/10/2023] Open
Abstract
Background Human or animals lacking either JAK3 or the common gamma chain (γc) expression display severe combined immunodeficiency disease, indicating the crucial role of JAK3 in T-cell development and the homeostasis of the immune system. JAK3 has also been suggested to contribute to the pathogenesis of tumorigenesis. Recent studies identified activating JAK3 mutations in patients with various hematopoietic malignancies, including acute megakaryoblastic leukemia. Importantly, functional analyses of some of those JAK3 mutations have been shown to cause lethal hematopoietic malignancies in animal models. These observations make JAK3 an ideal therapeutic target for the treatment of various human diseases. To identify novel small molecule inhibitors of JAK3, we performed structure-based virtual screen using the 3D structure of JAK3 kinase domain and the NCI diversity set of compounds. Results We identified NSC114792 as a lead compound. This compound directly blocked the catalytic activity of JAK3 but not that of other JAK family members in vitro. In addition, treatment of 32D/IL-2Rβ cells with the compound led to a block in IL-2-dependent activation of JAK3/STAT5 but not IL-3-dependent activation of JAK2/STAT5. Consistent with the specificity of NSC114792 for JAK3, it selectively inhibited persistently-activated JAK3, but failed to affect the activity of other JAK family members and other oncogenic kinases in various cancer cell lines. Finally, we showed that NSC114792 decreases cell viability by inducing apoptosis through down-regulating anti-apoptotic gene expression only in cancer cells harboring persistently-active JAK3. Conclusions NSC114792 is a lead compound that selectively inhibits JAK3 activity. Therefore, our study suggests that this small molecule inhibitor of JAK3 can be used as a starting point to develop a new class of drugs targeting JAK3 activity, and may have therapeutic potential in various diseases that are caused by aberrant JAK3 activity.
Collapse
Affiliation(s)
- Byung-Hak Kim
- Department of Pediatrics, Division of Hematology/Oncology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Haan C, Behrmann I, Haan S. Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases. J Cell Mol Med 2010; 14:504-27. [PMID: 20132407 PMCID: PMC3823453 DOI: 10.1111/j.1582-4934.2010.01018.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gain-of-function mutations in the genes encoding Janus kinases have been discovered in various haematologic diseases. Jaks are composed of a FERM domain, an SH2 domain, a pseudokinase domain and a kinase domain, and a complex interplay of the Jak domains is involved in regulation of catalytic activity and association to cytokine receptors. Most activating mutations are found in the pseudokinase domain. Here we present recently discovered mutations in the context of our structural models of the respective domains. We describe two structural hotspots in the pseudokinase domain of Jak2 that seem to be associated either to myeloproliferation or to lymphoblastic leukaemia, pointing at the involvement of distinct signalling complexes in these disease settings. The different domains of Jaks are discussed as potential drug targets. We present currently available inhibitors targeting Jaks and indicate structural differences in the kinase domains of the different Jaks that may be exploited in the development of specific inhibitors. Moreover, we discuss recent chemical genetic approaches which can be applied to Jaks to better understand the role of these kinases in their biological settings and as drug targets.
Collapse
Affiliation(s)
- Claude Haan
- Life Sciences Research Unit, University of Luxembourg, 162A, av. de la Faïencerie, 1511 Luxembourg, Luxembourg.
