51
|
Yang T, Tedersoo L, Fu X, Zhao C, Liu X, Gao G, Cheng L, Adams JM, Chu H. Saprotrophic fungal diversity predicts ectomycorrhizal fungal diversity along the timberline in the framework of island biogeography theory. ISME COMMUNICATIONS 2021; 1:15. [PMID: 37938216 PMCID: PMC9723781 DOI: 10.1038/s43705-021-00015-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Island biogeography theory (IBT) is one of the most fruitful paradigms in macroecology, positing positive species-area and negative species-isolation relationships for the distribution of organisms. Biotic interactions are also crucial for diversity maintenance on islands. In the context of a timberline tree species (Betula ermanii) as "virtual island", we surveyed ectomycorrhizal (EcM) fungal diversity along a 430-m vertical gradient on the top of Changbai Mountain, China, sampling fine roots and neighboring soils of B. ermanii. Besides elevation, soil properties and plant functional traits, endophytic and saprotrophic fungal diversity were assessed as candidate predictors to construct integrative models. EcM fungal diversity decreased with increasing elevation, and exhibited positive diversity to diameter at breast height and negative diversity to distance from forest edge relationships in both roots and soils. Integrative models further showed that saprotrophic fungal diversity was the strongest predictor of EcM fungal diversity, directly enhancing EcM fungal diversity in roots and soils. Our study supports IBT as a basic framework to explain EcM fungal diversity. The diversity-begets-diversity hypothesis within the fungal kingdom is more predictive for EcM fungal diversity within the IBT framework, which reveals a tight association between saprotrophic and EcM fungal lineages in the timberline ecosystem.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Xiao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang Zhao
- School of Geography Sciences, Nanjing Normal University, Nanjing, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guifeng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Liang Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jonathan M Adams
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
52
|
Stroheker S, Dubach V, Vögtli I, Sieber TN. Investigating Host Preference of Root Endophytes of Three European Tree Species, with a Focus on Members of the Phialocephala fortinii- Acephala applanata Species Complex (PAC). J Fungi (Basel) 2021; 7:jof7040317. [PMID: 33921799 PMCID: PMC8073920 DOI: 10.3390/jof7040317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 10/29/2022] Open
Abstract
Host preference of root endophytes of the three European tree species of Norway spruce (Picea abies), common ash (Fraxinus excelsior), and sycamore maple (Acer pseudoplatanus) were investigated in two forest stands near Zurich, Switzerland. The focus was placed on members of the Phialocephala fortinii s.l. (sensu lato)-Acephala applanata species complex (PAC), as well as other dark septate endopyhtes (DSE). PAC species were identified based on 13 microsatellite loci. Eleven PAC species were found, with Phialocephala helvetica, P. europaea being the most frequent. All but cryptic species 12 (CSP12) preferred Norway spruce as a host. Though very rare in general, CSP12 was most frequently isolated from maple roots. Regarding the abundant PAC species, P. helvetica and P. europaea, the preference of spruce as a host was least pronounced in P. europaea, as it was also often isolated from ash and maple. It is the first record of PAC found on common ash (Fraxinus excelsior). Cadophora orchidicola, a close relative of PAC, has frequently been isolated from ash. Various species of the Nectriaceae (Cylindrocarpon spp.) have often been isolated, particularly from maple roots. By comparison, Pezicula spp. (Cryptosporiopsis spp.) was found to be abundant on all three hosts. Phomopsis phaseoli exhibits a clear preference for spruce.
Collapse
Affiliation(s)
- Sophie Stroheker
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Swiss Forest Protection, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; (V.D.); (I.V.)
- Correspondence: ; Tel.: +41-447-392-368
| | - Vivanne Dubach
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Swiss Forest Protection, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; (V.D.); (I.V.)
| | - Irina Vögtli
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Swiss Forest Protection, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; (V.D.); (I.V.)
| | - Thomas N. Sieber
- ETH Zurich, Institute of Integrative Biology, Forest Pathology and Dendrology, Universitätstrasse 16, 8092 Zurich, Switzerland;
| |
Collapse
|
53
|
Sugiyama Y, Sato H. The Limited Establishment of Native Ectomycorrhizal Fungi in Exotic Eucalyptus spp. Stands in Japan. Front Microbiol 2021; 12:597442. [PMID: 33815304 PMCID: PMC8012522 DOI: 10.3389/fmicb.2021.597442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Host specificity may potentially limit the distribution expansion of ectomycorrhizal (ECM) fungi into areas where their original host plants are absent. To test this hypothesis, we investigated whether populations of native ECM fungi may establish in stands of exotic host trees, namely those of the Eucalyptus species, in Japan. ECM fungal communities associated with eucalyptus and surrounding native host species (Pinus thunbergii and Fagaceae spp.) were investigated at two sites; one site in which eucalyptus and native trees were growing in isolation, and a second site in which these species were mixed. To identify fungal taxa, the nuclear ribosomal internal transcribed spacer region 1 was sequenced for the ECM fungi from the root tips and clustered into operational taxonomic units (OTUs). To confirm whether the retrieved OTUs were native to Japan, they were queried against the entire database of the National Center for Biotechnology Information, UNITE, and GlobalFungi, whereby sampling locations and associated hosts were obtained from sequences with ≥97% similarity. Eucalyptus trees were associated with seven and 12 ECM fungal OTUs, including putatively exotic OTUs in isolated and mixed sites, respectively. Among the 36 and 63 native ECM fungal OTUs detected from native hosts at isolated and mixed sites, only one OTU was shared with eucalyptus at the respective sites. This means that most native ECM fungi in Japan may be incapable of forming an association with exotic Eucalyptus spp. Notably, even ECM fungi associated with both Pinus and Quercus were not detected from eucalyptus, suggesting that host-fungus incompatibility is determined not only by host phylogenetic relatedness but also by host biogeographic affinities. Our findings show that the incompatibility with eucalyptus as well as dispersal limitation may prevent the distribution expansion of native ECM fungi in Japan into the distribution ranges of Eucalyptus spp., where the original hosts are absent.
Collapse
Affiliation(s)
- Yoriko Sugiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
54
|
Arraiano-Castilho R, Bidartondo MI, Niskanen T, Clarkson JJ, Brunner I, Zimmermann S, Senn-Irlet B, Frey B, Peintner U, Mrak T, Suz LM. Habitat specialisation controls ectomycorrhizal fungi above the treeline in the European Alps. THE NEW PHYTOLOGIST 2021; 229:2901-2916. [PMID: 33107606 DOI: 10.1111/nph.17033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Alpine habitats are one of the most vulnerable ecosystems to environmental change, however, little information is known about the drivers of plant-fungal interactions in these ecosystems and their resilience to climate change. We investigated the influence of the main drivers of ectomycorrhizal (EM) fungal communities along elevation and environmental gradients in the alpine zone of the European Alps and measured their degree of specialisation using network analysis. We sampled ectomycorrhizas of Dryas octopetala, Bistorta vivipara and Salix herbacea, and soil fungal communities at 28 locations across five countries, from the treeline to the nival zone. We found that: (1) EM fungal community composition, but not richness, changes along elevation, (2) there is no strong evidence of host specialisation, however, EM fungal networks in the alpine zone and within these, EM fungi associated with snowbed communities, are more specialised than in other alpine habitats, (3) plant host population structure does not influence EM fungal communities, and (4) most variability in EM fungal communities is explained by fine-scale changes in edaphic properties, like soil pH and total nitrogen. The higher specialisation and narrower ecological niches of these plant-fungal interactions in snowbed habitats make these habitats particularly vulnerable to environmental change in alpine ecosystems.
