51
|
D1, but not D2, dopamine receptor regulates steroid levels during the final stages of pikeperch gametogenesis. Animal 2018; 12:2587-2597. [DOI: 10.1017/s1751731118000824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
52
|
Vu M, Weiler B, Trudeau VL. Time- and dose-related effects of a gonadotropin-releasing hormone agonist and dopamine antagonist on reproduction in the Northern leopard frog (Lithobates pipiens). Gen Comp Endocrinol 2017; 254:86-96. [PMID: 28964731 DOI: 10.1016/j.ygcen.2017.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/23/2017] [Accepted: 09/24/2017] [Indexed: 11/25/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) stimulates luteinizing hormone release to control ovulation and spermiation in vertebrates. Dopamine (DA) has a clear inhibitory role in the control of reproduction in numerous teleosts, and emerging evidence suggests that similar mechanisms may exist in amphibians. The interactions between GnRH and DA on spawning success and pituitary gene expression in the Northern leopard frog (Lithobates pipiens) were therefore investigated. Frogs were injected during the natural breeding season with a GnRH agonist [GnRH-A; (Des-Gly10, D-Ala6, Pro-NHEt9)-LHRH; 0.1μg/g and 0.4μg/g] alone and in combination with the dopamine receptor D2 antagonist metoclopramide (MET; 5μg/g and 10μg/g). Injected animals were allowed to breed in outdoor mesocosms. Time to amplexus and oviposition were assessed, and egg mass release, incidences of amplexus, egg mass weight, total egg numbers and fertilization rates were measured. To examine gene expression, female pituitaries were sampled at 12, 24 and 36h following injection of GnRH-A (0.4μg/g) alone and in combination with MET (10μg/g). The mRNA levels of the genes lhb, fshb, gpha, drd2 and gnrhr1 were measured using quantitative real-time PCR. Data were analyzed by a two-way ANOVA. Both GnRH-A doses increased amplexus, oviposition and fertilization alone. Co-injection of MET with GnRH-A did not further enhance spawning success. Injection of GnRH-A alone time-dependently increased expression of lhb, fshb, gpha and gnrhr1. The major effect of MET alone was to decrease expression of drd2. Importantly, the stimulatory effects of GnRH-A on lhb, gpha and gnrhr1 were potentiated by the co-injection of MET at 36h. At this time, expression of fshb was increased only in animals injected with both GnRH-A and MET. Spawning success was primarily driven by the actions of GnRH-A. The hypothesized inhibitory action of DA was supported by pituitary gene expression analysis. The results from this study provide a fundamental framework for future time- and dose-response investigations to improve current spawning methods in amphibians.
Collapse
Affiliation(s)
- Maria Vu
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, Ontario K1N 9B4, Canada.
| | - Bradley Weiler
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, Ontario K1N 9B4, Canada.
| |
Collapse
|
53
|
von Krogh K, Bjørndal GT, Nourizadeh-Lillabadi R, Hodne K, Ropstad E, Haug TM, Weltzien FA. Sex steroids differentially regulate fshb, lhb and gnrhr expression in Atlantic cod ( Gadus morhua). Reproduction 2017; 154:581-594. [PMID: 28780570 DOI: 10.1530/rep-17-0208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/23/2017] [Accepted: 07/31/2017] [Indexed: 01/03/2023]
Abstract
Depending on the stage of gonad maturation, as well as other factors, gonadal steroids can exert either a positive or negative feedback at the brain and pituitary level. While this has been demonstrated in many teleost species, little is known about the nature of steroid feedback in Gadiform fish. Using an optimized in vitro model system of the Atlantic cod pituitary, the present study investigated the potential effects of two physiologically relevant doses of estradiol, testosterone (TS) or dihydrotestosterone (DHTS) on cell viability and gene expression of gonadotropin subunits (fshb/lhb) and two suggested reproduction-relevant gonadotropin-releasing hormone receptors (gnrhr1b/gnrhr2a) during three stages of sexual maturity. In general, all steroids stimulated cell viability in terms of metabolic activity and membrane integrity. Furthermore, all steroids affected fshb expression, with the effect depending on both the specific steroid, dose and maturity status. Conversely, only DHTS exposure affected lhb levels, and this occurred only during the spawning season. Using single-cell qPCR, co-transcription of gnrhr1b and gnrhr2a was confirmed to both fshb- and lhb- expressing gonadotropes, with gnrhr2a being the most prominently expressed isoform. While steroid exposure had no effect on gnrhr1b expression, all steroids affected gnrhr2a transcript levels in at least one maturity stage. These and previous results from our group point to Gnrhr2a as the main modulator of gonadotropin regulation in cod and that regulation of its gene expression level might function as a direct mechanism for steroid feedback at the pituitary level.
Collapse
Affiliation(s)
- Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | | | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Science, Oslo, Norway
| | - Trude M Haug
- Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
54
|
Parasitism, personality and cognition in fish. Behav Processes 2017; 141:205-219. [DOI: 10.1016/j.beproc.2016.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022]
|
55
|
Bridges K, Venables B, Roberts A. Effects of dietary methylmercury on the dopaminergic system of adult fathead minnows and their offspring. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1077-1084. [PMID: 27677528 DOI: 10.1002/etc.3630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/04/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
Mercury (Hg) is a ubiquitous environmental contaminant and potent neurotoxin, which may be transformed by bacteria in aquatic ecosystems to methylmercury (MeHg), an organic form which bioaccumulates and biomagnifies. Consequently, long-lived organisms at the top of the food web are at risk of dietary MeHg exposure, which can be actively transferred from mother to offspring. Exposure during neurodevelopment can lead to serious, irreversible neurological dysfunction, associated with a variety of cognitive and motor abnormalities. At low dietary concentrations, MeHg exposure has been associated with deficits in attention and hyperactivity in multiple species. Pathways associated with cognitive function and motor activity are primarily associated with the dopaminergic system. The present study used a model fish species, Pimephales promelas, to examine the effects of MeHg exposure on dopamine concentrations and monoamine oxidase activity in embryos and adult brains. Adult fatheads were exposed for 30 d to either a control or a treated diet (0.72 ppm Hg). Embryonic and larval exposures were a result of maternal transfer of dietary MeHg. The authors confirmed hyperactive behaviors in embryos and detected significant changes in embryonic dopamine concentrations. Similar effects on dopamine concentrations were seen in the telencephalon of adult brains. Exposure to MeHg also corresponded with a significant decrease in monoamine oxidase activity in both embryos and brain tissue. Collectively, these results suggest that current exposure scenarios in North America are sufficient to induce alterations to this highly conserved neurochemical pathway in offspring, which may have adverse effects on fish behavior and cognition. Environ Toxicol Chem 2017;36:1077-1084. © 2016 SETAC.
Collapse
Affiliation(s)
- Kristin Bridges
- Department of Biological Sciences and Institute of Applied Sciences, University of North Texas, Denton, Texas, USA
| | - Barney Venables
- Department of Biological Sciences and Institute of Applied Sciences, University of North Texas, Denton, Texas, USA
| | - Aaron Roberts
- Department of Biological Sciences and Institute of Applied Sciences, University of North Texas, Denton, Texas, USA
| |
Collapse
|
56
|
Ganesh CB. Distribution of endomorphin-like-immunoreactive neurones in the brain of the cichlid fish Oreochromis mossambicus. J Neuroendocrinol 2017; 29. [PMID: 28178768 DOI: 10.1111/jne.12460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/10/2017] [Accepted: 02/03/2017] [Indexed: 12/01/2022]
Abstract
Endomorphins (EMs) are tetrapeptides involved in pain and neuroendocrine responses with a high affinity for μ-opioid receptors in mammals. In the present study, we investigated the distribution of EM-like-immunoreactive (EM-L-IR) neurones in the brain of the cichlid fish Oreochromis mossambicus. Application of antisera against EM-1 and 2 (EM-1-2) revealed the presence of EM-L-IR somata and fibres throughout the different subdivisions of the olfactory bulb, such as the olfactory nerve layer and the granule cell layer. Although the extensions of EM-L-IR fibres were seen along the medial olfactory tract, intensely labelled EM-L-IR somata were found in different subdivisions of the telencephalon. In the diencephalon, intensely stained EM-L-IR neurones were noted in the preoptic area, the nucleus preopticus pars magnocellularis, the suprachiasmatic nucleus, the nucleus lateralis tuberis pars lateralis and the nucleus lateralis tuberis pars medialis regions, whereas projections of EM-L-IR fibres were also seen along the hypothalamic-hypophyseal tract, suggesting a possible hypophysiotrophic role for these neurones. Intense to moderately stained EM-L-IR neurones were noted in different subdivisions of thalamic nucleus, such as the dorsal posterior thalamic nucleus, commissura posterior, ventromedial thalamic nucleus, nucleus posterior tuberis, ventrolateral thalamic nucleus and medial preglomerular nucleus. Numerous intensely stained perikarya and axonal fibres were also noted throughout the inferior lobe, along the periventricular margin of the reccessus lateralis and in the nucleus recesus lateralis regions. In addition, numerous moderately labelled EM-like neuronal populations were found in the secondary gustatory nucleus and rostral spinal cord. The widespread distribution of EM-L-IR neurones throughout the brain and spinal cord indicates the diverse roles for these cells in neuroendocrine and neuromodulatory responses for the first time in fish. The present study provides further insights into the possible existence of EM-like peptides in early vertebrate lines and suggests that these peptides might have been well-conserved during the course of evolution.
Collapse
Affiliation(s)
- C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, India
| |
Collapse
|
57
|
Jiang DN, Li JT, Tao YX, Chen HP, Deng SP, Zhu CH, Li GL. Effects of melanocortin-4 receptor agonists and antagonists on expression of genes related to reproduction in spotted scat, Scatophagus argus. J Comp Physiol B 2017; 187:603-612. [PMID: 28197776 DOI: 10.1007/s00360-017-1062-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 11/26/2022]
Abstract
Melanocortin-4 receptor (Mc4r) function related to reproduction in fish has not been extensively investigated. Here, we report on gene expression changes by real-time PCR following treatment with Mc4r agonists and antagonists in the spotted scat (Scatophagus argus). Using in vitro incubated hypothalamus, the Mc4r nonselective agonist NDP-MSH ([Nle4, D-Phe7]-α-melanocyte stimulating hormone; 10-6 M) and selective agonist THIQ (N-[(3R)-1, 2, 3, 4-Tetrahydroisoquinolinium-3-ylcarbonyl]- (1R)-1-(4-chlorobenzyl)-2-[4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl) piperidin-1-yl]-2-oxoethylamine; 10-7 M) significantly increased the expression of gnrh (Gonadotropin releasing hormone), while the Mc4r nonselective antagonist SHU9119 (Ac-Nle-[Asp-His-DPhe/DNal(2')-Arg-Trp-Lys]-NH2; 10-6 M) and selective antagonist Ipsen 5i (compound 5i synthesized in Ipsen Research Laboratories; 10-6 M) significantly inhibited gnrh expression after 3 h of incubation. In incubated pituitary tissue, NDP-MSH and THIQ significantly increased the expression of fshb (Follicle-stimulating hormone beta subunit) and lhb (Luteinizing hormone beta subunit), while SHU9119 and Ipsen 5i significantly decreased fshb and lhb expression after 3 h of incubation. During the in vivo experiment, THIQ (1 mg/kg bw) significantly increased gnrh expression in hypothalamic tissue, as well as the fshb and lhb expression in pituitary tissue 12 h after abdominal injection. Furthermore, Ipsen 5i (1 mg/kg bw) significantly inhibited gnrh expression in hypothalamic tissue, as well as fshb and lhb gene expression in pituitary tissue 12 h after abdominal injection. In summary, Mc4r singling appears to stimulate gnrh expression in the hypothalamus, thereby modulating the synthesis of Fsh and Lh in the pituitary. In addition, Mc4r also appears to directly regulate fshb and lhb levels in the pituitary in spotted scat. Our study suggests that Mc4r, through the hypothalamus and pituitary, participates in reproductive regulation in fish.
