51
|
Ye SM, Zhou MZ, Jiang WJ, Liu CX, Zhou ZW, Sun MJ, Hu QH. Silencing of Gasdermin D by siRNA-Loaded PEI-Chol Lipopolymers Potently Relieves Acute Gouty Arthritis through Inhibiting Pyroptosis. Mol Pharm 2020; 18:667-678. [PMID: 32579365 DOI: 10.1021/acs.molpharmaceut.0c00229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gasdermin D (GSDMD) plays a causal role in NOD-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis eruption, which has been regarded as a potential therapeutic target for pyroptosis-related diseases including acute gouty arthritis. In the present study, the synthesized PEI-Chol (cholesterol grafted polyethylenimine) was assembled with GSDMD small interfering RNA (siRNA) to form PEI-Chol/siGSDMD polyplexes, which provided high transfection efficiency for siRNA-mediated GSDMD knockdown. Then we evaluated the effect of GSDMD siRNA-loaded PEI-Chol on inflammatory cascades in bone-marrow-derived macrophages (BMDMs) and acute gouty arthritis animal models under MSU exposure. When accompanied by pyroptosis blockade and decreased release of interleukin-1 beta (IL-1β), NLRP3 inflammasome activation was also suppressed by GSDMD knockdown in vivo and in vitro. Moreover, in MSU-induced acute gouty arthritis mice, blocking GSDMD with siRNA significantly improved ankle swelling and inflammatory infiltration observed in histopathological analysis. Furthermore, investigation using a mouse air pouch model verified the effect of siGSDMD-loaded PEI-Chol on pyroptosis of recruited macrophages and related signaling pathways in response to MSU. These novel findings exhibited that GSDMD knockdown relieved acute gouty arthritis through inhibiting pyroptosis, providing a possible therapeutic approach for MSU-induced acute gouty arthritis molecular therapy using PEI-Chol as a nucleic acid delivery carrier.
Collapse
Affiliation(s)
- Shu-Min Ye
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China.,School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PRChina
| | - Meng-Ze Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wen-Jiao Jiang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chun-Xiao Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China.,School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PRChina
| | - Zhan-Wei Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PRChina
| | - Min-Jie Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PRChina
| | - Qing-Hua Hu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China.,School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PRChina
| |
Collapse
|
52
|
The development of a targeted and more potent, anti-Inflammatory derivative of colchicine: Implications for gout. Biochem Pharmacol 2020; 180:114125. [PMID: 32598947 DOI: 10.1016/j.bcp.2020.114125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colchicine is routinely used for its anti-inflammatory properties to treat gout and Familial Mediterranean fever. More recently, it was also shown to be of therapeutic benefit for another group of diseases in which inflammation is a key component, namely, cardiovascular disease. Whilst there is considerable interest in repurposing this alkaloid, it has a narrow therapeutic index and is associated with undesirable side effects and drug interactions. We, therefore, developed a derivatives of colchicine that preferentially target leukocytes to increase their potency and diminish their side effects. The anti-inflammatory activity of the colchicine derivatives was tested in experimental models of neutrophil activation by the etiological agent of gout, monosodium urate crystals (MSU). METHODS Using a rational drug design approach, the structure of colchicine was modified to increase its affinity for βVI-tubulin, a colchicine ligand preferentially expressed by immune cells. The ability of the colchicine analogues with the predicted highest affinity for βVI-tubulin to dampen neutrophil responses to MSU was determined with in vitro assays that measure MSU-induced production of ROS, release of IL-1 and CXCL8/IL-8, and the increase in the concentration of cytoplasmic calcium. The anti-inflammatory property of the derivatives was assessed in the air pouch model of MSU-induced inflammation in mice. RESULTS The most effective compound generated, CCI, is more potent than colchicine in all the in vitro assays. It inhibits neutrophil responses to MSU in vitro at concentrations 10-100-fold lower than colchicine. Similarly, in vivo, CCI inhibits the MSU-induced recruitment of leukocytes at a 10-fold lower concentration than colchicine when administered prior to or after MSU. CONCLUSIONS We provide evidence that colchicine can be rendered more potent atinhibiting MSU-induced neutrophil activation and inflammation using a rational drug design approach. The development of compounds such as CCI will provide more efficacious drugs that will not only alleviate gout patients of their painful inflammatory episodes at significantly lower doses than colchicine, but also be of potential therapeutic benefit for patients with other diseases treated with colchicine.
Collapse
|
53
|
Li Y, Zhang Y, Chen T, Huang Y, Zhang Y, Geng S, Li X. Role of aldosterone in the activation of primary mice hepatic stellate cell and liver fibrosis via NLRP3 inflammasome. J Gastroenterol Hepatol 2020; 35:1069-1077. [PMID: 31860730 DOI: 10.1111/jgh.14961] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/19/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Emerging evidence suggests aldosterone (aldo) and NLRP3 inflammasome are important factors for HSC activation and liver fibrosis. However, the interaction between aldo and NLRP3 inflammasome in HSC activation and liver fibrosis remains largely unknown. The aim of this study is to investigate the relationship between aldo and NLRP3 inflammasome in liver fibrosis. METHODS Serum and liver specimens collected from 40 patients with or without liver fibrosis were used to test the level of aldo and NLRP3. Primary HSC isolated from C57BL/6 mice were treated with aldo, and the effects of aldo on NLRP3 inflammasome and HSC activation were detected in vitro. Two animal models were used to verify the effect of aldo on liver fibrosis in vivo: hyperaldosteronism model was established in wild-type and NLRP3 knockout (NLRP3-/- ) mice by micro-pump, and liver fibrosis mouse model was built by tetrachloromethane (CCl4 ). RESULTS Patients with liver fibrosis showed higher aldo levels and increased NLRP3 expression in liver. In vitro, aldo induced the activation of primary mouse HSCs by promoting the expression and assembly of NLRP3 inflammasome. In vivo, NLRP3 knockout could alleviate the liver fibrosis induced by aldo in mice. In addition, treatment with spironolactone (spi) could inhibit the NLRP3 expression, HSC activation, and liver fibrosis induced by CCl4 . CONCLUSIONS Aldo promotes the activation of HSCs and liver fibrosis through NLRP3 inflammasome relative pathways. Intervention of aldo and NLRP3 inflammasome-related pathways may provide a promising strategy for treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yang Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yijie Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun Huang
- Department of Cadre's Ward, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shiyu Geng
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
54
|
Li H, Jiang W, Ye S, Zhou M, Liu C, Yang X, Hao K, Hu Q. P2Y 14 receptor has a critical role in acute gouty arthritis by regulating pyroptosis of macrophages. Cell Death Dis 2020; 11:394. [PMID: 32457291 PMCID: PMC7250907 DOI: 10.1038/s41419-020-2609-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Nod-like receptor protein 3 (NLRP3)-mediated pyroptosis has a causal role in the pathogenesis of gout. P2Y14 receptor (P2Y14R) distributed in immune cells including macrophages is a Gi-coupled receptor that inhibits the synthesis of cAMP, which has been regarded as a potential regulator of inflammatory response. Nevertheless, the role of P2Y14R in MSU-induced pyroptosis of macrophages involved in acute gouty arthritis is still unclear. In our present study, P2Y14R knockout (P2Y14R-KO) disrupted MSU-induced histopathologic changes in rat synoviums, accompanied with a significant inhibition of pyroptotic cell death characterized by Caspase-1/PI double-positive and blockade of NLRP3 inflammasome activation in synovial tissues, which was consistent with that observed in in vitro studies. Owing to the interaction of NLRP3 inflammasome and cAMP, we then investigated the effect of adenylate cyclase activator (Forskolin) on macrophage pyroptosis and gout flare caused by MSU stimulation. The reversal effect of Forskolin verified the negative regulatory role of cAMP in MSU-induced pyroptosis. More importantly, adenylate cyclase inhibitor (SQ22536) intervention led to a reversal of protection attributed to P2Y14R deficiency. Findings in air pouch animal models also verified aforementioned experimental results. Our study first identified the role of P2Y14R/cAMP/NLRP3 signaling pathway in acute gouty arthritis, which provides a novel insight into the pathological mechanisms of pyroptosis-related diseases.
Collapse
Affiliation(s)
- Hanwen Li
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wenjiao Jiang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shumin Ye
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Mengze Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Chunxiao Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiping Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Kun Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China. .,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
55
|
Zhou M, Ze K, Wang Y, Li X, Hua L, Lu Y, Chen X, Ding X, Chen S, Ru Y, Zhang M, Li B. Huzhang Tongfeng Granule Improves Monosodium Urate-Induced Inflammation of Gouty Arthritis Rat Model by Downregulation of Cyr61 and Related Cytokines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:9238797. [PMID: 32419834 PMCID: PMC7206887 DOI: 10.1155/2020/9238797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/18/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Gouty arthritis (GA) is a noninfectious inflammatory disease characterized by self-limited and severe pain. Huzhang Tongfeng granule is one of the most effective traditional Chinese medicines in the treatment of acute GA. However, its effects on the inflammatory factors in the process of acute gout inflammation remain unknown. In the present study, we aimed to evaluate the effect of Huzhang Tongfeng granule on the expressions of Cyr61 and related inflammatory factors in both experimental gout models in vivo and in vitro. METHODS Huzhang Tongfeng granule was provided by the pharmaceutical preparation room of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine. The expressions of Cyr61, IL-1β, TNF-α, and IL-6 in monosodium urate- (MSU-) induced rat models and fibroblast-like synoviocytes (FLSs) were determined by RT-PCR, Western blotting analysis, ELISA, immunohistochemistry, and hematoxylin and eosin staining. RESULTS Huzhang Tongfeng granule could downregulate the expressions of IL-1β, TNF-α, and IL-6 to some extent by inhibiting the expression of Cyr61. CONCLUSIONS Collectively, our findings indicated that Cyr61 was highly expressed in rat models of gout. By inhibiting the expression of Cyr61, Huzhang Tongfeng granule could partially attenuate the inflammation induced by MSU crystal.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kan Ze
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Hua
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xi Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Siting Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
56
|
Alekberova ZS, Nasonov EL. PROSPECTS FOR USING COLCHICINE IN MEDICINE: NEW EVIDENCE. RHEUMATOLOGY SCIENCE AND PRACTICE 2020. [DOI: 10.14412/1995-4484-2020-183-190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology;
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| |
Collapse
|
57
|
Wu S, Zhang Y, Zhu M, Kosinova M, Fedin VP, Gao E. Three coordination polymers with regulated coordination interactions as fluorescent sensors for monitoring purine metabolite uric acid. Dalton Trans 2020; 49:4343-4351. [PMID: 32163086 DOI: 10.1039/d0dt00175a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A facile optical sensor for uric acid (UA), an early pathological signature for the metabolic function of humans, was developed based on water-stable coordination polymers (CPs). Herein, three new isostructural fluorescent CPs, [Ln(TCPB)(DMF)3]n (Ln = La, CP 1; Ce, CP 2 and Pr, CP 3; H3TCPB = 1,3,5-tris(1-(2-carboxyphenyl)-1H-pyrazol-3-yl)benzene), with various metal ions were solvothermally synthesized. Significantly, by regulating the metal-organic coordination interactions, the fabricated CP 3 can quantitatively recognize UA with higher sensitivity compared with CP 1 and CP 2. The mechanism for the sensing properties further demonstrates the best performance of CP 3 and the excellent selectivity for UA monitoring. This work represents the strategy of designing fluorescent CP sensors to determine UA and provides a convenient approach for developing analysis platforms for the assessment of related disease progress and human health monitoring.
