51
|
Monti M, Consoli F, Vescovi R, Bugatti M, Vermi W. Human Plasmacytoid Dendritic Cells and Cutaneous Melanoma. Cells 2020; 9:E417. [PMID: 32054102 PMCID: PMC7072514 DOI: 10.3390/cells9020417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The prognosis of metastatic melanoma (MM) patients has remained poor for a long time. However, the recent introduction of effective target therapies (BRAF and MEK inhibitors for BRAFV600-mutated MM) and immunotherapies (anti-CTLA-4 and anti-PD-1) has significantly improved the survival of MM patients. Notably, all these responses are highly dependent on the fitness of the host immune system, including the innate compartment. Among immune cells involved in cancer immunity, properly activated plasmacytoid dendritic cells (pDCs) exert an important role, bridging the innate and adaptive immune responses and directly eliminating cancer cells. A distinctive feature of pDCs is the production of high amount of type I Interferon (I-IFN), through the Toll-like receptor (TLR) 7 and 9 signaling pathway activation. However, published data indicate that melanoma-associated escape mechanisms are in place to hijack pDC functions. We have recently reported that pDC recruitment is recurrent in the early phases of melanoma, but the entire pDC compartment collapses over melanoma progression. Here, we summarize recent advances on pDC biology and function within the context of melanoma immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - Francesca Consoli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Medical Oncology, University of Brescia at ASST-Spedali Civili, 25123 Brescia, Italy;
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
52
|
Kobayashi S, Shiota Y, Kawabe T, Phung HT, Maruyama T, Owada Y, So T, Ishii N. TRAF5 promotes plasmacytoid dendritic cell development from bone marrow progenitors. Biochem Biophys Res Commun 2020; 521:353-359. [PMID: 31668809 DOI: 10.1016/j.bbrc.2019.10.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022]
Abstract
The conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs) originate from the same common dendritic cell precursor cells in the bone marrow. The pDCs produce large amounts of type 1 interferon in response to foreign nucleic acid and crucially contribute to host defense against viral infection. Tumor necrosis factor (TNF) receptor-associated factor 5 (TRAF5) is a pivotal component of various TNF receptor signaling pathways in the immune system. Although the functions of TRAF5 in T and B lymphocytes have been well studied, its roles in pDCs remains to be fully elucidated. In this study, we show that the expression of TRAF5 supports the generation of pDCs in the bone marrow and also critically contributes to the homeostasis of the pDC subset in the periphery in a cell-intrinsic manner. Furthermore, we provide evidence that TRAF5 promotes the commitment of DC precursor cells toward pDC versus cDC subsets, which is regulated by the balance of transcription factors TCF4 and ID2. Together our findings reveal that TRAF5 acts as a positive regulator of pDC differentiation from bone marrow progenitors.
Collapse
Affiliation(s)
- Shuhei Kobayashi
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yuka Shiota
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hai The Phung
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takashi Maruyama
- Department of Immunology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
53
|
Netravali IA, Cariappa A, Yates K, Haining WN, Bertocchi A, Allard-Chamard H, Rosenberg I, Pillai S. 9-O-acetyl sialic acid levels identify committed progenitors of plasmacytoid dendritic cells. Glycobiology 2019; 29:861-875. [PMID: 31411667 DOI: 10.1093/glycob/cwz062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 11/12/2022] Open
Abstract
The origins of plasmacytoid dendritic cells (pDCs) have long been controversial and progenitors exclusively committed to this lineage have not been described. We show here that the fate of hematopoietic progenitors is determined in part by their surface levels of 9-O-acetyl sialic acid. Pro-pDCs were identified as lineage negative 9-O-acetyl sialic acid low progenitors that lack myeloid and lymphoid potential but differentiate into pre-pDCs. The latter cells are also lineage negative, 9-O-acetyl sialic acid low cells but are exclusively committed to the pDC lineage. Levels of 9-O-acetyl sialic acid provide a distinct way to define progenitors and thus facilitate the study of hematopoietic differentiation.
Collapse
Affiliation(s)
- Ilka A Netravali
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Annaiah Cariappa
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kathleen Yates
- Dana-Farber Cancer Institute, Pediatric Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - W Nicholas Haining
- Dana-Farber Cancer Institute, Pediatric Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Bertocchi
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hugues Allard-Chamard
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.,Division of Rheumatology, Faculté de Médecine et des Sciences de la Santé de l', Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada, J1K 2R1
| | - Ian Rosenberg
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
54
|
Yu S, Su C, Luo X. Impact of infection on transplantation tolerance. Immunol Rev 2019; 292:243-263. [PMID: 31538351 PMCID: PMC6961566 DOI: 10.1111/imr.12803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Allograft tolerance is the ultimate goal of organ transplantation. Current strategies for tolerance induction mainly focus on inhibiting alloreactive T cells while promoting regulatory immune cells. Pathogenic infections may have direct impact on both effector and regulatory cell populations, therefore can alter host susceptibility to transplantation tolerance induction as well as impair the quality and stability of tolerance once induced. In this review, we will discuss existing data demonstrating the effect of infections on transplantation tolerance, with particular emphasis on the role of the stage of infection (acute, chronic, or latent) and the stage of tolerance (induction or maintenance) in this infection-tolerance interaction. While the deleterious effect of acute infection on tolerance is mainly driven by proinflammatory cytokines induced shortly after the infection, chronic infection may generate exhausted T cells that could in fact facilitate transplantation tolerance. In addition to pathogenic infections, commensal intestinal microbiota also has numerous significant immunomodulatory effects that can shape the host alloimmunity following transplantation. A comprehensive understanding of these mechanisms is crucial for the development of therapeutic strategies for robustly inducing and stably maintaining transplantation tolerance while preserving host anti-pathogen immunity in clinically relevant scenarios.
Collapse
Affiliation(s)
- Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Division of Organ transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chang Su
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
55
|
Joslyn RC, Forero A, Green R, Parker SE, Savan R. Long Noncoding RNA Signatures Induced by Toll-Like Receptor 7 and Type I Interferon Signaling in Activated Human Plasmacytoid Dendritic Cells. J Interferon Cytokine Res 2019; 38:388-405. [PMID: 30230983 DOI: 10.1089/jir.2018.0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) exhibit highly lineage-specific expression and act through diverse mechanisms to exert control over a wide range of cellular processes. lncRNAs can function as potent modulators of innate immune responses through control of transcriptional and posttranscriptional regulation of mRNA expression and processing. Recent studies have demonstrated that lncRNAs participate in the regulation of antiviral responses and autoimmune disease. Despite their emerging role as immune mediators, the mechanisms that govern lncRNA expression and function have only begun to be characterized. In this study, we explore the role of lncRNAs in human plasmacytoid dendritic cells (pDCs), which are critical sentinel sensors of viral infection and contribute to the development of autoimmune disease. Using genome-wide sequencing approaches, we dissect the contributions of Toll-like receptor 7 (TLR7) and type I interferon (IFN-I) in the regulation of coding and noncoding RNA expression in CAL-1 pDCs treated with R848 or IFNβ. Functional enrichment analysis reveals both the unique and synergistic roles of TLR7 and IFN-I signaling in the orchestration of pDC function. These observations were consistent with primary cell immune responses elicited by detection of viral infection. We identified and characterized the conditional TLR7- and IFN-I-dependent regulation of 588 lncRNAs. Dysregulation of these lncRNAs could significantly alter pDC maturation, IFN-I and inflammatory cytokine production, antigen presentation, costimulation or tolerance cues, turnover, or localization, all consequential events during viral infection or IFN-I-driven autoimmune diseases such as systemic lupus erythematosus. These findings demonstrate the differential responsiveness of lncRNAs to unique immune stimuli, uncover regulatory mechanisms of lncRNA expression, and reveal a novel and tractable platform for the study of lncRNA expression and function.
Collapse
Affiliation(s)
- Rochelle C Joslyn
- 1 Department of Immunology and University of Washington , Seattle, Washington
| | - Adriana Forero
- 1 Department of Immunology and University of Washington , Seattle, Washington
| | - Richard Green
- 1 Department of Immunology and University of Washington , Seattle, Washington.,2 Center for Innate Immunity and Immune Disease, University of Washington , Seattle, Washington
| | - Stephen E Parker
- 1 Department of Immunology and University of Washington , Seattle, Washington
| | - Ram Savan
- 1 Department of Immunology and University of Washington , Seattle, Washington.,2 Center for Innate Immunity and Immune Disease, University of Washington , Seattle, Washington
| |
Collapse
|
56
|
Gender differences in innate responses and gene expression profiles in memory CD4 T cells are apparent very early during acute simian immunodeficiency virus infection. PLoS One 2019; 14:e0221159. [PMID: 31490965 PMCID: PMC6730907 DOI: 10.1371/journal.pone.0221159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Gender differences in Human immunodeficiency virus (HIV) disease progression and comorbidities have been extensively reported. Using the simian immunodeficiency virus (SIV) infected rhesus macaque model, we show that these differences are apparent very early during the course of infection. Though there were no major changes in the proportions of CD4 T cells or its subsets, central memory CD4 T cells from female macaques were found to differentially regulate a significantly larger number of genes at day 4 post-infection (PI) as compared to males. Pathway analysis revealed divergence of both canonical and biological pathways that persisted at day 10 PI. Changes in gene expression profiles were accompanied by a significant increase in plasma levels of pro-inflammatory mediators such as MCP-1/CCL2, I-TAC/CXCL11, and MIF. Though plasma levels of IFNα did not differ between male and female macaques, the expression levels of IFNα subtype-14, 16, IFNβ, and IFNω were significantly upregulated in the lymph nodes of female macaques at day 10 PI as compared to male macaques. Our results suggest that the pathogenic sequelae seen during chronic infection may be shaped by gender differences in immune responses induced very early during the course of HIV infection.
