51
|
Garrido-Bazán V, Pardo JP, Aguirre J. DnmA and FisA Mediate Mitochondria and Peroxisome Fission, and Regulate Mitochondrial Function, ROS Production and Development in Aspergillus nidulans. Front Microbiol 2020; 11:837. [PMID: 32477294 PMCID: PMC7232558 DOI: 10.3389/fmicb.2020.00837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
The dynamin-like protein Drp1 and its receptor Fis-1 are required for mitochondria and peroxisome fission in animal and yeast cells. Here, we show that in the fungus Aspergillus nidulans the lack of Drp1 and Fis-1 homologs DnmA and FisA has strong developmental defects, leading to a notable decrease in hyphal growth and asexual and sexual sporulation, with some of these defects being aggravated or partially remediated by different carbon sources. Although both DnmA and FisA, are essential for mitochondrial fission, participate in peroxisomal division and are fully required for H2O2-induced mitochondrial division, they also appear to play differential functions. Despite their lack of mitochondrial division, ΔdnmA and ΔfisA mutants segregate mitochondria to conidiogenic cells and produce viable conidia that inherit a single mitochondrion. During sexual differentiation, ΔdnmA and ΔfisA mutants develop fruiting bodies (cleistothecia) that differentiate excessive ascogenous tissue and a reduced number of viable ascospores. ΔdnmA and ΔfisA mutants show decreased respiration and notably high levels of mitochondrial reactive oxygen species (ROS), which likely correspond to superoxide. Regardless of this, ΔdnmA mutants can respond to an external H2O2 challenge by re-localizing the MAP kinase-activated protein kinase (MAPKAP) SrkA from the cytoplasm to the nuclei. Our results show that ROS levels regulate mitochondrial dynamics while a lack of mitochondrial fission results in lower respiration, increased mitochondrial ROS and developmental defects, indicating that ROS, mitochondrial division and development are critically interrelated processes.
Collapse
Affiliation(s)
- Verónica Garrido-Bazán
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
52
|
Drott MT, Bastos RW, Rokas A, Ries LNA, Gabaldón T, Goldman GH, Keller NP, Greco C. Diversity of Secondary Metabolism in Aspergillus nidulans Clinical Isolates. mSphere 2020; 5:e00156-20. [PMID: 32269157 PMCID: PMC7142299 DOI: 10.1128/msphere.00156-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/11/2020] [Indexed: 01/30/2023] Open
Abstract
The filamentous fungus Aspergillus nidulans has been a primary workhorse used to understand fungal genetics. Much of this work has focused on elucidating the genetics of biosynthetic gene clusters (BGCs) and the secondary metabolites (SMs) they produce. SMs are both niche defining in fungi and of great economic importance to humans. Despite the focus on A. nidulans, very little is known about the natural diversity in secondary metabolism within this species. We determined the BGC content and looked for evolutionary patterns in BGCs from whole-genome sequences of two clinical isolates and the A4 reference genome of A. nidulans Differences in BGC content were used to explain SM profiles determined using liquid chromatography-high-resolution mass spectrometry. We found that in addition to genetic variation of BGCs contained by all isolates, nine BGCs varied by presence/absence. We discovered the viridicatumtoxin BGC in A. nidulans and suggest that this BGC has undergone a horizontal gene transfer from the Aspergillus section Nigri lineage into Penicillium sometime after the sections Nigri and Nidulantes diverged. We identified the production of viridicatumtoxin and several other compounds previously not known to be produced by A. nidulans One isolate showed a lack of sterigmatocystin production even though it contained an apparently intact sterigmatocystin BGC, raising questions about other genes and processes known to regulate this BGC. Altogether, our work uncovers a large degree of intraspecies diversity in BGC and SM production in this genetic model species and offers new avenues to understand the evolution and regulation of secondary metabolism.IMPORTANCE Much of what we know about the genetics underlying secondary metabolite (SM) production and the function of SMs in the model fungus Aspergillus nidulans comes from a single reference genome. A growing body of research indicates the importance of biosynthetic gene cluster (BGC) and SM diversity within a species. However, there is no information about the natural diversity of secondary metabolism in A. nidulans We discovered six novel clusters that contribute to the considerable variation in both BGC content and SM production within A. nidulans We characterize a diverse set of mutations and emphasize how findings of single nucleotide polymorphisms (SNPs), deletions, and differences in evolutionary history encompass much of the variation observed in nonmodel systems. Our results emphasize that A. nidulans may also be a strong model to use within-species diversity to elucidate regulatory cross talk, fungal ecology, and drug discovery systems.
Collapse
Affiliation(s)
- M T Drott
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - R W Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - A Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - L N A Ries
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - T Gabaldón
- Life Sciences Program, Barcelona Supercomputing Centre, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - G H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - N P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - C Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
53
|
Abstract
Aspergilli produce conidia for reproduction or to survive hostile conditions, and they are highly effective in the distribution of conidia through the environment. In immunocompromised individuals, inhaled conidia can germinate inside the respiratory tract, which may result in invasive pulmonary aspergillosis. The management of invasive aspergillosis has become more complex, with new risk groups being identified and the emergence of antifungal resistance. Patient survival is threatened by these developments, stressing the need for alternative therapeutic strategies. As germination is crucial for infection, prevention of this process might be a feasible approach. A broader understanding of conidial germination is important to identify novel antigermination targets. In this review, we describe conidial resistance against various stresses, transition from dormant conidia to hyphal growth, the underlying molecular mechanisms involved in germination of the most common Aspergillus species, and promising antigermination targets. Germination of Aspergillus is characterized by three morphotypes: dormancy, isotropic growth, and polarized growth. Intra- and extracellular proteins play an important role in the protection against unfavorable environmental conditions. Isotropically expanding conidia remodel the cell wall, and biosynthetic machineries are needed for cellular growth. These biosynthetic machineries are also important during polarized growth, together with tip formation and the cell cycle machinery. Genes involved in isotropic and polarized growth could be effective antigermination targets. Transcriptomic and proteomic studies on specific Aspergillus morphotypes will improve our understanding of the germination process and allow discovery of novel antigermination targets and biomarkers for early diagnosis and therapy.
Collapse
|
54
|
Transcription Factor Atf1 Regulates Expression of Cellulase and Xylanase Genes during Solid-State Fermentation of Ascomycetes. Appl Environ Microbiol 2019; 85:AEM.01226-19. [PMID: 31604764 DOI: 10.1128/aem.01226-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/03/2019] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulation of cellulolytic and xylolytic genes in ascomycete fungi is controlled by specific carbon sources in different external environments. Here, comparative transcriptomic analyses of Penicillium oxalicum grown on wheat bran (WB), WB plus rice straw (WR), or WB plus Avicel (WA) as the sole carbon source under solid-state fermentation (SSF) revealed that most of the differentially expressed genes (DEGs) were involved in metabolism, specifically, carbohydrate metabolism. Of the DEGs, the basic core carbohydrate-active enzyme-encoding genes which responded to the plant biomass resources were identified in P. oxalicum, and their transcriptional levels changed to various extents depending on the different carbon sources. Moreover, this study found that three deletion mutants of genes encoding putative transcription factors showed significant alterations in filter paper cellulase production compared with that of a parental P. oxalicum strain with a deletion of Ku70 (ΔPoxKu70 strain) when grown on WR under SSF. Importantly, the ΔPoxAtf1 mutant (with a deletion of P. oxalicum Atf1, also called POX03016) displayed 46.1 to 183.2% more cellulase and xylanase production than a ΔPoxKu70 mutant after 2 days of growth on WR. RNA sequencing and quantitative reverse transcription-PCR revealed that PoxAtf1 dynamically regulated the expression of major cellulase and xylanase genes under SSF. PoxAtf1 bound to the promoter regions of the key cellulase and xylanase genes in vitro This study provides novel insights into the regulatory mechanism of fungal cellulase and xylanase gene expression under SSF.IMPORTANCE The transition to a more environmentally friendly economy encourages studies involving the high-value-added utilization of lignocellulosic biomass. Solid-state fermentation (SSF), that simulates the natural habitat of soil microorganisms, is used for a variety of applications such as biomass biorefinery. Prior to the current study, our understanding of genome-wide gene expression and of the regulation of gene expression of lignocellulose-degrading enzymes in ascomycete fungi during SSF was limited. Here, we employed RNA sequencing and genetic analyses to investigate transcriptomes of Penicillium oxalicum strain EU2101 cultured on medium containing different carbon sources and to identify and characterize transcription factors for regulating the expression of cellulase and xylanase genes during SSF. The results generated will provide novel insights into genetic engineering of filamentous fungi to further increase enzyme production.
Collapse
|
55
|
Antal K, Gila BC, Pócsi I, Emri T. General stress response or adaptation to rapid growth in Aspergillus nidulans? Fungal Biol 2019; 124:376-386. [PMID: 32389300 DOI: 10.1016/j.funbio.2019.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022]
Abstract
Genome-wide transcriptional changes in Aspergillus nidulans induced by nine different stress conditions were evaluated to reveal the general environmental stress response gene set showing unidirectional expressional changes under various types of stress. Clustering the genes by their transcriptional changes was a useful technique for identifying large groups of co-regulated genes. Altogether, 1642 co-upregulated and 3916 co-downregulated genes were identified. Nevertheless, the co-regulated genes describe the difference between the transcriptomes recorded under the stress conditions tested and one chosen reference culture condition which is designated as the "unstressed" condition. Obviously, the corresponding transcriptional differences may be attributed to either the general stress response or the reference condition. Accordingly, reduced growth and increased transcription of certain antioxidative enzymes observed under stress may be interpreted as elements of the general stress response or as a feature of the "optimal growth" reference condition and decreased antioxidative protection due to "rapid growth" stress. Reversing the many to one comparison underlying the identification of co-regulated gene sets allows the same procedure to highlight changes under a single condition with respect to a set of other "background" conditions. As an example, we compared menadione treatment to our other conditions and identified downregulation of endoplasmic reticulum dependent processes and upregulation of iron-sulfur cluster assembly as well as glutathione-S-transferase genes as changes characteristic of MSB-treated cultures. Deletion of the atfA gene markedly altered the co-regulated gene sets primarily by changing the reference transcriptome; not by changing the stress responsiveness of genes. The functional characterization of AtfA-dependent co-regulated genes demonstrated the involvement of AtfA in the regulation of both vegetative growth and conidiogenesis in untreated cultures. Our data also suggested that the diverse effects of atfA gene deletion on the transcriptome under different stress conditions were the consequence of the altered transcription of several phosphorelay signal transduction system genes, including fphA, nikA, phkA, srrB, srrC, sskA and tcsB. Hopefully, this study will draw further attention to the importance of the proper selection of reference cultures in fungal transcriptomics studies especially when elements of specific stress responses are mapped.