Collapse
Affiliation(s)
- Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Marina Kosinova
- Nikolaev Institute of Inorganic Chemistry, Lavrentiev Avenue 3, Novosibirsk, 630090, Russia Federation
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry, Lavrentiev Avenue 3, Novosibirsk, 630090, Russia Federation
| | - Enjun Gao
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China and School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China.
| |
Collapse
|
58
|
Temmoku J, Fujita Y, Matsuoka N, Urano T, Furuya MY, Asano T, Sato S, Matsumoto H, Watanabe H, Kozuru H, Yatsuhashi H, Kawakami A, Migita K. Uric acid-mediated inflammasome activation in IL-6 primed innate immune cells is regulated by baricitinib. Mod Rheumatol 2020; 31:270-275. [PMID: 32148148 DOI: 10.1080/14397595.2020.1740410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Gout is an inflammatory arthropathy caused by the deposition of monosodium urate (MSU). The synthesis and release of IL-1β is crucial for MSU-induced synovial inflammation. The aim of the present study was to investigate the mechanism of MSU crystal-induced autoinflammatory processes. METHODS In vitro studies were used to evaluate the role of IL-6 in inflammasome activation in human neutrophils cultured with MSU crystals. Human neutrophils were stimulated with MSU in the presence or absence of IL-6 priming to determine NLRP3 inflammasome activation and subsequent cleaved caspase-1 induction or IL-1β production. RESULTS IL-6 or MSU stimulation alone did not result in the efficient IL-1β production from human neutrophils. However, MSU stimulation induced marked IL-1β production from IL-6-primed neutrophils. Pretreatment with baricitinib, which blocks IL-6 receptor signaling, prevented MSU-induced cleaved caspase-1 or IL-1β induction in IL-6-primed neutrophils. Tocilizumab pretreatment also inhibited MSU-mediated IL-1β production from IL-6-primed neutrophils. CONCLUSION Priming of human neutrophils with IL-6 promotes uric acid-mediated IL-1β secretion in the absence of microbial stimulation. These results suggest that an endogenous cytokine, IL-6, is involved in MSU-mediated NLRP3 inflammasome activation and subsequent IL-1β production from innate immune cells and has a crucial role in MSU crystal-induced synovial inflammation. These findings provide insights into uric acid-mediated autoinflammation in the innate immune system.
Collapse
Affiliation(s)
- Jumpei Temmoku
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuya Fujita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoki Matsuoka
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
| | - Makiko Yashiro Furuya
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Haruki Matsumoto
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroshi Watanabe
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideko Kozuru
- Clinical Research Center, NHO Nagasaki Medical Center, Nagasaki, Japan
| | | | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan.,Clinical Research Center, NHO Nagasaki Medical Center, Nagasaki, Japan
| |
Collapse
|
59
|
Tajbakhsh A, Rezaee M, Barreto GE, Moallem SA, Henney NC, Sahebkar A. The role of nuclear factors as “Find-Me”/alarmin signals and immunostimulation in defective efferocytosis and related disorders. Int Immunopharmacol 2020; 80:106134. [DOI: 10.1016/j.intimp.2019.106134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
|
60
|
A ’’naked-eye’’ colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXene quantum dots. Anal Chim Acta 2020; 1103:134-142. [DOI: 10.1016/j.aca.2019.12.069] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
|
61
|
Klinkhammer BM, Djudjaj S, Kunter U, Palsson R, Edvardsson VO, Wiech T, Thorsteinsdottir M, Hardarson S, Foresto-Neto O, Mulay SR, Moeller MJ, Jahnen-Dechent W, Floege J, Anders HJ, Boor P. Cellular and Molecular Mechanisms of Kidney Injury in 2,8-Dihydroxyadenine Nephropathy. J Am Soc Nephrol 2020; 31:799-816. [PMID: 32086278 DOI: 10.1681/asn.2019080827] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hereditary deficiency of adenine phosphoribosyltransferase causes 2,8-dihydroxyadenine (2,8-DHA) nephropathy, a rare condition characterized by formation of 2,8-DHA crystals within renal tubules. Clinical relevance of rodent models of 2,8-DHA crystal nephropathy induced by excessive adenine intake is unknown. METHODS Using animal models and patient kidney biopsies, we assessed the pathogenic sequelae of 2,8-DHA crystal-induced kidney damage. We also used knockout mice to investigate the role of TNF receptors 1 and 2 (TNFR1 and TNFR2), CD44, or alpha2-HS glycoprotein (AHSG), all of which are involved in the pathogenesis of other types of crystal-induced nephropathies. RESULTS Adenine-enriched diet in mice induced 2,8-DHA nephropathy, leading to progressive kidney disease, characterized by crystal deposits, tubular injury, inflammation, and fibrosis. Kidney injury depended on crystal size. The smallest crystals were endocytosed by tubular epithelial cells. Crystals of variable size were excreted in urine. Large crystals obstructed whole tubules. Medium-sized crystals induced a particular reparative process that we term extratubulation. In this process, tubular cells, in coordination with macrophages, overgrew and translocated crystals into the interstitium, restoring the tubular luminal patency; this was followed by degradation of interstitial crystals by granulomatous inflammation. Patients with adenine phosphoribosyltransferase deficiency showed similar histopathological findings regarding crystal morphology, crystal clearance, and renal injury. In mice, deletion of Tnfr1 significantly reduced tubular CD44 and annexin two expression, as well as inflammation, thereby ameliorating the disease course. In contrast, genetic deletion of Tnfr2, Cd44, or Ahsg had no effect on the manifestations of 2,8-DHA nephropathy. CONCLUSIONS Rodent models of the cellular and molecular mechanisms of 2,8-DHA nephropathy and crystal clearance have clinical relevance and offer insight into potential future targets for therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Thorsten Wiech
- Institute of Pathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany; and
| | | | - Sverrir Hardarson
- Department of Pathology Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Shrikant R Mulay
- Division of Nephrology, Klinikum der Universität, LMU München, Munich, Germany
| | | | | | | | - Hans-Joachim Anders
- Division of Nephrology, Klinikum der Universität, LMU München, Munich, Germany
| | - Peter Boor
- Institute of Pathology, .,Division of Nephrology and Immunology.,Department of Electron Microscopy, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
62
|
Zhang Y, Liu L, Sun D, He Y, Jiang Y, Cheng KW, Chen F. DHA protects against monosodium urate-induced inflammation through modulation of oxidative stress. Food Funct 2020; 10:4010-4021. [PMID: 31214670 DOI: 10.1039/c9fo00573k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute gouty inflammation could be triggered by phagocytosis of monosodium urate (MSU) by immune cells. This study investigated the protective effect and underlying mechanism of docosahexaenoic acid (DHA) on MSU-induced inflammation in vitro and in vivo. Results showed that DHA effectively inhibited MSU-induced expression and secretion of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in THP-1 cells. Intracellular reactive oxygen species (ROS) production triggered by MSU was alleviated by DHA treatment. Furthermore, DHA promoted the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), wherein Nrf2 further mediated the expression of multiple antioxidant enzymes such as, heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase-1 (NQO1) and catalase, which are closely related with redox homeostasis. DHA treatment also restored MSU-induced impairment of mitochondrial transmembrane potential. In addition, oral administration of DHA-rich microalgal oil to C57BL/6 mice effectively reduced the infiltration of neutrophils, and decreased the expression and secretion of inflammatory cytokines. Altogether, our results suggest that DHA or DHA-rich microalgal oil may be a promising natural agent for the prevention of MSU-induced inflammation and potentially acute gout at least partly by attenuating oxidative stress.
Collapse
Affiliation(s)
- Yue Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, China. and Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Lu Liu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Dongzhe Sun
- Nutrition & Health Research Institute, China National Cereals, Oils and Foodstuffs Corporation (COFCO), Beijing 102209, P. R. China
| | - Yongjing He
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Yue Jiang
- RunkeBioengn Co Ltd, Zhangzhou, Fujian, People's Republic of China
| | - Ka-Wing Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, China. and Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, China. and Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
63
|
Wang Y, Lin Z, Zhang B, Jiang Z, Guo F, Yang T. Cichorium intybus L. Extract Suppresses Experimental Gout by Inhibiting the NF-κB and NLRP3 Signaling Pathways. Int J Mol Sci 2019; 20:E4921. [PMID: 31590257 PMCID: PMC6801406 DOI: 10.3390/ijms20194921] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The production and maturation of interleukin (IL)-1β, regulated by the NF-κB and NLRP3 signaling pathways, lie at the core of gout. This study aimed to evaluate the antigout effect of Cichorium intybus L. (also known as chicory) in vivo and in vitro. METHODS A gout animal model was established with monosodium urate (MSU) crystal injections. Rats were orally administered with chicory extract or colchicine. Levels of ankle edema, inflammatory activity, and IL-1β release were observed. Several essential targets of the NF-κB and NLRP3 signaling pathways were detected. Primary macrophages were isolated to verify the antigout mechanism of chicory extract as well as chicoric acid in vitro. RESULTS Improvements of swelling degree, inflammatory activity, and histopathological lesion in MSU-injected ankles were observed in the treatment with chicory extract. Further, the chicory extract significantly decreased IL-1β release by suppressing the NF-κB and NLRP3 signaling pathways in gout rats. Similar to the in vivo results, IL-1β release was also inhibited by chicory extract and chicoric acid, a specific effective compound in chicory, through the NF-κB and NLRP3 signaling pathways. CONCLUSION This study suggests that chicory extract and chicoric acid may be used as promising therapeutic agents against gout by inhibiting the NF-κB and NLRP3 signaling pathways.