Collapse
Affiliation(s)
- Dong-Neng Jiang
- Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jian-Tao Li
- Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Hua-Pu Chen
- Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Si-Ping Deng
- Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chun-Hua Zhu
- Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Guang-Li Li
- Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
58
|
Singh O, Kumar S, Singh U, Bhute Y, Singru PS. Role of Isotocin in the Regulation of the Hypophysiotropic Dopamine Neurones in the Preoptic Area of the Catfish, Clarias batrachus. J Neuroendocrinol 2016; 28. [PMID: 27805784 DOI: 10.1111/jne.12441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 11/28/2022]
Abstract
Dopamine (DA) has emerged as a potent inhibitory neuromodulator of luteinsing hormone (LH) secretion and reproduction in teleosts. The DA neurones located in the anterior subdivision of nucleus preopticus periventricularis (NPPa) in the preoptic area (POA) innervate the pituitary gland and regulate LH cells. Although a reduction in the inhibitory DAergic tone is crucial for stimulatory action of gonadotrophin-releasing hormone (GnRH) on LH cells, the role of other hypothalamic factors is suggested but not fully understood. Nonapeptide, isotocin (IST) has emerged as a likely candidate that may also influence the LH cell function. IST neurones reside in the nucleus preopticus and innervate LH cells. While IST treatment dramatically elevated LH secretion, the IST levels in brain peaked during spawning. In a pilot study on the catfish, Clarias batrachus, we observed a dense network of IST-immunoreactive (IST-IR) fibres in the NPPa, the region known to harbour hypophysiotropic DA neurones. Application of the double immunofluorescence method showed a dense IST-IR fibre network around the tyrosine hydroxylase-immunoreactive (TH-IR) neurones in the NPPa region. A great majority of the TH-IR neurones in the NPPa were contacted by IST-IR fibres during the spawning phase. The NPPa therefore appears to be a site for the intense interaction of DA and IST. IST-IR fibre innervation in NPPa showed reproduction phase-dependent changes. The percent fluorescent area of IST-IR fibres showed a gradual increase from the resting through prespawning phases (resting: 7.5 ± 1.04; preparatory: 8.6 ± 0.8; prespawning: 15.5 ± 1.4), reaching a peak in the spawning phase (28 ± 2.3; P < 0.001). Compared to the spawning phase, a drastic reduction in IST-IR fibres in the NPPa was observed during the postspawning phase (8.4 ± 0.9; P < 0.001). Superfused slices of the POA of C. batrachus treated with IST peptide resulted in a significant reduction in TH immunoreactivity in the NPPa (Control: 45.3 ± 4.2; IST peptide, 5 μm: 29.4 ± 4.7; P < 0.05). We suggest that the intense interaction between IST and DA in the NPPa, most probably of an inhibitory nature, may be critical for the regulation of LH cells and reproduction in teleosts.
Collapse
Affiliation(s)
- O Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Training School Complex, Homi Bhabha National Institute, Mumbai, India
| | - S Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Training School Complex, Homi Bhabha National Institute, Mumbai, India
| | - U Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Training School Complex, Homi Bhabha National Institute, Mumbai, India
| | - Y Bhute
- Department of Zoology, DRB Sindhu Mahavidyalaya, Nagpur, India
| | - P S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Training School Complex, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
59
|
Bryant AS, Greenwood AK, Juntti SA, Byrne AE, Fernald RD. Dopaminergic inhibition of gonadotropin-releasing hormone neurons in the cichlid fish Astatotilapia burtoni. ACTA ACUST UNITED AC 2016; 219:3861-3865. [PMID: 27742893 DOI: 10.1242/jeb.147637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/04/2016] [Indexed: 12/26/2022]
Abstract
Dopamine regulates reproduction in part by modulating neuronal activity within the hypothalamic-pituitary-gonadal (HPG) axis. Previous studies suggested numerous mechanisms by which dopamine exerts inhibitory control over the HPG axis, ultimately changing the levels of sex steroids that regulate reproductive behaviors. However, it is not known whether these mechanisms are conserved across vertebrate species. In particular, it is unknown whether mechanisms underlying dopaminergic control of reproduction are shared between mammals and teleost fish. In mammals, dopamine directly inhibits gonadotropin-releasing hormone (GnRH1) hypothalamic neurons, the gatekeepers for activation of the HPG axis. Here, we demonstrate, for the first time in teleost fish, dopaminergic control of GnRH1 neurons via direct dopamine type-2-like receptor (D2R)-mediated inhibition within the hypothalamus. These results suggest that direct dopaminergic control of GnRH1 neurons via interactions in the hypothalamus is not exclusive to tetrapod reproductive control, but is likely conserved across vertebrate species.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Anna K Greenwood
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott A Juntti
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Allie E Byrne
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
60
|
Jolly C, Rousseau K, Prézeau L, Vol C, Tomkiewicz J, Dufour S, Pasqualini C. Functional Characterisation of Eel Dopamine D2 Receptors and Involvement in the Direct Inhibition of Pituitary Gonadotrophins. J Neuroendocrinol 2016; 28. [PMID: 27453551 DOI: 10.1111/jne.12411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/21/2016] [Accepted: 07/20/2016] [Indexed: 01/11/2023]
Abstract
In various vertebrate species, dopamine (DA) exerts an inhibitory action on reproduction. In the European eel, DA plays a pivotal role in the inhibitory control of gonadotroph function and the blockade of puberty. In vivo studies have suggested that this effect is mediated by receptors pharmacologically related to the D2 family. In the European eel, two distinct D2 receptor (D2-R) paralogous genes have been identified (D2A-R and D2B-R) and both were shown to be expressed in the pituitary. We investigated the potential role of each paralogue in the control of gonadotroph function in this species. Eel recombinant D2A-R or D2B-R were expressed in HEK 293 cells, with a universal Gα subunit, and receptor activation was followed by inositol phosphate production. Recombinant D2-Rs exhibited a comparable affinity for DA, although they had differential affinities for mammalian D2-R agonists and antagonists, supporting subtle structure/activity differences. Furthermore, using eel pituitary cell primary cultures, the expression by gonadotroph cells of both native eel D2-R paralogues was examined by in situ hybridisation of D2A-R or D2B-R transcripts, coupled with immunofluorescence of luteinising hormone (LH)β or follicle-stimulating (FSH)β. LH and to a lesser extent, FSH cells expressed both D2-R transcripts but with a clear predominance of D2B-R. Notably, D2B-R transcripts were detected for the majority of LH cells. Accordingly, using these cultures, we showed that DA potently inhibited basal and testosterone-stimulated LHβ expression and less potently basal and activin-stimulated FSHβ expression. We also tested some D2-R antagonists, aiming to select the most adequate one to be used in innovative protocols for induction of eel sexual maturation. We identified eticlopride as the most potent inhibitor of DA action on basal and stimulated LH expression in vitro. Our data suggest a differential functionalisation of the duplicated receptor genes and demonstrate that mainly D2B-R is involved in the dopaminergic inhibitory control of eel gonadotroph function.
Collapse
Affiliation(s)
- C Jolly
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
| | - K Rousseau
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
| | - L Prézeau
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM U661, Montpellier, France
- Université de Montpellier 1 & 2, Montpellier, France
| | - C Vol
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM U661, Montpellier, France
- Université de Montpellier 1 & 2, Montpellier, France
| | - J Tomkiewicz
- National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark
| | - S Dufour
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France.
| | - C Pasqualini
- Institut des Neurosciences Paris-Saclay, Développement et Evolution de la Neurotransmission, Département Dev-Evo, Université Paris Sud, CNRS UMR 9197, Gif-Sur-Yvette, France.
| |
Collapse
|
61
|
Dang Y, Wang J, Giesy JP, Liu C. Responses of the zebrafish hypothalamic-pituitary-gonadal-liver axis PCR array to prochloraz are dependent on timing of sampling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:154-159. [PMID: 27055099 DOI: 10.1016/j.aquatox.2016.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
A PCR array, based on expression of genes along the hypothalamic-pituitary-gonadal-liver (HPGL) axis of fish, has been suggested as a useful method for screening of endocrine-disrupting chemicals (EDCs). However, effects of circadian rhythm on responses of the HPGL axis to exposure to chemicals were unknown. In this study, profiles of expression of genes along the HPGL axis and concentrations of 17β-estradiol (E2) in blood plasma of female zebrafish were compared at two sampling times of day (8:00 AM and 7:00 PM). Prochloraz (PCZ) was selected as a model chemical to evaluate differences in responses of the HPGL axis at these two times of day. Profiles of responses of concentrations of E2 in plasma and expressions of genes along the HPGL axis genes were different between the two times of sampling. Concentrations of E2 were less, and abundances of mRNA for several genes along the HPGL axis were significantly greater or lesser when samples were collected at 7:00 PM than they were when samples were collected at 8:00 AM. Exposure to three concentrations of PCZ (3, 30 or 300μg/L) for 48h resulted in significantly lesser concentrations of plasma E2 and caused compensatory up-regulation of genes included in hypothalamus, pituitary and ovary. Expressions of genes along the HPGL were more responsive to PCZ at 8:00 AM than they were when samples were collected at 7:00 PM. Correlations among parameters in samples collected at the two times indicated the effects might be due to different concentrations of E2 in plasma due to exposure to PCZ.
Collapse
Affiliation(s)
- Yao Dang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - John P Giesy
- School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan Changde 415000, China.
| |
Collapse
|
62
|
Gillies K, Krone SM, Nagler JJ, Schultz IR. A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis. PLoS Comput Biol 2016; 12:e1004874. [PMID: 27096735 PMCID: PMC4838294 DOI: 10.1371/journal.pcbi.1004874] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/17/2016] [Indexed: 01/18/2023] Open
Abstract
Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. In recent years there has been rapid growth in understanding fish reproductive biology, which has been motivated in part by recognition of the potential effects that climate change, habitat destruction and contaminant exposure can have on natural and cultured fish populations. New approaches to understanding the impacts of these stressors are being developed that require a systems biology approach with more biologically accurate and detailed mathematical models. We have developed a multi-scale mathematical model of the female rainbow trout hypothalamus-pituitary-ovary-liver axis to use as a tool to help understand the functioning of the system and for extrapolation of laboratory findings of stressor impacts on specific components of the axis. The model describes the essential endocrine components of the female rainbow trout reproductive axis. The model also describes the stage specific growth of maturing oocytes within the ovary and permits the presence of sub-populations of oocytes at different stages of development. Model formulation and parametrization was largely based on previously published in vivo and in vitro data in rainbow trout and new data on the synthesis of gonadotropins in the pituitary. Model predictions were validated against several previously published data sets for annual changes in gonadotropins and estradiol in rainbow trout. Estimates of select model parameters can be obtained from in vitro assays using either quantitative (direct estimation of rate constants) or qualitative (relative change from control values) approaches. This is an important aspect of mathematical models as in vitro, cell-based assays are expected to provide the bulk of experimental data for future risk assessments and will require quantitative physiological models to extrapolate across biological scales. Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. Improving the ability to estimate reproductive performance in fish is important, due to the growth of the aquaculture industry and the need to maintain adequate broodstock and concerns over the effects of anthropogenic stressors on feral fish populations. We present here a quantitative, mathematical model of the female rainbow trout reproductive cycle. We show how the model is able to accurately describe experimentally measured data associated with pituitary, ovarian and liver reproductive performance. We also use the model to describe similar data sets collected in rainbow trout by other researchers. An important value of quantitative biological models is the ability to simulate various physiological conditions, real or hypothetical. We demonstrate this by predicting the effects of exposure to an endocrine disruptor on oocyte growth. The need to limit cost and animal usage will encourage future experimental studies to use in vitro methods. The model presented here can assist with the extrapolation of in vitro effects to the whole fish.