Collapse
|
57
|
Kobayashi S, Sakurai T, So T, Shiota Y, Asao A, Phung HT, Tanaka R, Kawabe T, Maruyama T, Kanno E, Kawakami K, Owada Y, Ishii N. TNF Receptor-Associated Factor 5 Limits Function of Plasmacytoid Dendritic Cells by Controlling IFN Regulatory Factor 5 Expression. THE JOURNAL OF IMMUNOLOGY 2019; 203:1447-1456. [PMID: 31420465 DOI: 10.4049/jimmunol.1900188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022]
Abstract
The physiological functions of TNF receptor-associated factor 5 (TRAF5) in the skin inflammation and wound healing process are not well characterized. We found that Traf5 -/- mice exhibited an accelerated skin wound healing as compared with wild-type counterparts. The augmented wound closure in Traf5 -/- mice was associated with a massive accumulation of plasmacytoid dendritic cells (pDCs) into skin wounds and an enhanced expression of genes related to wound repair at skin sites. In accordance with this result, adoptive transfer of Traf5 -/- pDCs, but not wild-type pDCs, into the injured skin area in wild-type recipient mice significantly promoted skin wound healing. The expression of skin-tropic chemokine receptor CXCR3 was significantly upregulated in Traf5-/- pDCs, and treatment with a CXCR3 inhibitor cancelled the promoted wound healing in Traf5-/- mice, suggesting a pivotal role of CXCR3 in pDC-dependent wound healing. Traf5 -/- pDCs displayed significantly higher expression of IFN regulatory factor 5 (IRF5), which correlated with greater induction of proinflammatory cytokine genes and CXCR3 protein after stimulation with TLR ligands. Consistently, transduction of exogeneous TRAF5 in Traf5-/- pDCs normalized the levels of abnormally elevated proinflammatory molecules, including IRF5 and CXCR3. Furthermore, knockdown of IRF5 also rescued the abnormal phenotypes of Traf5-/- pDCs. Therefore, the higher expression and induction of IRF5 in Traf5-/- pDCs causes proinflammatory and skin-tropic characteristics of the pDCs, which may accelerate skin wound healing responses. Collectively, our results uncover a novel role of TRAF5 in skin wound healing that is mediated by IRF5-dependent function of pDCs.
Collapse
Affiliation(s)
- Shuhei Kobayashi
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Tsuyoshi Sakurai
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Takanori So
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.,Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yuka Shiota
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Atsuko Asao
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Hai The Phung
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Riou Tanaka
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Takeshi Kawabe
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Takashi Maruyama
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, Akita University, Akita 010-8543, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan; and
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan;
| |
Collapse
|
58
|
Márquez-Coello M, Montes de Oca Arjona M, Martín-Aspas A, Guerrero Sánchez F, Fernández-Gutiérrez Del Álamo C, Girón-González JA. Antiretroviral therapy partially improves the abnormalities of dendritic cells and lymphoid and myeloid regulatory populations in recently infected HIV patients. Sci Rep 2019; 9:11654. [PMID: 31406185 PMCID: PMC6690933 DOI: 10.1038/s41598-019-48185-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/29/2019] [Indexed: 01/07/2023] Open
Abstract
This study aimed to evaluate the effects of antiretroviral therapy on plasmacytoid (pDC) and myeloid (mDC) dendritic cells as well as regulatory T (Treg) and myeloid-derived suppressor (MDSC) cells in HIV-infected patients. Forty-five HIV-infected patients (20 of them with detectable HIV load −10 recently infected and 10 chronically infected patients-, at baseline and after antiretroviral therapy, and 25 with undetectable viral loads) and 20 healthy controls were studied. The influence of HIV load, bacterial translocation (measured by 16S rDNA and lipopolysaccharide-binding protein) and immune activation markers (interleukin –IL- 6, soluble CD14, activated T cells) was analyzed. The absolute numbers and percentages of pDC and mDC were significantly increased in patients. Patients with detectable viral load exhibited increased intracellular expression of IL-12 by mDCs and interferon -IFN- α by pDCs. Activated population markers were elevated, and the proportion of Tregs was significantly higher in HIV-infected patients. The MDSC percentage was similar in patients and controls, but the intracellular expression of IL-10 was significantly higher in patients. The achievement of undetectable HIV load after therapy did not modify bacterial translocation parameters, but induce an increase in pDCs, mDCs and MDSCs only in recently infected patients. Our data support the importance of early antiretroviral therapy to preserve dendritic and regulatory cell function in HIV-infected individuals.
Collapse
Affiliation(s)
- Mercedes Márquez-Coello
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Montserrat Montes de Oca Arjona
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Andrés Martín-Aspas
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Francisca Guerrero Sánchez
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | | | - José A Girón-González
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain. .,Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain.
| |
Collapse
|
59
|
Zhou ZJ, Xin HY, Li J, Hu ZQ, Luo CB, Zhou SL. Intratumoral plasmacytoid dendritic cells as a poor prognostic factor for hepatocellular carcinoma following curative resection. Cancer Immunol Immunother 2019; 68:1223-1233. [PMID: 31201473 PMCID: PMC11028119 DOI: 10.1007/s00262-019-02355-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/05/2019] [Indexed: 01/11/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are present in various primary and metastatic human neoplasms; however, their clinical significance in hepatocellular carcinoma (HCC) is unclear. In this study, we investigated the distribution, prognostic value, and potential function of pDCs in HCC patients undergoing curative resection. We performed immunohistochemical analyses of whole tumor sections from 224 patients to assess the expression of BDCA2, CD3, CD4, CD8, Foxp3, granzyme B, IL-17, and CD34. The findings were validated using tissue microarrays from another two independent cohorts totaling 841 HCC patients undergoing curative resection. Our results demonstrated that high numbers of BDCA2+ pDCs within tumors correlated with high alpha-fetoprotein levels, greater vascular invasion, advanced tumor-node-metastasis stage, shorter overall survival, and a higher recurrence rate. However, patient outcomes were not associated with pDCs in peritumoral stromal or nontumor tissues. Furthermore, an increase in intratumoral pDCs was associated with increased intratumoral infiltration of Foxp3+ regulatory T cells and IL-17-producing cells and correlated with tumor vascular density. Univariate and multivariate analyses revealed that the presence of intratumoral pDCs alone or in combination with regulatory T and/or IL-17-producing cells was an independent predictor of time to recurrence and overall survival. In conclusion, our study demonstrated that intratumoral infiltration by pDCs is a novel indicator for poor prognosis in patients with HCC, possibly through the induction of an immune tolerogenic and inflammatory tumor microenvironment comprising regulatory T and IL-17-producing cells. An assessment of the combination of these cells represents a superior predictor of patient outcome.
Collapse
Affiliation(s)
- Zheng-Jun Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hao-Yang Xin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Jia Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Zhi-Qiang Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Chu-Bin Luo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Shao-Lai Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
60
|
Jennings J, Sang Y. Porcine Interferon Complex and Co-Evolution with Increasing Viral Pressure after Domestication. Viruses 2019; 11:v11060555. [PMID: 31208045 PMCID: PMC6631851 DOI: 10.3390/v11060555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022] Open
Abstract
Consisting of nearly 60 functional genes, porcine interferon (IFN)-complex represents an evolutionary surge of IFN evolution in domestic ungulate species. To compare with humans and mice, each of these species contains about 20 IFN functional genes, which are better characterized using the conventional IFN-α/β subtypes as examples. Porcine IFN-complex thus represents an optimal model for studying IFN evolution that resulted from increasing viral pressure during domestication and industrialization. We hypothesize and justify that porcine IFN-complex may extend its functionality in antiviral and immunomodulatory activity due to its superior molecular diversity. Furthermore, these unconventional IFNs could even confer some functional and signaling novelty beyond that of the well-studied IFN-α/β subtypes. Investigations into porcine IFN-complex will further our understanding of IFN biology and promote IFN-based therapeutic designs to confront swine viral diseases.
Collapse
Affiliation(s)
- Jordan Jennings
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
61
|
Meng L, Almeida LN, Clauder AK, Lindemann T, Luther J, Link C, Hofmann K, Kulkarni U, Wong DM, David JP, Manz RA. Bone Marrow Plasma Cells Modulate Local Myeloid-Lineage Differentiation via IL-10. Front Immunol 2019; 10:1183. [PMID: 31214168 PMCID: PMC6555095 DOI: 10.3389/fimmu.2019.01183] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/09/2019] [Indexed: 12/16/2022] Open
Abstract
Bone marrow plasma cells have been reported to represent a major source of IL-10; however, the impact of plasma cell derived IL-10 in that tissue remains poorly understood. We confirm in this study that even in the absence of acute immune reactions, mature plasma cells represent the dominant IL-10+ cell population in the bone marrow, and identify myeloid-lineage cells as a main local target for plasma cell derived IL-10. Using Vert-X IL-10 transcriptional reporter mice, we found that more than 50% of all IL-10+ cells in bone marrow were CD138+ plasma cells, while other IL-10+ B lineage cells were nearly absent in this organ. Accordingly, IL-10 was found in the supernatants of short-term cultures of FACS-sorted bone marrow plasma cells, confirming IL-10 secretion from these cells. IL-10+ bone marrow plasma cells showed a B220-/CD19-/MHCII low phenotype suggesting that these cells represent a mature differentiation stage. Approximately 5% of bone marrow leucocytes expressed the IL-10 receptor (IL-10R), most of them being CD115+/Ly6C+/CD11c- monocytes. Compared to littermate controls, young B lineage specific IL-10 KO mice showed increased numbers of CD115+ cells but normal populations of other myeloid cell types in bone marrow. However, at 7 months of age B lineage specific IL-10 KO mice exhibited increased populations of CD115+ myeloid and CD11c+ dendritic cells (DCs), and showed reduced F4/80 expression in this tissue; hence, indicating that bone marrow plasma cells modulate the differentiation of local myeloid lineage cells via IL-10, and that this effect increases with age. The effects of B cell/plasma cell derived IL-10 on the differentiation of CD115+, CD11c+, and F4/80+ myeloid cells were confirmed in co-culture experiments. Together, these data support the idea that IL-10 production is not limited to early plasma cell stages in peripheral tissues but is also an important feature of mature plasma cells in the bone marrow. Moreover, we provide evidence that already under homeostatic conditions in the absence of acute immune reactions, bone marrow plasma cells represent a non-redundant source for IL-10 that modulates local myeloid lineage differentiation. This is particularly relevant in older individuals.