Collapse
Affiliation(s)
- Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Zhijian Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Bing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Zhuoxi Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Fanfan Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Ting Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
64
|
Elevated Interleukin 1β and Interleukin 6 Levels in the Serum of Children With Hyperuricemia. J Clin Rheumatol 2019; 24:65-69. [PMID: 29232321 DOI: 10.1097/rhu.0000000000000611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSES The aim of this study was to investigate the serum levels and clinical significance of interleukin 1β (IL-1β) and IL-6 in children with hyperuricemia (HUA). METHODS We included 71 children with HUA and 71 children with no HUA as control subjects. Children with HUA were divided into groups I and II according to whether they had a history of acute gout-like attacks (including sudden monoarthritis of rapid onset with intense pain and swelling). Group I was examined twice (A, in the acute phase; B, in the remission phase). Serum IL-1β and IL-6 levels were measured by enzyme-linked immunosorbent assay. RESULTS Serum IL-1β and IL-6 levels were increased in children with HUA and were overall statistically different from the control group (P < 0.05, respectively). Serum IL-1β and IL-6 were significantly higher in group IA in comparison with group IB, group II, and control subjects (P < 0.05, respectively), as well as in groups IB and II compared with control subjects (P < 0.05, respectively). In group IB, the serum IL-1β and IL-6 concentrations were higher than those in group II, but there were no statistical differences (P > 0.05). In addition, in children with HUA, serum IL-1β and IL-6 levels were positively associated with white blood cell count, neutrophil count, monocyte count, uric acid levels, erythrocyte sedimentation rate, C-reactive protein, blood urea nitrogen, and serum creatinine levels (all P < 0.05), but were not associated with triglycerides, total cholesterol, low-density lipoprotein cholesterol, or high-density lipoprotein cholesterol levels (all P > 0.05). CONCLUSION IL-1β and IL-6 levels are increased in children with hyperuricemia, even if they have not had acute gout. Further studies are necessary to fully characterize the significance of IL-1β and IL-6 found in HUA children, and whether they could be correlated with long-term prognosis.
Collapse
|
65
|
Screening the Best Compatibility of Selaginella moellendorffii Prescription on Hyperuricemia and Gouty Arthritis and Its Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7263034. [PMID: 31379966 PMCID: PMC6657646 DOI: 10.1155/2019/7263034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/26/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023]
Abstract
Objectives The Selaginella moellendorffii prescription (SMP) consists of S. moellendorffii Herba (SM), Smilacis glabrae Rhizoma (SGR), and Plantaginis Semen (PS). It has been commonly used to treat hyperuricemia and acute gouty arthritis as a hospital preparation. This study was aimed at investigating the best compatibility ratio of SMP on hyperuricemia and gouty arthritis and getting better insight of the possible mechanism. Methods. In vitro, anti-inflammatory activity of SMP was evaluated by lipopolysaccharide (LPS) induced RAW264.7 cells. The release of nitric oxide (NO) was screened by Griess assay, and NF-κB p65 and NLRP3 proteins expression was examined by immunofluorescence assay. Then, the levels of creatinine (Cr), blood urea nitrogen (BUN), and uric acid (UA) were detected in mice induced by potassium oxonate, and the paw oedema, inflammatory mediators, and histological examination were analyzed in rats induced by monosodium urate (MSU). HPLC method was employed to investigate the chemical profile of this preparation. Results. In vitro, SMP-3 (the ratio of SMP:SGR:PS was 3:1:1) exhibited the most potent anti-NO production activity without obvious toxicity. This anti-inflammatory effect was associated with suppression of NF-κB p65 nuclear translocation and NLRP3 protein expression. In animal experiments, the levels of BUN and Cr in SMP-3 group were lower than other extract groups, and the level of UA was also remarkably decreased by SMP-3 in hyperuricemic mice (P<0.01). Besides, SMP-3 extract was able to prevent the paw edema, reduce gouty joint inflammatory features, and decrease the levels IL-1β, PGE-2, IL-8, and NO in gouty arthritis rats. Furthermore, 6-C-β-D-xylopyranosyl-8-C-β-D-glucopyranosyl, apigenin, and astilbin were identified from SMP-3 extract. Conclusions In summary, SMP-3 may be a potential therapeutic agent for the prevention of hyperuricemic and gout.
Collapse
|
66
|
Phytochemicals as Novel Therapeutic Strategies for NLRP3 Inflammasome-Related Neurological, Metabolic, and Inflammatory Diseases. Int J Mol Sci 2019; 20:ijms20122876. [PMID: 31200447 PMCID: PMC6627634 DOI: 10.3390/ijms20122876] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
Several lines of evidence point out the relevance of nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome as a pivotal player in the pathophysiology of several neurological and psychiatric diseases (i.e., Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis, and major depressive disorder), metabolic disorders (i.e., obesity and type 2 diabetes) and chronic inflammatory diseases (i.e., intestinal inflammation, arthritis, and gout). Intensive research efforts are being made to achieve an integrated view about the pathophysiological role of NLRP3 inflammasome pathways in such disorders. Evidence is also emerging that the pharmacological modulation of NLRP3 inflammasome by phytochemicals could represent a promising molecular target for the therapeutic management of neurological, psychiatric, metabolic, and inflammatory diseases. The present review article has been intended to provide an integrated and critical overview of the available clinical and experimental evidence about the role of NLRP3 inflammasome in the pathophysiology of neurological, psychiatric, metabolic, and inflammatory diseases, including PD, AD, MS, depression, obesity, type 2 diabetes, arthritis, and intestinal inflammation. Special attention has been paid to highlight and critically discuss current scientific evidence on the effects of phytochemicals on NLRP3 inflammasome pathways and their potential in counteracting central neuroinflammation, metabolic alterations, and immune/inflammatory responses in such diseases.
Collapse
|
67
|
Shi Z, Li X, Yu L, Wu X, Wu J, Guo C, Li CM. Atomic matching catalysis to realize a highly selective and sensitive biomimetic uric acid sensor. Biosens Bioelectron 2019; 141:111421. [PMID: 31207567 DOI: 10.1016/j.bios.2019.111421] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023]
Abstract
A main challenge for biomimetic non-enzyme biosensors is to achieve high selectivity. Herein, an innovative biomimetic non-enzyme sensor for electrochemical detection of uric acid (UA) with high selectivity and sensitivity is realized by growing Prussian blue (PB) nanoparticles on nitrogen-doped carbon nanotubes (N-doped CNTs). The enhancement mechanism of the biomimetic UA sensor is proposed to be atomically matched active sites between two reaction sites (oxygen atoms of 2, 8-trione, 6.9 Å) of UA molecule and two redox centers (FeII on the diagonal, 7.2 Å) of PB. Such an atomically matching manner not only promotes strong adsorption of UA on PB but also selectively enhances electron transfer between reaction sites of UA and active FeII centers of PB. This biomimetic UA sensor can offer great selectivity to avoid interferences from other oxidative and reductive species, showing excellent selectivity. An electrochemical biomimetic sensor based on PB/N-doped CNTs was applied to in situ detect UA in human serum, delivering a wide dynamic detection range (0.001-1 mM) and a low detection limit (0.26 μM). This work provides a high-performance UA sensor while shedding a scientific light on using atomic matching catalysis to fabricate highly sensitive and selective biomimetic sensors.
Collapse
Affiliation(s)
- Zhuanzhuan Shi
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ling Yu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Xiaoshuai Wu
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Jinggao Wu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Chunxian Guo
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Chang Ming Li
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, China; Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, China; Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
68
|
Lee HE, Yang G, Park YB, Kang HC, Cho YY, Lee HS, Lee JY. Epigallocatechin-3-Gallate Prevents Acute Gout by Suppressing NLRP3 Inflammasome Activation and Mitochondrial DNA Synthesis. Molecules 2019; 24:molecules24112138. [PMID: 31174271 PMCID: PMC6600669 DOI: 10.3390/molecules24112138] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 11/25/2022] Open
Abstract
Gout is a chronic inflammatory disease evoked by the deposition of monosodium urate (MSU) crystals in joint tissues. The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is responsible for the gout inflammatory symptoms induced by MSU crystals. We investigated whether epigallocatechin-3-gallate (EGCG) suppresses the activation of the NLRP3 inflammasome, thereby effectively preventing gouty inflammation. EGCG blocked MSU crystal-induced production of caspase-1(p10) and interleukin-1β in primary mouse macrophages, indicating its suppressive effect on the NLRP3 inflammasome. In an acute gout mouse model, oral administration of EGCG to mice effectively alleviated gout inflammatory symptoms in mouse foot tissue injected with MSU crystals. The in vivo suppressive effects of EGCG correlated well with the suppression of the NLRP3 inflammasome in mouse foot tissue. EGCG inhibited the de novo synthesis of mitochondrial DNA as well as the production of reactive oxygen species in primary mouse macrophages, contributing to the suppression of the NLRP3 inflammasome. These results show that EGCG suppresses the activation of the NLRP3 inflammasome in macrophages via the blockade of mitochondrial DNA synthesis, contributing to the prevention of gouty inflammation. The inhibitory effects of EGCG on the NLRP3 inflammasome make EGCG a promising therapeutic option for NLRP3-dependent diseases such as gout.
Collapse
Affiliation(s)
- Hye Eun Lee
- BK21 Plus, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea.
| | - Gabsik Yang
- BK21 Plus, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea.
| | - Youn Bum Park
- BK21 Plus, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea.
| | - Han Chang Kang
- BK21 Plus, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea.
| | - Yong-Yeon Cho
- BK21 Plus, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea.
| | - Hye Suk Lee
- BK21 Plus, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea.
| | - Joo Young Lee
- BK21 Plus, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea.
| |
Collapse
|
69
|
Friston D, Laycock H, Nagy I, Want EJ. Microdialysis Workflow for Metabotyping Superficial Pathologies: Application to Burn Injury. Anal Chem 2019; 91:6541-6548. [PMID: 31021084 PMCID: PMC6533596 DOI: 10.1021/acs.analchem.8b05615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/25/2019] [Indexed: 02/08/2023]
Abstract
Burn injury can be a devastating traumatic injury, with long-term personal and social implications for the patient. The many complex local and disseminating pathological processes underlying burn injury's clinical challenges are orchestrated from the site of injury and develop over time, yet few studies of the molecular basis of these mechanisms specifically explore the local signaling environment. Those that do are typically destructive in nature and preclude the collection of longitudinal temporal data. Burn injury therefore exemplifies a superficial temporally dynamic pathology for which experimental sampling typically prioritizes either specificity to the local burn site or continuous collection from circulation. Here, we present an exploratory approach to the targeted elucidation of complex, local, acutely temporally dynamic interstitia through its application to burn injury. Subcutaneous microdialysis is coupled with ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) analysis, permitting the application of high-throughput metabolomic profiling to samples collected both continuously and specifically from the burn site. We demonstrate this workflow's high yield of burn-altered metabolites including the complete structural elucidation of niacinamide and uric acid, two compounds potentially involved in the pathology of burn injury. Further understanding the metabolic changes induced by burn injury will help to guide therapeutic intervention in the future. This approach is equally applicable to the analysis of other tissues and pathological conditions, so it may further improve our understanding of the metabolic changes underlying a wide variety of pathological processes.