Collapse
Affiliation(s)
- Kendall Gillies
- Battelle, Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, Washington, United States of America
| | - Stephen M. Krone
- University of Idaho, Department of Mathematics, Moscow, Idaho, United States of America
| | - James J. Nagler
- University of Idaho, Department of Biological Sciences and Center for Reproductive Biology, Moscow, Idaho, United States of America
| | - Irvin R. Schultz
- Battelle, Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, Washington, United States of America
- * E-mail:
| |
Collapse
|
63
|
Paullada-Salmerón JA, Cowan M, Aliaga-Guerrero M, Morano F, Zanuy S, Muñoz-Cueto JA. Gonadotropin Inhibitory Hormone Down-Regulates the Brain-Pituitary Reproductive Axis of Male European Sea Bass (Dicentrarchus labrax). Biol Reprod 2016; 94:121. [PMID: 26984999 PMCID: PMC6322450 DOI: 10.1095/biolreprod.116.139022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/08/2016] [Indexed: 01/17/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) inhibits gonadotropin synthesis and release from the pituitary of birds and mammals. However, the physiological role of orthologous GnIH peptides on the reproductive axis of fish is still uncertain, and their actions on the main neuroendocrine systems controlling reproduction (i.e., GnRHs, kisspeptins) have received little attention. In a recent study performed in the European sea bass, we cloned a cDNA encoding a precursor polypeptide that contained C-terminal MPMRFamide (sbGnIH-1) and MPQRFamide (sbGnIH-2) peptide sequences, developed a specific antiserum against sbGnIH-2, and characterized its central and pituitary GnIH projections in this species. In this study, we analyzed the effects of intracerebroventricular injection of sbGnIH-1 and sbGnIH-2 on brain and pituitary expression of reproductive hormone genes (gnrh1, gnrh2, gnrh3, kiss1, kiss2, gnih, lhbeta, fshbeta), and their receptors (gnrhr II-1a, gnrhr II-2b, kiss1r, kiss2r, and gnihr) as well as on plasma Fsh and Lh levels. In addition, we determined the effects of GnIH on pituitary somatotropin (Gh) expression. The results obtained revealed the inhibitory role of sbGnIH-2 on brain gnrh2, kiss1, kiss2, kiss1r, gnih, and gnihr transcripts and on pituitary fshbeta, lhbeta, gh, and gnrhr-II-1a expression, whereas sbGnIH-1 only down-regulated brain gnrh1 expression. However, at different doses, central administration of both sbGnIH-1 and sbGnIH-2 decreased Lh plasma levels. Our work represents the first study reporting the effects of centrally administered GnIH in fish and provides evidence of the differential actions of sbGnIH-1 and sbGnIH-2 on the reproductive axis of sea bass, the main inhibitory role being exerted by the sbGnIH-2 peptide.
Collapse
Affiliation(s)
- José A Paullada-Salmerón
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - Mairi Cowan
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - María Aliaga-Guerrero
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - Francesca Morano
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - Silvia Zanuy
- Institute of Aquaculture of Torre de la Sal, CSIC, Ribera de Cabanes, Castellón, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| |
Collapse
|
64
|
Weinersmith KL, Hanninen AF, Sih A, McElreath R, Earley RL. The relationship between handling time and cortisol release rates changes as a function of brain parasite densities in California killifish Fundulus parvipinnis. JOURNAL OF FISH BIOLOGY 2016; 88:1125-1142. [PMID: 26806153 DOI: 10.1111/jfb.12894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
This study validated a technique for non-invasive hormone measurements in California killifish Fundulus parvipinnis, and looked for associations between cortisol (a stress hormone) and 11-ketotestosterone (KT, an androgen) release rates and the density or intensity of the trematode parasites Euhaplorchis californiensis (EUHA) and Renicola buchanani (RENB) in wild-caught, naturally infected F. parvipinnis. In experiment 1, F. parvipinnis were exposed to an acute stressor by lowering water levels to dorsal-fin height and repeatedly handling the fish over the course of an hour. Neither parasite was found to influence cortisol release rates in response to this acute stressor. In experiment 2, different F. parvipinnis were exposed on four consecutive days to the procedure for collecting water-borne hormone levels and release rates of 11-KT and cortisol were quantified. This design examined whether F. parvipinnis perceived the water-borne collection procedure to be a stressor, while also exploring how parasites influenced hormone release rates under conditions less stressful than those in experiment 1. No association was found between RENB and hormone release rates, or between EUHA and 11-KT release rates. The interaction between EUHA density and handling time, however, was an important predictor of cortisol release rates. The relationship between handling time and cortisol release rates was negative for F. parvipinnis harbouring low or intermediate density infections, and became positive for fish harbouring high densities of EUHA.
Collapse
Affiliation(s)
- K L Weinersmith
- Department of Environmental Science and Policy, University of California, Davis, CA, 95616, U.S.A
| | - A F Hanninen
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, U.S.A
| | - A Sih
- Department of Environmental Science and Policy, University of California, Davis, CA, 95616, U.S.A
| | - R McElreath
- Department of Anthropology, University of California, Davis, CA, 95616, U.S.A
| | - R L Earley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, U.S.A
| |
Collapse
|
65
|
|
66
|
Kuradomi RY, De Souza TG, Foresti F, Schulz RW, Bogerd J, Moreira RG, Furlan LR, Almeida EA, Maschio LR, Batlouni SR. Effects of re-stripping on the seminal characteristics of pacu (Piaractus mesopotamicus) during the breeding season. Gen Comp Endocrinol 2016; 225:162-173. [PMID: 26095224 DOI: 10.1016/j.ygcen.2015.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/04/2015] [Accepted: 06/13/2015] [Indexed: 11/21/2022]
Abstract
Seminal characteristics in teleost fish with an annual reproductive period, such as pacu (Piaractus mesopotamicus), may vary during the breeding season. The sperm formed before the beginning of the spawning period may be stored for a long time, causing damage to the cells. Therefore, re-stripping may be an important way to eliminate the "old" and allow for the collection of "new" spermatozoids. In this study, we analyzed the seminal characteristics of hormonally induced pacu at the beginning, middle and end of the breeding season, and we analyzed samples from re-stripped males (stripped first at the beginning, re-stripped in the middle, and re-stripped again at the end of the season) during two breeding seasons. The sperm density, ionic composition, pH, and osmolality were similar among the groups. The semen volume, seminal plasma protein concentration and incidence of morphologically anomalous sperm increased over time. In addition, some parameters that are associated with good-quality semen decreased, such as sperm motility, viability and DNA integrity. Moreover, we observed a positive association among motility, viability and DNA integrity for sperm with elevated 11-ketotestosterone, but there was no such association for fshb or lhb mRNA levels in the pituitary. The semen that was obtained earlier (at the beginning) or from re-stripped males exhibited better characteristics than the other samples collected. In conclusion, collecting semen from pacu at the end of breeding season should be avoided; it is preferable to strip early and then re-strip later in the season, and this approach may be used for diverse aquaculture purposes.
Collapse
Affiliation(s)
- Rafael Y Kuradomi
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil
| | - Thiago G De Souza
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil
| | - Fausto Foresti
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil; Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Distrito de Rubião Júnior, S/N, 18618-970 Botucatu, SP, Brazil
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Kruyt Building, Room W-606, Padualaan 8, NL-3584 CH Utrecht, The Netherlands
| | - Jan Bogerd
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Kruyt Building, Room W-606, Padualaan 8, NL-3584 CH Utrecht, The Netherlands
| | - Renata G Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo - USP, Rua do Matão, Travessa 14, n.321, Sala 220 Cidade Universitária, 05508-900 São Paulo, SP, Brazil
| | - Luiz R Furlan
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil
| | - Eduardo A Almeida
- Depto de Química e Ciências Ambientais, Universidade Estadual Paulista - UNESP, Rua Cristóvão Colombo, n.2265, Jardim Nazareth, 15054-000 São José do Rio Preto, SP, Brazil
| | - Lucilene R Maschio
- Depto de Química e Ciências Ambientais, Universidade Estadual Paulista - UNESP, Rua Cristóvão Colombo, n.2265, Jardim Nazareth, 15054-000 São José do Rio Preto, SP, Brazil
| | - Sergio R Batlouni
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil.
| |
Collapse
|
67
|
Saha S, Patil S, Singh U, Singh O, Singru PS. Sexual dimorphism in the hypophysiotropic tyrosine hydroxylase-positive neurons in the preoptic area of the teleost, Clarias batrachus. Biol Sex Differ 2015; 6:23. [PMID: 26557978 PMCID: PMC4640419 DOI: 10.1186/s13293-015-0042-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/30/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dopamine (DA) neurons in the anteroventral periventricular nucleus (AVPV) in the preoptic area (POA) of mammals express estrogen receptors, regulate luteinizing hormone (LH) secretion, and show distinct sexual dimorphism. In teleosts, hypophysiotropic DA neurons of the nucleus preopticus periventricularis (NPP), located in the anteroventral POA, express estrogen receptors, innervate LH cells, and emerged as a neuroanatomical substrate for inhibiting LH cells. Interestingly, the NPP and AVPV seem to share several similarities. Whether DAergic neurons in the NPP show sexual dimorphism is, however, not known. Based on the proposed homology to AVPV and previous studies showing greater tyrosine hydroxylase (TH) mRNA and enzyme activity levels in the brain of female catfish, we hypothesize that females have greater number of DAergic neurons in the NPP and correspondingly more TH-immunoreactive fiber innervation of the pituitary. METHODS Adult, male and female Clarias batrachus collected during the prespawning phase of their reproductive cycle were used. Fish were anesthetized and perfused transcardially with phosphate-buffered saline (pH 7.4) and 4 % paraformaldehyde in phosphate buffer. Sections through the rostro-caudal extent of the POA and pituitary were processed for TH immunofluorescence. Using double immunofluorescence, the association between TH-immunoreactive fibers and LH cells in the pituitary was explored. Sections were analyzed using semiquantitative analysis. RESULTS NPP in POA of C. batrachus has two distinct subdivisions, viz, anterior (NPPa) and posterior (NPPp), and TH neurons were observed in both the subdivisions. Compared to that in the males, a significantly higher (P < 0.05) number of TH neurons was consistently observed in the NPPa of females. TH neurons in NPPp, however, showed no difference in the number or immunoreactivity. Since DA neurons in NPPa are hypophysiotropic, we compared TH-fiber innervation of the pituitary in both sexes. Compared to males, proximal pars distalis and LH cells in this region of the pituitary in females were densely innervated by TH fibers. CONCLUSIONS Neurons of NPPa and their innervation to the pituitary seem to be a distinct sexually dimorphic DAergic system in C. batrachus. The DAergic system may serve as a component of the neural mechanisms controlling the sexually dimorphic LH surge in teleosts. Given the similarities shared by NPPa and AVPV, homology between these two nuclei is suggested.
Collapse
Affiliation(s)
- Soham Saha
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India ; Present address: Institut Pasteur, Affiliated to: Ecole des neurosciences Paris (ENP) Graduate program, 28, rue du docteur Roux, 75724 Paris, Cedex 15 France
| | - Saurabh Patil
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India
| | - Uday Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India
| |
Collapse
|
68
|
Guzmán JM, Luckenbach JA, da Silva DAM, Ylitalo GM, Swanson P. Development of approaches to induce puberty in cultured female sablefish (Anoplopoma fimbria). Gen Comp Endocrinol 2015; 221:101-13. [PMID: 25843684 DOI: 10.1016/j.ygcen.2015.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 12/13/2022]
Abstract
Efforts to establish sustainable and efficient aquaculture production of sablefish (Anoplopoma fimbria) have been constrained by delayed puberty in cultured females. This study integrates a series of experiments aimed at gaining an understanding of the reproductive physiology of puberty in female sablefish. We detected transcripts for the dopamine D2 receptor (drd2) in brain, pituitary and ovary of sablefish, and prepubertal females exhibited significantly elevated brain and pituitary drd2 expression relative to wild maturing females. Treatments with sustained-release cholesterol pellets containing testosterone (T) and the dopamine D2 receptor antagonist, metoclopramide (Met), stimulated expression of pituitary luteinizing hormone beta subunit (lhb) and follicle-stimulating hormone beta subunit (fshb), respectively, in prepubertal females, whereas a combination of T and gonadotropin-releasing hormone agonist (GnRHa) had a strong synergistic effect on lhb expression (2000-fold higher than control). Although T induced a significant increase in the maximum ovarian follicle volume, none of the treatments tested stimulated onset of vitellogenesis. Using liquid chromatography/tandem mass spectrometry, we demonstrated that Met stimulated production of T by previtellogenic ovarian follicles in vitro, whereas gonadotropin preparations enhanced 17α-hydroxyprogesterone, androstenedione (A4), T and 17β-estradiol (E2) production. Treatment with T increased production of A4, 11β-hydroxyandrostenedione, 11β-hydroxytestosterone, E2, 11-ketotestosterone, and 5α-dihydrotestosterone (DHT). Interestingly, in the presence of high doses of T the previtellogenic ovary preferentially produced A4 and DHT over any other metabolite. Our data suggest the existence of dopamine inhibition of the reproductive axis in female sablefish. Treatments with Met and T elevated gonadotropin mRNAs in prepubertal females but failed to stimulate the transition into vitellogenic growth, suggesting a possible failure in pituitary gonadotropin protein synthesis/release. Previtellogenic ovarian follicles of sablefish are equipped to synthesize steroids, including those required for vitellogenic growth, and DHT, a steroid hormone whose role in reproduction of fishes remains unknown.