Collapse
Affiliation(s)
- Lingzhang Meng
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Timo Lindemann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Julia Luther
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Link
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina Hofmann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Upasana Kulkarni
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - David Ming Wong
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jean-Pierre David
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
62
|
Crow MK, Ronnblom L. Type I interferons in host defence and inflammatory diseases. Lupus Sci Med 2019; 6:e000336. [PMID: 31205729 PMCID: PMC6541752 DOI: 10.1136/lupus-2019-000336] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022]
Abstract
Type I interferons (IFN) can have dual and opposing roles in immunity, with effects that are beneficial or detrimental to the individual depending on whether IFN pathway activation is transient or sustained. Determinants of IFN production and its functional consequences include the nature of the microbial or nucleic acid stimulus, the type of nucleic acid sensor involved in inducing IFN, the predominant subtype of type I IFN produced and the immune ecology of the tissue at the time of IFN expression. When dysregulated, the type I IFN system drives many autoimmune and non-autoimmune inflammatory diseases, including SLE and the tissue inflammation associated with chronic infection. The type I IFN system may also contribute to outcomes for patients affected by solid cancers or myocardial infarction. Significantly more research is needed to discern the mechanisms of induction and response to type I IFNs across these diseases, and patient endophenotyping may help determine whether the cytokine is acting as 'friend' or 'foe', within a particular patient, and at the time of treatment. This review summarises key concepts and discussions from the second International Summit on Interferons in Inflammatory Diseases, during which expert clinicians and scientists evaluated the evidence for the role of type I IFNs in autoimmune and other inflammatory diseases.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, Weill Cornell Medical College, New York City, New York, USA
| | - Lars Ronnblom
- Section of Rheumatology, Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
63
|
Horie A, Tomita Y, Ohshio K, Fujiwara D, Fujii T. Characterization of genomic DNA of lactic acid bacteria for activation of plasmacytoid dendritic cells. BMC Microbiol 2019; 19:88. [PMID: 31060586 PMCID: PMC6501324 DOI: 10.1186/s12866-019-1458-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/15/2019] [Indexed: 11/15/2022] Open
Abstract
Background Lactococcus lactis strain Plasma (LC-Plasma) possesses strong stimulatory activity for plasmacytoid dendritic cells (pDCs) via the TLR9-Myd88 pathway. To reveal the effective lactic acid bacteria (LAB) genome structure for pDCs stimulatory activity, we performed in vitro screening, using randomly selected 200 bp DNA fragments from the LC-Plasma genome. Results We found that the CpG motif copy number in the fragments was positively and significantly correlated with pDCs stimulatory activity (R = 0.491, p < 0.01). However, the determination coefficient (R2) was 0.24, which means other factors affecte activity. We found that the G + C contents of the fragment showed a significant negative correlation with activity (R = − 0.474, p < 0.01). The correlation between pDCs stimulatory activity and the copy number of CpG motifs was greatly increased when DNA fragments were stratified by G + C contents. We also performed bioinformatics analysis and a screening of LAB strains with high pDCs stimulatory activity. Species with a high copy number of CpG motifs in the low-G + C region of their genomes had higher probability of inducing high-pDCs stimulatory activity. L. lactis subsp. lactis, Leuconostoc mesenteroides, and Pediococcus pentosaceus were three typical examples of LAB that had high pDCs stimulatory activity. Conclusions Our data suggested that the G + C content of DNA is one of the critical factors for pDCs stimulatory activity by DNA fragments. Furthermore, we found that the copy number in the low-G + C regions strongly affected the pDCs stimulatory activity of whole cells of LAB strains. These results should be useful for the design of new DNA fragments containing CpG motifs. This study also demonstrated an in silico screening method for identifying bacterial species that are able to activate pDCs. Electronic supplementary material The online version of this article (10.1186/s12866-019-1458-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akira Horie
- Central Laboratories for Key Technologies, Kirin Co., Ltd., Japan 1-13-5, Fukuura Kanazawa Yokohama Kanagawa, Yokohama, 2360004, Japan.,Research Laboratories for Beverage Technologies, Kirin Co., Ltd., Yokohama, Japan
| | - Yasuyuki Tomita
- Central Laboratories for Key Technologies, Kirin Co., Ltd., Japan 1-13-5, Fukuura Kanazawa Yokohama Kanagawa, Yokohama, 2360004, Japan
| | - Konomi Ohshio
- Central Laboratories for Key Technologies, Kirin Co., Ltd., Japan 1-13-5, Fukuura Kanazawa Yokohama Kanagawa, Yokohama, 2360004, Japan
| | - Daisuke Fujiwara
- Central Laboratories for Key Technologies, Kirin Co., Ltd., Japan 1-13-5, Fukuura Kanazawa Yokohama Kanagawa, Yokohama, 2360004, Japan
| | - Toshio Fujii
- Central Laboratories for Key Technologies, Kirin Co., Ltd., Japan 1-13-5, Fukuura Kanazawa Yokohama Kanagawa, Yokohama, 2360004, Japan.
| |
Collapse
|
64
|
Ali S, Mann-Nüttel R, Schulze A, Richter L, Alferink J, Scheu S. Sources of Type I Interferons in Infectious Immunity: Plasmacytoid Dendritic Cells Not Always in the Driver's Seat. Front Immunol 2019; 10:778. [PMID: 31031767 PMCID: PMC6473462 DOI: 10.3389/fimmu.2019.00778] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Type I Interferons (IFNs) are hallmark cytokines produced in immune responses to all classes of pathogens. Type I IFNs can influence dendritic cell (DC) activation, maturation, migration, and survival, but also directly enhance natural killer (NK) and T/B cell activity, thus orchestrating various innate and adaptive immune effector functions. Therefore, type I IFNs have long been considered essential in the host defense against virus infections. More recently, it has become clear that depending on the type of virus and the course of infection, production of type I IFN can also lead to immunopathology or immunosuppression. Similarly, in bacterial infections type I IFN production is often associated with detrimental effects for the host. Although most cells in the body are thought to be able to produce type I IFN, plasmacytoid DCs (pDCs) have been termed the natural "IFN producing cells" due to their unique molecular adaptations to nucleic acid sensing and ability to produce high amounts of type I IFN. Findings from mouse reporter strains and depletion experiments in in vivo infection models have brought new insights and established that the role of pDCs in type I IFN production in vivo is less important than assumed. Production of type I IFN, especially the early synthesized IFNβ, is rather realized by a variety of cell types and cannot be mainly attributed to pDCs. Indeed, the cell populations responsible for type I IFN production vary with the type of pathogen, its tissue tropism, and the route of infection. In this review, we summarize recent findings from in vivo models on the cellular source of type I IFN in different infectious settings, ranging from virus, bacteria, and fungi to eukaryotic parasites. The implications from these findings for the development of new vaccination and therapeutic designs targeting the respectively defined cell types are discussed.
Collapse
Affiliation(s)
- Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Anja Schulze
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Judith Alferink
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
65
|
Abstract
HIV causes several forms of immune dysfunction that need to be addressed in a functional cure for HIV. Immune exhaustion describes a dysfunctional phenotype caused by chronic cellular activation. Lymphocyte activation gene-3 (LAG3) is one of several negative coreceptors known as immune checkpoints that contribute to this exhaustion phenotype. Antibodies targeting immune checkpoints are now used clinically to restore immunity against cancer and hold promise in restoring immunity during HIV infection. Here, we summarize current knowledge surrounding LAG3 and discuss its relevance during HIV infection and the potential for LAG3-targeting antibodies in a functional HIV cure.
Collapse
Affiliation(s)
- Colin G. Graydon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Allison L. Balasko
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| |
Collapse
|
66
|
Abstract
In this chapter, we describe the history of transplantation, the multiple cell types, and mechanisms that are involved in rejection and tolerance of a transplanted organ, as well as summarize the common and promising new therapeutics used in transplant patients.
Collapse
Affiliation(s)
- Jessica Stolp
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Masaaki Zaitsu
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
67
|
Rahmatpanah F, Agrawal S, Jaiswal N, Nguyen HM, McClelland M, Agrawal A. Airway epithelial cells prime plasmacytoid dendritic cells to respond to pathogens via secretion of growth factors. Mucosal Immunol 2019; 12:77-84. [PMID: 30279511 PMCID: PMC6301110 DOI: 10.1038/s41385-018-0097-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
Plasmacytoid dendritic cells (PDCs) are critical for defense against respiratory viruses because of their propensity to secrete high levels of type I interferons (IFN). The functions of PDCs in the lung can be influenced by airway epithelial cells. We examined the effect of human primary bronchial epithelial cells (PBECs) on PDC functions by performing RNA-sequencing of PDCs after co-culture with air liquid interface differentiated PBECs. Functional analysis revealed that PDCs co-cultured with PBECs displayed upregulation of type I IFN production and response genes. Upregulated transcripts included those encoding cytosolic sensors of DNA, ZBP-1,IRF-3, and NFkB as well as genes involved in amplification of the IFN response, such as IFNAR1, JAK/STAT, ISG15. In keeping with the RNA-seq data, we observe increased secretion of type I IFN and other cytokines in response to influenza in PDCs co-cultured with PBECs. The PDCs also primed Th1 responses in T cells. The enhanced response of PDCs co-cultured with PBECs was due to the action of growth factors, GMCSF, GCSF, and VEGF, which were secreted by PBECs on differentiation. These data highlight possible mechanisms to enhance the production of type-I IFN in the airways, which is critical for host defense against respiratory infections.