Collapse
Affiliation(s)
- Károly Antal
- Department of Zoology, Eszterházy Károly University, Eszterházy tér 1, Eger, 3300, Hungary
| | - Barnabás Cs Gila
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary; University of Debrecen, Doctoral School of Nutrition and Food Sciences, Egyetem tér 1, Debrecen, 4032, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
| |
Collapse
|
56
|
Wang P, Ma L, Jin J, Zheng M, Pan L, Zhao Y, Sun X, Liu Y, Xing F. The anti-aflatoxigenic mechanism of cinnamaldehyde in Aspergillus flavus. Sci Rep 2019; 9:10499. [PMID: 31324857 PMCID: PMC6642104 DOI: 10.1038/s41598-019-47003-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin B1 (AFB1), the predominant and most carcinogenic naturally polyketide, is mainly produced by Aspergillus flavus and Aspergillus parasiticus. Cinnamaldehyde has been reported for inhibiting the growth and aflatoxin biosynthesis in A. flavus. But its molecular mechanism of action still remains largely ambiguous. Here, the anti-aflatoxigenic mechanism of cinnamaldehyde in A. flavus was investigated via a comparative transcriptomic analysis. The results indicated that twenty five of thirty genes in aflatoxin cluster showed down-regulation by cinnamaldehyde although the cluster regulators aflR and aflS were slightly up-regulated. This may be due to the up-regulation of the oxidative stress-related genes srrA, msnA and atfB being caused by the significant down-regulation of the diffusible factor FluG. Cinnamaldehyde also inhibited aflatoxin formation by perturbing GPCRs and oxylipins normal function, cell wall biosynthesis and redox equilibrium. In addition, accumulation of NADPH due to up-regulation of pentose phosphate pathway drove acetyl-CoA to lipids synthesis rather than polyketides. Both GO and KEGG analysis suggested that pyruvate and phenylalanine metabolism, post-transcriptional modification and key enzymes biosynthesis might be involved in the suppression of AFB1 production by cinnamaldehyde. This study served to decipher the anti-aflatoxigenic properties of cinnamaldehyde in A. flavus and provided powerful evidence for its use in practice.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Longxue Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Mumin Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Lin Pan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Yueju Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China.
| |
Collapse
|
57
|
Zhou X, Ye J, Zheng L, Jiang P, Lu L. A new identified suppressor of Cdc7p/SepH kinase, PomA, regulates fungal asexual reproduction via affecting phosphorylation of MAPK-HogA. PLoS Genet 2019; 15:e1008206. [PMID: 31194741 PMCID: PMC6592577 DOI: 10.1371/journal.pgen.1008206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 06/25/2019] [Accepted: 05/21/2019] [Indexed: 11/19/2022] Open
Abstract
The septation initiation network (SIN), composed of a conserved SepH (Cdc7p) kinase cascade, plays an essential role in fungal cytokinesis/septation and conidiation for asexual reproduction, while the mitogen-activated protein kinase (MAPK) pathway depends on successive signaling cascade phosphorylation to sense and respond to stress and environmental factors. In this study, a SepH suppressor-PomA in the filamentous fungus A. nidulans is identified as a negative regulator of septation and conidiation such that the pomA mutant is able to cure defects of sepH1 in septation and conidiation and overexpression of pomA remarkably suppresses septation. Under the normal cultural condition, SepH positively regulates the phosphorylation of MAPK-HogA, while PomA reversely affects this process. In the absence of PbsB (MAPKK, a putative upstream member of HogA), PomA and SepH are unable to affect the phosphorylation level of HogA. Under the osmostress condition, the induced phosphorylated HogA is capable of bypassing the requirement of SepH, a key player for early events during cytokinesis but not for MobA/SidB, the last one in the core SIN protein kinase cascade, indicating the osmotic stimuli-induced septation is capable of bypassing requirement of SepH but unable to bypass the whole SIN requirement. Findings demonstrate that crosstalk exists between the SIN and MAPK pathways. PomA and SepH indirectly regulate HogA phosphorylation through affecting HogA-P upstream kinases.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Ye
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Likun Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ping Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
58
|
Manfiolli AO, Mattos EC, de Assis LJ, Silva LP, Ulaş M, Brown NA, Silva-Rocha R, Bayram Ö, Goldman GH. Aspergillus fumigatus High Osmolarity Glycerol Mitogen Activated Protein Kinases SakA and MpkC Physically Interact During Osmotic and Cell Wall Stresses. Front Microbiol 2019; 10:918. [PMID: 31134001 PMCID: PMC6514138 DOI: 10.3389/fmicb.2019.00918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/11/2019] [Indexed: 11/30/2022] Open
Abstract
Aspergillusfumigatus, a saprophytic filamentous fungus, is a serious opportunistic pathogen of mammals and it is the primary causal agent of invasive aspergillosis (IA). Mitogen activated protein Kinases (MAPKs) are important components involved in diverse cellular processes in eukaryotes. A. fumigatus MpkC and SakA, the homologs of the Saccharomyces cerevisiae Hog1 are important to adaptations to oxidative and osmotic stresses, heat shock, cell wall damage, macrophage recognition, and full virulence. We performed protein pull-down experiments aiming to identify interaction partners of SakA and MpkC by mass spectrometry analysis. In presence of osmotic stress with sorbitol, 118, and 213 proteins were detected as possible protein interactors of SakA and MpkC, respectively. Under cell wall stress caused by congo red, 420 and 299 proteins were detected interacting with SakA and MpkC, respectively. Interestingly, a group of 78 and 256 proteins were common to both interactome analysis. Co-immunoprecipitation (Co-IP) experiments showed that SakA::GFP is physically associated with MpkC:3xHA upon osmotic and cell wall stresses. We also validated the association between SakA:GFP and the cell wall integrity MAPK MpkA:3xHA and the phosphatase PtcB:3xHA, under cell wall stress. We further characterized A. fumigatus PakA, the homolog of the S. cerevisiae sexual developmental serine/threonine kinase Ste20, as a component of the SakA/MpkC MAPK pathway. The ΔpakA strain is more sensitive to cell wall damaging agents as congo red, calcofluor white, and caspofungin. Together, our data supporting the hypothesis that SakA and MpkC are part of an osmotic and general signal pathways involved in regulation of the response to the cell wall damage, oxidative stress, drug resistance, and establishment of infection. This manuscript describes an important biological resource to understand SakA and MpkC protein interactions. Further investigation of the biological roles played by these protein interactors will provide more opportunities to understand and combat IA.
Collapse
Affiliation(s)
- Adriana Oliveira Manfiolli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eliciane Cevolani Mattos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mevlüt Ulaş
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Neil Andrew Brown
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
59
|
Mendoza-Martínez AE, Cano-Domínguez N, Aguirre J. Yap1 homologs mediate more than the redox regulation of the antioxidant response in filamentous fungi. Fungal Biol 2019; 124:253-262. [PMID: 32389287 DOI: 10.1016/j.funbio.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
The regulation of gene expression in response to increased levels of reactive oxygen species (ROS) is a ubiquitous response in aerobic organisms. However, different organisms use different strategies to perceive and respond to high ROS levels. Yeast Yap1 is a paradigmatic example of a specific mechanism used by eukaryotic cells to link ROS sensing and gene regulation. The activation of this transcription factor by H2O2 is mediated by peroxiredoxins, which are widespread enzymes that use cysteine thiols to sense ROS, as well as to catalyze the reduction of peroxides to water. In filamentous fungi, Yap1 homologs and peroxiredoxins also are major regulators of the antioxidant response. However, Yap1 homologs are involved in a wider array of processes by regulating genes involved in nutrient assimilation, secondary metabolism, virulence and development. Such novel functions illustrate the divergent roles of ROS and other oxidizing compounds as important regulatory signaling molecules.
Collapse
Affiliation(s)
- Ariann E Mendoza-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Nallely Cano-Domínguez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico.
| |
Collapse
|
60
|
Simaan H, Lev S, Horwitz BA. Oxidant-Sensing Pathways in the Responses of Fungal Pathogens to Chemical Stress Signals. Front Microbiol 2019; 10:567. [PMID: 30941117 PMCID: PMC6433817 DOI: 10.3389/fmicb.2019.00567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 12/04/2022] Open
Abstract
Host defenses expose fungal pathogens to oxidants and antimicrobial chemicals. The fungal cell employs conserved eukaryotic signaling pathways and dedicated transcription factors to program its response to these stresses. The oxidant-sensitive transcription factor of yeast, YAP1, and its orthologs in filamentous fungi, are central to tolerance to oxidative stress. The C-terminal domain of YAP1 contains cysteine residues that, under oxidizing conditions, form an intramolecular disulfide bridge locking the molecule in a conformation where the nuclear export sequence is masked. YAP1 accumulates in the nucleus, promoting transcription of genes that provide the cell with the ability to counteract oxidative stress. Chemicals including xenobiotics and plant signals can also promote YAP1 nuclearization in yeast and filamentous fungi. This could happen via direct or indirect oxidative stress, or by a different biochemical pathway. Plant phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here we will discuss the evidence that YAP1 and MAPK pathways respond to phenolic compounds. Following this and other examples, we explore here how oxidative-stress sensing networks of fungi might have evolved to detect chemical stressors. Furthermore, we draw functional parallels between fungal YAP1 and mammalian Keap1-Nrf2 signaling systems.
Collapse
Affiliation(s)
- Hiba Simaan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Benjamin A Horwitz
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
61
|
Pérez-Arques C, Navarro-Mendoza MI, Murcia L, Lax C, Martínez-García P, Heitman J, Nicolás FE, Garre V. Mucor circinelloides Thrives inside the Phagosome through an Atf-Mediated Germination Pathway. mBio 2019; 10:e02765-18. [PMID: 30723131 PMCID: PMC6428757 DOI: 10.1128/mbio.02765-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022] Open
Abstract
Mucormycosis is an emerging fungal infection that is often lethal due to the ineffectiveness of current therapies. Here, we have studied the first stage of this infection-the germination of Mucor circinelloides spores inside phagocytic cells-from an integrated transcriptomic and functional perspective. A relevant fungal gene network is remodeled in response to phagocytosis, being enriched in crucial functions to survive and germinate inside the phagosome, such as nutritional adaptation and response to oxidative stress. Correspondingly, the phagocytic cells induced a specific proinflammatory and apoptotic response to the pathogenic strain. Deletion of fungal genes encoding putative transcription factors (atf1, atf2, and gcn4), extracellular proteins (chi1 and pps1), and an aquaporin (aqp1) revealed that these genes perform important roles in survival following phagocytosis, germination inside the phagosome, and virulence in mice. atf1 and atf2 play a major role in these pathogenic processes, since their mutants showed the strongest phenotypes and both genes control a complex gene network of secondarily regulated genes, including chi1 and aqp1 These new insights into the initial phase of mucormycosis define genetic regulators and molecular processes that could serve as pharmacological targets.IMPORTANCE Mucorales are a group of ancient saprophytic fungi that cause neglected infectious diseases collectively known as mucormycoses. The molecular processes underlying the establishment and progression of this disease are largely unknown. Our work presents a transcriptomic study to unveil the Mucor circinelloides genetic network triggered in fungal spores in response to phagocytosis by macrophages and the transcriptional response of the host cells. Functional characterization of differentially expressed fungal genes revealed three transcription factors and three extracellular proteins essential for the fungus to survive and germinate inside the phagosome and to cause disease in mice. Two of the transcription factors, highly similar to activating transcription factors (ATFs), coordinate a complex secondary gene response involved in pathogenesis. The significance of our research is in characterizing the initial stages that lead to evasion of the host innate immune response and, in consequence, the dissemination of the infection. This genetic study offers possible targets for novel antifungal drugs against these opportunistic human pathogens.