Collapse
Affiliation(s)
- Ricardo Arraiano-Castilho
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin I Bidartondo
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tuula Niskanen
- Identification and Naming, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - James J Clarkson
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Stephan Zimmermann
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beatrice Senn-Irlet
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck, 6020, Austria
| | - Tanja Mrak
- Slovenian Forestry Institute, Večna pot 2, Ljubljana, 1000, Slovenia
| | - Laura M Suz
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| |
Collapse
|
55
|
Otsing E, Anslan S, Ambrosio E, Koricheva J, Tedersoo L. Tree Species Richness and Neighborhood Effects on Ectomycorrhizal Fungal Richness and Community Structure in Boreal Forest. Front Microbiol 2021; 12:567961. [PMID: 33692762 PMCID: PMC7939122 DOI: 10.3389/fmicb.2021.567961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/27/2021] [Indexed: 11/29/2022] Open
Abstract
Tree species identity is one of the key factors driving ectomycorrhizal (EcM) fungal richness and community composition in boreal and temperate forest ecosystems, but little is known about the influence of tree species combinations and their neighborhood effects on EcM communities. To advance our understanding of host plant effects on EcM fungi, the roots of silver birch, Scots pine, and Norway spruce were analyzed using high-throughput sequencing across mature boreal forest exploratory plots of monocultures and two- and three-species mixtures in Finland. Our analyses revealed that tree species identity was an important determinant of EcM fungal community composition, but tree species richness had no significant influence on EcM fungal richness and community composition. We found that EcM fungal community composition associated with spruce depends on neighboring tree species. Our study suggests that at a regional-scale tree species identity is the primary factor determining community composition of root-associated EcM fungi alongside with tree species composition effects on EcM fungal community of spruce in mixed stands.
Collapse
Affiliation(s)
- Eveli Otsing
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Elia Ambrosio
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Natural History Museum, University of Tartu, Tartu, Estonia
| |
Collapse
|
56
|
Adamo I, Piñuela Y, Bonet JA, Castaño C, Martínez de Aragón J, Parladé J, Pera J, Alday JG. Sampling forest soils to describe fungal diversity and composition. Which is the optimal sampling size in mediterranean pure and mixed pine oak forests? Fungal Biol 2021; 125:469-476. [PMID: 34024594 DOI: 10.1016/j.funbio.2021.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/19/2023]
Abstract
Soil sampling is a critical step affecting perceived fungal diversity, however sampling optimization for high-throughput-DNA sequencing studies have never been tested in Mediterranean forest ecosystems. We identified the minimum number of pooled samples needed to obtain a reliable description of fungal communities in terms of diversity and composition in three different Mediterranean forests (pine, oak, and mixed-pine-oak). Twenty soil samples were randomly selected in each of the three plots per type. Samples obtained in 100 m2 plots were pooled to obtain mixtures of 3, 6, 10, 15, 20 samples, and sequenced using Illumina MiSeq of fungal ITS2 amplicons. Pooling three soil samples in Pinus and Quercus stands provided consistent richness estimations, while at least six samples were needed in mixed-stands. β-diversity decreased with increasing sample pools in monospecific-stands, while there was no effect of sample pool size on mixed-stands. Soil sample pooling had no effect over species composition. We estimate that three samples would be already optimal to describe fungal richness and composition in Mediterranean pure stands, while at least six samples would be needed in mixed stands.
Collapse
Affiliation(s)
- Irene Adamo
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain; Dep. Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain.
| | - Yasmine Piñuela
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain; Dep. Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain; Forest Science and Technology Centre of Catalonia, Ctra, Sant Llorenç de Morunys Km 2, E25280, Solsona, Spain
| | - José Antonio Bonet
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain; Dep. Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain
| | - Carles Castaño
- Swedish University of Agricultural Sciences, Department of Forest Mycology and Plant Pathology, SE, 75007, Uppsala, Sweden
| | - Juan Martínez de Aragón
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain; Forest Science and Technology Centre of Catalonia, Ctra, Sant Llorenç de Morunys Km 2, E25280, Solsona, Spain
| | - Javier Parladé
- Sustainable Plant Protection, IRTA, Centre de Cabrils, Ctra Cabrils Km 2, E08348, Cabrils, Barcelona, Spain
| | - Joan Pera
- Sustainable Plant Protection, IRTA, Centre de Cabrils, Ctra Cabrils Km 2, E08348, Cabrils, Barcelona, Spain
| | - Josu G Alday
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain; Dep. Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain
| |
Collapse
|
57
|
Marčiulynienė D, Marčiulynas A, Lynikienė J, Vaičiukynė M, Gedminas A, Menkis A. DNA-Metabarcoding of Belowground Fungal Communities in Bare-Root Forest Nurseries: Focus on Different Tree Species. Microorganisms 2021; 9:150. [PMID: 33440909 PMCID: PMC7827201 DOI: 10.3390/microorganisms9010150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 11/20/2022] Open
Abstract
The production of tree seedlings in forest nurseries and their use in the replanting of clear-cut forest sites is a common practice in the temperate and boreal forests of Europe. Although conifers dominate on replanted sites, in recent years, deciduous tree species have received more attention due to their often-higher resilience to abiotic and biotic stress factors. The aim of the present study was to assess the belowground fungal communities of bare-root cultivated seedlings of Alnus glutinosa , Betula pendula, Pinus sylvestris, Picea abies and Quercus robur in order to gain a better understanding of the associated fungi and oomycetes, and their potential effects on the seedling performance in forest nurseries and after outplanting. The study sites were at the seven largest bare-root forest nurseries in Lithuania. The sampling included the roots and adjacent soil of 2-3 year old healthy-looking seedlings. Following the isolation of the DNA from the individual root and soil samples, these were amplified using ITS rRNA as a marker, and subjected to high-throughput PacBio sequencing. The results showed the presence of 161,302 high-quality sequences, representing 2003 fungal and oomycete taxa. The most common fungi were Malassezia restricta (6.7% of all of the high-quality sequences), Wilcoxina mikolae (5.0%), Pustularia sp. 3993_4 (4.6%), and Fusarium oxysporum (3.5%). The most common oomycetes were Pythium ultimum var. ultimum (0.6%), Pythium heterothallicum (0.3%), Pythium spiculum (0.3%), and Pythium sylvaticum (0.2%). The coniferous tree species (P. abies and P. sylvestris) generally showed a higher richness of fungal taxa and a rather distinct fungal community composition compared to the deciduous tree species (A. glutinosa, B. pendula , and Q. robur). The results demonstrated that the seedling roots and the rhizosphere soil in forest nurseries support a high richness of fungal taxa. The seedling roots were primarily inhabited by saprotrophic and mycorrhizal fungi, while fungal pathogens and oomycetes were less abundant, showing that the cultivation practices used in forest nurseries secured both the production of high-quality planting stock and disease control.
Collapse
Affiliation(s)
- Diana Marčiulynienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, LT-53101 Kaunas District, Lithuania; (A.M.); (J.L.); (M.V.); (A.G.)
| | - Adas Marčiulynas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, LT-53101 Kaunas District, Lithuania; (A.M.); (J.L.); (M.V.); (A.G.)
| | - Jūratė Lynikienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, LT-53101 Kaunas District, Lithuania; (A.M.); (J.L.); (M.V.); (A.G.)
| | - Miglė Vaičiukynė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, LT-53101 Kaunas District, Lithuania; (A.M.); (J.L.); (M.V.); (A.G.)
| | - Artūras Gedminas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, LT-53101 Kaunas District, Lithuania; (A.M.); (J.L.); (M.V.); (A.G.)