Collapse
Affiliation(s)
- Farah Rahmatpanah
- 0000 0001 0668 7243grid.266093.8Department of pathology, University of California, Irvine, CA 92697 USA
| | - Sudhanshu Agrawal
- 0000 0001 0668 7243grid.266093.8Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697 USA
| | - Natasha Jaiswal
- 0000 0001 0668 7243grid.266093.8Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697 USA
| | - Hannah M. Nguyen
- 0000 0001 0668 7243grid.266093.8Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697 USA
| | - Michael McClelland
- 0000 0001 0668 7243grid.266093.8Microbiology & Molecular Genetics, University of California, Irvine, CA 92697 USA
| | - Anshu Agrawal
- 0000 0001 0668 7243grid.266093.8Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697 USA
| |
Collapse
|
68
|
|
69
|
Basit F, Mathan T, Sancho D, de Vries IJM. Human Dendritic Cell Subsets Undergo Distinct Metabolic Reprogramming for Immune Response. Front Immunol 2018; 9:2489. [PMID: 30455688 PMCID: PMC6230993 DOI: 10.3389/fimmu.2018.02489] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor (TLR) agonists induce metabolic reprogramming, which is required for immune activation. We have investigated mechanisms that regulate metabolic adaptation upon TLR-stimulation in human blood DC subsets, CD1c+ myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). We show that TLR-stimulation changes expression of genes regulating oxidative phosphorylation (OXPHOS) and glutamine metabolism in pDC. TLR-stimulation increases mitochondrial content and intracellular glutamine in an autophagy-dependent manner in pDC. TLR-induced glutaminolysis fuels OXPHOS in pDCs. Notably, inhibition of glutaminolysis and OXPHOS prevents pDC activation. Conversely, TLR-stimulation reduces mitochondrial content, OXPHOS activity and induces glycolysis in CD1c+ mDC. Inhibition of mitochondrial fragmentation or promotion of mitochondrial fusion impairs TLR-stimulation induced glycolysis and activation of CD1c+ mDCs. TLR-stimulation triggers BNIP3-dependent mitophagy, which regulates transcriptional activity of AMPKα1. BNIP3-dependent mitophagy is required for induction of glycolysis and activation of CD1c+ mDCs. Our findings reveal that TLR stimulation differentially regulates mitochondrial dynamics in distinct human DC subsets, which contributes to their activation.
Collapse
Affiliation(s)
- Farhan Basit
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Till Mathan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
70
|
|
71
|
Griffith AD, Zaidi AK, Pietro A, Hadiono M, Yang JS, Davis R, Popkin DL. A requirement for slc15a4 in imiquimod-induced systemic inflammation and psoriasiform inflammation in mice. Sci Rep 2018; 8:14451. [PMID: 30262916 PMCID: PMC6160456 DOI: 10.1038/s41598-018-32668-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
There is competing evidence that plasmacytoid dendritic cells (pDC), the most potent source of IFN-I, may initiate psoriasis. We targeted pDC function using the slc15a4feeble loss-of-function mouse whose pDC are unresponsive to TLR agonists. slc15a4feeble treated with the topical TLR7-agonist imiquimod (IMQ) demonstrated decreased epidermal thickening 24 hours post-treatment which was more pronounced by day 5 as compared to wildtype mice. These findings were specific to the acute IMQ model and not the protracted IL23 model that drives inflammation downstream of TLR activation. Systemically, slc15a4 was required for IMQ-induced weight loss and cutaneous accumulation of CD4+ and Siglec H+, but not CD11b+ cells. Consistent with this phenotype and the function of slc15a4, induction of IFN-I was virtually absent systemically and via cutaneous gene expression. Induction of other inflammatory cytokines (cytokine storm) was modestly blunted in slc15a4feeble except for inflammasome-associated genes consistent with slc15a4 being required for TLR7-mediated (but not inflammasome-mediated) inflammation downstream of IMQ. Surprisingly, only IFN-I gene expression was suppressed within IMQ-treated skin. Other genes including conserved psoriasiform trademark gene expression were augmented in slc15a4feeble versus littermate controls. Taken together, we have identified a role for slc15a4 but not canonical psoriasiform genes in the imiquimod model of psoriasiform dermatitis.
Collapse
Affiliation(s)
- Alexis D Griffith
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA
| | - Asifa K Zaidi
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA
| | - Ashley Pietro
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA
| | - Matthew Hadiono
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA
| | - Jessica S Yang
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA
| | - Rachel Davis
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA
| | - Daniel L Popkin
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA. .,Departments of Dermatology, Pathology, Molecular Biology and Microbiology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA.
| |
Collapse
|
72
|
Zhao Y, Hanniffy S, Arce-Gorvel V, Conde-Alvarez R, Oh S, Moriyón I, Mémet S, Gorvel JP. Immunomodulatory properties of Brucella melitensis lipopolysaccharide determinants on mouse dendritic cells in vitro and in vivo. Virulence 2018; 9:465-479. [PMID: 28968180 PMCID: PMC5955181 DOI: 10.1080/21505594.2017.1386831] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The lipopolysaccharide (LPS) is a major virulence factor of Brucella, a facultative intracellular pathogenic Gram-negative bacterium. Brucella LPS exhibits a low toxicity and its atypical structure was postulated to delay the host immune response, favouring the establishment of chronic disease. Here we carried out an in-depth in vitro and in vivo characterisation of the immunomodulatory effects of Brucella LPS on different dendritic cell (DC) subpopulations. By using LPSs from bacteria that share some of Brucella LPS structural features, we demonstrated that the core component of B. melitensis wild-type (Bm-wt) LPS accounts for the low activation potential of Brucella LPS in mouse GM-CSF-derived (GM-) DCs. Contrary to the accepted dogma considering Brucella LPS a poor TLR4 agonist and DC activator, Bm-wt LPS selectively induced expression of surface activation markers and cytokine secretion from Flt3-Ligand-derived (FL-) DCs in a TLR4-dependent manner. It also primed in vitro T cell proliferation by FL-DCs. In contrast, modified LPS with a defective core purified from Brucella carrying a mutated wadC gene (Bm-wadC), efficiently potentiated mouse and human DC activation and T cell proliferation in vitro. In vivo, Bm-wt LPS promoted scant activation of splenic DC subsets and limited recruitment of monocyte- DC like cells in the spleen, conversely to Bm-wadC LPS. Bm-wadC live bacteria drove high cytokine secretion levels in sera of infected mice. Altogether, these results illustrate the immunomodulatory properties of Brucella LPS and the enhanced DC activation ability of the wadC mutation with potential for vaccine development targeting Brucella core LPS structure.
Collapse
Affiliation(s)
- Yun Zhao
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Sean Hanniffy
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Vilma Arce-Gorvel
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Raquel Conde-Alvarez
- b Departamento de Microbiología y Parasitología , Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra , c/Irunlarrea 1, Pamplona , Spain
| | - SangKon Oh
- c Baylor Institute for Immunology Research , 3434 Live Oak St., Dallas , TX , U.S.A
| | - Ignacio Moriyón
- b Departamento de Microbiología y Parasitología , Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra , c/Irunlarrea 1, Pamplona , Spain
| | - Sylvie Mémet
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Jean-Pierre Gorvel
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| |
Collapse
|
73
|
Kaitani A, Izawa K, Maehara A, Isobe M, Takamori A, Matsukawa T, Takahashi M, Yamanishi Y, Oki T, Yamada H, Nagamine M, Uchida S, Uchida K, Ando T, Maeda K, Nakano N, Shimizu T, Takai T, Ogawa H, Okumura K, Kitamura T, Kitaura J. Leukocyte mono-immunoglobulin-like receptor 8 (LMIR8)/CLM-6 is an FcRγ-coupled receptor selectively expressed in mouse tissue plasmacytoid dendritic cells. Sci Rep 2018; 8:8259. [PMID: 29844322 PMCID: PMC5974347 DOI: 10.1038/s41598-018-25646-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/26/2018] [Indexed: 01/19/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) produce large amounts of type-I interferon (IFN) in response to viral infection or self nucleic acids. Leukocyte mono-immunoglobulin-like receptor 8 (LMIR8), also called CMRF-35-like molecule-6 (CLM-6), is a putative activating receptor among mouse LMIR/CLM/CD300 members; however, the expression and function of LMIR8 remain unclear. Here, we characterize mouse LMIR8 as a pDC receptor. Analysis of Flag-tagged LMIR8-transduced bone marrow (BM)-derived mast cells demonstrated that LMIR8 can transmit an activating signal by interacting with immunoreceptor tyrosine-based activating motif (ITAM)-containing FcRγ. Flow cytometric analysis using a specific antibody for LMIR8 showed that LMIR8 expression was restricted to mouse pDCs residing in BM, spleen, or lymph node. FcRγ deficiency dampened surface expression of LMIR8 in mouse pDCs. Notably, LMIR8 was detected only in pDCs, irrespective of TLR9 stimulation, suggesting that LMIR8 is a suitable marker for pDCs in mouse tissues; LMIR8 is weakly expressed in Flt3 ligand-induced BM-derived pDCs (BMpDCs). Crosslinking of transduced LMIR8 in BMpDCs with anti-LMIR8 antibody did not induce IFN-α production, but rather suppressed TLR9-mediated production of IFN-α. Taken together, these observations indicate that LMIR8 is an FcRγ-coupled receptor selectively expressed in mouse tissue pDCs, which might suppress pDC activation through the recognition of its ligands.
Collapse
Affiliation(s)
- Ayako Kaitani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Kumi Izawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Akie Maehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Masamichi Isobe
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Ayako Takamori
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshihiro Matsukawa
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-0808, Japan
| | - Mariko Takahashi
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yoshinori Yamanishi
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Toshihiko Oki
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiromichi Yamada
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masakazu Nagamine
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shino Uchida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Departments of Gastroenterology Immunology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Koichiro Uchida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Keiko Maeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshiaki Shimizu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Sendai, 980-8575, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan. .,Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
74
|
Xiao M, Chen X, He R, Ye L. Differentiation and Function of Follicular CD8 T Cells During Human Immunodeficiency Virus Infection. Front Immunol 2018; 9:1095. [PMID: 29872434 PMCID: PMC5972284 DOI: 10.3389/fimmu.2018.01095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
The combination antiretroviral therapeutic (cART) regime effectively suppresses human immunodeficiency virus (HIV) replication and prevents progression to acquired immunodeficiency diseases. However, cART is not a cure, and viral rebound will occur immediately after treatment is interrupted largely due to the long-term presence of an HIV reservoir that is composed of latently infected target cells that maintain a quiescent state or persistently produce infectious viruses. CD4 T cells that reside in B-cell follicles within lymphoid tissues, called follicular helper T cells (TFH), have been identified as a major HIV reservoir. Due to their specialized anatomical structure, HIV-specific CD8 T cells are largely insulated from this TFH reservoir. It is increasingly clear that the elimination of TFH reservoirs is a key step toward a functional cure for HIV infection. Recently, several studies have suggested that a fraction of HIV-specific CD8 T cells can differentiate into a CXCR5-expressing subset, which are able to migrate into B-cell follicles and inhibit viral replication. In this review, we discuss the differentiation and functions of this newly identified CD8 T-cell subset and propose potential strategies for purging TFH HIV reservoirs by utilizing this unique population.