Collapse
Affiliation(s)
- José M Guzmán
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA.
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Denis A M da Silva
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA
| | - Gina M Ylitalo
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA
| | - Penny Swanson
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
69
|
Application of dopaminergic antagonist: Metoclopramide, in reproduction of crucian carp Carassius carassius (L.) under controlled conditions. Anim Reprod Sci 2015; 160:74-81. [DOI: 10.1016/j.anireprosci.2015.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 11/21/2022]
|
70
|
Pradhan A, Olsson PE. Zebrafish sexual behavior: role of sex steroid hormones and prostaglandins. Behav Brain Funct 2015; 11:23. [PMID: 26385780 PMCID: PMC4575480 DOI: 10.1186/s12993-015-0068-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/25/2015] [Indexed: 12/11/2022] Open
Abstract
Background Mating behavior differ between sexes and involves gonadal hormones and possibly sexually dimorphic gene expression in the brain. Sex steroids and prostaglandin E2 (PGE2) have been shown to regulate mammalian sexual behavior. The present study was aimed at determining whether exposure to sex steroids and prostaglandins could alter zebrafish sexual mating behavior. Methods Mating behavior and successful spawning was recorded following exposure to 17β-estradiol (E2), 11-ketotestosterone (11-KT), prostaglandin D2 (PGD2) and PGE2 via the water. qRT-PCR was used to analyze transcript levels in the forebrain, midbrain, and hindbrain of male and female zebrafish and compared to animals exposed to E2 via the water. Results Exposure of zebrafish to sex hormones resulted in alterations in behavior and spawning when male fish were exposed to E2 and female fish were exposed to 11-KT. Exposure to PGD2, and PGE2 did not alter mating behavior or spawning success. Determination of gene expression patterns of selected genes from three brain regions using qRT-PCR analysis demonstrated that the three brain regions differed in gene expression pattern and that there were differences between the sexes. In addition, E2 exposure also resulted in altered gene transcription profiles of several genes. Conclusions Exposure to sex hormones, but not prostaglandins altered mating behavior in zebrafish. The expression patterns of the studied genes indicate that there are large regional and gender-based differences in gene expression and that E2 treatment alter the gene expression pattern in all regions of the brain. Electronic supplementary material The online version of this article (doi:10.1186/s12993-015-0068-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, 701 82, Örebro, Sweden
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, 701 82, Örebro, Sweden.
| |
Collapse
|
71
|
Paullada-Salmerón JA, Cowan M, Aliaga-Guerrero M, Gómez A, Zanuy S, Mañanos E, Muñoz-Cueto JA. LPXRFa peptide system in the European sea bass: A molecular and immunohistochemical approach. J Comp Neurol 2015; 524:176-98. [DOI: 10.1002/cne.23833] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/15/2023]
Affiliation(s)
- José A. Paullada-Salmerón
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| | - Mairi Cowan
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| | - María Aliaga-Guerrero
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| | - Ana Gómez
- Institute of Aquaculture of Torre de la Sal, CSIC; Ribera de Cabanes E-12595 Castellón Spain
| | - Silvia Zanuy
- Institute of Aquaculture of Torre de la Sal, CSIC; Ribera de Cabanes E-12595 Castellón Spain
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC; Ribera de Cabanes E-12595 Castellón Spain
| | - José A. Muñoz-Cueto
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| |
Collapse
|
72
|
Jin YH, Park JW, Kim JH, Kwon JY. The Expression Pattern of Melatonin Receptor 1a Gene during Early Life Stages in the Nile tilapia (Oreochromis niloticus). Dev Reprod 2015; 17:45-53. [PMID: 25949120 PMCID: PMC4282221 DOI: 10.12717/dr.2013.17.1.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 11/20/2022]
Abstract
The action of melatonin within the body of animals is known to be mediated by melatonin receptors. Three different types of melatonin receptors have been identified so far in fish. However, which of these are specifically involved in puberty onset is not known in fish. We cloned and analyzed the sequence of melatonin receptor 1a (mel 1a) gene in Nile tilapia Oreochromis niloticus. In addition, we examined the tissue distribution of gene expressions for three types of receptors, mel 1a, 1b and lc and investigated which of them is involved in the onset of puberty by comparing their expression with that of gonadotropin-releasing hormone receptor I (GnRHr I) gene using quantitative real-time PCR from 1 week post hatch (wph) to 24 wph. The mel 1a gene of Nile tilapia consisted of two exons and one bulky intron between them. Mel 1a gene was found to be highly conserved gene showing high homology with the corresponding genes from different teleost. All three types of melatonin receptor genes were expressed in the brain, eyes and ovary in common. Expression of mel 1a gene was the most abundant and ubiquitous among 3 receptors in the brain, liver, gill, ovary, muscle, eye, heart, intestine, spleen and kidney. Mel 1b and mel 1c genes were, however, expressed in fewer tissues at low level. During the development post hatch, expressions of both mel 1a and GnRHr I genes significantly increased at 13 wph which was close to the putative timing of puberty onset in this species. These results suggest that among three types of receptors mel 1a is most likely associated with the action of melatonin in the onset of puberty in Nile tilapia.
Collapse
Affiliation(s)
- Ye Hwa Jin
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 336-708, Korea
| | - Jin Woo Park
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 336-708, Korea
| | - Jung-Hyun Kim
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 336-708, Korea
| | - Joon Yeong Kwon
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 336-708, Korea
| |
Collapse
|
73
|
Chabbi A, Ganesh CB. Evidence for the involvement of dopamine in stress-induced suppression of reproduction in the cichlid fish Oreochromis mossambicus. J Neuroendocrinol 2015; 27:343-56. [PMID: 25712855 DOI: 10.1111/jne.12269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 01/23/2023]
Abstract
In the present study, we examined whether stress-induced suppression of reproduction is mediated through the catecholaminergic neurotransmitter dopamine (DA) in the female cichlid fish Oreochromis mossambicus. In the first experiment, application of antibody against tyrosine hydroxylase (TH; a marker for DA) in brain sections revealed the presence of intensely stained TH immunoreactive cells in the preoptic area (POA) and nucleus preopticus (NPO) during the previtellogenic phase. These cells showed weak immunoreactivity during the vitellogenic and prespawning phases concomitant with darkly stained luteinising hormone (LH) immunoreactive content in the proximal pars distalis (PPD) of the pituitary gland and fully ripened follicles (stage V) in the ovary of control fish. However, in fish exposed to aquacultural stressors, TH secreting cells remained intensely stained in POA and NPO regions during the prespawning phase, indicating increased synthetic and secretory activity, which was reflected by a significantly higher DA content compared to controls. Increased DA activity as a result of stress was associated with a decrease in the LH immunoreactive content in the PPD and an absence of stage V follicles in the ovary. In the second experiment, administration of DA caused effects similar to those in stressed fish, whereas DA receptor antagonist domperidone (DOM) treatment significantly increased the LH content in the PPD and the number of stage V follicles in unstressed fish. On the other hand, treatment of stressed fish with DOM resulted in dark accumulations of LH immunoreactive content in the PPD accompanied by the presence of stage V follicles in the ovary. Taken together, these results suggest an additional pathway for the inhibitory effects of stress through dopaminergic neurones along the reproductive axis.
Collapse
Affiliation(s)
- A Chabbi
- Neuroendocrinology Research Lab, Department of Studies in Zoology, Karnatak University, Dharwad, Karnataka, India
| | | |
Collapse
|
74
|
Forlano PM, Ghahramani ZN, Monestime CM, Kurochkin P, Chernenko A, Milkis D. Catecholaminergic innervation of central and peripheral auditory circuitry varies with reproductive state in female midshipman fish, Porichthys notatus. PLoS One 2015; 10:e0121914. [PMID: 25849450 PMCID: PMC4388377 DOI: 10.1371/journal.pone.0121914] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/08/2015] [Indexed: 11/24/2022] Open
Abstract
In seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the auditory system in midshipman. Most notably, dopaminergic neurons in the diencephalon have widespread projections to auditory circuitry including direct innervation of the saccule, the main endorgan of hearing, and the cholinergic octavolateralis efferent nucleus (OE) which also projects to the inner ear. Here, we tested the hypothesis that gravid, reproductive summer females show differential CA innervation of the auditory system compared to non-reproductive winter females. We utilized quantitative immunofluorescence to measure tyrosine hydroxylase immunoreactive (TH-ir) fiber density throughout central auditory nuclei and the sensory epithelium of the saccule. Reproductive females exhibited greater density of TH-ir innervation in two forebrain areas including the auditory thalamus and greater density of TH-ir on somata and dendrites of the OE. In contrast, non-reproductive females had greater numbers of TH-ir terminals in the saccule and greater TH-ir fiber density in a region of the auditory hindbrain as well as greater numbers of TH-ir neurons in the preoptic area. These data provide evidence that catecholamines may function, in part, to seasonally modulate the sensitivity of the inner ear and, in turn, the appropriate behavioral response to reproductive acoustic signals.