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden;
| |
Collapse
|
58
|
Boeraeve M, Everts T, Vandekerkhove K, De Keersmaeker L, Van de Kerckhove P, Jacquemyn H. Partner turnover and changes in ectomycorrhizal fungal communities during the early life stages of European beech (Fagus sylvatica L.). MYCORRHIZA 2021; 31:43-53. [PMID: 33140217 DOI: 10.1007/s00572-020-00998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The first life stages of a tree are subject to strong environmental stresses and competition, limiting their chances of survival. Establishing a mutualistic relationship with mycorrhizal fungi during early life stages may increase growth and survival rates of trees, but how mycorrhizal communities assemble during these stages remains unclear. Here, we studied variation in the ectomycorrhizal (EcM) fungal communities in the soil and roots of Fagus sylvatica seedlings and saplings. Fungal DNA was extracted from the soil and seedling and sapling roots collected in 156 plots across the beech-dominated Sonian forest (Belgium) and community composition was determined through metabarcoding. EcM fungal community composition significantly differed between soil, seedlings and saplings. Russula, Amanita and Inocybe were most abundant in soil, while Lactarius and Scleroderma were more abundant in seedling and sapling roots and Xerocomellus and Laccaria were most abundant in sapling roots. Our results provide evidence of partner turnover in EcM fungal community composition with increasing age in the early life stages of F. sylvatica.
Collapse
Affiliation(s)
- Margaux Boeraeve
- Plant Conservation and Population Biology, Biology Department, Leuven, KU, Belgium.
| | - Teun Everts
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | | | | | | | - Hans Jacquemyn
- Plant Conservation and Population Biology, Biology Department, Leuven, KU, Belgium
| |
Collapse
|
59
|
Botnen SS, Thoen E, Eidesen PB, Krabberød AK, Kauserud H. Community composition of arctic root-associated fungi mirrors host plant phylogeny. FEMS Microbiol Ecol 2020; 96:fiaa185. [PMID: 32918451 PMCID: PMC7840110 DOI: 10.1093/femsec/fiaa185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
The number of plant species regarded as non-mycorrhizal increases at higher latitudes, and several plant species in the High-Arctic Archipelago Svalbard have been reported as non-mycorrhizal. We used the rRNA ITS2 and 18S gene markers to survey which fungi, as well as other micro-eukaryotes, were associated with roots of 31 arctic plant species not usually regarded as mycorrhizal in Svalbard. We assessed to what degree the root-associated fungi showed any host preference and whether the phylogeny of the plant hosts may mirror the composition of root-associated fungi. Fungal communities were largely structured according to host plant identity and to a less extent by environmental factors. We observed a positive relationship between the phylogenetic distance of host plants and the distance of fungal community composition between samples, indicating that the evolutionary history of the host plants plays a major role for which fungi colonize the plant roots. In contrast to the ITS2 marker, the 18S rRNA gene marker showed that chytrid fungi were prevalently associated with plant roots, together with a wide spectrum of amoeba-like protists and nematodes. Our study confirms that arbuscular mycorrhizal (AM) fungi are present also in arctic environments in low abundance.
Collapse
Affiliation(s)
- S S Botnen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
- The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
- Oslo Metropolitan University, PO Box 4 St. Olavs plass, NO-0130 Oslo, Norway
| | - E Thoen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - P B Eidesen
- The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| | - A K Krabberød
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - H Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
60
|
Marjanović Ž, Nawaz A, Stevanović K, Saljnikov E, Maček I, Oehl F, Wubet T. Root-Associated Mycobiome Differentiate between Habitats Supporting Production of Different Truffle Species in Serbian Riparian Forests. Microorganisms 2020; 8:E1331. [PMID: 32878332 PMCID: PMC7563819 DOI: 10.3390/microorganisms8091331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 11/17/2022] Open
Abstract
Balkan lowlands bordering with the Pannonia region are inhabited by diverse riparian forests that support production of different truffle species, predominantly the most prized white truffle of Piedmont (Tuber magnatum Pico), but also other commercial species (T.macrosporum Vitt., T. aestivum Vitt.). Surprisingly, little is known about the native root-associated mycobiome (RAM) of these lowland truffle-producing forests. Therefore, in this study we aim at exploring and comparing the RAMs of three different truffle-producing forests from Kolubara river plane in Serbia. Molecular methods based on next generation sequencing (NGS) were used to evaluate the diversity of root-associated fungal communities and to elucidate the influence of environmental factors on their differentiation. To our knowledge, this is the first study from such habitats with a particular focus on comparative analysis of the RAM in different truffle-producing habitats using a high-throughput sequencing approach. Our results indicated that the alpha diversity of investigated fungal communities was not significantly different between different truffle-producing forests and within a specific forest type, while the seasonal differences in the alpha diversity were only observed in the white truffle-producing forests. Taxonomic profiling at phylum level indicated the dominance of fungal OTUs belonging to phylum Ascomycota and Basidiomycota, with very minor presence of other phyla. Distinct community structures of root-associated mycobiomes were observed for white, mixed, and black truffle-producing forests. The core mycobiome analysis indicated a fair share of fungal genera present exclusively in white and black truffle-producing forest, while the core genera of mixed truffle-producing forests were shared with both white and black truffle-producing forests. The majority of detected fungal OTUs in all three forest types were symbiotrophs, with ectomycorrhizal fungi being a dominant functional guild. Apart from assumed vegetation factor, differentiation of fungal communities was driven by factors connected to the distance from the river and exposure to fluvial activities, soil age, structure, and pH. Overall, Pannonian riparian forests appear to host diverse root-associated fungal communities that are strongly shaped by variation in soil conditions.
Collapse
Affiliation(s)
- Žaklina Marjanović
- Institute for Multidisciplinary Research, Belgrade University, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Ali Nawaz
- Helmholtz Centre for Environmental Research—UFZ, Department of Community Ecology, 06120 Halle (Saale), Germany;
| | - Katarina Stevanović
- Faculty of Biology, University of Belgrade, Studentski Trg 3, 11000 Belgrade, Serbia;
| | - Elmira Saljnikov
- Soil Science Institute, Teodora Drajzera 7, 11000 Belgrade, Serbia;
| | - Irena Maček
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Fritz Oehl
- Agroscope, Competence Division for Plants and Plant Products, Ecotoxicology, Müller-Thurgau-Str. 29, 8820 Wädenswil, Switzerland;
| | - Tesfaye Wubet
- Helmholtz Centre for Environmental Research—UFZ, Department of Community Ecology, 06120 Halle (Saale), Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
61
|
Cho HJ, Lee H, Park MS, Park KH, Park JH, Cho Y, Kim C, Lim YW. Two New Species of Laccaria (Agaricales, Basidiomycota) from Korea. MYCOBIOLOGY 2020; 48:288-295. [PMID: 32952411 PMCID: PMC7476507 DOI: 10.1080/12298093.2020.1786961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Species of Laccaria (Hydnangiaceae, Agaricales, and Basidiomycota) are well-known ectomycorrhizal symbionts of a broad range of hosts. Laccaria species are characterized by brown, orange, or purple colored basidiocarps, and globose or oblong, echinulate and multinucleate basidiospores. While some Laccaria species are easily identified at the species level using only the morphological characteristics, others are hard to distinguish at the species level due to small differences in morphology. Heretofore, ten Laccaria species have been reported in Korea. While studying the fungal diversity in the National Parks of Korea, two new Laccaria species were discovered. Species identification was done based on molecular analyses (ITS, 28S rDNA, rpb2, and tef1), then were confirmed by their corresponding morphologies. The two newly discovered Laccaria species are proposed here as Laccaria macrobasidia and Laccaria griseolilacina. The unique morphological characters of L. macrobasidia that distinguish it from its closely related species are orange-brown colored basidiocarp, long basidia and the absence of cheilocystidia. L. griseolilacina is characterized by a light grayish lavender-colored pileus and the absence of cheilocystidia. Two new species are described and illustrated in the present paper.