Collapse
Affiliation(s)
- Minglu Xiao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiangyu Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
75
|
Chen Y, Meng F, Wang B, He L, Liu Y, Liu Z. Dock2 in the development of inflammation and cancer. Eur J Immunol 2018; 48:915-922. [PMID: 29509960 DOI: 10.1002/eji.201747157] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 02/15/2018] [Accepted: 02/28/2018] [Indexed: 01/21/2023]
Abstract
An atypical guanine exchange factor, Dock2 is specifically expressed in hematopoietic cells and regulates activation and migration of immune cells through activating Ras-related C3 botulinum toxin substrate (Rac). Dock2 was shown to be critical in the development of various inflammatory diseases, including allergic diseases, HIV infection, and graft rejection in organ transplantation. DOCK2 mutation in infants was recently identified to be associated with T and B cell combined immunodeficiency. Furthermore, Dock2 is involved in host protection during enteric bacterial infection and is also associated with the proliferation of cancer cells. It was also shown that patients with digestive tract cancer had high frequency mutation of DOCK2. This review summarizes the latest research progresses on the role of Dock2 for the development of various inflammatory diseases and cancers, and discusses the potential application of Dock2 modulators for patient treatment.
Collapse
Affiliation(s)
- Yayun Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fan Meng
- Southern Medical University, Guangzhou, Guangdong, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bingyu Wang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liangmei He
- The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yangbin Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.,Ganzhou Cancer Precision Medicine Engineering Research Center, Ganzhou, Jiangxi, China
| |
Collapse
|
76
|
Bandola-Simon J, Roche PA. Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol Immunol 2018; 113:31-37. [PMID: 29628265 DOI: 10.1016/j.molimm.2018.03.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/31/2018] [Accepted: 03/29/2018] [Indexed: 12/23/2022]
Abstract
The ability to mount an effective anti-tumor immune response requires coordinate control of CD4 T cell and CD8 T cell function by antigen presenting cells (APCs). Unfortunately, tumors create an immunosuppressive microenvironment that helps protect tumor cells from immune recognition. In many cases this defect can be traced back to a failure of APCs (most importantly dendritic cells (DCs)) to recognize, process, and present tumor antigens to T cells. In this review, we will summarize work addressing the role of different DC subsets in anti-tumor immunity and the various mechanisms used by tumor cells to suppress the ability of APCs to stimulate potent anti-tumor T cell responses.
Collapse
Affiliation(s)
- Joanna Bandola-Simon
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
77
|
Aiello A, Giannessi F, Percario ZA, Affabris E. The involvement of plasmacytoid cells in HIV infection and pathogenesis. Cytokine Growth Factor Rev 2018; 40:77-89. [PMID: 29588163 DOI: 10.1016/j.cytogfr.2018.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/15/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that are specialized in type I interferon (IFN) production. pDCs are key players in the antiviral immune response and serve as bridge between innate and adaptive immunity. Although pDCs do not represent the main reservoir of the Human Immunodeficiency Virus (HIV), they are a crucial subset in HIV infection as they influence viral transmission, target cell infection and antigen presentation. pDCs act as inflammatory and immunosuppressive cells, thus contributing to HIV disease progression. This review provides a state of art analysis of the interactions between HIV and pDCs and their potential roles in HIV transmission, chronic immune activation and immunosuppression. A thorough understanding of the roles of pDCs in HIV infection will help to improve therapeutic strategies to fight HIV infection, and will further increase our knowledge on this important immune cell subset.
Collapse
|
78
|
MHC-mismatched mixed chimerism restores peripheral tolerance of noncross-reactive autoreactive T cells in NOD mice. Proc Natl Acad Sci U S A 2018; 115:E2329-E2337. [PMID: 29463744 PMCID: PMC5877958 DOI: 10.1073/pnas.1720169115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mixed chimerism has shown good potential to cure some autoimmune diseases and prevent tissue rejection. It is known that MHC-mismatched but not -matched mixed chimerism effectively tolerizes autoreactive T cells, even those noncross-reactive T cells that do not directly recognize donor-type antigen presenting cells [i.e., dendritic cells (DCs)]. How this is accomplished remains unknown. These studies have shown that tolerizing peripheral residual host-type noncross-reactive autoreactive T cells requires engraftment of donor-type DCs and involves a host-type DC-mediated increase in donor-type Treg cells, which associates with restoration of tolerogenic features of host-type plasmacytoid DCs and expansion of host-type Treg cells. This study suggests a previously unrecognized tolerance network among donor- and host-type DCs and Treg cells in MHC-mismatched mixed chimeras. Autoimmune type 1 diabetes (T1D) and other autoimmune diseases are associated with particular MHC haplotypes and expansion of autoreactive T cells. Induction of MHC-mismatched but not -matched mixed chimerism by hematopoietic cell transplantation effectively reverses autoimmunity in diabetic nonobese diabetic (NOD) mice, even those with established diabetes. As expected, MHC-mismatched mixed chimerism mediates deletion in the thymus of host-type autoreactive T cells that have T-cell receptor (TCR) recognizing (cross-reacting with) donor-type antigen presenting cells (APCs), which have come to reside in the thymus. However, how MHC-mismatched mixed chimerism tolerizes host autoreactive T cells that recognize only self-MHC–peptide complexes remains unknown. Here, using NOD.Rag1−/−.BDC2.5 or NOD.Rag1−/−.BDC12-4.1 mice that have only noncross-reactive transgenic autoreactive T cells, we show that induction of MHC-mismatched but not -matched mixed chimerism restores immune tolerance of peripheral noncross-reactive autoreactive T cells. MHC-mismatched mixed chimerism results in increased percentages of both donor- and host-type Foxp3+ Treg cells and up-regulated expression of programmed death-ligand 1 (PD-L1) by host-type plasmacytoid dendritic cells (pDCs). Furthermore, adoptive transfer experiments showed that engraftment of donor-type dendritic cells (DCs) and expansion of donor-type Treg cells are required for tolerizing the noncross-reactive autoreactive T cells in the periphery, which are in association with up-regulation of host-type DC expression of PD-L1 and increased percentage of host-type Treg cells. Thus, induction of MHC-mismatched mixed chimerism may establish a peripheral tolerogenic DC and Treg network that actively tolerizes autoreactive T cells, even those with no TCR recognition of the donor APCs.
Collapse
|
79
|
Lee C, Lee M, Rhee I. Distinct features of dendritic cell-based immunotherapy as cancer vaccines. Clin Exp Vaccine Res 2018; 7:16-23. [PMID: 29399576 PMCID: PMC5795041 DOI: 10.7774/cevr.2018.7.1.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 01/07/2023] Open
Abstract
Dendritic cells (DCs) are the most professional antigen presenting cells that play important roles in connection between innate and adaptive immune responses. Numerous studies revealed that the functions of DCs are related with the capture and processing of antigen as well as the migration to lymphoid tissues for the presenting antigens to T cells. These unique features of DCs allow them to be considered as therapeutic vaccines that can induce immune responses and anti-tumor activity. Here, we discuss and understand the immunological basis of DCs and presume the possibilities of DC-based vaccines for the promising cancer therapy.
Collapse
Affiliation(s)
- Chaelin Lee
- Department of Bioscience & Biotechnology, Sejong University, Seoul, Korea
| | - Myungmi Lee
- Department of Bioscience & Biotechnology, Sejong University, Seoul, Korea
| | - Inmoo Rhee
- Department of Bioscience & Biotechnology, Sejong University, Seoul, Korea
| |
Collapse
|
80
|
Alissafi T, Kourepini E, Simoes DCM, Paschalidis N, Aggelakopoulou M, Sparwasser T, Boon L, Hammad H, Lambrecht BN, Panoutsakopoulou V. Osteopontin Promotes Protective Antigenic Tolerance against Experimental Allergic Airway Disease. THE JOURNAL OF IMMUNOLOGY 2018; 200:1270-1282. [PMID: 29330321 DOI: 10.4049/jimmunol.1701345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022]
Abstract
In the context of inflammation, osteopontin (Opn) is known to promote effector responses, facilitating a proinflammatory environment; however, its role during antigenic tolerance induction is unknown. Using a mouse model of asthma, we investigated the role of Opn during antigenic tolerance induction and its effects on associated regulatory cellular populations prior to disease initiation. Our experiments demonstrate that Opn drives protective antigenic tolerance by inducing accumulation of IFN-β-producing plasmacytoid dendritic cells, as well as regulatory T cells, in mediastinal lymph nodes. We also show that, in the absence of TLR triggers, recombinant Opn, and particularly its SLAYGLR motif, directly induces IFN-β expression in Ag-primed plasmacytoid dendritic cells, which renders them extra protective against induction of allergic airway disease upon transfer into recipient mice. Lastly, we show that blockade of type I IFNR prevents antigenic tolerance induction against experimental allergic asthma. Overall, we unveil a new role for Opn in setting up a tolerogenic milieu boosting antigenic tolerance induction, thus leading to prevention of allergic airway inflammation. Our results provide insight for the future design of immunotherapies against allergic asthma.
Collapse
Affiliation(s)
- Themis Alissafi
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.,VIB Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium
| | - Evangelia Kourepini
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Davina C M Simoes
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Nikolaos Paschalidis
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Aggelakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany, a Joint Venture between the Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany and the Hannover Medical School, 30625 Hannover, Germany; and
| | - Louis Boon
- Bioceros BV, 3584 CM Utrecht, the Netherlands
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium
| | - Bart N Lambrecht
- VIB Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium
| | - Vily Panoutsakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
81
|
Manches O, Muniz LR, Bhardwaj N. Dendritic Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
82
|
Abstract
Dendritic cells (DC) are professional antigen presenting cells comprising a variety of subsets, as either resident or migrating cells, in lymphoid and non-lymphoid organs. In the steady state DC continually process and present antigens on MHCI and MHCII, processes that are highly upregulated upon activation. By expressing differential sets of pattern recognition receptors different DC subsets are able to respond to a range of pathogenic and danger stimuli, enabling functional specialisation of the DC. The knowledge of functional specialisation of DC subsets is key to efficient priming of T cells, to the design of effective vaccine adjuvants and to understanding the role of different DC in health and disease. This review outlines mouse and human steady state DC subsets and key attributes that define their distinct functions.