Collapse
Affiliation(s)
- Paul M. Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, United States of America
- Program in Neuroscience, City University of New York, New York, NY, United States of America
- Program in Ecology, Evolutionary Biology and Behavior, City University of New York, New York, NY, United States of America
- Program in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, United States of America
- Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY, United States of America
- * E-mail:
| | - Zachary N. Ghahramani
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, United States of America
- Program in Ecology, Evolutionary Biology and Behavior, City University of New York, New York, NY, United States of America
| | - Camillia M. Monestime
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, United States of America
| | - Philip Kurochkin
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, United States of America
| | - Alena Chernenko
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, United States of America
| | - Dmitriy Milkis
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, United States of America
| |
Collapse
|
75
|
Badruzzaman M, Imamura S, Takeuchi Y, Ikegami T, Takemura A. Effects of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment on ovarian development of the sapphire devil, Chrysiptera cyanea. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:61-71. [PMID: 25362562 DOI: 10.1007/s10695-014-0006-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
In the neuroendocrine system controlling fish reproduction, dopamine (DA) acts as a gonadotropin inhibitory factor and plays a role in regulating gonadal development of certain species. The present study examined the effects of chemical destruction of dopaminergic neurons in the brain on DA production and ovarian development in the sapphire devil Chrysiptera cyanea, a reef-associated damselfish. The avidin-biotin-peroxidase complex method using an antibody against tyrosine hydroxylase (TH), a critical enzyme in the DA synthesis pathway, identified a population of dopaminergic neurons with somata in the anteroventral preoptic nucleus of the diencephalon and fibers terminating in the proximal pars distalis of the pituitary. Maintaining fish in seawater containing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at 0.02 and 0.2 µg/mL for 2 days resulted in decreases in DA, 3,4-dihydroxyphenylacetic acid (DOPAC; DA metabolite), and DA metabolic rate in the whole brain. The number of TH-positive neurons in the diencephalon decreased after 0.02 µg/mL MPTP treatment for 2 days. These results suggest that MPTP treatment destroys TH-positive neurons in the diencephalon, thereby decreasing the synthesis and release of DA from the brain. This treatment rescued ovarian development in fish with artificially retracted ovaries during the spawning season. The gonadosomatic index of MPTP-treated fish 5 and 7 days after treatment was significantly higher than that of control fish. Oocytes in the vitellogenic stages were observed in the ovaries of MPTP-treated fish, but not in control fish. These results suggest that DA in the brain drives ovarian development in the sapphire devil.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | | | | | | | | |
Collapse
|
76
|
Churcher AM, Pujolar JM, Milan M, Hubbard PC, Martins RST, Saraiva JL, Huertas M, Bargelloni L, Patarnello T, Marino IAM, Zane L, Canário AVM. Changes in the gene expression profiles of the brains of male European eels (Anguilla anguilla) during sexual maturation. BMC Genomics 2014; 15:799. [PMID: 25230743 PMCID: PMC4175612 DOI: 10.1186/1471-2164-15-799] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/11/2014] [Indexed: 12/19/2022] Open
Abstract
Background The vertebrate brain plays a critical role in the regulation of sexual maturation and reproduction by integrating environmental information with developmental and endocrine status. The European eel Anguilla anguilla is an important species in which to better understand the neuroendocrine factors that control reproduction because it is an endangered species, has a complex life cycle that includes two extreme long distance migrations with both freshwater and seawater stages and because it occupies a key position within the teleost phylogeny. At present, mature eels have never been caught in the wild and little is known about most aspects of reproduction in A. anguilla. The goal of this study was to identify genes that may be involved in sexual maturation in experimentally matured eels. For this, we used microarrays to compare the gene expression profiles of sexually mature to immature males. Results Using a false discovery rate of 0.05, a total of 1,497 differentially expressed genes were identified. Of this set, 991 were expressed at higher levels in brains (forebrain and midbrain) of mature males while 506 were expressed at lower levels relative to brains of immature males. The set of up-regulated genes includes genes involved in neuroendocrine processes, cell-cell signaling, neurogenesis and development. Interestingly, while genes involved in immune system function were down-regulated in the brains of mature males, changes in the expression levels of several receptors and channels were observed suggesting that some rewiring is occurring in the brain at sexual maturity. Conclusions This study shows that the brains of eels undergo major changes at the molecular level at sexual maturity that may include re-organization at the cellular level. Here, we have defined a set of genes that help to understand the molecular mechanisms controlling reproduction in eels. Some of these genes have previously described functions while many others have roles that have yet to be characterized in a reproductive context. Since most of the genes examined here have orthologs in other vertebrates, the results of this study will contribute to the body of knowledge concerning reproduction in vertebrates as well as to an improved understanding of eel biology. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-799) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Allison M Churcher
- CCMAR- Centre for Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Jeng SR, Yueh WS, Pen YT, Lee YH, Chen GR, Dufour S, Chang CF. Neuroendocrine gene expression reveals a decrease in dopamine D2B receptor with no changes in GnRH system during prepubertal metamorphosis of silvering in wild Japanese eel. Gen Comp Endocrinol 2014; 206:8-15. [PMID: 25125083 DOI: 10.1016/j.ygcen.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/20/2014] [Accepted: 08/05/2014] [Indexed: 11/21/2022]
Abstract
Silvering is a prepubertal metamorphosis preparing the eel to the oceanic reproductive migration. A moderate gonad development occurs during this metamorphosis from the sedentary yellow stage to the migratory silver stage. The aim of this study was to elucidate the molecular aspects of various endocrine parameters of BPG axis at different ovarian developmental stages in wild yellow and silver female Japanese eels. The GSI of the sampled female eels ranged between 0.18 and 2.3%, corresponding to yellow, pre-silver and silver stages. Gonad histology showed changes from previtellogenic oocytes in yellow eels to early vitellogenic oocytes in silver eels. Both serum E2 and T concentrations significantly increased with ovarian development indicating a significant activation of steroidogenesis during silvering. In agreement with previous studies, significant increases in pituitary gonadotropin beta subunits FSH-β and LH-β transcripts were also measured by qPCR, supporting that the activation of pituitary gonadotropin expression is likely responsible for the significant ovarian development observed during silvering. We investigated for the first time the possible brain neuroendocrine mechanisms involved in the activation of the pituitary gonadotropic function during silvering. By analyzing the expression of genes representative of the stimulatory GnRH control and the inhibitory dopaminergic control. The transcript levels of mGnRH and the three GnRH receptors did not change in the brain and pituitary between yellow and silver stages, suggesting that gene expression of the GnRH system is not significantly activated during silvering. The brain transcript levels of tyrosine hydroxylase, limiting enzyme of DA synthesis did not change during silvering, indicating that the DA synthesis activity was maintained. In contrast, a significant decrease in DA-D2B receptor expression in the forebrain and pituitary was observed, with no changes in DA-D2A receptor. The decrease in the pituitary expression of DA-D2BR during silvering would allow a reduced inhibitory effect of DA. We may raise the hypothesis that this regulation of D2BR gene expression is one of the neuroendocrine mechanisms involved in the slight activation of the pituitary gonadotropin and gonadal activity that occur at silvering.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung 811, Taiwan.
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung 811, Taiwan
| | - Yi-Ting Pen
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung 811, Taiwan
| | - Yan-Horn Lee
- Tungkang Biotechnology Research Center, Fisheries Research Institute, Council of Agriculture, Tungkang 928, Taiwan
| | - Guan-Ru Chen
- Freshwater Aquaculture Research Center, Fisheries Research Institute, Council of Agriculture, Lukang 505, Taiwan
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208 - IRD207 - UPMC - UCBN, 75231 Paris Cedex 05, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
78
|
Forlano PM, Kim SD, Krzyminska ZM, Sisneros JA. Catecholaminergic connectivity to the inner ear, central auditory, and vocal motor circuitry in the plainfin midshipman fish porichthys notatus. J Comp Neurol 2014; 522:2887-927. [PMID: 24715479 PMCID: PMC4107124 DOI: 10.1002/cne.23596] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 01/25/2023]
Abstract
Although the neuroanatomical distribution of catecholaminergic (CA) neurons has been well documented across all vertebrate classes, few studies have examined CA connectivity to physiologically and anatomically identified neural circuitry that controls behavior. The goal of this study was to characterize CA distribution in the brain and inner ear of the plainfin midshipman fish (Porichthys notatus) with particular emphasis on their relationship with anatomically labeled circuitry that both produces and encodes social acoustic signals in this species. Neurobiotin labeling of the main auditory end organ, the saccule, combined with tyrosine hydroxylase immunofluorescence (TH-ir) revealed a strong CA innervation of both the peripheral and central auditory system. Diencephalic TH-ir neurons in the periventricular posterior tuberculum, known to be dopaminergic, send ascending projections to the ventral telencephalon and prominent descending projections to vocal-acoustic integration sites, notably the hindbrain octavolateralis efferent nucleus, as well as onto the base of hair cells in the saccule via nerve VIII. Neurobiotin backfills of the vocal nerve in combination with TH-ir revealed CA terminals on all components of the vocal pattern generator, which appears to largely originate from local TH-ir neurons but may include input from diencephalic projections as well. This study provides strong neuroanatomical evidence that catecholamines are important modulators of both auditory and vocal circuitry and acoustic-driven social behavior in midshipman fish. This demonstration of TH-ir terminals in the main end organ of hearing in a nonmammalian vertebrate suggests a conserved and important anatomical and functional role for dopamine in normal audition.
Collapse
Affiliation(s)
- Paul M. Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
- Programs in Neuroscience, Ecology, Evolutionary Biology and Behavior, and Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, Brooklyn, NY 11210
- Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - Spencer D. Kim
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Zuzanna M. Krzyminska
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Joseph A. Sisneros
- Departments of Psychology and Biology, University of Washington, Seattle, WA, 98195
- Virginia Merrill Bloedel Hearing Research Center, Seattle
- Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
79
|
Winters SJ, Ghooray DT, Yang RQ, Holmes JB, O'Brien AR, Morgan J, Moore JP. Dopamine-2 receptor activation suppresses PACAP expression in gonadotrophs. Endocrinology 2014; 155:2647-57. [PMID: 24823390 PMCID: PMC4060190 DOI: 10.1210/en.2013-2147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is expressed at a high level in the fetal pituitary and decreases profoundly between embryonic day 19 and postnatal day 1 (PN1), with a further decrease from PN1 to PN4. In this series of experiments, we investigated the hypothesis that dopamine 2 receptor (Drd2) activation interrupts a cAMP-dependent feed-forward loop that maintains PACAP expression at a high level in the fetal pituitary. Using single-cell RT-PCR of pituitary cell cultures from newborn rats, Drd2 mRNA was identified in gonadotrophs that were also positive for PACAP mRNA. PACAP expression in pituitary cultures from embryonic day 19 rats was suppressed by the PACAP6-38 antagonist and by the Drd2 agonist bromocriptine. Increasing concentrations of bromocriptine inhibited cAMP production as well as cAMP signaling based on cAMP response element-luciferase activity, decreased PACAP promoter activity, and decreased PACAP mRNA levels in αT3-1 gonadotroph cells. Furthermore, blockade of dopamine receptors by injecting haloperidol into newborn rat pups partially reversed the developmental decline in pituitary PACAP mRNA that occurs between PN1 and PN4. These results provide evidence that dopamine receptor signaling regulates PACAP expression under physiological conditions and lend support to the hypothesis that a rise in hypothalamic dopamine at birth abrogates cAMP signaling in fetal gonadotrophs to interrupt a feed-forward mechanism that maintains PACAP expression at a high level in the fetal pituitary. We propose that this perinatal decline in pituitary PACAP reduces pituitary follistatin which permits GnRH receptors and FSH-β to increase to facilitate activation of the neonatal gonad.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism & Diabetes (S.J.W., D.T.G., J.B.H., A.R.W.O., J.M., J.P.M.), and Department of Anatomy and Neurobiology (R.Q.Y., J.P.M.), University of Louisville, Louisville, Kentucky 40202
| | | | | | | | | | | | | |
Collapse
|
80
|
Isomura N, Yamauchi C, Takeuchi Y, Takemura A. Does dopamine block the spawning of the acroporid coral Acropora tenuis? Sci Rep 2014; 3:2649. [PMID: 24026104 PMCID: PMC3770960 DOI: 10.1038/srep02649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/28/2013] [Indexed: 11/09/2022] Open
Abstract
Most corals undergo spawning after a particular moon phase, but how moon-related spawning is endogenously regulated in corals remains unknown. The objective of the present study was to evaluate whether dopamine (DA) affects spawning in Acropora tenuis. When pieces of four A. tenuis colonies were reared under a natural photoperiod and water temperature, spawning was observed after the predicted moon phase. After exposure to water containing DA at 0.1 μM, pieces of the same colonies only released 5 to 10 bundles. Co-treatment with DA and pimozide (D1 and D2 receptors antagonist), but not domperidone (D2 receptor antagonist), induced mass release of bundles from the colonies. A cross-experiment revealed high fertilization rates between the control colonies (95%) and between the control and DA-treated colonies (90%), suggesting that gametes developed normally in coral tissue. Therefore, DA appears to have an inhibitory effect on the spawning of A. tenuis.
Collapse
Affiliation(s)
- N Isomura
- Department of Bioresources Engineering, Okinawa National College of Technology, 905 Henoko, Nago-City, Okinawa 905-2192, Japan
| | | | | | | |
Collapse
|
81
|
Yan FF, Hester PY, Cheng HW. The effect of perch access during pullet rearing and egg laying on physiological measures of stress in White Leghorns at 71 weeks of age. Poult Sci 2014; 93:1318-26. [PMID: 24879681 DOI: 10.3382/ps.2013-03572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Egg laying strains of chickens have a strong motivation to perch. Providing caged chickens with perches allows them to perform their natural perching behavior and also improves their musculoskeletal health due to exercise. Little is known about the effect of perch access for hens on physiological measures of stress. Our hypothesis was that denying chickens access to perches would elicit a stress response. The objective of this study was to determine the effect of perch access during all or part of life cycle on physiological homeostasis in caged 71-wk-old White Leghorn hens. A total of 1,064 chicks were assigned randomly to cages with and without perches (n = 14 pullet cages/perch treatment) on day of hatch. As pullets aged, chicks were removed from cages to provide more space. At 17 wk of age, 324 chickens in total were assigned to laying cages consisting of 4 treatments with 9 replicates per treatment. Treatment 1 chickens never had access to perches during their life cycle. Treatment 2 chickens had access to perches only from 17 to 71 wk of age (laying phase). Treatment 3 chickens had access to perches only from hatch to 16.9 wk of age (pullet phase). Treatment 4 chickens always had access to perches during their life cycle. At 71 wk of age, chickens were sampled for measurement of plasma catecholamines (epinephrine, norepinephrine, and dopamine) and corticosterone; blood serotonin and Trp; fluctuating asymmetry of shank length and width; and adrenal weight. Only shank width differed among treatments. Chickens with previous exposure to perches during the pullet phase had wider shanks than chickens without access to perches (P = 0.006), suggesting that early perching promoted skeletal development. These results suggest that a stress response was not elicited in 71-wk-old White Leghorn hens that always had access to perches compared with hens that never had access to perches during all or part of their life cycle.