| | | | | |
Collapse
|
79
|
Li J, Nara H, Rahman M, Juliana FM, Araki A, Asao H. Impaired IL-7 signaling may explain a case of atypical JAK3-SCID. Cytokine 2009; 49:221-8. [PMID: 19889552 DOI: 10.1016/j.cyto.2009.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/21/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
Janus kinase 3-severe combined immunodeficiency (JAK3-SCID) is an autosomal recessive immunodeficiency disease caused by various mutations in the JAK3 gene. Typical JAK3-SCID is characterized by a phenotype in which B cells are present but T and NK cells are not, the T(-)B(+)NK(-) phenotype, and by impaired signaling through cytokine receptors that use the common gamma chain (gammac) subunit. An atypical JAK3-SCID case carrying a single glutamate to glycine substitution mutation (E481G) in the JH3 domain of one JAK3 allele, and a deletion mutation (del482-596) in the JH3 and JH2 domains of the other allele was reported previously. Although this patient had CD4(+) T cells and NK cells unlike typical cases, the CD4(+) T cells were functionally impaired. We report here that the JAK3-E481G mutant transduced IL-2-, IL-4-, IL-15-, and IL-21-induced signals as efficiently as wild-type JAK3. However, this mutant failed to respond to IL-7 by phosphorylating JAK1, JAK3, or STAT5. The other mutant JAK3, JAK3-del482-596, was non-functional. Thus, an impaired IL-7 signal may cause SCID and compromise T-cell differentiation, even if the IL-15 signal is preserved and supports NK-cell development, as in this patient.
Collapse
Affiliation(s)
- Jun Li
- Department of Immunology, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | | | | | | | | | | |
Collapse
|
80
|
Kim BH, Oh SR, Yin CH, Lee S, Kim EA, Kim MS, Sandoval C, Jayabose S, Bach EA, Lee HK, Baeg GH. MS-1020 is a novel small molecule that selectively inhibits JAK3 activity. Br J Haematol 2009; 148:132-43. [PMID: 19793252 DOI: 10.1111/j.1365-2141.2009.07925.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In order to identify Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling inhibitors, a cell-based high throughput screening was performed using a plant extract library that identified Nb-(alpha-hydroxynaphthoyl)serotonin called MS-1020 as a novel JAK3 inhibitor. MS-1020 potently inhibited persistently-active STAT3 in a cell type-specific manner. Further examination showed that MS-1020 selectively blocked constitutively-active JAK3 and consistently suppressed interleukin-2-induced JAK3/STAT5 signalling but not prolactin-induced JAK2/STAT5 signalling. Furthermore, MS-1020 affected cell viability only in cancer cells harbouring persistently-active JAK3/STATs, and in vitro kinase assays showed MS-1020 binds directly with JAK3, blocking its catalytic activity. Therefore, the present study suggested that this reagent selectively inhibits JAK3 and subsequently leads to a block in STAT signalling. Finally, MS-1020 decreased cell survival by inducing apoptosis via down-regulation of anti-apoptotic gene expression. These results suggest that MS-1020 may have therapeutic potential in the treatment of cancers harbouring aberrant JAK3 signalling.
Collapse
Affiliation(s)
- Byung-Hak Kim
- Pediatrics-Hematology/Oncology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
The Janus family kinases (Jaks), Jak1, Jak2, Jak3, and Tyk2, form one subgroup of the non-receptor protein tyrosine kinases. They are involved in cell growth, survival, development, and differentiation of a variety of cells but are critically important for immune cells and hematopoietic cells. Data from experimental mice and clinical observations have unraveled multiple signaling events mediated by Jaks in innate and adaptive immunity. Deficiency of Jak3 or Tyk2 results in defined clinical disorders, which are also evident in mouse models. A striking phenotype associated with inactivating Jak3 mutations is severe combined immunodeficiency syndrome, whereas mutation of Tyk2 results in another primary immunodeficiency termed autosomal recessive hyperimmunoglobulin E syndrome. By contrast, complete deletion of Jak1 or Jak2 in the mouse are not compatible with life and, unsurprisingly, do not have counterparts in human disease. However, activating mutations of each of the Jaks are found in association with malignant transformation, the most common being gain-of-function mutations of Jak2 in polycythemia vera and other myeloproliferative disorders. Our existing knowledge on Jak signaling pathways and fundamental work on their biochemical structure and intracellular interactions allow us to develop new strategies for controlling autoimmune diseases or malignancies by developing selective Jak inhibitors, which are now coming into clinical use. Despite the fact that Jaks were discovered only a little more than a decade ago, at the time of writing there are 20 clinical trials underway testing the safety and efficacy of Jak inhibitors.