Collapse
Affiliation(s)
- Carlos Pérez-Arques
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| | | | - Laura Murcia
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| | - Carlos Lax
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Francisco E Nicolás
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
62
|
Tumukunde E, Li D, Qin L, Li Y, Shen J, Wang S, Yuan J. Osmotic-Adaptation Response of sakA/hogA Gene to Aflatoxin Biosynthesis, Morphology Development and Pathogenicity in Aspergillus flavus. Toxins (Basel) 2019; 11:toxins11010041. [PMID: 30646608 PMCID: PMC6356625 DOI: 10.3390/toxins11010041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/19/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Aspergillus flavus is one of the fungi from the big family of Aspergillus genus and it is capable of colonizing a large number of seed/crops and living organisms such as animals and human beings. SakA (also called hogA/hog1) is an integral part of the mitogen activated protein kinase signal of the high osmolarity glycerol pathway. In this study, the AfsakA gene was deleted (∆AfsakA) then complemented (∆AfsakA::AfsakA) using homologous recombination and the osmotic stress was induced by 1.2 mol/L D-sorbital and 1.2 mol/L sodium chloride. The result showed that ∆AfsakA mutant caused a significant influence on conidial formation compared to wild-type and ∆AfsakA::AfsakA strains. It was also found that AfsakA responds to both the osmotic stress and the cell wall stress. In the absence of osmotic stress, ∆AfsakA mutant produced more sclerotia in contrast to other strains, whereas all strains failed to generate sclerotia under osmotic stress. Furthermore, the deletion of AfsakA resulted in the increase of Aflatoxin B1 production compared to other strains. The virulence assay on both maize kernel and peanut seeds showed that ∆AfsakA strain drastically produced more conidia and Aflatoxin B1 than wild-type and complementary strains. AfSakA-mCherry was located to the cytoplasm in the absence of osmotic stress, while it translocated to the nucleus upon exposure to the osmotic stimuli. This study provides new insights on the development and evaluation of aflatoxin biosynthesis and also provides better understanding on how to prevent Aspergillus infections which would be considered the first step towards the prevention of the seeds damages caused by A. flavus.
Collapse
Affiliation(s)
- Elisabeth Tumukunde
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Ministry of Education and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ding Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Ministry of Education and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ling Qin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Ministry of Education and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Ministry of Education and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jiaojiao Shen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Ministry of Education and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Ministry of Education and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Ministry of Education and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
63
|
Fungal spores: Highly variable and stress-resistant vehicles for distribution and spoilage. Food Microbiol 2018; 81:2-11. [PMID: 30910084 DOI: 10.1016/j.fm.2018.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022]
Abstract
This review highlights the variability of fungal spores with respect to cell type, mode of formation and stress resistance. The function of spores is to disperse fungi to new areas and to get them through difficult periods. This also makes them important vehicles for food contamination. Formation of spores is a complex process that is regulated by the cooperation of different transcription factors. The discussion of the biology of spore formation, with the genus Aspergillus as an example, points to possible novel ways to eradicate fungal spore production in food. Fungi can produce different types of spores, sexual and asexually, within the same colony. The absence or presence of sexual spore formation has led to a dual nomenclature for fungi. Molecular techniques have led to a revision of this nomenclature. A number of fungal species form sexual spores, which are exceptionally stress-resistant and survive pasteurization and other treatments. A meta-analysis is provided of numerous D-values of heat-resistant ascospores generated during the years. The relevance of fungal spores for food microbiology has been discussed.
Collapse
|
64
|
Garrido-Bazán V, Jaimes-Arroyo R, Sánchez O, Lara-Rojas F, Aguirre J. SakA and MpkC Stress MAPKs Show Opposite and Common Functions During Stress Responses and Development in Aspergillus nidulans. Front Microbiol 2018; 9:2518. [PMID: 30405576 PMCID: PMC6205964 DOI: 10.3389/fmicb.2018.02518] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022] Open
Abstract
Stress activated MAP kinases (SAPKs) of the Hog1/Sty1/p38 family are specialized in transducing stress signals. In contrast to what is seen in animal cells, very few fungal species contain more than one SAPK. Aspergillus nidulans and other Aspergilli contain two SAPKs called SakA/HogA and MpkC. We have shown that SakA is essential for conidia to maintain their viability and to survive high H2O2 concentrations. H2O2 induces SakA nuclear accumulation and its interaction with transcription factor AtfA. Although SakA and MpkC show physical interaction, little is known about MpkC functions. Here we show that ΔmpkC mutants are not sensitive to oxidative stress but in fact MpkC inactivation partially restores the oxidative stress resistance of ΔsakA mutants. ΔmpkC mutants display about twofold increase in the production of fully viable conidia. The inactivation of the SakA upstream MAPKK PbsB or the simultaneous elimination of sakA and mpkC result in virtually identical phenotypes, including decreased radial growth, a drastic reduction of conidiation and a sharp, progressive loss of conidial viability. SakA and to a minor extent MpkC also regulate cell-wall integrity. Given the roles of MpkC in conidiation and oxidative stress sensitivity, we used a functional MpkC::GFP fusion to determine MpkC nuclear localization as an in vivo indicator of MpkC activation during asexual development and stress. MpkC is mostly localized in the cytoplasm of intact conidia, accumulates in nuclei during the first 2 h of germination and then becomes progressively excluded from nuclei in growing hyphae. In the conidiophore, MpkC nuclear accumulation increases in vesicles, metulae and phialides and decreases in older conidia. Oxidative and osmotic stresses induce MpkC nuclear accumulation in both germinating conidia and hyphae. In all these cases, MpkC nuclear accumulation is largely dependent on the MAPKK PbsB. Our results indicate that SakA and MpkC play major, distinct and sometimes opposing roles in conidiation and conidiospore physiology, as well as common roles in response to stress. We propose that two SAPKs are necessary to delay (MpkC) or fully stop (SakA) mitosis during conidiogenesis and the terminal differentiation of conidia, in the highly prolific phialoconidiation process characteristic of the Aspergilli.
Collapse
Affiliation(s)
- Verónica Garrido-Bazán
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Posgrado en Ciencias Biológicas, Unidad de Posgrado, Mexico City, Mexico
| | - Rafael Jaimes-Arroyo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Olivia Sánchez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernando Lara-Rojas
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
65
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
66
|
Caceres I, El Khoury R, Bailly S, Oswald IP, Puel O, Bailly JD. Piperine inhibits aflatoxin B1 production in Aspergillus flavus by modulating fungal oxidative stress response. Fungal Genet Biol 2017; 107:77-85. [DOI: 10.1016/j.fgb.2017.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/24/2017] [Accepted: 08/18/2017] [Indexed: 11/30/2022]
|
67
|
Noman A, Liu Z, Aqeel M, Zainab M, Khan MI, Hussain A, Ashraf MF, Li X, Weng Y, He S. Basic leucine zipper domain transcription factors: the vanguards in plant immunity. Biotechnol Lett 2017; 39:1779-1791. [DOI: 10.1007/s10529-017-2431-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/31/2017] [Indexed: 01/05/2023]
|
68
|
Sarikaya Bayram Ö, Latgé JP, Bayram Ö. MybA, a new player driving survival of the conidium of the human pathogen Aspergillus fumigatus. Curr Genet 2017; 64:141-146. [PMID: 28840304 DOI: 10.1007/s00294-017-0740-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 01/26/2023]
Abstract
Aspergillus fumigatus is an opportunistic human pathogen that causes various complications in patients with a weakened immune system functions. Asexual spores of A. fumigatus are responsible for initiation of aspergillosis. Long-term viability and proper germination of dormant conidia depend on trehalose accumulation, which protect the spores against thermal and oxidative stress. A putative Myb transcription factor, MybA has been recently found to be responsible for a variety of physiological and molecular roles ranging from conidiation, spore viability, trehalose accumulation, cell wall integrity and protection against reactive oxygen species. In this perspective review, we discuss the recent findings of MybA and its overlapping functions with the other regulators of conidia viability and trehalose accumulation. Therefore, the aim of this perspective is to raise interesting and stimulating questions on the molecular functions of MybA in conidiation and trehalose biogenesis and to question its genetic and physical interactions with the other regulators of conidial viability.
Collapse
Affiliation(s)
| | - Jean Paul Latgé
- Unité des Aspergillus, Institut Pasteur, 75015, Paris, France
| | - Özgür Bayram
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
69
|
Transcriptomic Analysis Reveals Genes Mediating Salt Tolerance through Calcineurin/CchA-Independent Signaling in Aspergillus nidulans. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4378627. [PMID: 28904958 PMCID: PMC5585587 DOI: 10.1155/2017/4378627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/01/2017] [Accepted: 07/10/2017] [Indexed: 01/11/2023]
Abstract
Adaptation to changes in the environment is crucial for the viability of all organisms. Although the importance of calcineurin in the stress response has been highlighted in filamentous fungi, little is known about the involvement of ion-responsive genes and pathways in conferring salt tolerance without calcium signaling. In this study, high-throughput RNA-seq was used to investigate salt stress-induced genes in the parent, ΔcnaB, and ΔcnaBΔcchA strains of Aspergillus nidulans, which differ greatly in salt adaption. In total, 2,884 differentially expressed genes including 1,382 up- and 1,502 downregulated genes were identified. Secondary transporters, which were upregulated to a greater extent in ΔcnaBΔcchA than in the parent or ΔcnaB strains, are likely to play important roles in response to salt stress. Furthermore, 36 genes were exclusively upregulated in the ΔcnaBΔcchA under salt stress. Functional analysis of differentially expressed genes revealed that genes involved in transport, heat shock protein binding, and cell division processes were exclusively activated in ΔcnaBΔcchA. Overall, our findings reveal that secondary transporters and stress-responsive genes may play crucial roles in salt tolerance to bypass the requirement for the CchA-calcineurin pathway, contributing to a deeper understanding of the mechanisms that influence fungal salt stress adaption in Aspergillus.
Collapse
|
70
|
Transcriptome-Based Modeling Reveals that Oxidative Stress Induces Modulation of the AtfA-Dependent Signaling Networks in Aspergillus nidulans. Int J Genomics 2017; 2017:6923849. [PMID: 28770220 PMCID: PMC5523550 DOI: 10.1155/2017/6923849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/17/2017] [Accepted: 06/13/2017] [Indexed: 01/01/2023] Open
Abstract
To better understand the molecular functions of the master stress-response regulator AtfA in Aspergillus nidulans, transcriptomic analyses of the atfA null mutant and the appropriate control strains exposed to menadione sodium bisulfite- (MSB-), t-butylhydroperoxide- and diamide-induced oxidative stresses were performed. Several elements of oxidative stress response were differentially expressed. Many of them, including the downregulation of the mitotic cell cycle, as the MSB stress-specific upregulation of FeS cluster assembly and the MSB stress-specific downregulation of nitrate reduction, tricarboxylic acid cycle, and ER to Golgi vesicle-mediated transport, showed AtfA dependence. To elucidate the potential global regulatory role of AtfA governing expression of a high number of genes with very versatile biological functions, we devised a model based on the comprehensive transcriptomic data. Our model suggests that an important function of AtfA is to modulate the transduction of stress signals. Although it may regulate directly only a limited number of genes, these include elements of the signaling network, for example, members of the two-component signal transduction systems. AtfA acts in a stress-specific manner, which may increase further the number and diversity of AtfA-dependent genes. Our model sheds light on the versatility of the physiological functions of AtfA and its orthologs in fungi.