Collapse
Affiliation(s)
- Dominic Friston
- Nociception
Group, Section of Anaesthetic, Pain Medicine and Intensive
Care, Department of Surgery and Cancer, and Systems and Digestive Medicine,
Department of Surgery and Cancer, Imperial
College London, London SW7 2AZ, U.K.
| | - Helen Laycock
- Nociception
Group, Section of Anaesthetic, Pain Medicine and Intensive
Care, Department of Surgery and Cancer, and Systems and Digestive Medicine,
Department of Surgery and Cancer, Imperial
College London, London SW7 2AZ, U.K.
| | - Istvan Nagy
- Nociception
Group, Section of Anaesthetic, Pain Medicine and Intensive
Care, Department of Surgery and Cancer, and Systems and Digestive Medicine,
Department of Surgery and Cancer, Imperial
College London, London SW7 2AZ, U.K.
| | - Elizabeth J. Want
- Nociception
Group, Section of Anaesthetic, Pain Medicine and Intensive
Care, Department of Surgery and Cancer, and Systems and Digestive Medicine,
Department of Surgery and Cancer, Imperial
College London, London SW7 2AZ, U.K.
| |
Collapse
|
70
|
Kim ST, Bittar M, Kim HJ, Neelapu SS, Zurita AJ, Nurieva R, Suarez-Almazor ME. Recurrent pseudogout after therapy with immune checkpoint inhibitors: a case report with immunoprofiling of synovial fluid at each flare. J Immunother Cancer 2019; 7:126. [PMID: 31088575 PMCID: PMC6518723 DOI: 10.1186/s40425-019-0597-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background Despite ground-breaking clinical success in the treatment of different cancers, immune checkpoint inhibitors can cause profound inflammatory and immune-related adverse events. Autoimmune inflammatory arthritis following immune checkpoint inhibitor treatment has been reported; however, to date, no cases of crystal arthritis following immune checkpoint inhibitors have been identified. Case presentation We report the first case of recurrent pseudogout, an inflammatory crystal arthritis, in a patient treated with nivolumab, a PD-1 inhibitor, for renal cell carcinoma. The patient had recurrent pseudogout flares about week to 10 days after each nivolumab infusion. After treatment with prophylactic colchicine, the patient well tolerated additional nivolumab infusions without adverse events. In parallel, we characterized immune cells of synovial fluid at each flare. Immunoprofiling of synovial fluid showed that the proportion of inflammatory IL-17-producing CD4+ T cells and amount of IL-17 were notably increased in synovial fluid with every recurrent flair, and correlated with the increase in number of synovial neutrophils, suggesting a potential role of T helper 17 (Th17) cells in neutrophil-driven inflammation during pseudogout arthritis. Conclusions This case suggests a potential influence of Th17 cells on the neutrophil recruitment and neutrophil-driven inflammatory events leading to pseudogout induced by immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Sang T Kim
- Departments of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mohamad Bittar
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hyun J Kim
- The University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Sattva S Neelapu
- Department of lymphoma/myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amado J Zurita
- Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Roza Nurieva
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Maria E Suarez-Almazor
- Departments of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
71
|
Value of serum procalcitonin for the diagnosis of bacterial septic arthritis in daily practice in rheumatology. Clin Rheumatol 2019; 38:2265-2273. [PMID: 30989408 DOI: 10.1007/s10067-019-04542-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 01/14/2023]
Abstract
INTRODUCTION/OBJECTIVES Septic arthritis is a diagnostic and therapeutic emergency because of a high morbidity and mortality. Nevertheless, the etiologic diagnosis is often difficult. The aim of our study was to determine if serum procalcitonin was a discriminatory biomarker in case of arthritis of undetermined etiology. METHOD Patients were separated in five groups: gouty arthritis, calcium pyrophosphate deposition arthritis, osteoarthritis or post-traumatic arthritis ("mechanical" arthritis), chronic inflammatory rheumatic arthritis, and septic arthritis. Levels of serum white blood cells, C-reactive protein and procalcitonin were measured. RESULTS Ninety-eight patients were included: 18 in the "gout" group, 26 in the "calcium pyrophosphate deposition arthritis" group, 16 in the mechanical group, 18 in the "chronic inflammatory rheumatic" group, and 20 in the "sepsis" group. The area under the receiver operating characteristic curve of white blood cells, C-reactive protein, and procalcitonin levels to diagnose a septic arthritis were 0.69 (IC95% 0.55-0.83), 0.82 (IC95% 0.73-0.91), and 0.87 (IC95% 0.76-0.98) respectively. For a cutoff of 0.5 ng/ml, procalcitonin sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio and negative likelihood ratio were 65%, 91%, 65%, 91%, 7.2, and 0.4, respectively. Serum C-reactive protein and procalcitonin levels were correlated, were not different in sepsis or gout groups, and were higher in non-septic arthritis with poly-arthritis than with mono-arthritis (p < 0.05). CONCLUSIONS Serum procalcitonin is a useful biomarker in arthritis management with diagnosis performances higher than those of other biomarkers (white blood cells, C-reactive protein).Key Points• Diagnostic performances of serum procalcitonin level in septic arthritis are higher than those of serum C-reactive protein or white blood cells levels.• Serum procalcitonin levels are not different in septic arthritis or gouty arthritis.• Serum procalcitonin levels are higher in non-septic arthritis with poly-arthritis than with mono-arthritis.
Collapse
|
72
|
Singh R, Kumar P, Mishra DN, Singh AK, Singh RK, Mahdi AA, Gierke CL, Cornelissen G. Effect of Gender, Age, Diet and Smoking Status on the Circadian Rhythm of Serum Uric Acid of Healthy Indians of Different Age Groups. Indian J Clin Biochem 2019; 34:164-171. [PMID: 31092989 PMCID: PMC6486913 DOI: 10.1007/s12291-017-0724-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/08/2017] [Indexed: 02/04/2023]
Abstract
The circadian rhythm of uric acid concentration was studied under near-normal tropical conditions in 162 healthy volunteers (103 males and 59 females; 7 to 75 year). They were mostly medical students, staff members and members of their families. They were classified into 4 age groups: A (7-20 y; N = 42), B (21-40 y; N = 60), C (41-60 y; N = 35) and D (61-75 y; N = 25). They followed a diurnal activity from about 06:00 to about 22:00 and nocturnal rest. Blood samples were collected from each subject every 6 for 24 h (4 samples). Serum uric acid was measured spectrophotometrically. Data from each subject were analyzed by cosinor rhythmometry. Effects of gender, age, diet (vegetarian vs. omnivore), and smoking status on the rhythm-adjusted mean (MESOR) and circadian amplitude were examined by multiple-analysis of variance. A marked circadian variation was found in uric acid concentration in healthy Indians of all age groups. Furthermore, both the MESOR and circadian amplitude underwent changes with advancing age. In addition to effects of gender and age, diet and smoking were also found to affect the MESOR of circulating uric acid concentration in healthy Indians residing in northern India. The present observations confirmed a definite rhythm in uric acid concentrations with significant effect of gender, age, diet, and smoking status on uric acid concentration in clinical health. Mapping the circadian rhythm of serum uric acid is needed to explore their role in different pathophysiological conditions.
Collapse
Affiliation(s)
- Ranjana Singh
- Biochemistry Department, King George’s Medical University, Lucknow, 226003 India
| | - Pramod Kumar
- Medicine Department, T S Misra Medical College and Hospital, Amausi, Lucknow, 226008 India
| | - Devendra Nath Mishra
- Biochemistry Department, T S Misra Medical College and Hospital, Amausi, Lucknow, 226008 India
| | - Ashok Kumar Singh
- Biochemistry Department, T S Misra Medical College and Hospital, Amausi, Lucknow, 226008 India
| | - Raj Kumar Singh
- Biochemistry Department, T S Misra Medical College and Hospital, Amausi, Lucknow, 226008 India
| | | | - Cathy Lee Gierke
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
73
|
A luminescent terbium metal-organic framework for highly sensitive and selective detection of uric acid in aqueous media. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
74
|
Thivya P, Wilson J. Electron rays irradiated polyaniline anchored over bovine serum albumin for simultaneous detection of epinephrine and uric acid. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
75
|
Mitomo S, Hirota M, Fujita T. New xanthine oxidase inhibitors from the fruiting bodies of Tyromyces fissilis. Biosci Biotechnol Biochem 2019; 83:813-823. [PMID: 30730255 DOI: 10.1080/09168451.2019.1576501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Excessive uric acid production, which causes gout and hyperuricemia, can be blocked by inhibiting xanthine oxidase (XO). However, some agents to block on XO often cause side effects, thereby necessitating the identification of new inhibitors. During the screening of XO inhibitors from various mushroom extracts, we found that a methanolic extract of the fruiting bodies of Tyromyces fissilis, an inedible and non-toxic fungus, showed inhibitory activity. Both n-hexane and ethyl acetate layers, obtained by partitioning this extract exhibited XO inhibitory activity. Subsequently, using an activity-guided separation method, eight active compounds (1-8) were isolated. The structures of five of the new compounds, 2-4, 6, and 7, were elucidated by spectral analysis and chemical derivatization. All compounds had a salicylic acid moiety with an aliphatic group at the C-6 position. Notably, 2-hydroxy-6-pentadecylbenzoic acid (1) showed the highest level of XO noncompetitive inhibition (58.9 ± 2.2% at 25 µM).
Collapse
Affiliation(s)
- Shunsuke Mitomo
- a Graduate School of Science and Technology, Department of Agriculture , Shinshu University , Nagano , Japan
| | - Mitsuru Hirota
- a Graduate School of Science and Technology, Department of Agriculture , Shinshu University , Nagano , Japan
| | - Tomoyuki Fujita
- a Graduate School of Science and Technology, Department of Agriculture , Shinshu University , Nagano , Japan
| |
Collapse
|
76
|
Hu Y, Yang Q, Gao Y, Guo X, Liu Y, Li C, Du Y, Gao L, Sun D, Zhu C, Yan M. Better understanding of acute gouty attack using CT perfusion in a rabbit model. Eur Radiol 2018; 29:3308-3316. [PMID: 30519936 DOI: 10.1007/s00330-018-5871-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/16/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To assess hemodynamic changes related to acute gouty knee arthritis in a rabbit with CT perfusion (CTP) METHODS: Forty-two rabbits were randomly separated into two groups: the treated group of 30 and the control group of 12. The right knee was injected with monosodium urate solution and polymyxin in the treated group and saline and polymyxin in the control group. At 2, 16, 32, 48, 60, and 72 h after injection, five rabbits from the treated group and two rabbits from the control group were selected for CTP. At each time point, blood flow (BF), blood volume (BV), and clearance rate (CL) were measured, and microvessel density (MVD) was evaluated with a microscope. RESULTS In the treated group, BF, BV, CL, and MVD were significantly higher than in the control group (p < 0.001). Differences within paired comparison of BV, BF, CL, and MVD were all significant (all p < 0.001). Peak time of BV, BF, and MVD was 32 h and 48 h for CL. After multivariate stepwise linear regression analysis, BV was linearly associated with MVD and vice versa, which also applied to BF with MVD and BF with CL, separately. The ascending rate of MVD was the highest among that of all parameters; so was the descending rate of CL. CONCLUSION CTP in this rabbit knee model accurately detected hemodynamic changes during a gouty attack. KEY POINTS • Acute gouty arthritis can be evaluated with CTP in a rabbit knee model. • Following injection of MSU crystals, producing an acute gouty attack, CTP successfully assessed hemodynamic changes. • The ascending rate of MVD was the highest among that of all parameters; so was the descending rate of CL.