Collapse
Affiliation(s)
- Hae Jin Cho
- School of Biological Sciences and Institute of
Microbiology, Seoul National University, Seoul,
Korea
- Wild Plant Industrialization Research
Division, Wild Plants and Seed Conversation Department, Baekdudaegan National
Arboretum, Bonghwa, Korea
| | - Hyun Lee
- School of Biological Sciences and Institute of
Microbiology, Seoul National University, Seoul,
Korea
- Taxonomy Research Lab, Forest Biodiversity
Division, Korea National Arboretum, Gyeonggi-do,
Korea
| | - Myung Soo Park
- School of Biological Sciences and Institute of
Microbiology, Seoul National University, Seoul,
Korea
| | - Ki Hyeong Park
- School of Biological Sciences and Institute of
Microbiology, Seoul National University, Seoul,
Korea
| | - Ji Hyun Park
- School of Biological Sciences and Institute of
Microbiology, Seoul National University, Seoul,
Korea
| | - Yoonhee Cho
- School of Biological Sciences and Institute of
Microbiology, Seoul National University, Seoul,
Korea
| | - Changmu Kim
- Microorganism Resources Division, National
Institute of Biological Resources, Incheon,
Korea
| | - Young Woon Lim
- School of Biological Sciences and Institute of
Microbiology, Seoul National University, Seoul,
Korea
| |
Collapse
|
62
|
Legeay J, Husson C, Boudier B, Louisanna E, Baraloto C, Schimann H, Marcais B, Buée M. Surprising low diversity of the plant pathogen Phytophthora in Amazonian forests. Environ Microbiol 2020; 22:5019-5032. [PMID: 32452108 DOI: 10.1111/1462-2920.15099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/23/2020] [Indexed: 11/30/2022]
Abstract
The genus Phytophthora represents a group of plant pathogens with broad global distribution. The majority of them cause the collar and root-rot of diverse plant species. Little is known about Phytophthora communities in forest ecosystems, especially in the Neotropical forests where natural enemies could maintain the huge plant diversity via negative density dependence. We characterized the diversity of soil-borne Phytophthora communities in the North French Guiana rainforest and investigated how they are structured by host identity and environmental factors. In this little-explored habitat, 250 soil cores were sampled from 10 plots hosting 10 different plant families across three forest environments (Terra Firme, Seasonally Flooded and White Sand). Phytophthora diversity was studied using a baiting approach and metabarcoding (High-Throughput Sequencing) on environmental DNA extracted from both soil samples and baiting-leaves. These three approaches revealed very similar communities, characterized by an unexpected low diversity of Phytophthora species, with the dominance of two cryptic species close to Phytophthora heveae. As expected, the Phytophthora community composition of the French Guiana rainforest was significantly impacted by the host plant family and environment. However, these plant pathogen communities are very small and are dominated by generalist species, questioning their potential roles as drivers of plant diversity in these Amazonian forests.
Collapse
Affiliation(s)
- Jean Legeay
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Claude Husson
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France.,Département de la santé des forêts, Ministère de l'agriculture et de l'alimentation, DGAL, SDQPV, Paris, 75015, France
| | - Benjamin Boudier
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Eliane Louisanna
- INRAE, UMR EcoFoG - Ecology of Guiana Forests - (AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane), Kourou, 97310, France
| | - Christopher Baraloto
- INRAE, UMR EcoFoG - Ecology of Guiana Forests - (AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane), Kourou, 97310, France.,International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Heidy Schimann
- INRAE, UMR EcoFoG - Ecology of Guiana Forests - (AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane), Kourou, 97310, France
| | - Benoît Marcais
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Marc Buée
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France
| |
Collapse
|
63
|
Izumi H. The proportions of ectomycorrhizal roots are varied depending on the different host plant compositions in Scottish arctic/alpine coastal relict vegetation. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
64
|
Sugiyama Y, Matsuoka S, Osono T. Two-years of investigation revealed the inconsistency of seasonal dynamics of an ectomycorrhizal fungal community in Japanese cool-temperate forest across years. FEMS Microbiol Ecol 2020; 96:5857164. [DOI: 10.1093/femsec/fiaa118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
Ectomycorrhizal (ECM) fungal communities show temporal dynamics. Such dynamics have been mainly assessed with 1 year of investigations and have been related to the seasonal changes in environment. Recent study in sub-tropical region has revealed that stochastic temporal-based process can affect ECM fungal community, making the community of the same season different between years. The different community structures across years have also been observed in the Arctic region with a grass host. Nevertheless, in temperate zones, the effect of temporal-based processes and the consistency of seasonal dynamics have never been investigated. We conducted a 2-year root sampling in a cool temperate Fagus crenata forest to test whether the temporal variation of ECM fungal community composition could be explained by season. The explanation powers of temporal distance and environmental factors for the temporal dynamics of ECM fungal community were simultaneously evaluated. The variation in community structure was significantly explained by year but not by season, indicating that seasonal community structure differed between years. This difference in the community structure across years was partly explained by temporal factors. Our study implies that the temporal dynamics of ECM fungal communities in temperate forests are affected by temporal-based factors and can vary across years.
Collapse
Affiliation(s)
- Yoriko Sugiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606–8501, Japan
| | - Shunsuke Matsuoka
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Takashi Osono
- Department of Environmental Systems Science, Faculty of Science and Engineering, Doshisha University, Tatara Miyakodani 1-3, Kyotanabe, Kyoto, 610-0394, Japan
| |
Collapse
|
65
|
Segnitz RM, Russo SE, Davies SJ, Peay KG. Ectomycorrhizal fungi drive positive phylogenetic plant-soil feedbacks in a regionally dominant tropical plant family. Ecology 2020; 101:e03083. [PMID: 32323299 DOI: 10.1002/ecy.3083] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/19/2020] [Accepted: 03/18/2020] [Indexed: 11/08/2022]
Abstract
While work in temperate forests suggests that there are consistent differences in plant-soil feedback (PSF) between plants with arbuscular and ectomycorrhizal associations, it is unclear whether these differences exist in tropical rainforests. We tested the effects of mycorrhizal type, phylogenetic relationships to overstory species, and soil fertility on the growth of tree seedlings in a tropical Bornean rainforest with a high diversity of both ectomycorrhizal and arbuscular mycorrhizal trees. We found that ectomycorrhizal tree seedlings had higher growth in soils conditioned by close relatives and that this was associated with higher mycorrhizal colonization. By contrast, arbuscular mycorrhizal tree seedlings generally grew more poorly in soils conditioned by close relatives. For ectomycorrhizal species, the phylogenetic trend was insensitive to soil fertility. For arbuscular mycorrhizal seedlings, however, the effect of growing in soils conditioned by close relatives became increasingly negative as soil fertility increased. Our results demonstrate consistent effects of mycorrhizal type on plant-soil feedbacks across forest biomes. The positive effects of ectomycorrhizal symbiosis may help explain biogeographic variation across tropical forests, such as familial dominance of the Dipterocarpaceae in southeast Asia. However, positive feedbacks also raise questions about the role of PSFs in maintaining tropical diversity.