Collapse
Affiliation(s)
- Kamran Ghoreschi
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
82
|
Double-blind, placebo-controlled, dose-escalation study to evaluate the pharmacologic effect of CP-690,550 in patients with psoriasis. J Invest Dermatol 2009; 129:2299-302. [PMID: 19225543 DOI: 10.1038/jid.2009.25] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
83
|
|
84
|
Protein kinase antagonists as therapeutic agents for immunological and inflammatory disorders. Clin Immunol 2008. [DOI: 10.1016/b978-0-323-04404-2.10091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
85
|
Soldevila G, García-Zepeda EA. The role of the Jak-Stat pathway in chemokine-mediated signaling in T lymphocytes. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200700144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
86
|
|
87
|
Cortes JR, Perez-G M, Rivas MD, Zamorano J. Kaempferol Inhibits IL-4-Induced STAT6 Activation by Specifically Targeting JAK3. THE JOURNAL OF IMMUNOLOGY 2007; 179:3881-7. [PMID: 17785825 DOI: 10.4049/jimmunol.179.6.3881] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IL-4 is involved in several human diseases including allergies, autoimmunity, and cancer. Its effects are mainly mediated through the transcription factor STAT6. Therefore, investigation of compounds that regulate STAT6 activation is of great interest for these diseases. Natural polyphenols are compounds reported to have therapeutic properties in diseases involving IL-4 and STAT6. The aim of this study was to investigate the effect of these compounds in the activation of this transcription factor. We found that in hemopoietic cells from human and mouse origin, some flavonoids were able to inhibit the activation of STAT6 by IL-4. To identify molecular mechanisms, we focused on kaempferol, the compound that showed the greatest inhibitory effect with the lowest cell toxicity. Treatment of cells with kaempferol did not affect activation of Src kinase by IL-4 but did prevent the phosphorylation of JAK1 and JAK3. Further enzymatic analysis demonstrated that kaempferol blocked the in vitro phosphorylation activity of JAK3 without affecting JAK1, suggesting that it specifically targeted JAK3 activity. Accordingly, kaempferol had no effect on STAT6 activation in nonhemopoietic cell lines lacking JAK3, supporting its selective inhibition of IL-4 responses through type I receptors expressing JAK3 but not type II lacking this kinase. The inhibitory effect of kaempferol was also observed in IL-2 but not IL-3-mediated responses and correlated with the inhibition of MLC proliferation. These findings reveal the potential use of kaempferol as a tool for selectively controlling cell responses to IL-4 and, in general, JAK3-dependent responses.
Collapse
Affiliation(s)
- Jose R Cortes
- Unidad de Investigacion, Hospital San Pedro de Alcantara, Caceres, Spain
| | | | | | | |
Collapse
|
88
|
O'Sullivan LA, Liongue C, Lewis RS, Stephenson SEM, Ward AC. Cytokine receptor signaling through the Jak–Stat–Socs pathway in disease. Mol Immunol 2007; 44:2497-506. [PMID: 17208301 DOI: 10.1016/j.molimm.2006.11.025] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 11/21/2006] [Accepted: 11/22/2006] [Indexed: 12/31/2022]
Abstract
The complexity of multicellular organisms is dependent on systems enabling cells to respond to specific stimuli. Cytokines and their receptors are one such system, whose perturbation can lead to a variety of disease states. This review represents an overview of our current understanding of the cytokine receptors, Janus kinases (Jaks), Signal transducers and activators of transcription (Stats) and Suppressors of cytokine signaling (Socs), focussing on their contribution to diseases of an immune or hematologic nature.