Collapse
Affiliation(s)
- Yabin Hu
- Department of Radiology, Affiliated Hospital (Laoshan Hospital) of Qingdao University, Qingdao, 266000, Shandong, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Qing Yang
- Department of Radiology, Affiliated Hospital (Laoshan Hospital) of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Yanyan Gao
- Department of Endocrinology, Affiliated Hospital (Laoshan Hospital) of Qingdao University, Qingdao, Shandong, China
| | - Xuexin Guo
- Department of Radiology, Dongying People's Hospital, Dongying, Shandong, China
| | - Yongjian Liu
- Department of Radiology, Hiser Medical Center of Qingdao, Qingdao, Shandong, China
| | - Can Li
- Department of CT, Juancheng People's Hospital, Juancheng, Heze, Shandong, China
| | - Yanmeng Du
- CT scan Room, Jinan Fourth Hospital, Jinan, Shandong, China
| | - Lei Gao
- Department of CT, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dezheng Sun
- Department of Radiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Congcong Zhu
- Department of Radiology, Affiliated Hospital (Laoshan Hospital) of Qingdao University, Qingdao, 266000, Shandong, China
| | - Mi Yan
- Department of Radiology, Affiliated Hospital (Laoshan Hospital) of Qingdao University, Qingdao, 266000, Shandong, China
| |
Collapse
|
77
|
Tognetti L, Cinotti E, Fiorani D, Rubegni P, Perrot JL. Noninvasive diagnosis of liquefied gouty tophus: Reflectance confocal microscopy as an alternative to polarizing light microscopy analysis. Skin Res Technol 2018; 25:240-241. [DOI: 10.1111/srt.12627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/23/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Linda Tognetti
- Department of Dermatology – Division of MedicalSurgical and Neuro‐SciencesUniversity of Siena Siena Italy
- Department of Medical BiotechnologiesUniversity of Siena Siena Italy
| | - Elisa Cinotti
- Department of Medical BiotechnologiesUniversity of Siena Siena Italy
| | - Diletta Fiorani
- Department of Dermatology – Division of MedicalSurgical and Neuro‐SciencesUniversity of Siena Siena Italy
| | - Pietro Rubegni
- Department of Dermatology – Division of MedicalSurgical and Neuro‐SciencesUniversity of Siena Siena Italy
| | - Jean Luc Perrot
- Department of DermatologyUniversity Hospital of Saint‐Etienne Saint‐Etienne France
| |
Collapse
|
78
|
Zeng D, Yao P, Zhao H. P2X7, a critical regulator and potential target for bone and joint diseases. J Cell Physiol 2018; 234:2095-2103. [PMID: 30317598 DOI: 10.1002/jcp.27544] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Abstract
Abundant evidence indicted that P2X7 receptor show a essential role in human health and some human diseases including hypertension, atherosclerosis, pulmonary inflammation, tuberculosis infection, psychiatric disorders, and cancer. P2X7 receptor also has an important role in some central nervous system diseases such as neurodegenerative disorders. Recently, more research suggested that P2X7 receptor also plays a crucial role in bone and joint diseases. But the effect of P2X7 receptor on skeletal and joint diseases has not been systematically reviewed. In this article, the role of P2X7 receptor in skeletal and joint diseases is elaborated. The activation of P2X7 receptor can ameliorate osteoporosis by inducing a fine balance between osteoclastic resorption and osteoblastic bone formation. The activation of P2X7 receptor can relieve the stress fracture injury by increasing the response to mechanical loading and inducing osteogenesis. But the activation of P2X7 receptor mediates the cell growth and cell proliferation in bone cancer. In addition, the activation of P2X7 receptor can aggravate the process of some joint diseases such as osteoarthritis, rheumatoid arthritis, and acute gouty arthritis. The inhibition of P2X7 receptor can alleviate the pathological process of joint disease to some extent. In conclusion, P2X7 receptor may be a critical regulator and therapeutic target for bone and joint diseases.
Collapse
Affiliation(s)
- Dehui Zeng
- Department of Orthopedics, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Pingbo Yao
- Department of Orthopedics, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Hong Zhao
- Institute of Pharmacy and Pharmacology, Nursing College, University of South China, Hengyang, China
| |
Collapse
|
79
|
Silva RP, Carvalho LAC, Patricio ES, Bonifacio JPP, Chaves-Filho AB, Miyamoto S, Meotti FC. Identification of urate hydroperoxide in neutrophils: A novel pro-oxidant generated in inflammatory conditions. Free Radic Biol Med 2018; 126:177-186. [PMID: 30118829 DOI: 10.1016/j.freeradbiomed.2018.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 12/13/2022]
Abstract
Uric acid is the final product of purine metabolism in humans and is considered to be quantitatively the main antioxidant in plasma. In vitro studies showed that the oxidation of uric acid by peroxidases, in presence of superoxide, generates urate free radical and urate hydroperoxide. Urate hydroperoxide is a strong oxidant and might be a relevant intermediate in inflammatory conditions. However, the identification of urate hydroperoxide in cells and biological samples has been a challenge due to its high reactivity. By using mass spectrometry, we undoubtedly demonstrated the formation of urate hydroperoxide and its corresponding alcohol, hydroxyisourate during the respiratory burst in peripheral blood neutrophils and in human leukemic cells differentiated in neutrophils (dHL-60). The respiratory burst was induced by phorbol myristate acetate (PMA) and greatly increased oxygen consumption and superoxide production. Both oxygen consumption and superoxide production were further augmented by incubation with uric acid. Conversely, uric acid significantly decreased the levels of HOCl, probably because of the competition with chloride by the catalysis of myeloperoxidase. In spite of the decrease in HOCl, the overall oxidative status, measured by GSH/GSSG ratio, was augmented in the presence of uric acid. In summary, the present results support the formation of urate hydroperoxide, a novel oxidant in neutrophils oxidative burst. Urate hydroperoxide is a strong oxidant and alters the redox balance toward a pro-oxidative environment. The production of urate hydroperoxide in inflammatory conditions could explain, at least in part, the harmful effect associated to uric acid.
Collapse
Affiliation(s)
- Railmara P Silva
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Larissa A C Carvalho
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Eliziane S Patricio
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - João P P Bonifacio
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adriano B Chaves-Filho
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flavia C Meotti
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
80
|
Marchetti C, Swartzwelter B, Koenders MI, Azam T, Tengesdal IW, Powers N, de Graaf DM, Dinarello CA, Joosten LAB. NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Res Ther 2018; 20:169. [PMID: 30075804 PMCID: PMC6091035 DOI: 10.1186/s13075-018-1664-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Activation of the NLRP3 inflammasome in gout amplifies the inflammatory response and mediates further damage. In the current study, we assessed the therapeutic effect of OLT1177, an orally active NLRP3 inflammasome inhibitor that is safe in humans, in murine acute arthritis models. METHODS Zymosan or monosodium urate (MSU) crystals were injected intra-articularly (i.a.) into mouse knee joints to induce reactive or gouty arthritis. Joint swelling, articular cell infiltration, and synovial cytokines were evaluated 25 hours and 4 hours following zymosan or MSU challenge, respectively. OLT1177 was administrated intraperitoneally by oral gavage or in the food by an OLT1177-enriched diet. RESULTS OLT1177 reduced zymosan-induced joint swelling (p < 0.001), cell influx (p < 0.01), and synovial levels of interleukin (IL)-1β, IL-6, and chemokine (C-X-C motif) ligand 1 (CXCL1) (p < 0.05), respectively, when compared with vehicle-treated mice. Plasma OLT1177 levels correlated (p < 0.001) dose-dependently with reduction in joint inflammation. Treatment of mice with OLT1177 limited MSU crystal articular inflammation (p > 0.0001), which was associated with decreased synovial IL-1β, IL-6, myeloperoxidase, and CXCL1 levels (p < 0.01) compared with vehicle-treated mice. When administrated orally 1 hour after MSU challenge, OLT1177 reduced joint inflammation, processing of IL-1β, and synovial phosphorylated c-Jun N-terminal kinase compared with the vehicle group. Mice were fed an OLT1177-enriched diet for 3 weeks and then challenged i.a. with MSU crystals. Joint swelling, synovial IL-1β, and expression of Nlrp3 and Il1b were significantly reduced in synovial tissues in mice fed an OLT1177-enriched diet when compared with the standard diet group. CONCLUSIONS Oral OLT1177 is highly effective in ameliorating reactive as well as gouty arthritis.
Collapse
Affiliation(s)
- Carlo Marchetti
- Department of Medicine, University of Colorado Denver, Aurora, CO USA
| | | | - Marije I. Koenders
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, CO USA
| | - Isak W. Tengesdal
- Department of Medicine, University of Colorado Denver, Aurora, CO USA
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
| | - Nick Powers
- Department of Medicine, University of Colorado Denver, Aurora, CO USA
| | - Dennis M. de Graaf
- Department of Medicine, University of Colorado Denver, Aurora, CO USA
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO USA
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
| | - Leo A. B. Joosten
- Department of Medicine, University of Colorado Denver, Aurora, CO USA
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
81
|
Abstract
When apoptotic cells are not cleared in an efficient and timely manner, they progress to secondary necrosis and lose their membrane integrity. This results in a leakage of immunostimulatory, danger associated molecular patterns (DAMPs), similar to accidental (or primary) necrosis. However, primary necrosis is a sudden event with an inadvertent release of almost unmodified DAMPs. Secondary necrotic cells, in contrast, have gone through various modifications during the process of apoptosis. Recent research revealed that the molecules released from the cytoplasm or exposed on the cell surface differ between primary necrosis, secondary necrosis, and regulated necrosis such as necroptosis. This review gives an overview of these differences and focusses their effects on the immune response. The implications to human physiology and diseases are manifold and will be discussed in the context of cancer, neurodegenerative disorders and autoimmunity.
Collapse
Affiliation(s)
- Monika Sachet
- Surgical Research Laboratories, Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ying Yu Liang
- Surgical Research Laboratories, Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rudolf Oehler
- Surgical Research Laboratories, Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
82
|
Carvalho LAC, Lopes JPPB, Kaihami GH, Silva RP, Bruni-Cardoso A, Baldini RL, Meotti FC. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells. Redox Biol 2018; 16:179-188. [PMID: 29510342 PMCID: PMC5952876 DOI: 10.1016/j.redox.2018.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl-/H2O2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity. Uric acid decreased microbicide activity and release of cytokines by dHL-60 cells. Uric acid decreased HOCl in cells and in the myeloperoxidase/Cl-/H2O2 system. Uric acid induces a pro-oxidant redox imbalance. HOCl is crucial for Pseudomonas aeruginosa killing by dHL-60.