Collapse
Affiliation(s)
- R Max Segnitz
- Department of Biology, Stanford University, Stanford, California, 94305-5020, USA
| | - Sabrina E Russo
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, 68588-0118, USA
| | - Stuart J Davies
- Center for Tropical Forest Science, Smithsonian Institution, Washington, D.C., 20013-7012, USA
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, California, 94305-5020, USA
| |
Collapse
|
66
|
Arraiano-Castilho R, Bidartondo M, Niskanen T, Zimmermann S, Frey B, Brunner I, Senn-Irlet B, Hörandl E, Gramlich S, Suz L. Plant-fungal interactions in hybrid zones: Ectomycorrhizal communities of willows (Salix) in an alpine glacier forefield. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
67
|
Nguyen DQ, Schneider D, Brinkmann N, Song B, Janz D, Schöning I, Daniel R, Pena R, Polle A. Soil and root nutrient chemistry structure root-associated fungal assemblages in temperate forests. Environ Microbiol 2020; 22:3081-3095. [PMID: 32383336 DOI: 10.1111/1462-2920.15037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Root-associated fungi (RAF) link nutrient fluxes between soil and roots and thus play important roles in ecosystem functioning. To enhance our understanding of the factors that control RAF, we fitted statistical models to explain variation in RAF community structure using data from 150 temperate forest sites covering a broad range of environmental conditions and chemical root traits. We found that variation in RAF communities was related to both root traits (e.g., cations, carbohydrates, NO3 - ) and soil properties (pH, cations, moisture, C/N). The identified drivers were the combined result of distinct response patterns of fungal taxa (determined at the rank of orders) to biotic and abiotic factors. Our results support that RAF community variation is related to evolutionary adaptedness of fungal lineages and consequently, drivers of RAF communities are context-dependent.
Collapse
Affiliation(s)
- Dung Quang Nguyen
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany.,Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Duc Thang Ward, Bac Tu Liem District, Hanoi, Vietnam
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Grisebachstraße 8, 37077, Germany
| | - Nicole Brinkmann
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Bin Song
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Ingo Schöning
- Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Grisebachstraße 8, 37077, Germany
| | - Rodica Pena
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| |
Collapse
|
68
|
Wang YL, Gao C, Chen L, Ji NN, Wu BW, Li XC, Lü PP, Zheng Y, Guo LD. Host plant phylogeny and geographic distance strongly structure Betulaceae-associated ectomycorrhizal fungal communities in Chinese secondary forest ecosystems. FEMS Microbiol Ecol 2020; 95:5393368. [PMID: 30889238 DOI: 10.1093/femsec/fiz037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/17/2019] [Indexed: 11/14/2022] Open
Abstract
Environmental filtering and dispersal limitation are two of the primary drivers of community assembly in ecosystems, but their effects on ectomycorrhizal (EM) fungal communities associated with wide ranges of Betulaceae taxa at a large scale are poorly documented. In this study, we examined EM fungal communities associated with 23 species from four genera (Alnus, Betula, Carpinus and Corylus) of Betulaceae in Chinese secondary forest ecosystems, using Illumina MiSeq sequencing of the ITS2 region. Effects of host plant phylogeny, soil, climate and geographic distance on EM fungal community were explored. In total, we distinguished 1738 EM fungal operational taxonomic units (OTUs) at a 97% sequence similarity level. The EM fungal communities of Alnus had significantly lower OTU richness than those associated with the other three plant genera. The EM fungal OTU richness was significantly affected by geographic distance, host plant phylogeny, soil and climate. The EM fungal community composition was significantly influenced by host plant phylogeny (12.1% of variation explained in EM fungal community), geographic distance (7.7%), soil (4.6%) and climate (1.1%). This finding highlights that environmental filtering linked to host plant phylogeny and dispersal limitation strongly influence EM fungal communities associated with Betulaceae plants in Chinese secondary forest ecosystems.
Collapse
Affiliation(s)
- Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
69
|
Landolt M, Stroheker S, Queloz V, Gall A, Sieber TN. Does water availability influence the abundance of species of the Phialocephala fortinii s.l. – Acephala applanata complex (PAC) in roots of pubescent oak (Quercus pubescens) and Scots pine (Pinus sylvestris)? FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
70
|
Fernandez CW, See CR, Kennedy PG. Decelerated carbon cycling by ectomycorrhizal fungi is controlled by substrate quality and community composition. THE NEW PHYTOLOGIST 2020; 226:569-582. [PMID: 31622518 DOI: 10.1111/nph.16269] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/07/2019] [Indexed: 05/27/2023]
Abstract
Interactions between symbiotic ectomycorrhizal (EM) and free-living saprotrophs can result in significant deceleration of leaf litter decomposition. While this phenomenon is widely cited, its generality remains unclear, as both the direction and magnitude of EM fungal effects on leaf litter decomposition have been shown to vary among studies. Here we explicitly examine how contrasting leaf litter types and EM fungal communities may lead to differential effects on carbon (C) and nitrogen (N) cycling. Specifically, we measured the response of soil nutrient cycling, litter decay rates, litter chemistry and fungal community structure to the reduction of EM fungi (via trenching) with a reciprocal litter transplant experiment in adjacent Pinus- or Quercus-dominated sites. We found clear evidence of EM fungal suppression of C and N cycling in the Pinus-dominated site, but no suppression in the Quercus-dominated site. Additionally, in the Pinus-dominated site, only the Pinus litter decay rates were decelerated by EM fungi and were associated with decoupling of litter C and N cycling. Our results support the hypothesis that EM fungi can decelerate C cycling via N competition, but strongly suggest that the 'Gadgil effect' is dependent on both substrate quality and EM fungal community composition. We argue that understanding tree host traits as well as EM fungal functional diversity is critical to a more mechanistic understanding of how EM fungi mediate forest soil biogeochemical cycling.
Collapse
Affiliation(s)
- Christopher W Fernandez
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Craig R See
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
71
|
Ectomycorrhizal fungi of exotic Carya ovata in the context of surrounding native forests on Central European sites. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
72
|
Abstract
Phylosymbiosis was recently formulated to support a hypothesis-driven framework for the characterization of a new, cross-system trend in host-associated microbiomes. Defining phylosymbiosis as 'microbial community relationships that recapitulate the phylogeny of their host', we review the relevant literature and data in the last decade, emphasizing frequently used methods and regular patterns observed in analyses. Quantitative support for phylosymbiosis is provided by statistical methods evaluating higher microbiome variation between host species than within host species, topological similarities between the host phylogeny and microbiome dendrogram, and a positive association between host genetic relationships and microbiome beta diversity. Significant degrees of phylosymbiosis are prevalent, but not universal, in microbiomes of plants and animals from terrestrial and aquatic habitats. Consistent with natural selection shaping phylosymbiosis, microbiome transplant experiments demonstrate reduced host performance and/or fitness upon host-microbiome mismatches. Hybridization can also disrupt phylosymbiotic microbiomes and cause hybrid pathologies. The pervasiveness of phylosymbiosis carries several important implications for advancing knowledge of eco-evolutionary processes that impact host-microbiome interactions and future applications of precision microbiology. Important future steps will be to examine phylosymbiosis beyond bacterial communities, apply evolutionary modelling for an increasingly sophisticated understanding of phylosymbiosis, and unravel the host and microbial mechanisms that contribute to the pattern. This review serves as a gateway to experimental, conceptual and quantitative themes of phylosymbiosis and outlines opportunities ripe for investigation from a diversity of disciplines.