Collapse
Affiliation(s)
- Lynda A O'Sullivan
- School of Life & Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | | | | | | | | |
Collapse
|
89
|
Eidenschenk C, Jouanguy E, Alcaïs A, Mention JJ, Pasquier B, Fleckenstein IM, Puel A, Gineau L, Carel JC, Vivier E, Le Deist F, Casanova JL. Familial NK cell deficiency associated with impaired IL-2- and IL-15-dependent survival of lymphocytes. THE JOURNAL OF IMMUNOLOGY 2007; 177:8835-43. [PMID: 17142786 DOI: 10.4049/jimmunol.177.12.8835] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported the clinical phenotype of two siblings with a novel inherited developmental and immunodeficiency syndrome consisting of severe intrauterine growth retardation and the impaired development of specific lymphoid lineages, including transient CD8 alphabeta T lymphopenia and a persistent lack of blood NK cells. We describe here the elucidation of a plausible underlying pathogenic mechanism, with a cellular phenotype of impaired survival of both fresh and herpesvirus saimiri-transformed T cells, in the surviving child. Clearly, NK cells could not be studied. However, peripheral blood T lymphocytes displayed excessive apoptosis ex vivo. Moreover, the survival rates of CD4 and CD8 alphabeta T cell blasts generated in vitro, and herpesvirus saimiri-transformed T cells cultured in vitro, were low, but not nil, following treatment with IL-2 and IL-15. In contrast, Fas-mediated activation-induced cell death was not enhanced, indicating a selective excess of cytokine deprivation-mediated apoptosis. In keeping with the known roles of IL-2 and IL-15 in the development of NK and CD8 T cells in the mouse model, these data suggest that an impaired, but not abolished, survival response to IL-2 and IL-15 accounts for the persistent lack of NK cells and the transient CD8 alphabeta T lymphopenia documented in vivo. Impaired cytokine-mediated lymphocyte survival is likely to be the pathogenic mechanism underlying this novel form of inherited and selective NK deficiency in humans.
Collapse
Affiliation(s)
- Céline Eidenschenk
- Laboratoire de Génétique Humaine des Maladies Infectieuses, Université de Paris René Descartes-INSERM Unité 550, Faculté de Médecine Necker, 156 rue de Vaugirard, 75015 Paris, France, European Union (EU)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Grunebaum E, Sharfe N, Roifman CM. Human T cell immunodeficiency: when signal transduction goes wrong. Immunol Res 2006; 35:117-26. [PMID: 17003514 DOI: 10.1385/ir:35:1:117] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Severe combined immunodeficiency (SCID) is a heterogeneous group of diseases that are invariably fatal in infancy unless treated by hematopoietic stem cell replacement. For many years we have worked to better manage patients affected by SCID through rapid and accurate diagnosis followed by treatment aimed at achieving long-lasting immune reconstitution. By extensive immunological, biochemical, and genetic studies of patient samples, and with the realization of differences between human and murine T cell development, we have successfully been able to identify some of the molecular defects causing SCID. Among these discoveries, we described the first mutated signal transduction protein in T cells (ZAP-70); the first genetic defect leading to SCID and autoimmune phenomena (IL2R alpha); and, recently, the critical importance of CD3delta in the development of T cells. Our efforts have significantly advanced the understanding of the role of some of the signal-transducing proteins in T cell maturation and function. This review summarizes several of these discoveries and some of their impact on our understanding of T cells development, function, and homeostasis in humans.