Collapse
|
71
|
Brown AJP, Cowen LE, di Pietro A, Quinn J. Stress Adaptation. Microbiol Spectr 2017; 5:10.1128/microbiolspec.FUNK-0048-2016. [PMID: 28721857 PMCID: PMC5701650 DOI: 10.1128/microbiolspec.funk-0048-2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 01/21/2023] Open
Abstract
Fungal species display an extraordinarily diverse range of lifestyles. Nevertheless, the survival of each species depends on its ability to sense and respond to changes in its natural environment. Environmental changes such as fluctuations in temperature, water balance or pH, or exposure to chemical insults such as reactive oxygen and nitrogen species exert stresses that perturb cellular homeostasis and cause molecular damage to the fungal cell. Consequently, fungi have evolved mechanisms to repair this damage, detoxify chemical insults, and restore cellular homeostasis. Most stresses are fundamental in nature, and consequently, there has been significant evolutionary conservation in the nature of the resultant responses across the fungal kingdom and beyond. For example, heat shock generally induces the synthesis of chaperones that promote protein refolding, antioxidants are generally synthesized in response to an oxidative stress, and osmolyte levels are generally increased following a hyperosmotic shock. In this article we summarize the current understanding of these and other stress responses as well as the signaling pathways that regulate them in the fungi. Model yeasts such as Saccharomyces cerevisiae are compared with filamentous fungi, as well as with pathogens of plants and humans. We also discuss current challenges associated with defining the dynamics of stress responses and with the elaboration of fungal stress adaptation under conditions that reflect natural environments in which fungal cells may be exposed to different types of stresses, either sequentially or simultaneously.
Collapse
Affiliation(s)
- Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Antonio di Pietro
- Departamento de Genética, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel C5, 14071 Córdoba, Spain
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
72
|
Adaptation to macrophage killing by Talaromyces marneffei. Future Sci OA 2017; 3:FSO215. [PMID: 28884011 PMCID: PMC5583664 DOI: 10.4155/fsoa-2017-0032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/03/2017] [Indexed: 01/09/2023] Open
Abstract
Talaromyces (Penicillium) marneffei is an important opportunistic fungal pathogen. It causes disseminated infection in immunocompromised patients especially in Southeast Asian countries. The pathogenicity of T. marneffei depends on the ability of the fungus to survive the killing process and replicate inside the macrophage. Major stresses inside the phagosome of macrophages are heat, oxidative substances and nutrient deprivation. The coping strategies of this pathogen with these stresses are under investigation. This paper summarizes factors relating to the stress responses that contribute to the intracellular survival of T. marneffei. These include molecules in the MAP signal transduction cascade, heat shock proteins, antioxidant enzymes and enzymes responsible in nutrient retrieval. There is speculation that the ability of T. marneffei to withstand these defenses plays an important role in its pathogenicity. Talaromyces marneffei is an important dimorphic fungus that causes disease in immunocompromised patients. The pathogenicity of T. marneffei depends on the ability of the fungus to survive the killing process and replicate inside the host macrophage cells. This paper summarizes factors relating to the stress responses that contribute to the intracellular survival of T. marneffei. There is speculation that the ability of T. marneffei to withstand these defenses plays an important role in its pathogenicity.
Collapse
|
73
|
Fang Y, Xiong D, Tian L, Tang C, Wang Y, Tian C. Functional characterization of two bZIP transcription factors in Verticillium dahliae. Gene 2017; 626:386-394. [PMID: 28578019 DOI: 10.1016/j.gene.2017.05.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/24/2022]
Abstract
bZIP transcription factors play various biological roles in stress responses, conidiation, and pathogenicity in pathogenic fungi. Here, we report two bZIP transcription factors (VDAG_08640 and VDAG_08676) of Verticillium dahliae, which were differentially expressed during microsclerotia development and induced by hydrogen peroxide as well. We find that deletion of either gene does not affect microsclerotia formation and the sensitivity to hydrogen peroxide; however, the mutants manifest decreased activity of extracellular peroxidase and laccase. Other phenotypic characterization reveals that VDAG_08676 disruption results in significant reduction of conidial production and virulence, while VDAG_08640 disruption does not lead to observable phenotypic variances compared with the wild-type strain. To elucidate whether they exhibit functional redundancy, double deletion mutants were generated. The double deletion mutants show remarkably increased sensitivity to hydrogen peroxide stress, whereas the two genes are not involved in microsclerotia formation. Taken together, our data demonstrate that a bZIP transcription factor gene VDAG_08676 is involved in the conidial production, oxidative stress response and virulence which may lay a foundation for further analysis of other bZIP transcription factors in V. dahliae.
Collapse
Affiliation(s)
- Yulin Fang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Longyan Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chen Tang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
74
|
Shi K, Gao Z, Shi TQ, Song P, Ren LJ, Huang H, Ji XJ. Reactive Oxygen Species-Mediated Cellular Stress Response and Lipid Accumulation in Oleaginous Microorganisms: The State of the Art and Future Perspectives. Front Microbiol 2017; 8:793. [PMID: 28507542 PMCID: PMC5410592 DOI: 10.3389/fmicb.2017.00793] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Abstract
Microbial oils, which are mainly extracted from yeasts, molds, and algae, have been of considerable interest as food additives and biofuel resources due to their high lipid content. While these oleaginous microorganisms generally produce only small amounts of lipids under optimal growth conditions, their lipid accumulation machinery can be induced by environmental stresses, such as nutrient limitation and an inhospitable physical environmental. As common second messengers of many stress factors, reactive oxygen species (ROS) may act as a regulator of cellular responses to extracellular environmental signaling. Furthermore, increasing evidence indicates that ROS may act as a mediator of lipid accumulation, which is associated with dramatic changes in the transcriptome, proteome, and metabolome. However, the specific mechanisms of ROS involvement in the crosstalk between extracellular stress signaling and intracellular lipid synthesis require further investigation. Here, we summarize current knowledge on stress-induced lipid biosynthesis and the putative role of ROS in the control of lipid accumulation in oleaginous microorganisms. Understanding such links may provide guidance for the development of stress-based strategies to enhance microbial lipid production.
Collapse
Affiliation(s)
- Kun Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Ping Song
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing, China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing, China.,School of Pharmaceutical Sciences, Nanjing Tech UniversityNanjing, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech UniversityNanjing, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing, China
| |
Collapse
|
75
|
Ge Y, Yu F, Tan Y, Zhang X, Liu Z. Comparative Transcriptome Sequence Analysis of Sporulation-Related Genes of Aspergillus cristatus in Response to Low and High Osmolarity. Curr Microbiol 2017; 74:806-814. [PMID: 28417188 DOI: 10.1007/s00284-017-1250-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/08/2017] [Indexed: 11/26/2022]
Abstract
Aspergillus cristatus undergoes sexual and asexual development under conditions of low and high osmotic pressure, respectively. In this study, the expression levels of 107 genes associated with sexual and asexual development were analysed under conditions of low and high osmotic pressure by RNA sequencing. The results showed that 37 genes were up-regulated and other genes were down-regulated under conditions of high osmotic pressure, with most of the up-regulated genes associated with asexual development and most down-regulated genes associated with sexual development. These results suggest that osmotic pressure regulated sexual and asexual development of A. cristatus by controlling the expression levels of key genes. Meanwhile, there were differences in the expression levels of key genes associated with the regulation of sexual and asexual development between A. cristatus and Aspergillus nidulans. Moreover, we verified the reliability of the results by quantitative real-time polymerase chain reaction analysis of some key genes. In this study, the relationship between sporulation-related genes and osmotic pressure at the transcriptome level were analysed, which indicated that A. cristatus was a useful model organism for the study of osmotic pressure regulation on sexual and asexual development.
Collapse
Affiliation(s)
- Yongyi Ge
- College of Life and Science, Guizhou University, Guiyang, 550025, Guizhou, China
- Guizhou Key Laboratory of Agriculture Biotechnology, Guiyang, 550006, Guizhou, China
| | - Fengming Yu
- College of Life and Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yumei Tan
- Guizhou Key Laboratory of Agriculture Biotechnology, Guiyang, 550006, Guizhou, China
- Guizhou Academy of Agricultural Science, Guiyang, 550006, Guizhou, China
| | - Xiaoling Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zuoyi Liu
- Guizhou Key Laboratory of Agriculture Biotechnology, Guiyang, 550006, Guizhou, China.
- Guizhou Academy of Agricultural Science, Guiyang, 550006, Guizhou, China.
| |
Collapse
|
76
|
Mendoza-Martínez AE, Lara-Rojas F, Sánchez O, Aguirre J. NapA Mediates a Redox Regulation of the Antioxidant Response, Carbon Utilization and Development in Aspergillus nidulans. Front Microbiol 2017; 8:516. [PMID: 28424666 PMCID: PMC5371717 DOI: 10.3389/fmicb.2017.00516] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/13/2017] [Indexed: 01/27/2023] Open
Abstract
The redox-regulated transcription factors (TFs) of the bZIP AP1 family, such as yeast Yap1 and fission yeast Pap1, are activated by peroxiredoxin proteins (Prxs) to regulate the antioxidant response. Previously, Aspergillus nidulans mutants lacking the Yap1 ortholog NapA have been characterized as sensitive to H2O2 and menadione. Here we study NapA roles in relation to TFs SrrA and AtfA, also involved in oxidant detoxification, showing that these TFs play different roles in oxidative stress resistance, catalase gene regulation and development, during A. nidulans life cycle. We also uncover novel NapA roles in repression of sexual development, normal conidiation, conidial mRNA accumulation, and carbon utilization. The phenotypic characterization of ΔgpxA, ΔtpxA, and ΔtpxB single, double and triple peroxiredoxin mutants in wild type or ΔnapA backgrounds shows that none of these Prxs is required for NapA function in H2O2 and menadione resistance. However, these Prxs participate in a minor NapA-independent H2O2 resistance pathway and NapA and TpxA appear to regulate conidiation along the same route. Using transcriptomic analysis we show that during conidial development NapA-dependent gene expression pattern is different from canonical oxidative stress patterns. In the course of conidiation, NapA is required for regulation of at least 214 genes, including ethanol utilization genes alcR, alcA and aldA, and large sets of genes encoding proteins involved in transcriptional regulation, drug detoxification, carbohydrate utilization and secondary metabolism, comprising multiple oxidoreductases, membrane transporters and hydrolases. In agreement with this, ΔnapA mutants fail to grow or grow very poorly in ethanol, arabinose or fructose as sole carbon sources. Moreover, we show that NapA nuclear localization is induced not only by oxidative stress but also by growth in ethanol and by carbon starvation. Together with our previous work, these results show that SakA-AtfA, SrrA and NapA oxidative stress-sensing pathways regulate essential aspects of spore physiology (i.e., cell cycle arrest, dormancy, drug production and detoxification, and carbohydrate utilization).