Collapse
Affiliation(s)
- Shen Jean Lim
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
73
|
Matsuoka S, Sugiyama Y, Tateno R, Imamura S, Kawaguchi E, Osono T. Evaluation of host effects on ectomycorrhizal fungal community compositions in a forested landscape in northern Japan. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191952. [PMID: 32257347 PMCID: PMC7062096 DOI: 10.1098/rsos.191952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/27/2020] [Indexed: 05/05/2023]
Abstract
Community compositions of ectomycorrhizal (ECM) fungi are similar within the same host taxa. However, careful interpretation is required to determine whether the combination of ECM fungi and plants is explained by the host preference for ECM fungi, or by the influence of neighbouring heterospecific hosts. In the present study, we aimed to evaluate the effects of host species on the ECM community compositions in a forested landscape (approx. 10 km) where monodominant forest stands of six ECM host species belonging to three families were patchily distributed. A total of 180 ECM operational taxonomic units (OTUs) were detected with DNA metabarcoding. Quantitative multivariate analyses revealed that the ECM community compositions were primarily structured by host species and families, regardless of the soil environments and spatial arrangements of the sampling plots. In addition, 38 ECM OTUs were only detected from particular host tree species. Furthermore, the neighbouring plots harboured similar fungal compositions, although the host species were different. The relative effect of the spatial factors on the ECM compositions was weaker than that of host species. Our results suggest that the host preference for ECM fungi is the primary determinant of ECM fungal compositions in the forested landscape.
Collapse
Affiliation(s)
- Shunsuke Matsuoka
- Graduate School of Simulation Studies, University of Hyogo 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Author for correspondence: Shunsuke Matsuoka e-mail:
| | - Yoriko Sugiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryunosuke Tateno
- Field Science Education and Research Center, Kyoto University, Kyoto 606-8502, Japan
| | - Shihomi Imamura
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Eri Kawaguchi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Osono
- Department of Environmental Systems Science, Faculty of Science and Engineering, Doshisha University, Kyoto 610-0394, Japan
| |
Collapse
|
74
|
Wang YL, Gao C, Chen L, Ji NN, Wu BW, Lü PP, Li XC, Qian X, Maitra P, Babalola BJ, Zheng Y, Guo LD. Community Assembly of Endophytic Fungi in Ectomycorrhizae of Betulaceae Plants at a Regional Scale. Front Microbiol 2020; 10:3105. [PMID: 32038548 PMCID: PMC6986194 DOI: 10.3389/fmicb.2019.03105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
The interaction between aboveground and belowground biotic communities drives community assembly of plants and soil microbiota. As an important component of belowground microorganisms, root-associated fungi play pivotal roles in biodiversity maintenance and community assembly of host plants. The Betulaceae plants form ectomycorrhizae with soil fungi and widely distribute in various ecosystems. However, the community assembly of endophytic fungi in ectomycorrhizae is less investigated at a large spatial scale. Here, we examined the endophytic fungal communities in ectomycorrhizae of 22 species in four genera belonging to Betulaceae in Chinese forest ecosystems, using Illumina Miseq sequencing of internal transcribed spacer 2 amplicons. The relative contribution of host phylogeny, climate and soil (environmental filtering) and geographic distance (dispersal limitation) on endophytic fungal community was disentangled. In total, 2,106 endophytic fungal operational taxonomic units (OTUs) were obtained at a 97% sequence similarity level, dominated by Leotiomycetes, Agaricomycetes, Eurotiomycetes, and Sordariomycetes. The endophytic fungal OTU richness was significantly related with host phylogeny, geographic distance, soil and climate. The endophytic fungal community composition was significantly affected by host phylogeny (19.5% of variation explained in fungal community), geographic distance (11.2%), soil (6.1%), and climate (1.4%). This finding suggests that environmental filtering by plant and abiotic variables coupled with dispersal limitation linked to geographic distance determines endophytic fungal community assembly in ectomycorrhizae of Betulaceae plants, with host phylogeny being a stronger determinant than other predictor variables at the regional scale.
Collapse
Affiliation(s)
- Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Pulak Maitra
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Geographical Science, Fujian Normal University, Fuzhou, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
75
|
Lance AC, Carrino-Kyker SR, Burke DJ, Burns JH. Individual Plant-Soil Feedback Effects Influence Tree Growth and Rhizosphere Fungal Communities in a Temperate Forest Restoration Experiment. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
76
|
Koizumi T, Nara K. Ectomycorrhizal fungal communities in ice-age relict forests of Pinus pumila on nine mountains correspond to summer temperature. THE ISME JOURNAL 2020; 14:189-201. [PMID: 31611652 PMCID: PMC6908592 DOI: 10.1038/s41396-019-0524-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 11/09/2022]
Abstract
Ectomycorrhizal (ECM) fungi are critical symbionts of major forest trees, and their communities are affected by various environmental factors including temperature. However, previous knowledge concerning temperature effects does not exclude the effects of host species and coexisting plants, which usually change with temperature, and should be rigorously tested under the same vegetation type. Herein we examined ECM fungal communities in ice-age relict forests dominated by a single host species (Pinus pumila) distributed on nine mountains across >1000 km in Japan. Direct sequencing of rDNA ITS regions identified 154 ECM fungal species from 4134 ECM root-tip samples. Gradient analyses revealed a large contribution of temperature, especially summer temperature, to ECM fungal communities. Additionally, we explored global sequence records of each fungal species to infer its potential temperature niche, and used it to estimate the temperature of the observed communities. The estimated temperature was significantly correlated with the actual temperature of the research sites, especially in summer seasons, indicating inherent temperature niches of the fungal components could determine their distribution among the sites. These results indicate that temperature is still a significant determinant in structuring ECM fungal communities after excluding the effects of host species and coexisting plants. The results also imply that the rising temperature under global warming may have been affecting soil microbes unnoticeably, while such microbial community change may have been contributing to the resilience of the same vegetation.