Collapse
Affiliation(s)
- Eyal Grunebaum
- Division of Immunology/Allergy and the Infection, Immunity, Injury and Repair Program, The Research Institute and The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
91
|
DiMauro EF, Newcomb J, Nunes JJ, Bemis JE, Boucher C, Buchanan JL, Buckner WH, Cee VJ, Chai L, Deak HL, Epstein LF, Faust T, Gallant P, Geuns-Meyer SD, Gore A, Gu Y, Henkle B, Hodous BL, Hsieh F, Huang X, Kim JL, Lee JH, Martin MW, Masse CE, McGowan DC, Metz D, Mohn D, Morgenstern KA, Oliveira-dos-Santos A, Patel VF, Powers D, Rose PE, Schneider S, Tomlinson SA, Tudor YY, Turci SM, Welcher AA, White RD, Zhao H, Zhu L, Zhu X. Discovery of aminoquinazolines as potent, orally bioavailable inhibitors of Lck: synthesis, SAR, and in vivo anti-inflammatory activity. J Med Chem 2006; 49:5671-86. [PMID: 16970394 DOI: 10.1021/jm0605482] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and natural killer (NK) cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. Selective inhibition of Lck is expected to offer a new therapy for the treatment of T-cell-mediated autoimmune and inflammatory disease. Screening of our kinase-preferred collection identified aminoquinazoline 1 as a potent, nonselective inhibitor of Lck and T cell proliferation. In this report, we describe the synthesis and structure-activity relationships of a series of novel aminoquinazolines possessing in vitro mechanism-based potency. Optimized, orally bioavailable compounds 32 and 47 exhibit anti-inflammatory activity (ED(50) of 22 and 11 mg/kg, respectively) in the anti-CD3-induced production of interleukin-2 (IL-2) in mice.
Collapse
Affiliation(s)
- Erin F DiMauro
- Department of Medicinal Chemistry, Amgen, Inc., Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Walters DK, Mercher T, Gu TL, O'Hare T, Tyner JW, Loriaux M, Goss VL, Lee KA, Eide CA, Wong MJ, Stoffregen EP, McGreevey L, Nardone J, Moore SA, Crispino J, Boggon TJ, Heinrich MC, Deininger MW, Polakiewicz RD, Gilliland DG, Druker BJ. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 2006; 10:65-75. [PMID: 16843266 DOI: 10.1016/j.ccr.2006.06.002] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/21/2006] [Accepted: 06/01/2006] [Indexed: 12/18/2022]
Abstract
Tyrosine kinases are aberrantly activated in numerous malignancies, including acute myeloid leukemia (AML). To identify tyrosine kinases activated in AML, we developed a screening strategy that rapidly identifies tyrosine-phosphorylated proteins using mass spectrometry. This allowed the identification of an activating mutation (A572V) in the JAK3 pseudokinase domain in the acute megakaryoblastic leukemia (AMKL) cell line CMK. Subsequent analysis identified two additional JAK3 alleles, V722I and P132T, in AMKL patients. JAK3(A572V), JAK3(V722I), and JAK3(P132T) each transform Ba/F3 cells to factor-independent growth, and JAK3(A572V) confers features of megakaryoblastic leukemia in a murine model. These findings illustrate the biological importance of gain-of-function JAK3 mutations in leukemogenesis and demonstrate the utility of proteomic approaches to identifying clinically relevant mutations.
Collapse
MESH Headings
- Alleles
- Animals
- Apoptosis/drug effects
- Benzamides
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Humans
- Imatinib Mesylate
- Janus Kinase 2
- Janus Kinase 3
- K562 Cells
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/pathology
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Megakaryoblastic, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Mutant Proteins/chemistry
- Mutant Proteins/genetics
- Mutant Proteins/metabolism
- Phosphorylation/drug effects
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Protein Structure, Tertiary/genetics
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Pyrimidines/pharmacology
- RNA, Small Interfering/genetics
- TYK2 Kinase
Collapse
|
93
|
Abstract
The lymphocytes, T, B, and NK cells, and a proportion of dendritic cells (DCs) have a common developmental origin. Lymphocytes develop from hematopoietic stem cells via common lymphocyte and various lineage-restricted precursors. This review discusses the current knowledge of human lymphocyte development and the phenotypes and functions of the rare intermediate populations that together form the pathways of development into T, B, and NK cells and DCs. Clearly, development of hematopoietic cells is supported by cytokines. The studies of patients with genetic deficiencies in cytokine receptors that are discussed here have illuminated the importance of cytokines in lymphoid development. Lineage decisions are under control of transcription factors, and studies performed in the past decade have provided insight into transcriptional control of human lymphoid development, the results of which are summarized and discussed in this review.