Collapse
Affiliation(s)
- Larissa A C Carvalho
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - João P P B Lopes
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gilberto H Kaihami
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Railmara P Silva
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexandre Bruni-Cardoso
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Regina L Baldini
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flavia C Meotti
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
83
|
Jhang JJ, Lin JH, Yen GC. Beneficial Properties of Phytochemicals on NLRP3 Inflammasome-Mediated Gout and Complication. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:765-772. [PMID: 29293001 DOI: 10.1021/acs.jafc.7b05113] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gouty arthritis is characterized by the precipitation of monosodium urate (MSU) crystals in the joint. Pro-inflammatory cytokine IL-1β is a critical manifestation in response to MSU crystals attack. IL-1β secretion is dependent on the nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Abnormal activation of the NLRP inflammasome is related to cellular oxidative stress. However, recent studies have illustrated that phytochemicals with potent antioxidant activity exert inhibitory effects on NLRP3 inflammasome-mediated diseases. This review focuses on the current findings of studies on the NLRP3 inflammasome and the proposed mechanisms that MSU crystals trigger inflammation via activation of the NLRP3 inflammasome. We also summarized the potential use of phytochemicals on NLRP3 inflammasome-mediated diseases, suggesting that phytochemicals can further prevent acute gout attack.
Collapse
Affiliation(s)
- Jhih-Jia Jhang
- Department of Food Science and Biotechnology and ‡Graduate Institute of Food Safety, National Chung Hsing University , 145 Xingda Road, Taichung 40227, Taiwan
| | - Jia-Hong Lin
- Department of Food Science and Biotechnology and ‡Graduate Institute of Food Safety, National Chung Hsing University , 145 Xingda Road, Taichung 40227, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology and ‡Graduate Institute of Food Safety, National Chung Hsing University , 145 Xingda Road, Taichung 40227, Taiwan
| |
Collapse
|
84
|
Activation of the Innate Immune Receptors: Guardians of the Micro Galaxy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:1-35. [DOI: 10.1007/978-981-10-5987-2_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
85
|
Single nucleotide polymorphisms associated with P2X7R function regulate the onset of gouty arthritis. PLoS One 2017; 12:e0181685. [PMID: 28797095 PMCID: PMC5552250 DOI: 10.1371/journal.pone.0181685] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/04/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gout is an inflammatory disease that is caused by the increased production of Interleukin-1β (IL-1β) stimulated by monosodium urate (MSU) crystals. However, some hyperuricemia patients, even gouty patients with tophi in the joints, never experience gout attack, which indicates that pathogenic pathways other than MSU participate in the secretion of IL-1β in the pathogenesis of acute gouty arthritis. The ATP-P2X7R-IL-1β axis may be one of these pathways. OBJECTIVE This study examines the role of Adenosine triphosphate (ATP) in the pathogenesis of gout and the association of ATP receptor (P2X7R) function with single nucleotide polymorphisms and gout arthritis. METHODS Non-synonymous single nucleotide polymorphisms (SNP) loci of P2X7R in Chinese people were screened to compare the frequencies of different alleles and genotype distribution of selective SNPs in 117 gouty patients and 95 hyperuricemia patients. Peripheral white blood cells were purified from the peripheral blood of 43 randomly selected gout patients and 36 hyperuricemia patients from the total group. Cells were cultured with MSU or MSU + ATP, and supernatants were collected for the detection of IL-1β concentrations using enzyme-linked immunosorbent assay (ELISA). RESULTS 1. Eight SNP loci, including rs1653624, rs10160951, rs1718119, rs7958316, rs16950860, rs208294, rs17525809 and rs2230912, were screened and detected, and rs1653624, rs7958316 and rs17525809 were associated with gout arthritis. 2. IL-1β concentrations in supernatants after MSU + ATP stimulation were significantly higher in gouty patients than in the hyperuricemia group [(131.08 ± 176.11) pg/ml vs. (50.84 ± 86.10) pg/ml]; Patients (including gout and hyperuricemia) carrying the susceptibility genotype AA or AT of rs1653624 exhibited significantly higher concentrations of IL-1β than patients carrying the non-susceptibility genotype TT [(104.20 ± 164.25) pg/ml vs. (21.90 ± 12.14) pg/ml]; However, no differences were found with MSU stimulation alone. CONCLUSIONS ATP promotes the pathogenesis of gouty arthritis via increasing the secretion of IL-1 β, and its receptor (P2X7R) function associated single nucleotide polymorphisms may be related to gouty arthritis, which indicates that ATP-P2X7R signaling pathway plays a significant regulatory role in the pathogenesis of gout.
Collapse
|
86
|
Tsuruta N, Imafuku S, Narisawa Y. Hyperuricemia is an independent risk factor for psoriatic arthritis in psoriatic patients. J Dermatol 2017; 44:1349-1352. [DOI: 10.1111/1346-8138.13968] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/09/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Noriko Tsuruta
- Department of Dermatology; Fukuoka University Faculty of Medicine; Fukuoka Japan
- Division of Dermatology; Department of Internal Medicine; Faculty of Medicine; Saga University; Saga Japan
| | - Shinichi Imafuku
- Department of Dermatology; Fukuoka University Faculty of Medicine; Fukuoka Japan
| | - Yutaka Narisawa
- Division of Dermatology; Department of Internal Medicine; Faculty of Medicine; Saga University; Saga Japan
| |
Collapse
|
87
|
Jiang Y, Lin Y, Hu YJ, Song XJ, Pan HH, Zhang HJ. Caffeoylquinic acid derivatives rich extract from Gnaphalium pensylvanicum willd. Ameliorates hyperuricemia and acute gouty arthritis in animal model. Altern Ther Health Med 2017. [PMID: 28623927 PMCID: PMC5474058 DOI: 10.1186/s12906-017-1834-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The Gnaphalium pensylvanicum willd. is used in China as a folk medicine to treat anti-inflammatory, cough and rheumatism arthritis. The aim of this study was to evaluate the potential of the extract of G. pensylvanicum to treat hyperuricemia and acute gouty arthritis in animal model. METHODS G. pensylvanicum extract was evaluated in an experimental model with potassium oxonate (PO) induced hyperuricemia in mice which was used to evaluate anti-hyperuricemia activity and xanthine oxidase (XO) inhibition. Therapies for acute gouty arthritis was also investigated on monosodium urate (MSU) crystal induced paw edema model. RESULTS G. pensylvanicum extract showed activity in reducing serum uric acid (Sur) through effect renal glucose transporter 9 (GLUT9), organic anion transporter 1 (OAT1) and urate transporter 1 (URAT1) mainly and inhibited XO activity in vivo of mice with PO induced hyperuricemia. The extract of G. pensylvanicum also showed significant anti-inflammatory activity and reduced the paw swelling on MSU crystal-induced paw edema model. Meanwhile, 13 caffeoylquinic acid derivatives and 1 flavone were identified by UPLC-ESI-MS/MS as the main active component of G. pensylvanicum. CONCLUSIONS The extract of G. pensylvanicum showed significant effect on evaluated models and therefore may be active agents for the treatment of hyperuricemia and acute gouty arthritis.
Collapse
|
88
|
Jacques T, Michelin P, Badr S, Nasuto M, Lefebvre G, Larkman N, Cotten A. Conventional Radiology in Crystal Arthritis: Gout, Calcium Pyrophosphate Deposition, and Basic Calcium Phosphate Crystals. Radiol Clin North Am 2017; 55:967-984. [PMID: 28774457 DOI: 10.1016/j.rcl.2017.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article reviews the main radiographic features of crystal deposition diseases. Gout is linked to monosodium urate crystals. Classic radiographic features include subcutaneous tophi, large and well-circumscribed paraarticular bone erosions, and exuberant bone hyperostosis. Calcium pyrophosphate deposition (CPPD) can involve numerous structures, such as hyaline cartilages, fibrocartilages, or tendons. CPPD arthropathy involves joints usually spared by osteoarthritis. Basic calcium phosphate deposits are periarticular or intraarticular. Periarticular calcifications are amorphous, dense, and round or oval with well-limited borders, and most are asymptomatic. When resorbing, they become cloudy and less dense with an ill-defined shape and can migrate into adjacent structures.
Collapse
Affiliation(s)
- Thibaut Jacques
- Division of Radiology and Musculoskeletal Imaging, University Hospital of Lille, Rue du Professeur Emile Laine, Lille Cedex 59037, France; University of Lille, 42, rue Paul Duez, Lille 59000, France.
| | - Paul Michelin
- Department of Radiology, CHRU de Rouen, 1 rue de Germont, Rouen Cedex 76031, France
| | - Sammy Badr
- Division of Radiology and Musculoskeletal Imaging, University Hospital of Lille, Rue du Professeur Emile Laine, Lille Cedex 59037, France; University of Lille, 42, rue Paul Duez, Lille 59000, France
| | - Michelangelo Nasuto
- Department of Radiology, University of Foggia, Viale Luigi Pinto 1, Foggia 71100, Italy
| | - Guillaume Lefebvre
- Division of Radiology and Musculoskeletal Imaging, University Hospital of Lille, Rue du Professeur Emile Laine, Lille Cedex 59037, France; University of Lille, 42, rue Paul Duez, Lille 59000, France
| | - Neal Larkman
- Department of Radiology, Leeds Teaching Hospital Trust, Chapeltown Road, Leeds, West Yorkshire LS7 4SA, UK
| | - Anne Cotten
- Division of Radiology and Musculoskeletal Imaging, University Hospital of Lille, Rue du Professeur Emile Laine, Lille Cedex 59037, France; University of Lille, 42, rue Paul Duez, Lille 59000, France
| |
Collapse
|
89
|
Haen SP, Eyb V, Mirza N, Naumann A, Peter A, Löffler MW, Faul C, Vogel W, Bethge WA, Rammensee HG, Kanz L, Heni M. Uric acid as a novel biomarker for bone-marrow function and incipient hematopoietic reconstitution after aplasia in patients with hematologic malignancies. J Cancer Res Clin Oncol 2017; 143:759-771. [PMID: 28210842 DOI: 10.1007/s00432-017-2348-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/24/2017] [Indexed: 01/29/2023]
Abstract
PURPOSE Prolonged aplasia and graft failure (GF) represent life-threatening complications after hematopoietic cell transplantation (HCT) requiring suitable biomarkers for early detection and differentiation between GF and poor graft function (PGF). Uric acid (UA) is a strong immunological danger signal. METHODS Laboratory results were analyzed from patients undergoing either allogeneic or autologous HCT or induction chemotherapy for acute leukemia (n = 50 per group, n = 150 total). RESULTS During therapy, UA levels declined from normal values to hypouricemic values (all p < 0.001). Alongside hematopoietic recovery, UA serum levels returned to baseline values. During aplasia, UA levels remained low and started steadily increasing (defined as >two consecutive days, median one 2-day increase) at a median of 1 day before rising leukocytes in allogeneic HCT (p = 0.01) and together with leukocytes in autologous HCT (median one 2-day increase). During induction chemotherapy, a UA increase was also observed alongside rising leukocytes/neutrophils but also several times during aplasia (median 3 increases). Most HCT patients had no detectable leukocytes during aplasia, while some leukocytes remained detectable after induction therapy. No increase in UA levels was observed without concomitant or subsequent rise of leukocytes. CONCLUSIONS Changes in UA serum levels can indicate incipient or remaining immunological activity after HCT or induction therapy. They may, therefore, help to differentiate between PGF and GF.