Collapse
|
83
|
Gil-Pulido J, Zernecke A. Antigen-presenting dendritic cells in atherosclerosis. Eur J Pharmacol 2017; 816:25-31. [DOI: 10.1016/j.ejphar.2017.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 11/29/2022]
|
84
|
Ainola M, Porola P, Takakubo Y, Przybyla B, Kouri VP, Tolvanen TA, Hänninen A, Nordström DC. Activation of plasmacytoid dendritic cells by apoptotic particles - mechanism for the loss of immunological tolerance in Sjögren's syndrome. Clin Exp Immunol 2017; 191:301-310. [PMID: 29105068 DOI: 10.1111/cei.13077] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 01/03/2023] Open
Abstract
Sjögren's syndrome (SS) is a common autoimmune disease targeting salivary and lacrimal glands. It is strongly female-dominant, characterized by low oestrogen levels combined with a local intracrine dihydrotestosterone defect. We hypothesized that these hormonal deficits lead to increased apoptosis of the epithelial cells and plasmacytoid dendritic cell (pDC)-mediated proinflammatory host responses. Expression of Toll-like receptors (TLRs)-7 and -9 and cytokine profiles was studied in pDCs treated with apoptotic particles collected in consecutive centrifugation steps of media from apoptotic cells. Expression and localization of SS autoantigens in these particles was also analysed. Furthermore, the effects of sex steroids were studied in pDCs cultured with several concentrations of dihydrotestosterone and 17-β-oestradiol, and in saliva of patient treated with dehydroepiandrosterone. Apoptosis of the epithelial cells led to cleavage and translocation of SS-autoantigens, α-fodrin and SS-A, into apoptotic particles. The apoptosis-induced apoptotic particles also contained another SS-autoantigen, hy1-RNA. These particles were internalized by pDCs in a size-dependent manner and affected TLR-7 and -9 expression and the production of proinflammatory cytokines. The analysed androgens protected cells from apoptosis, influenced redistribution of autoantigens and diminished the apoptotic particle-stimulated increase of the TLRs in pDCs. Our findings suggest that the formation of apoptotic particles may play a role in loss of immune tolerance, manifested by production of autoantibodies and the onset of autoinflammation in SS.
Collapse
Affiliation(s)
- M Ainola
- Department of Medicine, Clinicum, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland
| | - P Porola
- Department of Medicine, Clinicum, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland
| | - Y Takakubo
- Department of Orthopaedic Surgery, Yamagata University, Yamagata, Japan
| | - B Przybyla
- Hematology and Cancer Center, Helsinki University Central Hospital, Helsinki, Finland
| | - V P Kouri
- Department of Medicine, Clinicum, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland
| | - T A Tolvanen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - A Hänninen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - D C Nordström
- Department of Internal Medicine and Rehabilitation, Helsinki University Central Hospital, and University of Helsinki, Helsinki, Finland
| |
Collapse
|
85
|
Obregon C, Kumar R, Pascual MA, Vassalli G, Golshayan D. Update on Dendritic Cell-Induced Immunological and Clinical Tolerance. Front Immunol 2017; 8:1514. [PMID: 29250057 PMCID: PMC5715373 DOI: 10.3389/fimmu.2017.01514] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) as highly efficient antigen-presenting cells are at the interface of innate and adaptive immunity. As such, they are key mediators of immunity and antigen-specific immune tolerance. Due to their functional specialization, research efforts have focused on the characterization of DCs subsets involved in the initiation of immunogenic responses and in the maintenance of tissue homeostasis. Tolerogenic DCs (tolDCs)-based therapies have been designed as promising strategies to prevent and control autoimmune diseases as well as allograft rejection after solid organ transplantation (SOT). Despite successful experimental studies and ongoing phase I/II clinical trials using autologous tolDCs in patients with type 1 diabetes, rheumatoid arthritis, multiple sclerosis, and in SOT recipients, additional basic research will be required to determine the optimal DC subset(s) and conditioning regimens for tolDCs-based treatments in vivo. In this review, we discuss the characteristics of human DCs and recent advances in their classification, as well as the role of DCs in immune regulation and their susceptibility to in vitro or in vivo manipulation for the development of tolerogenic therapies, with a focus on the potential of tolDCs for the treatment of autoimmune diseases and the prevention of allograft rejection after SOT.
Collapse
Affiliation(s)
- Carolina Obregon
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Rajesh Kumar
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Manuel Antonio Pascual
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Vassalli
- Département coeur-vaisseaux, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Fondazione Cardiocentro Ticino, Swiss Institute of Regenerative Medicine (SIRM), Lugano, Switzerland
| | - Déla Golshayan
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
86
|
Bengtsson AA, Rönnblom L. Role of interferons in SLE. Best Pract Res Clin Rheumatol 2017; 31:415-428. [PMID: 29224681 DOI: 10.1016/j.berh.2017.10.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that affects many different organ systems, with excessive production of type I interferons (IFNs) and autoantibodies against nucleic acids as hallmarks. Activation of the type I IFN system in SLE is due to continuous stimulation of plasmacytoid dendritic cells by endogenous nucleic acids, leading to sustained type I IFN production. This is reflected by an overexpression of type I IFN-regulated genes or an IFN signature. Type I IFNs have effects on both the innate and adaptive immune systems, which contribute to both loss of tolerance and the autoimmune disease process. In this review, we discuss the current understanding of IFNs in SLE, focusing on their regulation, the influence of genetic background, and environmental factors and therapies that are under development aiming to inhibit the type I IFN system in SLE.
Collapse
Affiliation(s)
- Anders A Bengtsson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Rheumatology, 22185 Lund, Sweden.
| | - Lars Rönnblom
- Department of Medical Sciences, Science for Life Laboratory, Section of Rheumatology, Uppsala University, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
87
|
Ivanova VV, Khaiboullina SF, Gomzikova MO, Martynova EV, Ferreira AM, Garanina EE, Sakhapov DI, Lomakin YA, Khaibullin TI, Granatov EV, Khabirov FA, Rizvanov AA, Gabibov A, Belogurov A. Divergent Immunomodulation Capacity of Individual Myelin Peptides-Components of Liposomal Therapeutic against Multiple Sclerosis. Front Immunol 2017; 8:1335. [PMID: 29085375 PMCID: PMC5650689 DOI: 10.3389/fimmu.2017.01335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/03/2017] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination and consequent neuron injury. Although the pathogenesis of MS is largely unknown, a breach in immune self-tolerance to myelin followed by development of autoreactive encephalitogenic T cells is suggested to play the central role. The myelin basic protein (MBP) is believed to be one of the main targets for autoreactive lymphocytes. Recently, immunodominant MBP peptides encapsulated into the mannosylated liposomes, referred as Xemys, were shown to suppress development of experimental autoimmune encephalomyelitis, a rodent model of MS, and furthermore passed the initial stage of clinical trials. Here, we investigated the role of individual polypeptide components [MBP peptides 46-62 (GH17), 124-139 (GK16), and 147-170 (QR24)] of this liposomal peptide therapeutic in cytokine release and activation of immune cells from MS patients and healthy donors. The overall effects were assessed using peripheral blood mononuclear cells (PBMCs), whereas alterations in antigen-presenting capacities were studied utilizing plasmacytoid dendritic cells (pDCs). Among three MBP-immunodominant peptides, QR24 and GK16 activated leukocytes, while GH17 was characterized by an immunosuppressive effect. Peptides QR24 and GK16 upregulated CD4 over CD8 T cells and induced proliferation of CD25+ cells, whereas GH17 decreased the CD4/CD8 T cell ratio and had limited effects on CD25+ T cells. Accordingly, components of liposomal peptide therapeutic differed in upregulation of cytokines upon addition to PBMCs and pDCs. Peptide QR24 was evidently more effective in upregulation of pro-inflammatory cytokines, whereas GH17 significantly increased production of IL-10 through treated cells. Altogether, these data suggest a complexity of action of the liposomal peptide therapeutic that does not seem to involve simple helper T cells (Th)-shift but rather the rebalancing of the immune system.
Collapse
Affiliation(s)
- Vilena V Ivanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana F Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Microbiology and Immunology, University of Nevada, Reno, NV, United States
| | - Marina O Gomzikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina V Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - André M Ferreira
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina E Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Damir I Sakhapov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yakov A Lomakin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | | | | | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alexander Gabibov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Belogurov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
88
|
Chairakaki AD, Saridaki MI, Pyrillou K, Mouratis MA, Koltsida O, Walton RP, Bartlett NW, Stavropoulos A, Boon L, Rovina N, Papadopoulos NG, Johnston SL, Andreakos E. Plasmacytoid dendritic cells drive acute asthma exacerbations. J Allergy Clin Immunol 2017; 142:542-556.e12. [PMID: 29054692 DOI: 10.1016/j.jaci.2017.08.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although acute exacerbations, mostly triggered by viruses, account for the majority of hospitalizations in asthmatic patients, there is still very little known about the pathophysiologic mechanisms involved. Plasmacytoid dendritic cells (pDCs), prominent cells of antiviral immunity, exhibit proinflammatory or tolerogenic functions depending on the context, yet their involvement in asthma exacerbations remains unexplored. OBJECTIVES We sought to investigate the role of pDCs in allergic airway inflammation and acute asthma exacerbations. METHODS Animal models of allergic airway disease (AAD) and virus-induced AAD exacerbations were used to dissect pDC function in vivo and unwind the potential mechanisms involved. Sputum from asthmatic patients with stable disease or acute exacerbations was further studied to determine the presence of pDCs and correlation with inflammation. RESULTS pDCs were key mediators of the immunoinflammatory cascade that drives asthma exacerbations. In animal models of AAD and rhinovirus-induced AAD exacerbations, pDCs were recruited to the lung during inflammation and migrated to the draining lymph nodes to boost TH2-mediated effector responses. Accordingly, pDC depletion after allergen challenge or during rhinovirus infection abrogated exacerbation of inflammation and disease. Central to this process was IL-25, which was induced by allergen challenge or rhinovirus infection and conditioned pDCs for proinflammatory function. Consistently, in asthmatic patients pDC numbers were markedly increased during exacerbations and correlated with the severity of inflammation and the risk for asthma attacks. CONCLUSIONS Our studies uncover a previously unsuspected role of pDCs in asthma exacerbations with potential diagnostic and prognostic implications. They also propose the therapeutic targeting of pDCs and IL-25 for the treatment of acute asthma.