Collapse
Affiliation(s)
- Bianca Blom
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | | |
Collapse
|
94
|
Giliani S, Mella P, Savoldi G, Mazzolari E. Cytokine-mediated signalling and early defects in lymphoid development. Curr Opin Allergy Clin Immunol 2005; 5:519-24. [PMID: 16264332 DOI: 10.1097/01.all.0000191889.35516.b6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of the review is to report on recent advances in cytokine-mediated signalling, as illustrated by the study of natural human mutants. In particular, the role of cytokines and cytokine-mediated signalling in human T-cell development is analysed in detail, and currently available forms of treatment including experimental trials are described. RECENT FINDINGS Defects of the cytokine/JAK/STAT axis have been recently described as responsible for human Severe Combined Immune Deficiency. In particular, defects in gammac, JAK3 and IL7RA have been analysed in terms of development of novel diagnostic tools as well as of new therapeutic agents for the treatment of autoimmune diseases and graft-versus-host disease. SUMMARY Dissection of the genetic defects underlying the various forms of Severe Combined Immune Deficiency has helped develop new and more accurate diagnostic assays and novel forms of treatment.
Collapse
Affiliation(s)
- Silvia Giliani
- Angelo Nocivelli Institute of Molecular Medicine and Department of Pediatrics, University of Brescia, Brescia, Italy.
| | | | | | | |
Collapse
|
95
|
Abstract
Abstract
Janus (Jak) family non-receptor tyrosine kinases are critical for appropriate signaling of many growth factors and cytokines. The four vertebrate Jak kinase family members demonstrate differential receptor cytoplasmic tail binding associations and transduce discrete signals on extracellular binding of ligand to the transmembrane cytokine or growth factor receptor. On ligand binding, a rapid tyrosine phosphorylation mediated signaling cascade is initiated, culminating in translocation of cytosolic latent transcription factors, signal transducer and activator of transcription (Stat) proteins, to the nucleus and targeted activation of transcription. Dysregulation of this Jak-mediated signaling pathway is documented in a number of hematological diseases: Improper upregulation of Jak activity is seen in certain hematological malignancies [1] and inability to appropriately transduce signals from the common gamma chain, γc, through Jak3 is responsible for approximately 60% of human severe combined immunodeficiency cases [2]. In addition, Jak2 point mutation V617F is frequently documented in myeloproliferative disorders including polycythemia vera; this activating mutation may disrupt an autoinhibited conformation [3]. Therapies targeting restraint of Jak family tyrosine kinase activity may be useful for treating inappropriate activation of Jak signaling cascades or for suppressing the immune response.
Advances towards structure-directed drug design of Jak-specific inhibitors were made recently with solution of the Jak3 kinase domain X-ray crystal structure [4], representing the first three-dimensional structural data for any portion of the Jak family of tyrosine kinases. Here three further crystal structures of the kinase domain of Jak3 are presented: an improved resolution co-crystal structure with staurosporine analog AFN-941 and two crystal forms of Jak3 kinase domain in complex with the kinase inhibitor small molecule compound QAD-409. Comparisons between these three solved Jak3 kinase domain crystal structures illustrate conformational flexibility between the kinase domain lobes and in the area of the catalytic cleft. Further structure analysis is also presented documenting in silico modeling of the binding of small molecule CP-690,550 [5] to the different Jak3 kinase domain crystal forms. Potential binding conformations of this inhibitor to the Jak3 kinase domain are suggested with one highly scored binding conformation predicted for all crystal forms. The crystal structures and modeling studies presented further define the extent of the Jak kinase catalytic cleft, demonstrate conformational plasticity in the active conformation Jak3 kinase domain and will aid the design of higher specificity Jak inhibitors.
Collapse
|
96
|
Structure of a Janus kinase: molecular insights and prospects for optimizing a new class of immunosuppressants. Blood 2005. [DOI: 10.1182/blood-2005-05-1947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|