Collapse
Affiliation(s)
- Takahiko Koizumi
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
- Department of Biosciences, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan.
| | - Kazuhide Nara
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| |
Collapse
|
77
|
Matsuoka S, Iwasaki T, Sugiyama Y, Kawaguchi E, Doi H, Osono T. Biogeographic Patterns of Ectomycorrhizal Fungal Communities Associated With Castanopsis sieboldii Across the Japanese Archipelago. Front Microbiol 2019; 10:2656. [PMID: 31798567 PMCID: PMC6868053 DOI: 10.3389/fmicb.2019.02656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/31/2019] [Indexed: 11/13/2022] Open
Abstract
Biogeographic patterns in ectomycorrhizal (ECM) fungal communities and their drivers have been elucidated, including effects of host tree species and abiotic (climatic and edaphic) conditions. At these geographic scales, genotypic diversity and composition of single host tree species change with spatial and environmental gradients, reflecting their historical dispersal events. However, whether the host genotypes can be associated with the biogeographic patterns of ECM communities remains unclear. We investigated the biogeographic pattern of ECM fungal community associated with the single host species Castanopsis sieboldii (Fagaceae), whose genotypic diversity and composition across the Japanese archipelago has already been evaluated. ECM communities were investigated in 12 mature Castanopsis-dominated forests covering almost the entire distribution range of C. sieboldii, and we quantified the effect of host genotypes on the biogeographic pattern of ECM fungal communities. Richness and community composition of ECM fungi changed with latitude and longitude; these biogeographic changes of ECM community were significantly correlated with host genotypic variables. Quantitative analyses showed a higher relative explanatory power of climatic and spatial variables than that of host genotypic variables for the biogeographic patterns in the ECM community. Our results suggest historical events of host dispersal can affect the biogeographic patterns of the ECM fungal community, while their explanation power was lower than that for climatic filtering and/or fungal dispersal.
Collapse
Affiliation(s)
- Shunsuke Matsuoka
- Graduate School of Simulation Studies, University of Hyogo, Kobe, Japan
| | - Takaya Iwasaki
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Japan
| | - Yoriko Sugiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Eri Kawaguchi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hideyuki Doi
- Graduate School of Simulation Studies, University of Hyogo, Kobe, Japan
| | - Takashi Osono
- Department of Environmental Systems Science, Faculty of Science and Engineering, Doshisha University, Kyoto, Japan
| |
Collapse
|
78
|
Determinants of temperature sensitivity of soil respiration with the decline of a foundation species. PLoS One 2019; 14:e0223566. [PMID: 31622364 PMCID: PMC6797177 DOI: 10.1371/journal.pone.0223566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/24/2019] [Indexed: 11/24/2022] Open
Abstract
The eastern hemlock (Tsuga canadensis) is an important foundation species that is currently declining throughout eastern U.S. forests due to the exotic pests hemlock woolly adelgid (Adelges tsugae) and elongate hemlock scale (Fiorinia externa). Hemlock is often replaced by deciduous tree species, such as black birch (Betula lenta), and has been shown to have large consequences for carbon dynamics due to a substantial loss of soil organic layer carbon storage in hemlock forests when replaced by birch and higher decomposition found in black birch stands. Soil carbon is one of the most important components of the global carbon cycle and has high potential to feedback to climate change when large portions of stored carbon are lost to the atmosphere. There is a general consensus that soil respiration increases with temperature, but there has yet to be a consensus on how temperature sensitivity of soil respiration is affected by various biotic and abiotic factors, such as soil moisture and substrate quality. In this study, the effects of soil temperature and soil moisture on soil respiration (Rs), the temperature sensitivity of soil respiration (Q10), and soil basal respiration (R10) were investigated for hemlock, young birch, and mature birch forest types annually for three years. The Rs values of the three forest types were primarily driven by soil temperature rather than by soil moisture across all years. Soil respiration data collected from hemlock, young birch, and mature birch stands were used to determine annual Q10 and R10 values. The Q10 and R10 values were not significantly different between forest stands, but they were significantly different over the three years. Determinants of Q10 and R10 differed between forest type, with soil moisture primarily influencing Q10 in hemlock and mature birch stands and soil temperature primarily influencing R10 in mature birch stands. The results suggest a complex interaction of soil moisture and soil temperature, and potentially substrate quality and quantity, as determinants of temperature sensitivities in eastern U.S. forests that have transitioned from hemlock-dominated to black birch-dominated forests.
Collapse
|
79
|
Franić I, Prospero S, Hartmann M, Allan E, Auger-Rozenberg MA, Grünwald NJ, Kenis M, Roques A, Schneider S, Sniezko R, Williams W, Eschen R. Are traded forest tree seeds a potential source of nonnative pests? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01971. [PMID: 31302945 DOI: 10.1002/eap.1971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
The international seed trade is considered relatively safe from a phytosanitary point of view and is therefore less regulated than trade in other plants for planting. However, the pests carried by traded seeds are not well known. We assessed insects and fungi in 58 traded seed lots of 11 gymnosperm and angiosperm tree species from North America, Europe, and Asia. Insects were detected by X-raying and molecular methods. The fungal community was characterized using high-throughput sequencing (HTS) and by growing fungi on non-selective agar. About 30% of the seed lots contained insect larvae. Gymnosperms contained mostly hymenopteran (Megastigmus spp.) and dipteran (Cecidomyiidae) larvae, while angiosperms contained lepidopteran (Cydia latiferreana) and coleopteran (Curculio spp.) larvae. HTS indicated the presence of fungi in all seed lots and fungi grew on non-selective agar from 96% of the seed lots. Fungal abundance and diversity were much higher than insect diversity and abundance, especially in angiosperm seeds. Almost 50% of all fungal exact sequence variants (ESVs) found in angiosperms were potential pathogens, in comparison with around 30% of potentially pathogenic ESVs found in gymnosperms. The results of this study indicate that seeds may pose a greater risk of pest introduction than previously believed or accounted for. A rapid risk assessment suggests that only a small number of species identified in this study is of phytosanitary concern. However, more research is needed to enable better risk assessment, especially to increase knowledge about the potential for transmission of fungi to seedlings and the host range and impact of identified species.
Collapse
Affiliation(s)
- Iva Franić
- CABI, Delémont, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Simone Prospero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martin Hartmann
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | | | | | | | - Salome Schneider
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Richard Sniezko
- Dorena Genetic Resource Center, USDA Forest Service, Cottage Grove, Oregon , 97424, USA
| | - Wyatt Williams
- Private Forests Division, Oregon Department of Forestry, Salem, Oregon, 97310, USA
| | | |
Collapse
|
80
|
Fassler A, Bellemare J, Ignace DD. Loss of a Foundation Species, Eastern Hemlock (Tsuga canadensis), May Lead to Biotic Homogenization of Fungal Communities and Altered Bacterial Abundance in the Forest Floor. Northeast Nat (Steuben) 2019. [DOI: 10.1656/045.026.0322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Aliza Fassler
- Department of Biological Sciences, Smith College, Northampton, MA 01063
| | - Jesse Bellemare
- Department of Biological Sciences, Smith College, Northampton, MA 01063
| | | |
Collapse
|
81
|
Pec GJ, Scott NM, Hupperts SF, Hankin SL, Landhäusser SM, Karst J. Restoration of belowground fungal communities in reclaimed landscapes of the Canadian boreal forest. Restor Ecol 2019. [DOI: 10.1111/rec.12990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gregory J. Pec
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Natalie M. Scott
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Stefan F. Hupperts
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Shanon L. Hankin
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Simon M. Landhäusser
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Justine Karst
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| |
Collapse
|
82
|
Shirakawa M, Uehara I, Tanaka M. Mycorrhizosphere Bacterial Communities and their Sensitivity to Antibacterial Activity of Ectomycorrhizal Fungi. Microbes Environ 2019; 34:191-198. [PMID: 31080215 PMCID: PMC6594744 DOI: 10.1264/jsme2.me18146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/04/2019] [Indexed: 11/12/2022] Open
Abstract
We investigated whether ectomycorrhizal (ECM) fungal species exhibit antibacterial activity towards culturable bacterial communities in mycorrhizospheres. Four hundred and thirty bacterial strains were isolated from the ECM root tips of Pinus densiflora and bulk soil, and 21 were co-cultured with six ECM fungal species. Three hundred and twenty-nine bacterial 16S rDNA sequences were identified in ECM roots (n=185) and bulk soil (n=144). Mycorrhizosphere isolates were dominated by Gram-negative Proteobacteria from 16 genera, including Burkholderia, Collimonas, Paraburkholderia, and Rhizobium. Paraburkholderia accounted for approximately 60%. In contrast, bulk soil isolates contained a high number of Gram-positive Firmicutes, particularly from Bacillus. Paraburkholderia accounted for ≤20% of the bacterial isolates from bulk soil, which was significantly lower than its percentage in ECM root tips. Co-cultures of six ECM fungal species with the 21 bacterial strains revealed that eight strains of three Gram-positive genera-Arthrobacter, Bacillus, and Lysinibacillus-were sensitive to the antibacterial activity of the fungi. In contrast, the Gram-negative strains, including five Paraburkholderia strains, two Burkholderia strains, and a Rhizobium sp., were not sensitive. The strength of fungal antibacterial activity varied in a species-dependent manner, but consistently affected Gram-positive bacteria. These results suggest that Gram-positive bacteria are excluded from the mycorrhizosphere by the antibacterial activity of ECM fungi, which develops specific soil bacterial communities in the mycorrhizosphere.