Collapse
Affiliation(s)
- Ariann E Mendoza-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | - Fernando Lara-Rojas
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | - Olivia Sánchez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| |
Collapse
|
77
|
Genomics of Compensatory Adaptation in Experimental Populations of Aspergillus nidulans. G3-GENES GENOMES GENETICS 2017; 7:427-436. [PMID: 27903631 PMCID: PMC5295591 DOI: 10.1534/g3.116.036152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Knowledge of the number and nature of genetic changes responsible for adaptation is essential for understanding and predicting evolutionary trajectories. Here, we study the genomic basis of compensatory adaptation to the fitness cost of fungicide resistance in experimentally evolved strains of the filamentous fungus Aspergillus nidulans The original selection experiment tracked the fitness recovery of lines founded by an ancestral strain that was resistant to fludioxonil, but paid a fitness cost in the absence of the fungicide. We obtained whole-genome sequence data for the ancestral A. nidulans strain and eight experimentally evolved strains. We find that fludioxonil resistance in the ancestor was likely conferred by a mutation in histidine kinase nikA, part of the two-component signal transduction system of the high-osmolarity glycerol (HOG) stress response pathway. To compensate for the pleiotropic negative effects of the resistance mutation, the subsequent fitness gains observed in the evolved lines were likely caused by secondary modification of HOG pathway activity. Candidate genes for the compensatory fitness increases were significantly overrepresented by stress response functions, and some were specifically associated with the HOG pathway itself. Parallel evolution at the gene level was rare among evolved lines. There was a positive relationship between the predicted number of adaptive steps, estimated from fitness data, and the number of genomic mutations, determined by whole-genome sequencing. However, the number of genomic mutations was, on average, 8.45 times greater than the number of adaptive steps inferred from fitness data. This research expands our understanding of the genetic basis of adaptation in multicellular eukaryotes and lays out a framework for future work on the genomics of compensatory adaptation in A. nidulans.
Collapse
|
78
|
Abstract
ABSTRACT
Life, as we know it, would not be possible without light. Light is not only a primary source of energy, but also an important source of information for many organisms. To sense light, only a few photoreceptor systems have developed during evolution. They are all based on an organic molecule with conjugated double bonds that allows energy transfer from visible (or UV) light to its cognate protein to translate the primary physical photoresponse to cell-biological actions. The three main classes of receptors are flavin-based blue-light, retinal-based green-light (such as rhodopsin), and linear tetrapyrrole-based red-light sensors. Light not only controls the behavior of motile organisms, but is also important for many sessile microorganisms including fungi. In fungi, light controls developmental decisions and physiological adaptations as well as the circadian clock. Although all major classes of photoreceptors are found in fungi, a good level of understanding of the signaling processes at the molecular level is limited to some model fungi. However, current knowledge suggests a complex interplay between light perception systems, which goes far beyond the simple sensing of light and dark. In this article we focus on recent results in several fungi, which suggest a strong link between light-sensing and stress-activated mitogen-activated protein kinases.
Collapse
|
79
|
Fountain JC, Bajaj P, Nayak SN, Yang L, Pandey MK, Kumar V, Jayale AS, Chitikineni A, Lee RD, Kemerait RC, Varshney RK, Guo B. Responses of Aspergillus flavus to Oxidative Stress Are Related to Fungal Development Regulator, Antioxidant Enzyme, and Secondary Metabolite Biosynthetic Gene Expression. Front Microbiol 2016; 7:2048. [PMID: 28066369 PMCID: PMC5175028 DOI: 10.3389/fmicb.2016.02048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
The infection of maize and peanut with Aspergillus flavus and subsequent contamination with aflatoxin pose a threat to global food safety and human health, and is exacerbated by drought stress. Drought stress-responding compounds such as reactive oxygen species (ROS) are associated with fungal stress responsive signaling and secondary metabolite production, and can stimulate the production of aflatoxin by A. flavus in vitro. These secondary metabolites have been shown to possess diverse functions in soil-borne fungi including antibiosis, competitive inhibition of other microbes, and abiotic stress alleviation. Previously, we observed that isolates of A. flavus showed differences in oxidative stress tolerance which correlated with their aflatoxin production capabilities. In order to better understand these isolate-specific oxidative stress responses, we examined the transcriptional responses of field isolates of A. flavus with varying levels of aflatoxin production (NRRL3357, AF13, and Tox4) to H2O2-induced oxidative stress using an RNA sequencing approach. These isolates were cultured in an aflatoxin-production conducive medium amended with various levels of H2O2. Whole transcriptomes were sequenced using an Illumina HiSeq platform with an average of 40.43 million filtered paired-end reads generated for each sample. The obtained transcriptomes were then used for differential expression, gene ontology, pathway, and co-expression analyses. Isolates which produced higher levels of aflatoxin tended to exhibit fewer differentially expressed genes than isolates with lower levels of production. Genes found to be differentially expressed in response to increasing oxidative stress included antioxidant enzymes, primary metabolism components, antibiosis-related genes, and secondary metabolite biosynthetic components specifically for aflatoxin, aflatrem, and kojic acid. The expression of fungal development-related genes including aminobenzoate degradation genes and conidiation regulators were found to be regulated in response to increasing stress. Aflatoxin biosynthetic genes and antioxidant enzyme genes were also found to be co-expressed and highly correlated with fungal biomass under stress. This suggests that these secondary metabolites may be produced as part of coordinated oxidative stress responses in A. flavus along with antioxidant enzyme gene expression and developmental regulation.
Collapse
Affiliation(s)
- Jake C Fountain
- Department of Plant Pathology, University of GeorgiaTifton, GA, USA; United States Department of Agriculture, Agricultural Research Service Crop Protection and Management Research UnitTifton, GA, USA
| | - Prasad Bajaj
- International Crop Research Institute for the Semi-Arid Tropics Hyderabad, India
| | - Spurthi N Nayak
- International Crop Research Institute for the Semi-Arid Tropics Hyderabad, India
| | - Liming Yang
- Department of Plant Pathology, University of GeorgiaTifton, GA, USA; United States Department of Agriculture, Agricultural Research Service Crop Protection and Management Research UnitTifton, GA, USA
| | - Manish K Pandey
- International Crop Research Institute for the Semi-Arid Tropics Hyderabad, India
| | - Vinay Kumar
- International Crop Research Institute for the Semi-Arid Tropics Hyderabad, India
| | - Ashwin S Jayale
- International Crop Research Institute for the Semi-Arid Tropics Hyderabad, India
| | - Anu Chitikineni
- International Crop Research Institute for the Semi-Arid Tropics Hyderabad, India
| | - Robert D Lee
- Department of Crop and Soil Sciences, University of Georgia Tifton, GA, USA
| | - Robert C Kemerait
- Department of Plant Pathology, University of Georgia Tifton, GA, USA
| | - Rajeev K Varshney
- International Crop Research Institute for the Semi-Arid Tropics Hyderabad, India
| | - Baozhu Guo
- United States Department of Agriculture, Agricultural Research Service Crop Protection and Management Research Unit Tifton, GA, USA
| |
Collapse
|
80
|
Jogawat A, Vadassery J, Verma N, Oelmüller R, Dua M, Nevo E, Johri AK. PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants. Sci Rep 2016; 6:36765. [PMID: 27849025 PMCID: PMC5111105 DOI: 10.1038/srep36765] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 12/04/2022] Open
Abstract
In this study, yeast HOG1 homologue from the root endophyte Piriformospora indica (PiHOG1) was isolated and functionally characterized. Functional expression of PiHOG1 in S. cerevisiae ∆hog1 mutant restored osmotolerance under high osmotic stress. Knockdown (KD) transformants of PiHOG1 generated by RNA interference in P. indica showed that genes for the HOG pathway, osmoresponse and salinity tolerance were less stimulated in KD-PiHOG1 compared to the wild-type under salinity stress. Furthermore, KD lines are impaired in the colonization of rice roots under salinity stress of 200 mM NaCl, and the biomass of the host plants, their shoot and root lengths, root number, photosynthetic pigment and proline contents were reduced as compared to rice plants colonized by WT P. indica. Therefore, PiHOG1 is critical for root colonisation, salinity tolerance and the performance of the host plant under salinity stress. Moreover, downregulation of PiHOG1 resulted not only in reduced and delayed phosphorylation of the remaining PiHOG1 protein in colonized salinity-stressed rice roots, but also in the downregulation of the upstream MAP kinase genes PiPBS2 and PiSSK2 involved in salinity tolerance signalling in the fungus. Our data demonstrate that PiHOG1 is not only involved in the salinity response of P. indica, but also helping host plant to overcome salinity stress.
Collapse
Affiliation(s)
- Abhimanyu Jogawat
- School of Life Sciences Jawaharlal Nehru University, New Delhi-110067, India
| | | | - Nidhi Verma
- School of Life Sciences Jawaharlal Nehru University, New Delhi-110067, India
| | - Ralf Oelmüller
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Eviatar Nevo
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 3498838, Israel
| | - Atul Kumar Johri
- School of Life Sciences Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
81
|
Pereira Silva L, Alves de Castro P, Dos Reis TF, Paziani MH, Von Zeska Kress MR, Riaño-Pachón DM, Hagiwara D, Ries LNA, Brown NA, Goldman GH. Genome-wide transcriptome analysis of Aspergillus fumigatus exposed to osmotic stress reveals regulators of osmotic and cell wall stresses that are SakA HOG1 and MpkC dependent. Cell Microbiol 2016; 19. [PMID: 27706915 DOI: 10.1111/cmi.12681] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 12/24/2022]
Abstract
Invasive aspergillosis is predominantly caused by Aspergillus fumigatus, and adaptations to stresses experienced within the human host are a prerequisite for the survival and virulence strategies of the pathogen. The central signal transduction pathway operating during hyperosmotic stress is the high osmolarity glycerol mitogen-activated protein kinase cascade. A. fumigatus MpkC and SakA, orthologues of the Saccharomyces cerevisiae Hog1p, constitute the primary regulator of the hyperosmotic stress response. We compared A. fumigatus wild-type transcriptional response to osmotic stress with the ΔmpkC, ΔsakA, and ΔmpkC ΔsakA strains. Our results strongly indicate that MpkC and SakA have independent and collaborative functions during the transcriptional response to transient osmotic stress. We have identified and characterized null mutants for four A. fumigatus basic leucine zipper proteins transcription factors. The atfA and atfB have comparable expression levels with the wild-type in ΔmpkC but are repressed in ΔsakA and ΔmpkC ΔsakA post-osmotic stress. The atfC and atfD have reduced expression levels in all mutants post-osmotic stress. The atfA-D null mutants displayed several phenotypes related to osmotic, oxidative, and cell wall stresses. The ΔatfA and ΔatfB were shown to be avirulent and to have attenuated virulence, respectively, in both Galleria mellonella and a neutropenic murine model of invasive pulmonary aspergillosis.
Collapse
Affiliation(s)
- Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mario Henrique Paziani
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Diego M Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), São Paulo, Brazil
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Laure N A Ries
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
82
|
Characterization of gprK Encoding a Putative Hybrid G-Protein-Coupled Receptor in Aspergillus fumigatus. PLoS One 2016; 11:e0161312. [PMID: 27584150 PMCID: PMC5008803 DOI: 10.1371/journal.pone.0161312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
The G-protein-coupled receptor (GPCR) family represents the largest and most varied collection of membrane embedded proteins that are sensitized by ligand binding and interact with heterotrimeric G proteins. Despite their presumed critical roles in fungal biology, the functions of the GPCR family members in the opportunistic human pathogen Aspergillus fumigatus are largely unknown, as only two (GprC and GprD) of the 15 predicted GPCRs have been studied. Here, we characterize the gprK gene, which is predicted to encode a hybrid GPCR with both 7-transmembrane and regulator of G-protein signaling (RGS) domains. The deletion of gprK causes severely impaired asexual development coupled with reduced expression of key developmental activators. Moreover, ΔgprK results in hyper-activation of germination even in the absence of carbon source, and elevated expression and activity of the protein kinase A PkaC1. Furthermore, proliferation of the ΔgprK mutant is restricted on the medium when pentose is the sole carbon source, suggesting that GprK may function in external carbon source sensing. Notably, the absence of gprK results in reduced tolerance to oxidative stress and significantly lowered mRNA levels of the stress-response associated genes sakA and atfA. Activities of catalases and SODs are severely decreased in the ΔgprK mutant, indicating that GprK may function in proper activation of general stress response. The ΔgprK mutant is also defective in gliotoxin (GT) production and slightly less virulent toward the greater wax moth, Galleria mellonella. Transcriptomic studies reveal that a majority of transporters are down-regulated by ΔgprK. In summary, GprK is necessary for proper development, GT production, and oxidative stress response, and functions in down-regulating the PKA-germination pathway.