Collapse
Affiliation(s)
- F F Yan
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - P Y Hester
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - H W Cheng
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN 47907
| |
Collapse
|
82
|
Kumar S, Singh U, Saha S, Singru PS. Tyrosine hydroxylase in the olfactory system, forebrain and pituitary of the Indian major carp, Cirrhinus cirrhosus: organisation and interaction with neuropeptide Y in the preoptic area. J Neuroendocrinol 2014; 26:400-11. [PMID: 24750502 DOI: 10.1111/jne.12160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 04/06/2014] [Accepted: 04/12/2014] [Indexed: 12/13/2022]
Abstract
Dopamine (DA) inhibits, whereas gonadotrophin-releasing hormone (GnRH) stimulates, luteinisiing (LH) cells in the pituitary of some but not all teleosts. A reduction in the hypophysiotropic dopaminergic tone is necessary for the stimulatory effect of GnRH on LH cells. Neuropeptide Y (NPY) has emerged as one of the potent, endogenous agent that modulates LH secretion directly or indirectly via GnRH. Involvement of NPY in the regulation of hypophysiotropic DA neurones, however, is not known, but there is good evidence suggesting an interaction in the mammalian hypothalamus. DA neurones, identified by tyrosine hydroxylase (TH)-immunoreactivity, were observed widely throughout the brain of the Indian major carp, Cirrhinus cirrhosus. The granule cells and ganglion cells of terminal nerve in the olfactory bulb, and cells in ventral telencephalon and preoptic area (POA) showed conspicuous TH immunoreactivity. In the POA, the nucleus preopticus periventricularis (NPP), divisible into anterior (NPPa) and posterior (NPPp) components, showed prominent TH-immunoreactivity. The majority of TH neurones in NPPa showed axonal extensions to the pituitary and were closely associated with LH cells. The NPPa also appeared to be the site for intense interaction between NPY and DA because it contains a rich network of NPY fibres and few immunoreactive cells. Approximately 89.7 ± 1.5% TH neurones in NPPa were contacted by NPY fibres. Superfused POA slices treated with a NPY Y2 -receptor agonist, NPY 13-36 resulted in a significant (P < 0.001) reduction in TH-immunoreactivity in NPPa. TH neurones in NPPa did not respond to NPY Y1 -receptor agonist, [Leu(31) , Pro(34) ] Neuropeptide Y treatment. We suggest that, by inhibiting DAergic neurones in NPPa via Y2 -receptors, NPY may contribute to the up-regulation of the GnRH-LH cells axis. The microcircuitry of DA and NPY and their interaction in NPPa might be a crucial component in the central regulation of LH secretion in the teleosts.
Collapse
Affiliation(s)
- S Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
| | | | | | | |
Collapse
|
83
|
Waye A, Lado WE, Martel PH, Arnason JT, Trudeau VL. Ovulation but not milt production is inhibited in fathead minnows (Pimephales promelas) exposed to a reproductively inhibitory pulp mill effluent. Reprod Biol Endocrinol 2014; 12:43. [PMID: 24884628 PMCID: PMC4035717 DOI: 10.1186/1477-7827-12-43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/07/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A 5-day fathead minnow (FHM) spawning assay is used by industry to monitor pulp mill effluent quality, with some mill effluents capable of completely inhibiting spawning. The purpose of this report is to characterize the effect of an inhibitory effluent on egg and milt production in FHM. METHODS Eight tanks were treated with an inhibitory effluent while eight were kept with clean water. Each tank contained two males and four females as per the 5-day FHM spawning assay used by industry. Females were stripped of ovulated eggs and males of milt in four effluent-exposed and four control tanks. Eggs oviposited in every tank were also counted and checked for fertilization and data analyzed with 2-way ANOVA. RESULTS We show that female, but not male, fathead minnow reproductive function is impaired in the 5-day fathead minnow spawning assay used by industry to evaluate pulp mill effluent quality in Canada. Milt production was not changed in the control or exposed males mid-way and at the end of the five day exposure (p > 0.05; n = 8). Total egg production (stripped + oviposited) was impaired (p < 0.05) in fathead minnows exposed to effluent (288 eggs/tank, n = 4 tanks) compared to those in control tanks (753 eggs/tank, n = 4 tanks). CONCLUSIONS Our results indicate that males are able to detect female signals and prepare appropriately for spawning while in females inhibition of ovulation is occurring somewhere along the hypothalamus-pituitary-gonad reproductive axis. These results suggest female-specific neuroendocrine disruption and provide mechanistic insight into an assay used by industry to assess pulp mill effluent quality.
Collapse
Affiliation(s)
- Andrew Waye
- Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Wudu E Lado
- Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Pierre H Martel
- FPInnovations, 570 Saint-Jean Blvd, Pointe-Claire, QC H9R 3J9, Canada
| | - John T Arnason
- Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
84
|
Peñaranda DS, Mazzeo I, Gallego V, Hildahl J, Nourizadeh-Lillabadi R, Pérez L, Weltzien FA, Asturiano JF. The regulation of aromatase and androgen receptor expression during gonad development in male and female European eel. Reprod Domest Anim 2014; 49:512-21. [PMID: 24750538 DOI: 10.1111/rda.12321] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/23/2014] [Indexed: 11/27/2022]
Abstract
This research investigated the regulation of aromatase and androgen receptor gene expression in the brain-pituitary-gonad (BPG) axis of male and female European eels (Anguilla anguilla) during induced sexual maturation. Complete A. anguilla aromatase (aa-cyp19a1) and partial androgen receptor α and β (aa-ara and aa-arb) sequences were isolated, and qPCR assays were validated and used for quantification of transcript levels for these three genes. Expression levels of the genes varied with sex, tissue and stage of maturation. aa-arb was expressed at higher levels than aa-ara in the pituitary and gonad in both sexes, suggesting aa-arb is the physiologically most important androgen receptor in these tissues. In the female brain, a decrease in aa-ara and an increase in aa-cyp19a1 were observed at the vitellogenic stage. In contrast, a progressive increase in all three genes was observed in the pituitary and ovaries throughout gonadal development, with aa-arb and aa-cyp19a1 reaching significantly higher levels at the vitellogenic stage. In the male pituitary, a decrease in aa-arb and an increase in aa-cyp19a1 were observed at the beginning of spermatogenesis, and thereafter remained low and high, respectively. In the testis, the transcript levels of androgen receptors and aa-cyp19a1 were higher during the early stages of spermatogenesis and decreased thereafter. These sex-dependent differences in the regulation of the expression of aa-ara, aa-arb and cyp19a1 are discussed in relation to the role of androgens and their potential aromatization in the European eel during gonadal maturation.
Collapse
Affiliation(s)
- D S Peñaranda
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain; Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Pasquier J, Lafont AG, Rousseau K, Quérat B, Chemineau P, Dufour S. Looking for the bird Kiss: evolutionary scenario in sauropsids. BMC Evol Biol 2014; 14:30. [PMID: 24552453 PMCID: PMC4015844 DOI: 10.1186/1471-2148-14-30] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/05/2013] [Indexed: 01/06/2023] Open
Abstract
Background The neuropeptide Kiss and its receptor KissR are key-actors in the brain control of reproduction in mammals, where they are responsible for the stimulation of the activity of GnRH neurones. Investigation in other vertebrates revealed up to 3 Kiss and 4 KissR paralogs, originating from the two rounds of whole genome duplication in early vertebrates. In contrast, the absence of Kiss and KissR has been suggested in birds, as no homologs of these genes could be found in current genomic databases. This study aims at addressing the question of the existence, from an evolutionary perspective, of the Kisspeptin system in birds. It provides the first large-scale investigation of the Kisspeptin system in the sauropsid lineage, including ophidian, chelonian, crocodilian, and avian lineages. Results Sauropsid Kiss and KissR genes were predicted from multiple genome and transcriptome databases by TBLASTN. Phylogenetic and syntenic analyses were performed to classify predicted sauropsid Kiss and KissR genes and to re-construct the evolutionary scenarios of both gene families across the sauropsid radiation. Genome search, phylogenetic and synteny analyses, demonstrated the presence of two Kiss genes (Kiss1 and Kiss2 types) and of two KissR genes (KissR1 and KissR4 types) in the sauropsid lineage. These four genes, also present in the mammalian lineage, would have been inherited from their common amniote ancestor. In contrast, synteny analyses supported that the other Kiss and KissR paralogs are missing in sauropsids as in mammals, indicating their absence in the amniote lineage. Among sauropsids, in the avian lineage, we demonstrated the existence of a Kiss2-like gene in three bird genomes. The divergence of these avian Kiss2-like sequences from those of other vertebrates, as well as their absence in the genomes of some other birds, revealed the processes of Kiss2 gene degeneration and loss in the avian lineage. Conclusion These findings contribute to trace back the evolutionary history of the Kisspeptin system in amniotes and sauropsids, and provide the first molecular evidence of the existence and fate of a Kiss gene in birds.
Collapse
Affiliation(s)
| | | | | | | | | | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, UMR Biology of Aquatic Organisms and Ecosystems (BOREA), CNRS 7208, IRD 207, UPMC, Sorbonne Universités, F-75231 Paris Cedex 05, France.
| |
Collapse
|
86
|
Weber GM, Lee CS. Current and future assisted reproductive technologies for fish species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 752:33-76. [PMID: 24170354 DOI: 10.1007/978-1-4614-8887-3_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Food and Agriculture Organization of the United Nations (FAO) estimates that in 2012 aquaculture production of fish will meet or exceed that of the capture fisheries for the first time. Thus, we have just turned the corner from a predominantly hunting gathering approach to meeting our nutritional needs from fish, to a farming approach. In 2012, 327 finfish species and five hybrids were covered by FAO aquaculture statistics, although farming of carps, tilapias, salmonids, and catfishes account for most of food-fish production from aquaculture. Although for most major species at least part of production is based on what might be considered domesticated animals, only limited production in most species is based on farming of improved lines of fish or is fully independent of wild seedstock. Consistent with the infancy of most aquaculture industries, much of the development and implementation of reproductive technologies over the past 100 years has been directed at completion of the life cycle in captivity in order to increase seed production and begin the process of domestication. The selection of species to farm and the emphasis of selective breeding must also take into account other ways to modify performance of an animal. Reproductive technologies have also been developed and implemented to affect many performance traits among fishes. Examples include technologies to control gender, alter time of sexual maturation, and induce sterilization. These technologies help take advantage of sexually dimorphic growth, overcome problems with growth performance and flesh quality associated with sexual maturation, and genetic containment. Reproductive technologies developed to advance aquaculture and how these technologies have been implemented to advance various sectors of the aquaculture industry are discussed. Finally, we will present some thoughts regarding future directions for reproductive technologies and their applications in finfish aquaculture.