Collapse
Affiliation(s)
- Sebastian P Haen
- Medizinische Universitaetsklinik, Abteilung II fuer Onkologie, Haematologie, Immunologie, Rheumatologie und Pulmologie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany.
- Interfakultaeres Institut fuer Zellbiologie, Abteilung Immunologie, Auf der Morgenstelle 15, 72076, Tuebingen, Germany.
| | - Vicky Eyb
- Medizinische Universitaetsklinik, Abteilung II fuer Onkologie, Haematologie, Immunologie, Rheumatologie und Pulmologie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
| | - Nora Mirza
- Medizinische Universitaetsklinik, Abteilung II fuer Onkologie, Haematologie, Immunologie, Rheumatologie und Pulmologie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
- Interfakultaeres Institut fuer Zellbiologie, Abteilung Immunologie, Auf der Morgenstelle 15, 72076, Tuebingen, Germany
| | - Aline Naumann
- Institut fuer klinische Epidemiologie und angewandte Biometrie, Silcherstr. 5, 72076, Tuebingen, Germany
| | - Andreas Peter
- Medizinische Universitaetsklinik, Abteilung IV fuer Endokrinologie, Diabetologie, Angiologie, Nephrologie und Klinische Chemie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | - Markus W Löffler
- Interfakultaeres Institut fuer Zellbiologie, Abteilung Immunologie, Auf der Morgenstelle 15, 72076, Tuebingen, Germany
| | - Christoph Faul
- Medizinische Universitaetsklinik, Abteilung II fuer Onkologie, Haematologie, Immunologie, Rheumatologie und Pulmologie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
| | - Wichard Vogel
- Medizinische Universitaetsklinik, Abteilung II fuer Onkologie, Haematologie, Immunologie, Rheumatologie und Pulmologie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
| | - Wolfgang A Bethge
- Medizinische Universitaetsklinik, Abteilung II fuer Onkologie, Haematologie, Immunologie, Rheumatologie und Pulmologie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
| | - Hans-Georg Rammensee
- Interfakultaeres Institut fuer Zellbiologie, Abteilung Immunologie, Auf der Morgenstelle 15, 72076, Tuebingen, Germany
| | - Lothar Kanz
- Medizinische Universitaetsklinik, Abteilung II fuer Onkologie, Haematologie, Immunologie, Rheumatologie und Pulmologie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
| | - Martin Heni
- Medizinische Universitaetsklinik, Abteilung IV fuer Endokrinologie, Diabetologie, Angiologie, Nephrologie und Klinische Chemie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| |
Collapse
|
90
|
Esteve C, Jones EA, Kell DB, Boutin H, McDonnell LA. Mass spectrometry imaging shows major derangements in neurogranin and in purine metabolism in the triple-knockout 3×Tg Alzheimer mouse model. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:747-754. [PMID: 28411106 DOI: 10.1016/j.bbapap.2017.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) can simultaneously measure hundreds of biomolecules directly from tissue. Using different sample preparation strategies, proteins and metabolites have been profiled to study the molecular changes in a 3×Tg mouse model of Alzheimer's disease. In comparison with wild-type (WT) control mice MALDI-MSI revealed Alzheimer's disease-specific protein profiles, highlighting dramatic reductions of a protein with m/z 7560, which was assigned to neurogranin and validated by immunohistochemistry. The analysis also revealed substantial metabolite changes, especially in metabolites related to the purine metabolic pathway, with a shift towards an increase in hypoxanthine/xanthine/uric acid in the 3×Tg AD mice accompanied by a decrease in AMP and adenine. Interestingly these changes were also associated with a decrease in ascorbic acid, consistent with oxidative stress. Furthermore, the metabolite N-arachidonyl taurine was increased in the diseased mouse brain sections, being highly abundant in the hippocampus. Overall, we describe an interesting shift towards pro-inflammatory molecules (uric acid) in the purinergic pathway associated with a decrease in anti-oxidant level (ascorbic acid). Together, these observations fit well with the increased oxidative stress and neuroinflammation commonly observed in AD. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Clara Esteve
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Emrys A Jones
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, Lancs M13 9PL, UK; Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, Lancs, UK
| | - Hervé Boutin
- Faculty of Medicine and Human Sciences, The University of Manchester, Manchester, UK; Wolfson Molecular Imaging Center, The University of Manchester, Manchester, UK
| | - Liam A McDonnell
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Fondazione Pisana per la Scienza ONLUS, Pisa, Italy.
| |
Collapse
|
91
|
Lian X, Yan B. Phosphonate MOFs Composite as Off–On Fluorescent Sensor for Detecting Purine Metabolite Uric Acid and Diagnosing Hyperuricuria. Inorg Chem 2017; 56:6802-6808. [DOI: 10.1021/acs.inorgchem.6b03009] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Lian
- Shanghai Key Lab of Chemical Assessment
and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment
and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| |
Collapse
|
92
|
El Ridi R, Tallima H. Physiological functions and pathogenic potential of uric acid: A review. J Adv Res 2017; 8:487-493. [PMID: 28748115 PMCID: PMC5512149 DOI: 10.1016/j.jare.2017.03.003] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/11/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022] Open
Abstract
Uric acid is synthesized mainly in the liver, intestines and the vascular endothelium as the end product of an exogenous pool of purines, and endogenously from damaged, dying and dead cells, whereby nucleic acids, adenine and guanine, are degraded into uric acid. Mentioning uric acid generates dread because it is the established etiological agent of the severe, acute and chronic inflammatory arthritis, gout and is implicated in the initiation and progress of the metabolic syndrome. Yet, uric acid is the predominant anti-oxidant molecule in plasma and is necessary and sufficient for induction of type 2 immune responses. These properties may explain its protective potential in neurological and infectious diseases, mainly schistosomiasis. The pivotal protective potential of uric acid against blood-borne pathogens and neurological and autoimmune diseases is yet to be established.
Collapse
Affiliation(s)
- Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt.,Department of Chemistry, School of Science and Engineering, American University in Cairo, New Cairo 11835, Cairo, Egypt
| |
Collapse
|
93
|
Pharmacological Basis for Use of Selaginella moellendorffii in Gouty Arthritis: Antihyperuricemic, Anti-Inflammatory, and Xanthine Oxidase Inhibition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2103254. [PMID: 28250791 PMCID: PMC5307293 DOI: 10.1155/2017/2103254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/07/2016] [Indexed: 11/23/2022]
Abstract
This study was aimed at evaluating the effects of Selaginella moellendorffii Hieron. (SM) on gouty arthritis and getting an insight of the possible mechanisms. HPLC method was developed for chemical analysis. The paw oedema, the neutrophil accumulation, inflammatory mediators, lipid peroxidation, and histopathological changes of the joints were analyzed in gouty arthritis rat model, and the kidney injury and serum urate were detected in hyperuricemic mice. Pharmacokinetic result demonstrated that the main apigenin glycosides might be quantitatively transformed into apigenin in the mammalian body. Among these compounds, the apigenin exhibited the strongest effect on xanthine oxidase (XOD). SM aqueous extract has proved to be active in reducing hyperuricemia in dose-dependent manner, and the levels of blood urea nitrogen (BUN) and creatinine (Cr) in high dose group were decreased significantly as compared with hyperuricemic control group (P < 0.01). The high dose of SM extract could significantly prevent the paw swelling, reduce gouty joint inflammatory features, reduce the release of IL-1β and TNF-α, lower malondialdehyde (MDA) and myeloperoxidase (MPO) levels, and increase superoxide dismutase (SOD) level (P < 0.01). For the first time, this study provides a rational basis for the traditional use of SM aqueous extract against gout in folk medicine.
Collapse
|
94
|
Steinberg AS, Vince BD, Choi YJ, Martin RL, McWherter CA, Boudes PF. The Pharmacodynamics, Pharmacokinetics, and Safety of Arhalofenate in Combination with Febuxostat When Treating Hyperuricemia Associated with Gout. J Rheumatol 2016; 44:374-379. [DOI: 10.3899/jrheum.161062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 12/19/2022]
Abstract
Objective.Arhalofenate (ARH), in development for gout, has uricosuric and anti-flare activities. ARH plus febuxostat (FBX) were evaluated in subjects with gout for serum uric acid (SUA) lowering, drug interaction, and safety.Methods.Open phase II trial in gout volunteers (NCT02252835). Cohort 1 received ARH 600 mg for 2 weeks, followed by sequential 1-week co-administration of FBX 80 mg followed by 40 mg. FBX 40 mg was continued alone for 2 weeks. Cohort 2 received ARH 800 mg for 2 weeks, followed by sequential 1-week co-administration of FBX 40 mg followed by 80 mg. FBX 80 mg was continued alone for 2 weeks. SUA, its fractional excretion (FEUA), and plasma oxypurines were assessed. Pharmacokinetics of FBX and ARH were determined alone and in combination for cohort 2.Results.Baseline mean SUA was 9.4 mg/dl for cohort 1 (n = 16) and 9.2 mg/dl for cohort 2 (n = 16). The largest SUA decrease (63%) was observed with ARH 800 mg + FBX 80 mg, with all subjects reaching SUA < 6 mg/dl and 93% < 5 mg/dl. The area under the curve (AUC)(0-t)of ARH acid + FBX/ARH acid was 108%. The AUC(0-t)of FBX + ARH acid/FBX was 87%. As expected, FBX increased oxypurines and increases were unaffected by ARH co-administration. Baseline FEUA were low (3.5%–4.6%) and ARH increased them toward normal without overexcretion of UA. ARH was well tolerated and appeared safe.Conclusion.ARH and FBX lowered SUA by complementary mechanisms. The combination provided greater decreases than each drug alone. The combination was well tolerated and appeared safe. Trial registration:NCT02252835.