Collapse
|
83
|
Shao Y, Yang S, Zhang Z, Zhou Y, Chen F. mrskn7, a putative response regulator gene of Monascus ruber M7, is involved in oxidative stress response, development, and mycotoxin production. Mycologia 2016; 108:851-859. [PMID: 27302050 DOI: 10.3852/15-200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/28/2015] [Indexed: 11/10/2022]
Abstract
Skn7, a response regulator (RR), is associated with oxidative stress adaptation, hypo-osmotic stress response, fungicide sensitivity, cell wall biosynthesis, cell cycle regulation, sexual mating, and sporulation in many filamentous fungi and yeasts. In this study a Skn7-like protein gene mrskn7 (Monascus ruber skn7) was isolated, sequenced, and disrupted to investigate its function in M. ruber Bioinformatics predicted that the deduced protein encoded by mrskn7 contained the conserved DNA-binding and signal-receiver domains similar to the Skn7-like protein structure in other filamentous fungi. The Δmrskn7 strain produced fewer conidia and less mycotoxin, demonstrated increased sensitivity to peroxide but the same level of osmotic resistance to NaCl and glycerol with the wild-type. Additionally, cleistothecia observed at different time point showed a different morphology between the wild-type and the Δmrskn7 strain, suggesting the involvement of mrskn7 in sexual development of M. ruber These results indicated that mrskn7 plays important roles in asexual and sexual development, the production of mycotoxin as well as regulation of oxidative stress signal in M. ruber.
Collapse
Affiliation(s)
- Yanchun Shao
- Key Laboratory of Environment Correlative Dietology, Ministry of Education; College of Food Science and Technology, State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei Province, P.R. China
| | - Sha Yang
- College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070 Hubei Province, P.R. China
| | - Zhouwei Zhang
- Institute of Processing of Agricultural Product and Nuclear Agricultural Research, Hubei Academy of Agricultural Sciences, No. 1 Yaoyuan Street, Hongshan District, Wuhan, 430064 Hubei Province, P.R. China
| | - Youxiang Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, No. 1 Yaoyuan Street, Hongshan District, Wuhany, 430064 Hubei Province, P.R. China
| | - Fusheng Chen
- Key Laboratory of Environment Correlative Dietology, Ministry of Education; College of Food Science and Technology, State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070 Hubei Province, P.R. China
| |
Collapse
|
84
|
Esquivel-Naranjo EU, García-Esquivel M, Medina-Castellanos E, Correa-Pérez VA, Parra-Arriaga JL, Landeros-Jaime F, Cervantes-Chávez JA, Herrera-Estrella A. A Trichoderma atroviride stress-activated MAPK pathway integrates stress and light signals. Mol Microbiol 2016; 100:860-76. [PMID: 26878111 DOI: 10.1111/mmi.13355] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 11/27/2022]
Abstract
Cells possess stress-activated protein kinase (SAPK) signalling pathways, which are activated practically in response to any cellular insult, regulating responses for survival and adaptation to harmful environmental changes. To understand the function of SAPK pathways in T. atroviride, mutants lacking the MAPKK Pbs2 and the MAPK Tmk3 were analysed under several cellular stresses, and in their response to light. All mutants were highly sensitive to cellular insults such as osmotic and oxidative stress, cell wall damage, high temperature, cadmium, and UV irradiation. Under oxidative stress, the Tmk3 pathway showed specific roles during development, which in conidia are essential for tolerance to oxidant agents and appear to play a minor role in mycelia. The function of this pathway was more evident in Δpbs2 and Δtmk3 mutant strains when combining oxidative stress or cell wall damage with light. Light stimulates tolerance to osmotic stress through Tmk3 independently of the photoreceptor Blr1. Strikingly, photoconidiation and expression of blue light regulated genes was severally affected in Δtmk3 and Δpbs2 strains, indicating that this pathway regulates light responses. Furthermore, Tmk3 was rapidly phosphorylated upon light exposure. Thus, our data indicate that Tmk3 signalling cooperates with the Blr photoreceptor complex in the activation of gene expression.
Collapse
Affiliation(s)
- Edgardo Ulises Esquivel-Naranjo
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato, Irapuato, México.,Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | - Mónica García-Esquivel
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato, Irapuato, México
| | | | - Víctor Alejandro Correa-Pérez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | - Jorge Luis Parra-Arriaga
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | - Fidel Landeros-Jaime
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | - José Antonio Cervantes-Chávez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | | |
Collapse
|
85
|
Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling. Nat Microbiol 2016; 1:16019. [PMID: 27572639 DOI: 10.1038/nmicrobiol.2016.19] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/29/2016] [Indexed: 02/02/2023]
Abstract
Stress-sensing in fungi depends on a signalling cascade comprised of a two-component phosphorylation relay plus a subsequent MAP kinase cascade to trigger gene expression. Besides osmotic or oxidative stress, fungi sense many other environmental factors, one of which is light(1,2). Light controls morphogenetic pathways but also the production of secondary metabolites such as penicillin. Here we show that phytochrome-dependent light signalling in Aspergillus nidulans involves the stress-sensing and osmosensing signalling pathway. In a screening for 'blind' mutants, the MAP kinase SakA (also known as HogA) was identified by whole-genome sequencing. The phytochrome FphA physically interacted with the histidine-containing phosphotransfer protein YpdA and caused light-dependent phosphorylation of the MAP kinase SakA and its shuttling into nuclei. In the absence of phytochrome, SakA still responded to osmotic stress but not to light. The SakA pathway thus integrates several stress factors and can be considered to be a hub for environmental signals.
Collapse
|
86
|
Two-Component Signaling Regulates Osmotic Stress Adaptation via SskA and the High-Osmolarity Glycerol MAPK Pathway in the Human Pathogen Talaromyces marneffei. mSphere 2016; 1:mSphere00086-15. [PMID: 27303703 PMCID: PMC4863612 DOI: 10.1128/msphere.00086-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/24/2016] [Indexed: 11/20/2022] Open
Abstract
For successful infection to occur, a pathogen must be able to evade or tolerate the host's defense systems. This requires the pathogen to first recognize the host environment and then signal this response to elicit a complex adaptive program in order to activate its own defense strategies. In both prokaryotes and eukaryotes, two-component signaling systems are utilized to sense and respond to changes in the external environment. The hybrid histidine kinases (HHKs) at the start of the two-component signaling pathway have been well characterized in human pathogens. However, how these HHKs regulate processes downstream currently remains unclear. This study describes the role of a response regulator downstream of these HHKs, sskA, in Talaromyces marneffei, a dimorphic human pathogen. sskA is required for asexual reproduction, hyphal morphogenesis, cell wall integrity, osmotic adaptation, and the morphogenesis of yeast cells both in vitro at 37°C and during macrophage infection, but not during dimorphic switching. Comparison of the ΔsskA mutant with a strain in which the mitogen-activated protein kinase (MAPK) of the high-osmolarity glycerol pathway (SakA) has been deleted suggests that SskA acts upstream of this pathway in T. marneffei to regulate these morphogenetic processes. This was confirmed by assessing the amount of phosphorylated SakA in the ΔsskA mutant, antifungal resistance due to a lack of SakA activation, and the ability of a constitutively active sakA allele (sakA(F316L) ) to suppress the ΔsskA mutant phenotypes. We conclude that SskA regulates morphogenesis and osmotic stress adaptation in T. marneffei via phosphorylation of the SakA MAPK of the high-osmolarity glycerol pathway. IMPORTANCE This is the first study in a dimorphic fungal pathogen to investigate the role of a response regulator downstream of two-component signaling systems and its connection to the high-osmolarity glycerol pathway. This study will inspire further research into the downstream components of two-component signaling systems and their role during pathogenic growth.
Collapse
|
87
|
Wang H, Lei Y, Yan L, Wan L, Ren X, Chen S, Dai X, Guo W, Jiang H, Liao B. Functional Genomic Analysis of Aspergillus flavus Interacting with Resistant and Susceptible Peanut. Toxins (Basel) 2016; 8:46. [PMID: 26891328 PMCID: PMC4773799 DOI: 10.3390/toxins8020046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/30/2016] [Accepted: 02/05/2016] [Indexed: 12/19/2022] Open
Abstract
In the Aspergillus flavus (A. flavus)-peanut pathosystem, development and metabolism of the fungus directly influence aflatoxin contamination. To comprehensively understand the molecular mechanism of A. flavus interaction with peanut, RNA-seq was used for global transcriptome profiling of A. flavus during interaction with resistant and susceptible peanut genotypes. In total, 67.46 Gb of high-quality bases were generated for A. flavus-resistant (af_R) and -susceptible peanut (af_S) at one (T1), three (T2) and seven (T3) days post-inoculation. The uniquely mapped reads to A. flavus reference genome in the libraries of af_R and af_S at T2 and T3 were subjected to further analysis, with more than 72% of all obtained genes expressed in the eight libraries. Comparison of expression levels both af_R vs. af_S and T2 vs. T3 uncovered 1926 differentially expressed genes (DEGs). DEGs associated with mycelial growth, conidial development and aflatoxin biosynthesis were up-regulated in af_S compared with af_R, implying that A. flavus mycelia more easily penetrate and produce much more aflatoxin in susceptible than in resistant peanut. Our results serve as a foundation for understanding the molecular mechanisms of aflatoxin production differences between A. flavus-R and -S peanut, and offer new clues to manage aflatoxin contamination in crops.
Collapse
Affiliation(s)
- Houmiao Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Yong Lei
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Liying Yan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Liyun Wan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xiaoping Ren
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Silong Chen
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xiaofeng Dai
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wei Guo
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huifang Jiang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Boshou Liao
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences-International Crop Research Institute for the Semi-Arid Tropics Joint Laboratory for Groundnut Aflatoxin Management, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
88
|
Leiter É, Park HS, Kwon NJ, Han KH, Emri T, Oláh V, Mészáros I, Dienes B, Vincze J, Csernoch L, Yu JH, Pócsi I. Characterization of the aodA, dnmA, mnSOD and pimA genes in Aspergillus nidulans. Sci Rep 2016; 6:20523. [PMID: 26846452 PMCID: PMC4742808 DOI: 10.1038/srep20523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/05/2016] [Indexed: 01/02/2023] Open
Abstract
Mitochondria play key roles in cellular energy generation and lifespan of most eukaryotes. To understand the functions of four nuclear-encoded genes predicted to be related to the maintenance of mitochondrial morphology and function in Aspergillus nidulans, systematic characterization was carried out. The deletion and overexpression mutants of aodA, dnmA, mnSOD and pimA encoding alternative oxidase, dynamin related protein, manganese superoxide dismutase and Lon protease, respectively, were generated and examined for their growth, stress tolerances, respiration, autolysis, cell death, sterigmatocystin production, hyphal morphology and size, and mitochondrial superoxide production as well as development. Overall, genetic manipulation of these genes had less effect on cellular physiology and ageing in A. nidulans than that of their homologs in another fungus Podospora anserina with a well-characterized senescence. The observed interspecial phenotypic differences can be explained by the dissimilar intrinsic stabilities of the mitochondrial genomes in A. nidulans and P. anserina. Furthermore, the marginally altered phenotypes observed in A. nidulans mutants indicate the presence of effective compensatory mechanisms for the complex networks of mitochondrial defense and quality control. Importantly, these findings can be useful for developing novel platforms for heterologous protein production, or on new biocontrol and bioremediation technologies based on Aspergillus species.