Collapse
Affiliation(s)
- Gregory M Weber
- National Center for Cool and Coldwater Aquaculture, ARS/USDA, 11861 Leetown Road, Kearneysville, WV, 25430, USA,
| | | |
Collapse
|
87
|
Badruzzaman M, Bapary MAJ, Takemura A. Possible roles of photoperiod and melatonin in reproductive activity via changes in dopaminergic activity in the brain of a tropical damselfish, Chrysiptera cyanea. Gen Comp Endocrinol 2013; 194:240-7. [PMID: 24090612 DOI: 10.1016/j.ygcen.2013.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 12/20/2022]
Abstract
The perception of periodical change in photoperiodic conditions by photosensory organs is the first step to initiating reproductive activity in fish. To date, it is not known how photoperiodic cues are endogenously transduced to the endocrine network of the brain-pituitary-gonad axis after the perception of photoperiodic stimuli. Because dopamine (DA) inhibits gonadotropin release from the pituitary in certain teleosts, it is likely that it is a key mediator of photoperiodic stimulation. We examined the relationship between photoperiodicity and dopaminergic activity in the brain of the sapphire devil Chrysiptera cyanea, which is a reef-associated damselfish and uses long-day conditions for triggering gonadal development. DA and 3,4-dihydroxyphenylacetic acid (DOPAC; DA metabolite) were measured electrochemically with a high-performance liquid chromatography (HPLC) system, and then DOPAC/DA (metabolic rate of DA activity) was determined. Daily fluctuations in DA, DOPAC, and DOPAC/DA were observed under LD 12:12. Light-dark cycles, but not constant conditions, influenced DA and DOPAC contents as well as DOPAC/DA in the brain; DOPAC content and DOPAC/DA increased under LD 14:10, while DA increased under LD 10:14. When fish were reared in melatonin-containing water, DOPAC and DOPAC/DA, but not DA, decreased within 6h after treatment. Culturing the isolated brain with melatonin stimulated DA release into the medium. Active vitellogenesis in females during the reproductive season was suppressed by melatonin treatment. These results suggest that day length alters DA metabolism in the brain of the sapphire devil through fluctuations in melatonin caused by external light stimuli, and that inhibitory effects on gonadal development are partially controlled by interactions within the melatonin-DA system.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | | | | |
Collapse
|
88
|
Grey CL, Chang JP. Differential modulation of ghrelin-induced GH and LH release by PACAP and dopamine in goldfish pituitary cells. Gen Comp Endocrinol 2013; 191:215-24. [PMID: 23851105 DOI: 10.1016/j.ygcen.2013.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
Ghrelin (GRLN) participates in multiple physiological processes, including the regulation of growth hormone (GH) and luteinizing hormone (LH) release. In the goldfish, neuroendocrine control of GH and LH release are multifactorial. In this system, pituitary adenylate cyclase-activating polypeptide (PACAP)-stimulated GH and LH secretion, as well as dopamine (DA)-induced GH release, are mediated by protein kinase A (PKA)-dependent, but protein kinase C (PKC)-independent, mechanisms. In addition, DA inhibits LH secretion by actions at sites along both PKA and PKC signaling pathways. Recently, goldfish GRLN (gGRLN19) has been shown to induce GH release via PKC, and LH secretion via both PKC and PKA. To further understand the neuroendocrine regulation of goldfish GH and LH release, we examined the effects of DA and PACAP on gGRLN19 actions in primary cultures of goldfish pituitary cells in perifusion and in Ca(2+)-imaging experiments. Consistent with their known intracellular signaling mechanisms in gonadotrophs, DA inhibited gGRLN19-induced LH release while cotreatment of PACAP and gGRLN19 did not produce additive LH responses. When applied prior to gGRLN19, PACAP potentiated gGRLN19-induced GH release and Ca(2+) signals within somatotrophs. In contrast, neither prior treatment with DA followed by gGRLN19 nor pretreatment with gGRLN19 prior to PACAP produced an enhanced GH release response. These observations suggest that PKA activators positively modulate gGRLN19 actions on goldfish somatotrophs in a ligand- and treatment order-specific manner. Results add to our understanding of the complexity of neuroendocrine control of GH and LH release at the pituitary cell level, and our understanding of GRLN action.
Collapse
Affiliation(s)
- Caleb L Grey
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | |
Collapse
|
89
|
Liu Y, Li S, Qi X, Zhou W, Liu X, Lin H, Zhang Y, Cheng CHK. A novel neuropeptide in suppressing luteinizing hormone release in goldfish, Carassius auratus. Mol Cell Endocrinol 2013; 374:65-72. [PMID: 23623870 DOI: 10.1016/j.mce.2013.04.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 11/26/2022]
Abstract
The fish reproductive axis is regulated by many neuroendocrine factors. However, factors involved in the suppression of this axis are largely uncharacterized. In this study, we describe a novel neuropeptide derived from the spexin precursor acting as a negative factor to suppress the reproductive axis in teleost. The cDNA sequences of the spexin precursors have been cloned from both zebrafish and goldfish. A 14-aa mature peptide with the C-terminal amidated (spexin-14a: NWTPQAMLYLKGTQ-NH2) is conceivably generated by processing of the spexin precursors in both species. Spexin is mainly expressed in the brain and ovary of zebrafish and spexin-14a-ir cells are located in several brain regions of goldfish. Functionally, goldfish spexin-14a could significantly suppress luteinizing hormone (LH) release in cultured goldfish pituitary cells. Moreover, intraperitoneal injection of spexin-14a could effectively suppress serum LH level. The mRNA expression of spexin is lower in the breeding season and hypothalamic expression of spexin is regulated by gonadal hormones. These results constitute the first report on the novel role of spexin in the negative regulation of the reproductive axis in teleost.
Collapse
Affiliation(s)
- Yun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Fontaine R, Affaticati P, Yamamoto K, Jolly C, Bureau C, Baloche S, Gonnet F, Vernier P, Dufour S, Pasqualini C. Dopamine inhibits reproduction in female zebrafish (Danio rerio) via three pituitary D2 receptor subtypes. Endocrinology 2013; 154:807-18. [PMID: 23295741 DOI: 10.1210/en.2012-1759] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In many teleosts, the stimulatory control of gonadotrope axis by GnRH is opposed by an inhibitory control by dopamine (DA). The functional importance of this inhibitory pathway differs widely from one teleostean species to another. The zebrafish (Danio rerio) is a teleost fish that has become increasingly popular as an experimental vertebrate model. However, the role of DA in the neuroendocrine control of its reproduction has never been studied. Here the authors evaluated in sexually regressed female zebrafish the effects of in vivo treatments with a DA D2 receptor (D2-R) antagonist domperidone, or a GnRH agonist, alone and in combination, on the pituitary level of FSHβ and LHβ transcripts, the gonadosomatic index, and the ovarian histology. Only the double treatment with GnRH agonist and domperidone could induce an increase in the expression of LHβ, in the gonadosomatic index, and a stimulation of ovarian vitellogenesis, indicating that removal of dopaminergic inhibition is required for the stimulatory action of GnRH and reactivation of ovarian function to occur. Using double immunofluorescent staining on pituitary, the authors showed in this species the innervation of LH cells by tyrosine-hydroxylase immunoreactive fibers. Finally, using in situ hybridization and immunofluorescence, the authors showed that the three subtypes of zebrafish DA D2-R (D2a, D2b, and D2c) were expressed in LH-producing cells, suggesting that they all may be involved in mediating this inhibition. These results show for the first time that, in zebrafish, DA has a direct and potent inhibitory action capable of opposing the stimulatory effect of GnRH in the neuroendocrine control of reproduction.
Collapse
Affiliation(s)
- Romain Fontaine
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 3294, Neurobiologie et Développement, Avenue de la Terrasse, bat 5E, Gif-sur-Yvette, 91198 Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Pasquier J, Lafont AG, Jeng SR, Morini M, Dirks R, van den Thillart G, Tomkiewicz J, Tostivint H, Chang CF, Rousseau K, Dufour S. Multiple kisspeptin receptors in early osteichthyans provide new insights into the evolution of this receptor family. PLoS One 2012. [PMID: 23185286 PMCID: PMC3502363 DOI: 10.1371/journal.pone.0048931] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deorphanization of GPR54 receptor a decade ago led to the characterization of the kisspeptin receptor (Kissr) in mammals and the discovery of its major role in the brain control of reproduction. While a single gene encodes for Kissr in eutherian mammals including human, other vertebrates present a variable number of Kissr genes, from none in birds, one or two in teleosts, to three in an amphibian, xenopus. In order to get more insight into the evolution of Kissr gene family, we investigated the presence of Kissr in osteichthyans of key-phylogenetical positions: the coelacanth, a representative of early sarcopterygians, the spotted gar, a non-teleost actinopterygian, and the European eel, a member of an early group of teleosts (elopomorphs). We report the occurrence of three Kissr for the first time in a teleost, the eel. As measured by quantitative RT-PCR, the three eel Kissr were differentially expressed in the brain-pituitary-gonadal axis, and differentially regulated in experimentally matured eels, as compared to prepubertal controls. Subfunctionalisation, as shown by these differences in tissue distribution and regulation, may have represented significant evolutionary constraints for the conservation of multiple Kissr paralogs in this species. Furthermore, we identified four Kissr in both coelacanth and spotted gar genomes, providing the first evidence for the presence of four Kissr in vertebrates. Phylogenetic and syntenic analyses supported the existence of four Kissr paralogs in osteichthyans and allowed to propose a clarified nomenclature of Kissr (Kissr-1 to -4) based on these paralogs. Syntenic analysis suggested that the four Kissr paralogs arose through the two rounds of whole genome duplication (1R and 2R) in early vertebrates, followed by multiple gene loss events in the actinopterygian and sarcopterygian lineages. Due to gene loss there was no impact of the teleost-specific whole genome duplication (3R) on the number of Kissr paralogs in current teleosts.
Collapse
Affiliation(s)
- Jérémy Pasquier
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208- IRD207- UPMC, Paris, France
| | - Anne-Gaëlle Lafont
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208- IRD207- UPMC, Paris, France
| | - Shan-Ru Jeng
- National Kaohsiung Marine University, Department of Aquaculture, Kaohsiung, Taiwan
| | - Marina Morini
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208- IRD207- UPMC, Paris, France
| | - Ron Dirks
- Leiden University, ZF-screens B.V. and Institute of Biology, Leiden, The Netherlands
| | | | - Jonna Tomkiewicz
- Technical University of Denmark, National Institute of Aquatic Resources, Charlottenlund, Denmark
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, UMR 7221 CNRS/MNHN Evolution des Régulations Endocriniennes, Paris, France
| | - Ching-Fong Chang
- National Taiwan Ocean University, Department of Aquaculture and Center of Excellence for Marine Bioenvironment and Biotechnology, Keelung, Taiwan
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208- IRD207- UPMC, Paris, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208- IRD207- UPMC, Paris, France
- * E-mail:
| |
Collapse
|
92
|
Singh U, Kumar S, Singru PS. Interaction between dopamine- and isotocin-containing neurones in the preoptic area of the catfish, Clarias batrachus: role in the regulation of luteinising hormone cells. J Neuroendocrinol 2012; 24:1398-411. [PMID: 22672503 DOI: 10.1111/j.1365-2826.2012.02350.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Apart from gonadotrophin-releasing hormone (GnRH) and dopamine (DA), oxytocin has emerged as an important endogenous agent that regulates reproduction. Although the interaction between these factors has been extensively studied in mammals, parallel information in teleosts is much limited. We studied the organisation of tyrosine hydroxylase (TH; a marker for dopamine) and isotocin neurones in the preoptic area (POA) and hypothalamus of the catfish, Clarias batrachus and its implication in the regulation of luteinising hormone (LH) cells in the pituitary. Nucleus preopticus periventricularis (NPP), a major dopaminergic centre in the brain, consists of anterior (NPPa) and posterior (NPPp) subdivisions. Using retrograde neuronal tracing, we found that majority of the DA neurones in NPPa, but none from NPPp, project to the pituitary. The nucleus preopticus (NPO) of C. batrachus contains a conspicuous assemblage of large isotocin-positive neurones. It consists of a paraventricular subdivision (NPOpv) located on either side of the third ventricle and lies roughly sandwiched between the dopaminergic neurones of NPPa and NPPp. An additional subset of isotocin neurones was located above the optic chiasm in the supraoptic subdivision of the NPO (NPOso). Isotocin-containing neurones in both the subdivisions of NPO were densely innervated by DA fibres. Superfusion of the POA-containing brain slices with DA D(1) -like receptor agonist (SKF-38393) resulted in significant increase in isotocin immunoreactivity in the NPOpv neurones; NPOso neurones did not respond. However, treatment with DA D(2) -like receptor agonist (quinpirole) reduced isotocin immunoreactivity in the NPOso, but not in the NPOpv. Thus, DA appears to differentially regulate the components of isotocinergic system. Isotocin fibres extend to the pituitary and terminate on LH cells and the superfused pituitary slices treated with isotocin caused significant reduction in LHβ-immunoreactivity. An elaborate interplay between the DA and isotocin systems appears to be an important component of the LH regulatory system.