Collapse
|
95
|
Rebamipide Suppresses Monosodium Urate Crystal-Induced Interleukin-1β Production Through Regulation of Oxidative Stress and Caspase-1 in THP-1 Cells. Inflammation 2016; 39:473-482. [PMID: 26454448 DOI: 10.1007/s10753-015-0271-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study investigated the effect of rebamipide on activation of the NLRP3 inflammasome and generation of reactive oxygen species (ROS) in monosodium urate (MSU) crystal-induced interleukin-1β (IL-1β) production. Human monocyte cell line THP-1 and human umbilical venous endothelial cells (HUVECs) were used to assess the inflammatory response to MSU crystals. NADP/NADPH activity assays were used as a marker of ROS generation. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were performed to evaluate levels of IL-1β, caspase-1, NLRP3, associated speck-like protein (ASC), nuclear factor-κB (NF-κB), p65, IκBα, intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1). Experimental pharmaceuticals included rebamipide, colchicine, dexamethasone, and ascorbic acid. In THP-1 cells, treatment with MSU crystals increased NADP/NADPH ratios and IL-1β expression, and both of these responses were potently inhibited by addition of rebamipide. Rebamipide also attenuated enhanced expression of caspase-1 gene by MSU crystals (p < 0.05). Western blotting demonstrated that MSU crystals stimulated caspase-1 but not NLRP3 and ASC activation. Similarly, MSU crystals activated the NF-κB pathway, which in turn was blocked by rebamipide. Stimulation of HUVECs with MSU crystals increased expression of VCAM-1 and ICAM-1, which were markedly inhibited by both rebamipide and dexamethasone. This study demonstrated that rebamipide inhibits IL-1β activation through suppression of ROS-mediated NF-κB signaling pathways and caspase-1 activation in MSU crystal-induced inflammation.
Collapse
|
96
|
de Almeida RMC, Clendenon SG, Richards WG, Boedigheimer M, Damore M, Rossetti S, Harris PC, Herbert BS, Xu WM, Wandinger-Ness A, Ward HH, Glazier JA, Bacallao RL. Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD. Hum Genomics 2016; 10:37. [PMID: 27871310 PMCID: PMC5117508 DOI: 10.1186/s40246-016-0095-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) causes progressive loss of renal function in adults as a consequence of the accumulation of cysts. ADPKD is the most common genetic cause of end-stage renal disease. Mutations in polycystin-1 occur in 87% of cases of ADPKD and mutations in polycystin-2 are found in 12% of ADPKD patients. The complexity of ADPKD has hampered efforts to identify the mechanisms underlying its pathogenesis. No current FDA (Federal Drug Administration)-approved therapies ameliorate ADPKD progression. Results We used the de Almeida laboratory’s sensitive new transcriptogram method for whole-genome gene expression data analysis to analyze microarray data from cell lines developed from cell isolates of normal kidney and of both non-cystic nephrons and cysts from the kidney of a patient with ADPKD. We compared results obtained using standard Ingenuity Volcano plot analysis, Gene Set Enrichment Analysis (GSEA) and transcriptogram analysis. Transcriptogram analysis confirmed the findings of Ingenuity, GSEA, and published analysis of ADPKD kidney data and also identified multiple new expression changes in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to cell growth, cell death, genetic information processing, nucleotide metabolism, signal transduction, immune response, response to stimulus, cellular processes, ion homeostasis and transport and cofactors, vitamins, amino acids, energy, carbohydrates, drugs, lipids, and glycans. Transcriptogram analysis also provides significance metrics which allow us to prioritize further study of these pathways. Conclusions Transcriptogram analysis identifies novel pathways altered in ADPKD, providing new avenues to identify both ADPKD’s mechanisms of pathogenesis and pharmaceutical targets to ameliorate the progression of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s40246-016-0095-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rita M C de Almeida
- Biocomplexity Institute and Department of Physics, Indiana University, Bloomington, IN, 47405, USA.,Instituto de Física and Instituto Nacional de Ciência e Tecnologia, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil
| | - Sherry G Clendenon
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | | | | | - Michael Damore
- AMGEN Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320-1799, USA
| | - Sandro Rossetti
- Division of Nephrology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Peter C Harris
- Division of Nephrology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Britney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wei Min Xu
- Division of Nephrology, Department of Medicine, Richard Roudebush VAMC and Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Angela Wandinger-Ness
- Department of Pathology MSC08-4640 and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Heather H Ward
- Division of Nephrology, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - James A Glazier
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Robert L Bacallao
- Division of Nephrology, Department of Medicine, Richard Roudebush VAMC and Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
97
|
Liu L, Xue Y, Zhu Y, Xuan D, Yang X, Liang M, Wang J, Zhu X, Zhang J, Zou H. Interleukin 37 limits monosodium urate crystal-induced innate immune responses in human and murine models of gout. Arthritis Res Ther 2016; 18:268. [PMID: 27863506 PMCID: PMC5116141 DOI: 10.1186/s13075-016-1167-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Background Interleukin (IL)-37 has emerged as a fundamental inhibitor of innate immunity. Acute gout is a self-limiting inflammatory response to monosodium urate (MSU) crystals. In the current study, we assessed the preventive and therapeutic effect of recombinant human IL-37 (rhIL-37) in human and murine gout models. Methods We investigated the expression of IL-37 in patients with active and inactive gouty arthritis and assessed the effect of rhIL-37 in human and murine gout models: a human monocyte cell line (THP-1) and human synovial cells (containing macrophage-like and fibroblast-like synoviocytes) exposed to MSU crystals, a peritoneal murine model of gout and a murine gouty arthritis model. After inhibition of Mer receptor tyrosine kinase (Mertk), levels of IL-1β, IL-8 and chemokine (C-C motif) ligand 2 (CCL-2) were detected by ELISA and expression of mammalian homologs of the drosophila Mad gene 3 (Smad), suppressor of cytokine signaling 3 (SOCS3), NACHT-LRR-PYD-containing protein 3 (NLRP3), and IL-8R of THP-1 were assessed by qPCR and western blot to explore the molecular mechanisms. Results Our studies strongly indicated that rhIL-37 played a potent immunosuppressive role in the pathogenesis of experimental gout models both in vitro and in vivo, by downregulating proinflammatory cytokines and chemokines, markedly reducing neutrophil and monocyte recruitment, and mitigating pathological joint inflammation. In our studies, rhIL-37 suppressed MSU-induced innate immune responses by enhancing expression of Smad3 and IL-1R8 to trigger multiple intracellular switches to block inflammation, including inhibition of NLRP3 and activation of SOCS3. Mertk signaling participated in rhIL-37 inhibitory pathways in gout models. By inhibition of Mertk, the anti-inflammatory effect of rhIL-37 was partly abrogated, and IL-1R8, Smad3 and SOCS3 expression were suppressed, whereas NLRP3 expression was reactivated. Conclusions Our studies reveal that IL-37 limits runaway inflammation initiated by MSU crystal-induced immune responses, partly in a Mertk-dependent fashion. Thus, rhIL-37 has both preventive and therapeutic effects in gouty arthritis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Rheumatology, Huashan Hospital, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China
| | - Yingfeng Zhu
- Department of Pathology, North Huashan Hospital, Fudan University, 108# Luqiang Road, Baoshan District, Shanghai, China
| | - Dandan Xuan
- Department of Rheumatology, Huashan Hospital, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China
| | - Xue Yang
- Department of Rheumatology, Huashan Hospital, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China
| | - Minrui Liang
- Department of Rheumatology, Huashan Hospital, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China
| | - Juan Wang
- Department of Rheumatology, Huashan Hospital, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China
| | - Xiaoxia Zhu
- Department of Rheumatology, Huashan Hospital, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China
| | - Jiong Zhang
- Department of Rheumatology, Huashan Hospital, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China. .,Institute of Rheumatology, Immunology and Allergy, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China.
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China. .,Institute of Rheumatology, Immunology and Allergy, Fudan University, 12# Wulumuqi Road, Jingan District, Shanghai, China.
| |
Collapse
|
98
|
Yan HF, Dai XD, Fan KT, Wang Y. Research on Medication Regularity of Traditional Chinese Medicine Based on Hyperuricemia Patents. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
99
|
Choi ST, Song JS. Serum Procalcitonin as a Useful Serologic Marker for Differential Diagnosis between Acute Gouty Attack and Bacterial Infection. Yonsei Med J 2016; 57:1139-44. [PMID: 27401644 PMCID: PMC4960379 DOI: 10.3349/ymj.2016.57.5.1139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/07/2016] [Accepted: 01/28/2016] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Patients with gout are similar to those with bacterial infection in terms of the nature of inflammation. Herein we compared the differences in procalcitonin (PCT) levels between these two inflammatory conditions and evaluated the ability of serum PCT to function as a clinical marker for differential diagnosis between acute gouty attack and bacterial infection. MATERIALS AND METHODS Serum samples were obtained from 67 patients with acute gouty arthritis and 90 age-matched patients with bacterial infection. Serum PCT levels were measured with an enzyme-linked fluorescent assay. RESULTS Serum PCT levels in patients with acute gouty arthritis were significantly lower than those in patients with bacterial infection (0.096±0.105 ng/mL vs. 4.94±13.763 ng/mL, p=0.001). However, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels showed no significant differences between the two groups. To assess the ability of PCT to discriminate between acute gouty arthritis and bacterial infection, the areas under the curves (AUCs) of serum PCT, uric acid, and CRP were 0.857 [95% confidence interval (CI), 0.798-0.917, p<0.001], 0.808 (95% CI, 0.738-0.878, p<0.001), and 0.638 (95% CI, 0.544-0.731, p=0.005), respectively. There were no significant differences in ESR and white blood cell counts between these two conditions. With a cut-off value of 0.095 ng/mL, the sums of sensitivity and specificity of PCT were the highest (81.0% and 80.6%, respectively). CONCLUSION Serum PCT levels were significantly lower in patients with acute gouty attack than in patients with bacterial infection. Thus, serum PCT can be used as a useful serologic marker to differentiate between acute gouty arthritis and bacterial infections.
Collapse
Affiliation(s)
- Sang Tae Choi
- Division of Rheumatology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea.
| | - Jung Soo Song
- Division of Rheumatology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
100
|
Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis. Sci Rep 2016; 6:28370. [PMID: 27321991 PMCID: PMC4913257 DOI: 10.1038/srep28370] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 06/03/2016] [Indexed: 12/15/2022] Open
Abstract
Alpinetin, a composition of Alpinia katsumadai Hayata, has been reported to have a number of biological properties, such as antibacterial, antitumor and other important therapeutic activities. However, the effect of alpinetin on inflammatory bowel disease (IBD) has not yet been reported. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of alpinetin on dextran sulfate sodium (DSS)-induced colitis in mice. In vivo, DSS-induced mice colitis model was established by giving mice drinking water containing 5% (w/v) DSS for 7 days. Alpinetin (25, 50 and 100 mg/kg) were administered once a day by intraperitoneal injection 3 days before DSS treatment. In vitro, phorbol myristate acetate (PMA)-differentiated monocytic THP-1 macrophages were treated with alpinetin and stimulated by lipopolysaccharide (LPS). The results showed that alpinetin significantly attenuated diarrhea, colonic shortening, histological injury, myeloperoxidase (MPO) activity and the expressions of tumor necrosis factor (TNF-α) and interleukin (IL-1β) production in mice. In vitro, alpinetin markedly inhibited LPS-induced TNF-α and IL-1β production, as well as Toll-like receptor 4 (TLR4) mediated nuclear transcription factor-kappaB (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, this study demonstrated that alpinetin had protective effects on DSS-induced colitis and may be a promising therapeutic reagent for colitis treatment.
Collapse
|