Collapse
Affiliation(s)
- Éva Leiter
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Hee-Soo Park
- Departments of Bacteriology and Genetics, The University of Wisconsin-Madison, Wisconsin, USA
| | - Nak-Jung Kwon
- Departments of Bacteriology and Genetics, The University of Wisconsin-Madison, Wisconsin, USA
| | - Kap-Hoon Han
- Departments of Bacteriology and Genetics, The University of Wisconsin-Madison, Wisconsin, USA.,Department of Pharmaceutical Engineering, Woosuk University, Wanju, Republic of Korea
| | - Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Viktor Oláh
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ilona Mészáros
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, The University of Wisconsin-Madison, Wisconsin, USA
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
89
|
Dubey M, Jensen DF, Karlsson M. The ABC transporter ABCG29 is involved in H2O2 tolerance and biocontrol traits in the fungus Clonostachys rosea. Mol Genet Genomics 2015; 291:677-86. [PMID: 26520102 DOI: 10.1007/s00438-015-1139-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/20/2015] [Indexed: 01/08/2023]
Abstract
For successful biocontrol interactions, biological control organisms must tolerate toxic metabolites produced by themselves or plant pathogens during mycoparasitic/antagonistic interactions, by host plant during colonization of the plant, and xenobiotics present in the environment. ATP-binding cassette (ABC) transporters can play a significant role in tolerance of toxic compounds by mediating active transport across the cellular membrane. This paper reports on functional characterization of an ABC transporter ABCG29 in the biocontrol fungus Clonostachys rosea strain IK726. Gene expression analysis showed induced expression of abcG29 during exposure to the Fusarium spp. mycotoxin zearalenone (ZEA) and the fungicides Cantus, Chipco Green and Apron. Expression of abcG29 in C. rosea was significantly higher during C. rosea-C. rosea (Cr-Cr) interaction or in exposure to C. rosea culture filtrate for 2 h, compared to interaction with Fusarium graminearum or 2 h exposure to F. graminearum culture filtrate. In contrast with gene expression data, ΔabcG29 strains did not display reduced tolerance towards ZEA, fungicides or chemical agents known for inducing oxidative, cell wall or osmotic stress, compared to C. rosea WT. The exception was a significant reduction in tolerance to H2O2 (10 mM) in ΔabcG29 strains when conidia were used as an inoculum. The antagonistic ability of ΔabcG29 strains towards F. graminearum, Fusarium oxysporum or Botrytis cinerea in dual plate assays were not different compared with WT. However, in biocontrol assays ΔabcG29 strains displayed reduced ability to protect Arabidopsis thaliana leaves from B. cinerea, and barley seedling from F. graminearum as measured by an A. thaliana detached leaf assay and a barley foot rot disease assay, respectively. These data show that the ABCG29 is dispensable for ZEA and fungicides tolerance, and antagonism but not H2O2 tolerance and biocontrol effects in C. rosea.
Collapse
Affiliation(s)
- Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden.
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden
| |
Collapse
|
90
|
Nakamura H, Kikuma T, Jin FJ, Maruyama JI, Kitamoto K. AoRim15 is involved in conidial stress tolerance, conidiation and sclerotia formation in the filamentous fungus Aspergillus oryzae. J Biosci Bioeng 2015; 121:365-71. [PMID: 26467693 DOI: 10.1016/j.jbiosc.2015.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022]
Abstract
The serine-threonine kinase Rim15p is a master regulator of stress signaling and is required for stress tolerance and sexual sporulation in the yeast Saccharomyces cerevisiae. However, in filamentous fungi that reproduce asexually via conidiation, the physiological function of Rim15p homologs has not been extensively analyzed. Here, we functionally characterized the protein homolog of Rim15p in the filamentous fungus Aspergillus oryzae, by deleting and overexpressing the corresponding Aorim15 gene and examining the role of this protein in stress tolerance and development. Deletion of Aorim15 resulted in an increase in the sensitivity of conidia to oxidative and heat stresses, whereas conidia of the Aorim15 overexpressing strain were more resistant to these stresses. These results indicated that AoRim15 functions in stress tolerance, similar to S. cerevisiae Rim15p. Phenotypic analysis revealed that conidiation was markedly reduced by overexpression of Aorim15 in A. oryzae, and was completely abolished in the deletion strain. In addition, the formation of sclerotia, which is another type of developmental structure in filamentous fungi, was decreased by the deletion of Aorim15, whereas Aorim15 overexpression increased the number of sclerotia. These results indicated that AoRim15 is a positive regulator of sclerotia formation and that overexpression of AoRim15 shifts the developmental balance from conidiation towards sclerotia formation. Collectively, we demonstrated that AoRim15 is involved in the stress tolerance of conidia and differentially regulates between the two developmental fates of conidiation and sclerotia formation.
Collapse
Affiliation(s)
- Hidetoshi Nakamura
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Kikuma
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Feng Jie Jin
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Katsuhiko Kitamoto
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
91
|
Wang X, Wu F, Liu L, Liu X, Che Y, Keller NP, Guo L, Yin WB. The bZIP transcription factor PfZipA regulates secondary metabolism and oxidative stress response in the plant endophytic fungus Pestalotiopsis fici. Fungal Genet Biol 2015; 81:221-8. [DOI: 10.1016/j.fgb.2015.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 12/27/2022]
|
92
|
Gressler M, Meyer F, Heine D, Hortschansky P, Hertweck C, Brock M. Phytotoxin production in Aspergillus terreus is regulated by independent environmental signals. eLife 2015; 4. [PMID: 26173180 PMCID: PMC4528345 DOI: 10.7554/elife.07861] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/13/2015] [Indexed: 01/09/2023] Open
Abstract
Secondary metabolites have a great potential as pharmaceuticals, but there are only a few examples where regulation of gene cluster expression has been correlated with ecological and physiological relevance for the producer. Here, signals, mediators, and biological effects of terrein production were studied in the fungus Aspergillus terreus to elucidate the contribution of terrein to ecological competition. Terrein causes fruit surface lesions and inhibits plant seed germination. Additionally, terrein is moderately antifungal and reduces ferric iron, thereby supporting growth of A. terreus under iron starvation. In accordance, the lack of nitrogen or iron or elevated methionine levels induced terrein production and was dependent on either the nitrogen response regulators AreA and AtfA or the iron response regulator HapX. Independent signal transduction allows complex sensing of the environment and, combined with its broad spectrum of biological activities, terrein provides a prominent example of adapted secondary metabolite production in response to environmental competition. DOI:http://dx.doi.org/10.7554/eLife.07861.001 Organisms produce a wide variety of small molecules called metabolites through the break down of food and other chemical reactions. Some of these molecules—known as primary metabolites—are required for growth, reproduction and other vital processes. Other molecules called secondary metabolites are not strictly required by the organism, but generally have other roles that may improve the individual’s ability to survive and reproduce. Fungi and other microbes produce a large variety of secondary metabolites, many of which are used as medicines to treat diseases in humans and other animals. For example, a molecule called lovastatin—which is produced by a fungus known as Aspergillus terreus—can reduce a human patient's risk of heart disease. However, it is not known what role many secondary metabolites play in the microbe that produced them. A. terreus lives in the soil, but it can also infect plants and animals. In addition to lovastatin, it also makes another secondary metabolite called terrein. A recent study identified the genes responsible for making terrein, and discovered that this molecule is harmful to plant cells and may help the fungus to colonize and thrive in the area immediately around plant roots, which is known as the rhizosphere. Here, Gressler et al. studied how terrein may help the fungus to cope with competitors in this environment. The experiments show that terrein increases the availability of iron and inhibits the growth of competing microbes. A shortage of iron or nitrogen-containing nutrients can stimulate the fungus to produce terrein, and elevated levels of a molecule called methionine have the same effect. These conditions are commonly found in the rhizosphere and further experiments identified several proteins in the fungus that are required for sensing them. Gressler et al.'s findings suggest that terrein helps to ensure that the fungus has sufficient nitrogen and iron to thrive in the rhizosphere. Also, this study confirms that the production of secondary metabolites in microbes can happen in response to elaborate cues from the environment, which may explain why only a limited number of secondary metabolites are produced by microbes when they are grown in the laboratory. Future studies will analyze other ways to activate the production of secondary metabolites outside of the microbe's normal environment, which may lead to the discovery of new important drugs. DOI:http://dx.doi.org/10.7554/eLife.07861.002
Collapse
Affiliation(s)
- Markus Gressler
- Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Florian Meyer
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Daniel Heine
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Peter Hortschansky
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Christian Hertweck
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Matthias Brock
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany.,Fungal Genetics and Biology Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
93
|
Emri T, Szarvas V, Orosz E, Antal K, Park H, Han KH, Yu JH, Pócsi I. Core oxidative stress response in Aspergillus nidulans. BMC Genomics 2015; 16:478. [PMID: 26115917 PMCID: PMC4482186 DOI: 10.1186/s12864-015-1705-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/15/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The b-Zip transcription factor AtfA plays a key role in regulating stress responses in the filamentous fungus Aspergillus nidulans. To identify the core regulons of AtfA, we examined genome-wide expression changes caused by various stresses in the presence/absence of AtfA using A. nidulans microarrays. We also intended to address the intriguing question regarding the existence of core environmental stress response in this important model eukaryote. RESULTS Examination of the genome wide expression changes caused by five different oxidative stress conditions in wild type and the atfA null mutant has identified a significant number of stereotypically regulated genes (Core Oxidative Stress Response genes). The deletion of atfA increased the oxidative stress sensitivity of A. nidulans and affected mRNA accumulation of several genes under both unstressed and stressed conditions. The numbers of genes under the AtfA control appear to be specific to a stress-type. We also found that both oxidative and salt stresses induced expression of some secondary metabolite gene clusters and the deletion of atfA enhanced the stress responsiveness of additional clusters. Moreover, certain clusters were down-regulated by the stresses tested. CONCLUSION Our data suggest that the observed co-regulations were most likely consequences of the overlapping physiological effects of the stressors and not of the existence of a general environmental stress response. The function of AtfA in governing various stress responses is much smaller than anticipated and/or other regulators may play a redundant or overlapping role with AtfA. Both stress inducible and stress repressive regulations of secondary metabolism seem to be frequent features in A. nidulans.
Collapse
Affiliation(s)
- Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Vera Szarvas
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Erzsébet Orosz
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Károly Antal
- Department of Zoology, Faculty of Sciences, Eszterházy Károly College, Eszterházy út 1, H-3300, Eger, Hungary.
| | - HeeSoo Park
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI, 53706, USA.
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, 565-701, Wanju, Republic of Korea.
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI, 53706, USA.