Collapse
Affiliation(s)
- U Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Institute of Physics Campus, Bhubaneswar, Orissa, India
| | | | | |
Collapse
|
93
|
He Y, Wiseman SB, Wang N, Perez-Estrada LA, El-Din MG, Martin JW, Giesy JP. Transcriptional responses of the brain-gonad-liver axis of fathead minnows exposed to untreated and ozone-treated oil sands process-affected water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9701-9708. [PMID: 22856545 DOI: 10.1021/es3019258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oil sands process-affected water (OSPW) produced by the surface mining oil sands industry in Alberta, Canada, is toxic to aquatic organisms. Ozonation of OSPW attenuates this toxicity. Altered concentrations of sex steroid hormones, impaired reproductive performance, and less prominent secondary sexual characteristics have been reported for fish exposed to OSPW. However, the mechanism(s) by which these effects occur and whether ozonation can attenuate these effects in fish was unknown. The objective of this in vivo study was to investigate the endocrine-disrupting effects of OSPW and ozone-treated OSPW on the abundances of transcripts of genes in the brain-gonad-liver (BGL) axis in male and female fathead minnows (Pimephales promelas). Abundances of transcripts of genes important for synthesis of gonadotropins were greater in brains from both male and female fish exposed to untreated OSPW compared to that of control fish. In gonads from male fish exposed to untreated OSPW the abundances of transcripts of gonadotropin receptors and several enzymes of sex hormone steroidogenesis were greater than in control fish. The abundances of transcripts of estrogen-responsive genes were greater in livers from male fish exposed to untreated OSPW than in control fish. In female fish exposed to untreated OSPW there was less abundance of transcripts of gonadotropin receptors in gonads, as well as less abundance of transcripts of estrogen-responsive genes in livers. Many effects were either fully or partially attenuated in fish exposed to ozone-treated OSPW. The results indicate that (1) OSPW has endocrine-disrupting effects at all levels of BGL axis, (2) OSPW has different effects in male and female fish, (3) ozonation attenuates the effects of OSPW on abundances of transcripts of some genes, and the attenuation is more prominent in males than in females, but effects of ozonation on endocrine-disrupting effects of OSPW were less clear than in previous in vitro studies. The results provide a mechanistic basis for the endocrine-disrupting effects of OSPW from other studies.
Collapse
Affiliation(s)
- Yuhe He
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | | | |
Collapse
|
94
|
Kroupova H, Trubiroha A, Wuertz S, Frank SN, Sures B, Kloas W. Nutritional status and gene expression along the somatotropic axis in roach (Rutilus rutilus) infected with the tapeworm Ligula intestinalis. Gen Comp Endocrinol 2012; 177:270-7. [PMID: 22542897 DOI: 10.1016/j.ygcen.2012.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/16/2012] [Accepted: 04/10/2012] [Indexed: 12/23/2022]
Abstract
The tapeworm Ligula intestinalis inhibits gametogenesis of its fish host, the roach (Rutilus rutilus). We investigated whether L. intestinalis infection makes significant demands on nutritional resources and consequently manipulates the endocrine somatotropic axis of roach. Two groups of naturally infected and uninfected roach were studied: a field group (natural feeding) and a laboratory group (ad libitum food supply). In females, no significant impact of parasitization on storage substrates (glycogen, lipids, and protein) was detected, whereas in males, either lipid content of the liver (field group) or lipid of the muscle and glycogen of the liver (laboratory group) were slightly decreased. Except for the females of the field group, higher mRNA expression of growth hormone (gh) in the pituitary of infected fish was observed. Furthermore, the expression of hypophyseal somatolactin α and β (slα, slβ) was up-regulated in infected females of the field and laboratory group, respectively. In liver and muscle, mRNA expression of insulin-like growth factors (igf1, igf2) and igf receptor (igfr) remained either unchanged or were up-regulated with infection. Parasitization showed inconsistent effects on gh receptor 1 (ghr1) expression in liver and muscle, whereas ghr2 mRNA was mostly not influenced by infection. In general, the expression profile of genes involved in the somatotropic axis as well as the content of storage substances in infected roach did not resemble that of food-deprived fish either under natural or ad libitum feeding. In conclusion, the present study does not indicate starvation of L. intestinalis infected roach, and it is suggested that the inhibition of reproduction attenuated the nutritional demand of parasitization.
Collapse
Affiliation(s)
- H Kroupova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, CZ-38925 Vodnany, Czech Republic.
| | | | | | | | | | | |
Collapse
|
95
|
Aroua S, Maugars G, Jeng SR, Chang CF, Weltzien FA, Rousseau K, Dufour S. Pituitary gonadotropins FSH and LH are oppositely regulated by the activin/follistatin system in a basal teleost, the eel. Gen Comp Endocrinol 2012; 175:82-91. [PMID: 22019479 DOI: 10.1016/j.ygcen.2011.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/01/2011] [Accepted: 10/03/2011] [Indexed: 01/28/2023]
Abstract
European eels are blocked at a prepubertal silver stage due to a deficient production of pituitary gonadotropins. We investigated the potential role of activin/follistatin system in the control of eel gonadotropins. Through the development of qPCR assays for European eel activin β(B) and follistatin, we first analyzed the tissue distribution of the expression of these two genes. Both activin β(B) and follistatin are expressed in the brain, pituitary and gonads. In addition, a striking expression of both transcripts was also found in the retina and in adipose tissue. The effects of recombinant human activins and follistatin on eel gonadotropin gene expression were studied using primary cultures of eel pituitary cells. Activins A and B strongly stimulated FSHβ subunit expression in a time- and dose-dependent manner. In contrast, activin reduced LHβ expression, an inhibitory effect which was highlighted in the presence of testosterone, a known activator of eel LHβ expression. No effect of activin was observed on other pituitary hormones. Follistatin antagonized both the stimulatory and inhibitory effects of activin on FSHβ and LHβ expression, respectively. Activin is the first major stimulator of FSH expression evidenced in the eel. These results in a basal teleost further support the ancient origin and strong conservation of the activin/follistatin system in the control of FSH in vertebrates. In contrast, the opposite regulation of FSH and LH may have emerged in the teleost lineage.
Collapse
Affiliation(s)
- Salima Aroua
- Laboratory of Biology of Aquatic Organisms and Ecosystems, UMR CNRS 7208-IRD 207-UPMC, Muséum National d'Histoire Naturelle, 7 rue Cuvier, CP 32, 75231 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
96
|
Popesku JT, Martyniuk CJ, Trudeau VL. Meta-type analysis of dopaminergic effects on gene expression in the neuroendocrine brain of female goldfish. Front Endocrinol (Lausanne) 2012; 3:130. [PMID: 23130016 PMCID: PMC3487223 DOI: 10.3389/fendo.2012.00130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/12/2012] [Indexed: 12/14/2022] Open
Abstract
Dopamine (DA) is a major neurotransmitter important for neuroendocrine control and recent studies have described genomic signaling pathways activated and inhibited by DA agonists and antagonists in the goldfish brain. Here we perform a meta-type analysis using microarray datasets from experiments conducted with female goldfish to characterize the gene expression responses that underlie dopaminergic signaling. Sexually mature, pre-spawning [gonadosomatic index (GSI) = 4.5 ± 1.3%] or sexually regressing (GSI = 3 ± 0.4%) female goldfish (15-40 g) injected intraperitoneally with either SKF 38393, LY 171555, SCH 23390, sulpiride, or a combination of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and α-methyl-p-tyrosine. Microarray meta-type analysis identified 268 genes in the telencephalon and hypothalamus as having reciprocal (i.e., opposite between agonism and antagonism/depletion) fold change responses, suggesting that these transcripts are likely targets for DA-mediated regulation. Noteworthy genes included ependymin, vimentin, and aromatase, genes that support the significance of DA in neuronal plasticity and tissue remodeling. Sub-network enrichment analysis (SNEA) was used to identify common gene regulators and binding proteins associated with the differentially expressed genes mediated by DA. SNEA analysis identified gene expression targets that were related to three major categories that included cell signaling (STAT3, SP1, SMAD, Jun/Fos), immune response (IL-6, IL-1β, TNFs, cytokine, NF-κB), and cell proliferation and growth (IGF1, TGFβ1). These gene networks are also known to be associated with neurodegenerative disorders such as Parkinsons' disease, well-known to be associated with loss of dopaminergic neurons. This study identifies genes and networks that underlie DA signaling in the vertebrate CNS and provides targets that may be key neuroendocrine regulators. The results provide a foundation for future work on dopaminergic regulation of gene expression in fish model systems.
Collapse
Affiliation(s)
- Jason T. Popesku
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of OttawaOttawa, ON, Canada
- *Correspondence: Jason T. Popesku, Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5. e-mail: ; Vance L. Trudeau, Department of Biology, University of Ottawa, Room 160, Gendron Hall, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5. e-mail:
| | - Christopher J. Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New BrunswickSaint John, NB, Canada
| | - Vance L. Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of OttawaOttawa, ON, Canada
- *Correspondence: Jason T. Popesku, Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5. e-mail: ; Vance L. Trudeau, Department of Biology, University of Ottawa, Room 160, Gendron Hall, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5. e-mail:
| |
Collapse
|
97
|
Yamamoto K, Vernier P. The evolution of dopamine systems in chordates. Front Neuroanat 2011; 5:21. [PMID: 21483723 PMCID: PMC3070214 DOI: 10.3389/fnana.2011.00021] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/15/2011] [Indexed: 12/24/2022] Open
Abstract
Dopamine (DA) neurotransmission in the central nervous system (CNS) is found throughout chordates, and its emergence predates the divergence of chordates. Many of the molecular components of DA systems, such as biosynthetic enzymes, transporters, and receptors, are shared with those of other monoamine systems, suggesting the common origin of these systems. In the mammalian CNS, the DA neurotransmitter systems are diversified and serve for visual and olfactory perception, sensory–motor programming, motivation, memory, emotion, and endocrine regulations. Some of the functions are conserved among different vertebrate groups, while others are not, and this is reflected in the anatomical aspects of DA systems in the forebrain and midbrain. Recent findings concerning a second tyrosine hydroxylase gene (TH2) revealed new populations of DA-synthesizing cells, as evidenced in the periventricular hypothalamic zones of teleost fish. It is likely that the ancestor of vertebrates possessed TH2 DA-synthesizing cells, and the TH2 gene has been lost secondarily in placental mammals. All the vertebrates possess DA cells in the olfactory bulb, retina, and in the diencephalon. Midbrain DA cells are abundant in amniotes while absent in some groups, e.g., teleosts. Studies of protochordate DA cells suggest that the diencephalic DA cells were present before the divergence of the chordate lineage. In contrast, the midbrain cell populations have probably emerged in the vertebrate lineage following the development of the midbrain–hindbrain boundary. The functional flexibility of the DA systems, and the evolvability provided by duplication of the corresponding genes permitted a large diversification of these systems. These features were instrumental in the adaptation of brain functions to the very variable way of life of vertebrates.
Collapse
Affiliation(s)
- Kei Yamamoto
- Neurobiology and Development (UPR3294), Institute of Neurobiology Alfred Fessard, CNRS Gif-sur-Yvette, France
| | | |
Collapse
|
98
|
Reproductive physiology of fishes. JOURNAL OF FISH BIOLOGY 2010; 76:1-6. [PMID: 20738697 DOI: 10.1111/j.1095-8649.2009.02529.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|