Collapse
Affiliation(s)
- Aikaterini-Dimitra Chairakaki
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria-Ioanna Saridaki
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Katerina Pyrillou
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Marios-Angelos Mouratis
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ourania Koltsida
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; 1(st) Department of Respiratory Medicine, Medical School, National Kapodistrian University of Athens, "Sotiria" Regional Chest Diseases Hospital, Athens, Greece
| | - Ross P Walton
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nathan W Bartlett
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Athanasios Stavropoulos
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Nikoletta Rovina
- 1(st) Department of Respiratory Medicine, Medical School, National Kapodistrian University of Athens, "Sotiria" Regional Chest Diseases Hospital, Athens, Greece
| | - Nikolaos G Papadopoulos
- Institute of Human Development, University of Manchester, Manchester, United Kingdom; A. Kyriakou Children's Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Evangelos Andreakos
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
89
|
Boor PPC, de Ruiter PE, Asmawidjaja PS, Lubberts E, van der Laan LJW, Kwekkeboom J. JAK-inhibitor tofacitinib suppresses interferon alfa production by plasmacytoid dendritic cells and inhibits arthrogenic and antiviral effects of interferon alfa. Transl Res 2017; 188:67-79. [PMID: 27931982 DOI: 10.1016/j.trsl.2016.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/14/2016] [Accepted: 11/13/2016] [Indexed: 12/30/2022]
Abstract
Tofacitinib is an oral Janus kinase inhibitor that is effective for the treatment of rheumatoid arthritis and shows encouraging therapeutic effects in several other autoimmune diseases. A prominent adverse effect of tofacitinib therapy is the increased risk of viral infections. Despite its advanced stage of clinical development, the modes of action that mediate the beneficial and adverse effects of tofacitinib in autoimmune diseases remain unclear. Interferon alfa (IFNα) produced by plasmacytoid dendritic cells (PDCs) is critically involved in the pathogenesis of many systemic autoimmune diseases and in immunity to viral infections. Using in vitro culture models with human cells, we studied the effects of tofacitinib on PDC survival and IFNα production, and on arthrogenic and antiviral effects of IFNα. Tofacitinib inhibited the expression of antiapoptotic BCL-A1 and BCL-XL in human PDC and induced PDC apoptosis. TLR7 stimulation upregulated the levels of antiapoptotic Bcl-2 family members and prevented the induction of PDC apoptosis by tofacitinib. However, tofacitinib robustly inhibited the production of IFNα by toll like receptor-stimulated PDC. In addition, tofacitinib profoundly suppressed IFNα-induced upregulation of TLR3 on synovial fibroblasts, thereby inhibiting their cytokine and protease production in response to TLR3 ligation. Finally, tofacitinib counteracted the suppressive effects of IFNα on viral replication. Tofacitinib inhibits PDC survival and IFNα production and suppresses arthrogenic and antiviral effects of IFNα signaling. Inhibition of the IFNα pathway at 2 levels may contribute to the beneficial effects of tofacitinib in autoimmune diseases and explain the increased viral infection rates observed during tofacitinib treatment.
Collapse
Affiliation(s)
- Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Centre, Rotterdam, The Netherlands.
| | - Petra E de Ruiter
- Department of Surgery, Erasmus MC - University Medical Centre, Rotterdam, The Netherlands
| | - Patrick S Asmawidjaja
- Department of Rheumatology, Erasmus MC - University Medical Centre, Rotterdam, The Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC - University Medical Centre, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC - University Medical Centre, Rotterdam, The Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
90
|
Hannibal TD, Schmidt-Christensen A, Nilsson J, Fransén-Pettersson N, Hansen L, Holmberg D. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice. Diabetologia 2017; 60:2033-2041. [PMID: 28660492 PMCID: PMC6448810 DOI: 10.1007/s00125-017-4341-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/19/2017] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Obesity is associated with glucose intolerance and insulin resistance and is closely linked to the increasing prevalence of type 2 diabetes. In mouse models of diet-induced obesity (DIO) and type 2 diabetes, an increased fat intake results in adipose tissue expansion and the secretion of proinflammatory cytokines. The innate immune system not only plays a crucial role in obesity-associated chronic low-grade inflammation but it is also proposed to play a role in modulating energy metabolism. However, little is known about how the modulation of metabolism by the immune system may promote increased adiposity in the early stages of increased dietary intake. Here we aimed to define the role of type I IFNs in DIO and insulin resistance. METHODS Mice lacking the receptor for IFN-α (IFNAR-/-) and deficient in plasmacytoid dendritic cells (pDCs) (B6.E2-2 fl/fl .Itgax-cre) were fed a diet with a high fat content or normal chow. The mice were analysed in vivo and in vitro using cellular, biochemical and molecular approaches. RESULTS We found that the development of obesity was inhibited by an inability to respond to type I IFNs. Furthermore, the development of obesity and insulin resistance in this model was associated with pDC recruitment to the fatty tissues and liver of obese mice (a 4.3-fold and 2.7-fold increase, respectively). Finally, we demonstrated that the depletion of pDCs protects mice from DIO and from developing obesity-associated metabolic complications. CONCLUSIONS/INTERPRETATION Our results provide genetic evidence that pDCs, via type I IFNs, regulate energy metabolism and promote the development of obesity.
Collapse
Affiliation(s)
- Tine D Hannibal
- Department of Experimental Medical Sciences, Lund University, Biomedical Center, CRC, 205 02, Malmö, Sweden
- Department of Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Schmidt-Christensen
- Department of Experimental Medical Sciences, Lund University, Biomedical Center, CRC, 205 02, Malmö, Sweden
| | - Julia Nilsson
- Department of Experimental Medical Sciences, Lund University, Biomedical Center, CRC, 205 02, Malmö, Sweden
| | - Nina Fransén-Pettersson
- Department of Experimental Medical Sciences, Lund University, Biomedical Center, CRC, 205 02, Malmö, Sweden
- Department of Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Hansen
- Department of Experimental Medical Sciences, Lund University, Biomedical Center, CRC, 205 02, Malmö, Sweden
- Department of Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dan Holmberg
- Department of Experimental Medical Sciences, Lund University, Biomedical Center, CRC, 205 02, Malmö, Sweden.
- Department of Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
91
|
Silva AL, Peres C, Conniot J, Matos AI, Moura L, Carreira B, Sainz V, Scomparin A, Satchi-Fainaro R, Préat V, Florindo HF. Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Semin Immunol 2017; 34:3-24. [PMID: 28941640 DOI: 10.1016/j.smim.2017.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Abstract
Nanotechnology-based strategies can dramatically impact the treatment, prevention and diagnosis of a wide range of diseases. Despite the unprecedented success achieved with the use of nanomaterials to address unmet biomedical needs and their particular suitability for the effective application of a personalized medicine, the clinical translation of those nanoparticulate systems has still been impaired by the limited understanding on their interaction with complex biological systems. As a result, unexpected effects due to unpredicted interactions at biomaterial and biological interfaces have been underlying the biosafety concerns raised by the use of nanomaterials. This review explores the current knowledge on how nanoparticle (NP) physicochemical and surface properties determine their interactions with innate immune cells, with particular attention on the activation of pattern-recognition receptors and inflammasome. A critical perspective will additionally address the impact of biological systems on the effect of NP on immune cell activity at the molecular level. We will discuss how the understanding of the NP-innate immune cell interactions can significantly add into the clinical translation by guiding the design of nanomedicines with particular effect on targeted cells, thus improving their clinical efficacy while minimizing undesired but predictable toxicological effects.
Collapse
Affiliation(s)
- Ana Luísa Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - João Conniot
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana I Matos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Liane Moura
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bárbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Vanessa Sainz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel and dSagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel and dSagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium.
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
92
|
Effects of heat-killed Lactococcus lactis subsp. lactis JCM 5805 on mucosal and systemic immune parameters, and antiviral reactions to influenza virus in healthy adults; a randomized controlled double-blind study. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
93
|
Webb LM, Lundie RJ, Borger JG, Brown SL, Connor LM, Cartwright AN, Dougall AM, Wilbers RH, Cook PC, Jackson-Jones LH, Phythian-Adams AT, Johansson C, Davis DM, Dewals BG, Ronchese F, MacDonald AS. Type I interferon is required for T helper (Th) 2 induction by dendritic cells. EMBO J 2017; 36:2404-2418. [PMID: 28716804 PMCID: PMC5556270 DOI: 10.15252/embj.201695345] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
Type 2 inflammation is a defining feature of infection with parasitic worms (helminths), as well as being responsible for widespread suffering in allergies. However, the precise mechanisms involved in T helper (Th) 2 polarization by dendritic cells (DCs) are currently unclear. We have identified a previously unrecognized role for type I IFN (IFN‐I) in enabling this process. An IFN‐I signature was evident in DCs responding to the helminth Schistosoma mansoni or the allergen house dust mite (HDM). Further, IFN‐I signaling was required for optimal DC phenotypic activation in response to helminth antigen (Ag), and efficient migration to, and localization with, T cells in the draining lymph node (dLN). Importantly, DCs generated from Ifnar1−/− mice were incapable of initiating Th2 responses in vivo. These data demonstrate for the first time that the influence of IFN‐I is not limited to antiviral or bacterial settings but also has a central role to play in DC initiation of Th2 responses.