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| |
Collapse
|
94
|
Becker K, Beer C, Freitag M, Kück U. Genome-wide identification of target genes of a mating-type α-domain transcription factor reveals functions beyond sexual development. Mol Microbiol 2015; 96:1002-22. [DOI: 10.1111/mmi.12987] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Kordula Becker
- Christian Doppler Laboratory for Fungal Biotechnology; Lehrstuhl für Allgemeine und Molekulare Botanik; Ruhr-Universität Bochum; Universitätsstr. 150 D-44780 Bochum Germany
| | - Christina Beer
- Christian Doppler Laboratory for Fungal Biotechnology; Lehrstuhl für Allgemeine und Molekulare Botanik; Ruhr-Universität Bochum; Universitätsstr. 150 D-44780 Bochum Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics; Oregon State University; Corvallis Oregon 97331-7305 USA
| | - Ulrich Kück
- Christian Doppler Laboratory for Fungal Biotechnology; Lehrstuhl für Allgemeine und Molekulare Botanik; Ruhr-Universität Bochum; Universitätsstr. 150 D-44780 Bochum Germany
| |
Collapse
|
95
|
The SrkA Kinase Is Part of the SakA Mitogen-Activated Protein Kinase Interactome and Regulates Stress Responses and Development in Aspergillus nidulans. EUKARYOTIC CELL 2015; 14:495-510. [PMID: 25820520 DOI: 10.1128/ec.00277-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/20/2015] [Indexed: 02/02/2023]
Abstract
Fungi and many other eukaryotes use specialized mitogen-activated protein kinases (MAPK) of the Hog1/p38 family to transduce environmental stress signals. In Aspergillus nidulans, the MAPK SakA and the transcription factor AtfA are components of a central multiple stress-signaling pathway that also regulates development. Here we characterize SrkA, a putative MAPK-activated protein kinase, as a novel component of this pathway. ΔsrkA and ΔsakA mutants share a derepressed sexual development phenotype. However, ΔsrkA mutants are not sensitive to oxidative stress, and in fact, srkA inactivation partially suppresses the sensitivity of ΔsakA mutant conidia to H2O2, tert-butyl-hydroperoxide (t-BOOH), and menadione. In the absence of stress, SrkA shows physical interaction with nonphosphorylated SakA in the cytosol. We show that H2O2 induces a drastic change in mitochondrial morphology consistent with a fission process and the relocalization of SrkA to nuclei and mitochondria, depending on the presence of SakA. SakA-SrkA nuclear interaction is also observed during normal asexual development in dormant spores. Using SakA and SrkA S-tag pulldown and purification studies coupled to mass spectrometry, we found that SakA interacts with SrkA, the stress MAPK MpkC, the PPT1-type phosphatase AN6892, and other proteins involved in cell cycle regulation, DNA damage response, mRNA stability and protein synthesis, mitochondrial function, and other stress-related responses. We propose that oxidative stress induces DNA damage and mitochondrial fission and that SakA and SrkA mediate cell cycle arrest and regulate mitochondrial function during stress. Our results provide new insights into the mechanisms by which SakA and SrkA regulate the remodelling of cell physiology during oxidative stress and development.
Collapse
|
96
|
Damage response involves mechanisms conserved across plants, animals and fungi. Curr Genet 2015; 61:359-72. [PMID: 25572693 DOI: 10.1007/s00294-014-0467-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/10/2014] [Accepted: 12/18/2014] [Indexed: 12/22/2022]
Abstract
All organisms are constantly exposed to adverse environmental conditions including mechanical damage, which may alter various physiological aspects of growth, development and reproduction. In plant and animal systems, the damage response mechanism has been widely studied. Both systems posses a conserved and sophisticated mechanism that in general is aimed at repairing and preventing future damage, and causes dramatic changes in their transcriptomes, proteomes, and metabolomes. These damage-induced changes are mediated by elaborate signaling networks, which include receptors/sensors, calcium (Ca(2+)) influx, ATP release, kinase cascades, reactive oxygen species (ROS), and oxylipin signaling pathways. In contrast, our current knowledge of how fungi respond to injury is limited, even though various reports indicate that mechanical damage triggers reproductive processes. In fungi, the damage response mechanism has been studied more in depth in Trichoderma atroviride. Interestingly, these studies indicate that the mechanical damage response involves ROS, Ca(2+), kinase cascades, and lipid signaling pathways. Here we compare the response to mechanical damage in plants, animals and fungi and provide evidence that they appear to share signaling molecules and pathways, suggesting evolutionary conservation across the three kingdoms.
Collapse
|
97
|
Wolfers S, Kamerewerd J, Nowrousian M, Sigl C, Zadra I, Kürnsteiner H, Kück U, Bloemendal S. Microarray hybridization analysis of light-dependent gene expression in Penicillium chrysogenum identifies bZIP transcription factor PcAtfA. J Basic Microbiol 2015; 55:480-9. [PMID: 25557366 DOI: 10.1002/jobm.201400588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/18/2014] [Indexed: 11/12/2022]
Abstract
The fungal velvet complex is a light-dependent master regulator of secondary metabolism and development in the major penicillin producer, Penicillium chrysogenum. However, the light-dependent mechanism is unclear. To identify velvet-dependent transcriptional regulators that show light-regulated expression, we performed microarray hybridizations with RNA isolated from P. chrysogenum ΔPcku70 cultures grown under 13 different long-term, light-dependent growth conditions. We compared these expression data to data from two velvet complex deletion mutants; one lacked a subunit of the velvet complex (ΔPcvelA), and the other lacked a velvet-associated protein (ΔPclaeA). We sought to identify genes that were up-regulated in light, but down-regulated in ΔPcvelA and ΔPclaeA. We identified 148 co-regulated genes that displayed this regulatory pattern. In silico analyses of the co-regulated genes identified six proteins with fungal-specific transcription factor domains. Among these, we selected the bZIP transcription factor, PcAtfA, for functional characterization in deletion and complementation strains. Our data clearly indicates that PcAtfA governs spore germination. This comparative analysis of different microarray hybridization data sets provided results that may be useful for identifying genes for future functional analyses.
Collapse
Affiliation(s)
- Simon Wolfers
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Bok JW, Wiemann P, Garvey GS, Lim FY, Haas B, Wortman J, Keller NP. Illumina identification of RsrA, a conserved C2H2 transcription factor coordinating the NapA mediated oxidative stress signaling pathway in Aspergillus. BMC Genomics 2014; 15:1011. [PMID: 25416206 PMCID: PMC4252986 DOI: 10.1186/1471-2164-15-1011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022] Open
Abstract
Background Chemical mutagenesis screens are useful to identify mutants involved in biological processes of interest. Identifying the mutation from such screens, however, often fails when using methodologies involving transformation of the mutant to wild type phenotype with DNA libraries. Results Here we analyzed Illumina sequence of a chemically derived mutant of Aspergillus nidulans and identified a gene encoding a C2H2 transcription factor termed RsrA for regulator of stress response. RsrA is conserved in filamentous fungal genomes, and upon deleting the gene in three Aspergillus species (A. nidulans, A. flavus and A. fumigatus), we found two conserved phenotypes: enhanced resistance to oxidative stress and reduction in sporulation processes. For all species, rsrA deletion mutants were more resistant to hydrogen peroxide treatment. In depth examination of this latter characteristic in A. nidulans showed that upon exposure to hydrogen peroxide, RsrA loss resulted in global up-regulation of several components of the oxidative stress metabolome including the expression of napA and atfA, the two bZIP transcription factors mediating resistance to reactive oxygen species (ROS) as well as NapA targets in thioredoxin and glutathione systems. Coupling transcriptional data with examination of ΔrsrAΔatfA and ΔrsrAΔnapA double mutants indicate that RsrA primarily operates through NapA-mediated stress response pathways. A model of RsrA regulation of ROS response in Aspergillus is presented. Conclusion RsrA, found in a highly syntenic region in Aspergillus genomes, coordinates a NapA mediated oxidative response in Aspergillus fungi. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1011) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
99
|
Nimmanee P, Woo PCY, Kummasook A, Vanittanakom N. Characterization of sakA gene from pathogenic dimorphic fungus Penicillium marneffei. Int J Med Microbiol 2014; 305:65-74. [PMID: 25466206 DOI: 10.1016/j.ijmm.2014.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 12/18/2022] Open
Abstract
Eukaryotes utilize stress activated protein kinase (SAPK) pathways to adapt to environmental stress, including heat, osmotic, oxidative or nutrient stresses. Penicillium marneffei (Talaromyces marneffei), the dimorphic pathogenic fungus that can cause disseminated mycosis in HIV-infected patients, has to encounter various types of stresses both outside and inside host cells. However, the strategies used by this fungus in response to these stresses are still unclear. In this report, the stress-activated kinase (sakA) gene of P. marneffei was characterized and the roles of this gene on various stress conditions were studied. The sakA gene deletion mutant was constructed using the split marker method. The phenotypes and sensitivities to varieties of stresses, including osmotic, oxidative, heat and cell wall stresses of the deletion mutant were compared with the wild type and the sakA complemented strains. Results demonstrated that the P. marneffei sakA gene encoded a putative protein containing TXY phosphorylation lip found in the stress high osmolarity glycerol 1 (Hog1)/Spc1/p38 MAPK family, and that this gene was involved not only in tolerance against oxidative and heat stresses, but also played a role in asexual development, chitin deposition, yeast cell generation in vitro and survival inside mouse and human macrophages.
Collapse
Affiliation(s)
- Panjaphorn Nimmanee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Aksarakorn Kummasook
- Division of Clinical Microbiology, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
100
|
Nimmanee P, Woo PCY, Vanittanakom P, Youngchim S, Vanittanakom N. Functional analysis of atfA gene to stress response in pathogenic thermal dimorphic fungus Penicillium marneffei. PLoS One 2014; 9:e111200. [PMID: 25365258 PMCID: PMC4218842 DOI: 10.1371/journal.pone.0111200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/20/2014] [Indexed: 12/15/2022] Open
Abstract
Penicillium marneffei, the pathogenic thermal dimorphic fungus is a causative agent of a fatal systemic disease, penicilliosis marneffei, in immunocompromised patients especially HIV patients. For growth and survival, this fungus has to adapt to environmental stresses outside and inside host cells and this adaptation requires stress signaling pathways and regulation of gene expression under various kinds of stresses. In this report, P. marneffei activating transcription factor (atfA) gene encoding bZip-type transcription factor was characterized. To determine functions of this gene, atfA isogenic mutant strain was constructed using the modified split marker recombination method. The phenotypes and susceptibility to varieties of stresses including osmotic, oxidative, heat, UV, cell wall and cell membrane stresses of the mutant strain were compared with the wild type and the atfA complemented strains. Results demonstrated that the mRNA expression level of P. marneffei atfA gene increased under heat stress at 42°C. The atfA mutant was more sensitive to sodium dodecyl sulphate, amphotericin B and tert-butyl hydroperoxide than the wild type and complemented strains but not hydrogen peroxide, menadione, NaCl, sorbitol, calcofluor white, itraconazole, UV stresses and heat stress at 39°C. In addition, recovery of atfA mutant conidia after mouse and human macrophage infections was significantly decreased compared to those of wild type and complemented strains. These results indicated that the atfA gene was required by P. marneffei under specific stress conditions and might be necessary for fighting against host immune cells during the initiation of infection.
Collapse
Affiliation(s)
- Panjaphorn Nimmanee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patrick C. Y. Woo
- State Key Laboratory of Emerging Infectious Diseases, Research Centre of Infection and Immunology and Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | | | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|