Collapse
Affiliation(s)
- Lauren M Webb
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Rachel J Lundie
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Jessica G Borger
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Sheila L Brown
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Lisa M Connor
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Adam Nr Cartwright
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Annette M Dougall
- Fundamental and Applied Research in Animals and Health, Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Ruud Hp Wilbers
- Plant Sciences Department, Laboratory of Nematology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Peter C Cook
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Lucy H Jackson-Jones
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | | | - Cecilia Johansson
- Respiratory Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Benjamin G Dewals
- Fundamental and Applied Research in Animals and Health, Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| |
Collapse
|
94
|
Arimura K, Takagi H, Uto T, Fukaya T, Nakamura T, Choijookhuu N, Hishikawa Y, Yamashita Y, Sato K. Crucial role of plasmacytoid dendritic cells in the development of acute colitis through the regulation of intestinal inflammation. Mucosal Immunol 2017; 10:957-970. [PMID: 27848952 DOI: 10.1038/mi.2016.96] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/23/2016] [Indexed: 02/04/2023]
Abstract
Disruption of intestinal homeostasis can lead to inflammatory bowel diseases endowed susceptibility genes and environmental factors affecting intestinal accumulation and activation of colitogenic phagocytes. Plasmacytoid dendritic cells (pDCs) are immune cells that had been proposed to control innate and adaptive immunity through the massive secretion of type I interferon (IFN-I). However, the contribution of pDCs to the progression of intestinal inflammation remains unclear. Here we show a critical role of pDCs in the initiation of acute colonic inflammation using T-cell-independent acute colitis model with a selective ablation of pDCs. Although pDCs accumulated in the inflamed colon upon mucosal injury, deficiency of pDCs attenuated the development of acute colitis independent of IFN-I signaling, accompanied by the diminished colonic production of proinflammatory cytokines. Furthermore, deficiency of pDCs impaired the mobilization of colitogenic phagocytes into the inflamed colon possibly mediated by the abrogated mucosal production of C-C chemokine receptor 2 ligand. Thus, our findings highlight a critical role of pDCs in the induction of the colonic inflammation that regulates the colonic accumulation of inflammatory phagocytes leading to the initiation and exacerbation of acute colitis, and they may serve a key role in controlling gut mucosal immune homeostasis.
Collapse
Affiliation(s)
- K Arimura
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - H Takagi
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - T Uto
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - T Fukaya
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - T Nakamura
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - N Choijookhuu
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Y Hishikawa
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Y Yamashita
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - K Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
95
|
Shinde P, Liu W, Ménoret A, Luster AD, Vella AT. Optimal CD4 T cell priming after LPS-based adjuvanticity with CD134 costimulation relies on CXCL9 production. J Leukoc Biol 2017; 102:57-69. [PMID: 28432083 DOI: 10.1189/jlb.1a0616-261rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 03/29/2017] [Accepted: 04/02/2017] [Indexed: 12/29/2022] Open
Abstract
LPS is a powerful adjuvant, and although LPS-mediated TLR4 signaling has been exquisitely delineated, the in vivo mechanism of how TLR4 responses impact T cell priming is far less clear. Besides costimulation, TNF and type 1 IFN are dominant cytokines released after TLR4 activation and can shape T cell responses, but other downstream factors have not been examined extensively. Depending on context, we show that IFNαR1 blockade resulted in minor to major effects on specific CD4 T cell clonal expansion. To help explain these differences, it was hypothesized that IFNαR1 blockade would inhibit specific T cell migration by reducing chemokine receptor signaling, but specific CD4 T cells from IFNαR1-blocked mice were readily able to migrate in response to specific chemokines. Next, we examined downstream factors and found that type 1 IFN signaling was necessary for chemokine production, even when mice were immunized with specific Ag with LPS and CD134 costimulation. IFNαR1 signaling promoted CXCL9 and CXCL10 synthesis, suggesting that these chemokines might be involved in the LPS and CD134 costimulation response. After immunization, we show that CXCL9 blockade inhibited CD4 T cell accumulation in the liver but also in LNs, even in the presence of elevated serum IFN-β levels. Thus, whereas type 1 IFN might have direct effects on primed CD4 T cells, the downstream chemokines that play a role during migration also impact accumulation. In sum, CXCL9 production is a key benchmark for productive CD4 T cell vaccination strategies.
Collapse
Affiliation(s)
- Paurvi Shinde
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Wenhai Liu
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, Connecticut, USA; and
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA;
| |
Collapse
|
96
|
Maria NI, Steenwijk EC, IJpma AS, van Helden-Meeuwsen CG, Vogelsang P, Beumer W, Brkic Z, van Daele PLA, van Hagen PM, van der Spek PJ, Drexhage HA, Versnel MA. Contrasting expression pattern of RNA-sensing receptors TLR7, RIG-I and MDA5 in interferon-positive and interferon-negative patients with primary Sjögren's syndrome. Ann Rheum Dis 2017; 76:721-730. [PMID: 27672125 DOI: 10.1136/annrheumdis-2016-209589] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/22/2016] [Accepted: 08/27/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The interferon (IFN) type I signature is present in over half of patients with primary Sjögren's syndrome (pSS) and associated with higher disease-activity and autoantibody presence. Plasmacytoid dendritic cells (pDCs) are considered as the main source of enhanced IFN type I expression. The objective of this study was to unravel the molecular pathways underlying IFN type I bioactivity in pDCs of patients with pSS. METHODS Blood samples from 42 healthy controls (HC) and 115 patients with pSS were stratified according to their IFN type I signature. CD123+BDCA4+ pDCs and CD14+ monocytes were isolated from peripheral blood mononuclear cells (PBMCs). Genome-wide microarray analysis was conducted on sorted pDCs in a small sample set, followed by validation of differentially expressed genes of interest in pDCs and monocytes. RESULTS We found an upregulation of endosomal toll-like receptor (TLR) 7, but not TLR9, in IFN-positive (IFNpos) pDCs (p<0.05) and monocytes (p=0.024). Additionally, the downstream signalling molecules MyD88, RSAD2 and IRF7 were upregulated, as were the cytoplasmic RNA-sensing receptors DDX58/retinoic acid inducible gene-I (RIG-I) and IFIH1/melanoma differentiation associated gene-5 (MDA5). In vitro triggering of the TLR7-pathway in HC PBMCs induced upregulation of DDX58/RIG-I and IFIH1/MDA5, and downregulated TLR9. The upregulation of TLR7, its downstream signalling pathway, DDX58/RIG-I and IFIH1/MDA5 were confined to patients with IFN-positive pSS. IFN-negative patients had a contrasting expression pattern-TLR7 normal, and decreased TLR9, RIG-I and MDA5. CONCLUSIONS Here we conclude a contrasting expression pattern of the RNA-sensing receptors TLR7, RIG-I and MDA5 in pDCs and monocytes of patients with IFNpos pSS. This profile could explain the pathogenic IFN production and might reveal novel therapeutic targets in these patients.
Collapse
Affiliation(s)
- Naomi I Maria
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Arne S IJpma
- Department of Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | | | - Petra Vogelsang
- Department of Clinical Science, Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Wouter Beumer
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Zana Brkic
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Paul L A van Daele
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - P Martin van Hagen
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Hemmo A Drexhage
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Marjan A Versnel
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
97
|
Lippitsch A, Chukovetskyi Y, Baal N, Bein G, Hackstein H. Unique high and homogenous surface expression of the transferrin receptor CD71 on murine plasmacytoid dendritic cells in different tissues. Cell Immunol 2017; 316:41-52. [PMID: 28372797 DOI: 10.1016/j.cellimm.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/28/2017] [Accepted: 03/27/2017] [Indexed: 01/03/2023]
Abstract
Plasmacytoid dendritic cells (pDC) are of increasing interest in cancer vaccine development, but many functions of these highly specialized, multifaceted cells are poorly understood. The transferrin receptor CD71 has also been suggested to function as an antigen uptake receptor on professional antigen-presenting cells. In this study, we employed multiparameter flow cytometry to investigate CD71 expression on various leukocyte subsets, including DC subsets, granulocytes, macrophages, T and B lymphocytes, γδ T cells, and natural killer cells. Cells from various lymphoid and non-lymphoid murine tissues were analyzed using fluorochrome-conjugated monoclonal antibodies. High CD71 expression (90-100%) was observed, uniquely on pDC amongst the leukocyte populations examined, in both lymphoid and non-lymphoid tissues, including other DC subsets. In contrast, CD71 expression on non-tissue pDC, in the bone marrow and peripheral blood, was reduced. The cause and function of this high tissue pDC-selective CD71 expression remain to be examined.
Collapse
Affiliation(s)
- Anne Lippitsch
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany
| | - Yuri Chukovetskyi
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany
| | - Nelli Baal
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany
| | - Gregor Bein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany
| | - Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany.
| |
Collapse
|
98
|
Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited. Curr Opin Immunol 2017; 45:43-51. [PMID: 28192720 DOI: 10.1016/j.coi.2017.01.002] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/23/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) with their potent antigen presenting ability are long considered as critical factor in antitumor immunity. Despite high potential in promoting antitumor responses, tumor-associated DCs are largely defective in their functional activity and can contribute to immune suppression in cancer. In recent years existence of immune suppressive regulatory DCs in tumor microenvironment was described. Monocytic myeloid derived suppressor cells (M-MDSCs) can contribute to the pool of tumor associated DCs by differentiating to inflammatory DCs (inf-DCs), which appear to have specific phenotype and is critical component of antitumor response. Here we examine the role of inf-DCs along with other DC subsets in the regulation of immune responses in cancer. These novel data expand our view on the role of DCs in cancer and may provide new targets for immunotherapy.
Collapse
|
99
|
Melzer MK, Lopez-Martinez A, Altomonte J. Oncolytic Vesicular Stomatitis Virus as a Viro-Immunotherapy: Defeating Cancer with a "Hammer" and "Anvil". Biomedicines 2017; 5:E8. [PMID: 28536351 PMCID: PMC5423493 DOI: 10.3390/biomedicines5010008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/17/2022] Open
Abstract
Oncolytic viruses have gained much attention in recent years, due, not only to their ability to selectively replicate in and lyse tumor cells, but to their potential to stimulate antitumor immune responses directed against the tumor. Vesicular stomatitis virus (VSV), a negative-strand RNA virus, is under intense development as an oncolytic virus due to a variety of favorable properties, including its rapid replication kinetics, inherent tumor specificity, and its potential to elicit a broad range of immunomodulatory responses to break immune tolerance in the tumor microenvironment. Based on this powerful platform, a multitude of strategies have been applied to further improve the immune-stimulating potential of VSV and synergize these responses with the direct oncolytic effect. These strategies include: 1. modification of endogenous virus genes to stimulate interferon induction; 2. virus-mediated expression of cytokines or immune-stimulatory molecules to enhance anti-tumor immune responses; 3. vaccination approaches to stimulate adaptive immune responses against a tumor antigen; 4. combination with adoptive immune cell therapy for potentially synergistic therapeutic responses. A summary of these approaches will be presented in this review.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Arturo Lopez-Martinez
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Jennifer Altomonte
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
100
|
Death receptor 6 is a novel plasmacytoid dendritic cell-specific receptor and modulates type I interferon production. Protein Cell 2016; 7:291-294. [PMID: 26906057 PMCID: PMC4818848 DOI: 10.1007/s13238-015-0239-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|