Collapse
Affiliation(s)
- Makoto Shirakawa
- Graduate School of Agriculture, Tokyo University of Agriculture1–1–1 Sakuragaoka, Setagaya, Tokyo, 156–8502Japan
| | - Iwao Uehara
- Faculty of Regional Environment Sci., Tokyo University of Agriculture1–1–1 Sakuragaoka, Setagaya, Tokyo, 156–8502Japan
| | - Megumi Tanaka
- Faculty of Regional Environment Sci., Tokyo University of Agriculture1–1–1 Sakuragaoka, Setagaya, Tokyo, 156–8502Japan
| |
Collapse
|
83
|
Competitive responses based on kin-discrimination underlie variations in leaf functional traits in Japanese beech (Fagus crenata) seedlings. Evol Ecol 2019. [DOI: 10.1007/s10682-019-09990-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
84
|
Carriconde F, Gardes M, Bellanger JM, Letellier K, Gigante S, Gourmelon V, Ibanez T, McCoy S, Goxe J, Read J, Maggia L. Host effects in high ectomycorrhizal diversity tropical rainforests on ultramafic soils in New Caledonia. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
85
|
Mujic AB, Huang B, Chen MJ, Wang PH, Gernandt DS, Hosaka K, Spatafora JW. Out of western North America: Evolution of the Rhizopogon-Pseudotsuga symbiosis inferred by genome-scale sequence typing. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
86
|
Pec GJ, Cahill, Jr. JF. Large-scale insect outbreak homogenizes the spatial structure of ectomycorrhizal fungal communities. PeerJ 2019; 7:e6895. [PMID: 31123638 PMCID: PMC6512761 DOI: 10.7717/peerj.6895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/02/2019] [Indexed: 11/20/2022] Open
Abstract
Ectomycorrhizal fungi (plant symbionts) are diverse and exist within spatially variable communities that play fundamental roles in the functioning of terrestrial ecosystems. However, the underlying ecological mechanisms that maintain and regulate the spatial structuring of ectomycorrhizal fungal communities are both complex and remain poorly understood. Here, we use a gradient of mountain pine beetle (Dendroctonus ponderosae) induced tree mortality across eleven stands in lodgepole pine (Pinus contorta) forests of western Canada to investigate: (i) the degree to which spatial structure varies within this fungal group, and (ii) how these patterns may be driven by the relative importance of tree mortality from changes in understory plant diversity, productivity and fine root biomass following tree death. We found that the homogeneity of the ectomycorrhizal fungal community increased with increasing tree death, aboveground understory productivity and diversity. Whereas, the independent effect of fine root biomass, which declined along the same gradient of tree mortality, increased the heterogeneity of the ectomycorrhizal fungal community. Together, our results demonstrate that large-scale biotic disturbance homogenizes the spatial patterns of ectomycorrhizal fungal communities.
Collapse
Affiliation(s)
- Gregory J. Pec
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States of America
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
87
|
Chen L, Xiang W, Wu H, Ouyang S, Lei P, Hu Y, Ge T, Ye J, Kuzyakov Y. Contrasting patterns and drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests. Appl Microbiol Biotechnol 2019; 103:5421-5433. [PMID: 31073876 DOI: 10.1007/s00253-019-09867-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
Subtropical broadleaved forests play a crucial role in supporting terrestrial ecosystem functions, but little is known about their belowground soil fungal communities despite that they have central functions in C, N, and P cycles. This study investigated the structures and identified the drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests, using high-throughput sequencing and FUNGuild for fungal identification and assignment to the trophic guild. Fungal richness was much higher in the deciduous than in the evergreen forest. Both forests were dominated by Ascomycota and Basidiomycota phyla, but saprophytic fungi were more abundant in the deciduous forest and ectomycorrhizal fungi predominated in the evergreen forest. Fungal communities had strong links to plant and soil properties. Specifically, plant diversity and litter biomass were the main aboveground drivers of fungal diversity and composition in the deciduous forest, while host effects were prominent in the evergreen forest. The belowground factors, i.e., soil pH, water content, and nutrients especially available P, were identified as the primary drivers of soil fungal communities in the broadleaved forests. Co-occurrence network analysis revealed assembly of fungal composition in broadleaved forest soils was non-random. The smaller modularity of the network in the deciduous forest reflects lower resistance to environment changes. Concluding, these results showed that plant community attributes, soil properties, and potential interactions among fungal functional guilds operate jointly on the divergence of soil fungal community assembly in the two broadleaved forest types.
Collapse
Affiliation(s)
- Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China. .,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China.
| | - Huili Wu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Shuai Ouyang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Pifeng Lei
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Yajun Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Jun Ye
- Australian Centre for Ecogenomics, The University of Queensland, QLD, St. Lucia, 4072, Australia
| | - Yakov Kuzyakov
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, 37077, Göttingen, Germany.,Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, 142290, Russia
| |
Collapse
|
88
|
Host Phylogenetic Relatedness and Soil Nutrients Shape Ectomycorrhizal Community Composition in Native and Exotic Pine Plantations. FORESTS 2019. [DOI: 10.3390/f10030263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exotic non-native Pinus species have been widely planted or become naturalized in many parts of the world. Pines rely on ectomycorrhizal (ECM) fungi mutualisms to overcome barriers to establishment, yet the degree to which host specificity and edaphic preferences influence ECM community composition remains poorly understood. In this study, we used high-throughput sequencing coupled with soil analyses to investigate the effect of host plant identity, spatial distance and edaphic factors on ECM community composition in young (30-year-old) native (Pinus massoniana Lamb.) and exotic (Pinus elliottii Engelm.) pine plantations in China. The ECM fungal communities comprised 43 species with the majority belonging to the Thelephoraceae and Russulaceae. Most species were found associated with both host trees while certain native ECM taxa (Suillus) showed host specificity to the native P. massoniana. ECM fungi that are known to occur exclusively with Pinus (e.g., Rhizopogon) were uncommon. We found no significant effect of host identity on ECM communities, i.e., phylogenetically related pines shared similar ECM fungal communities. Instead, ECM fungal community composition was strongly influenced by site-specific abiotic factors and dispersal. These findings reinforce the idea that taxonomic relatedness might be a factor promoting ECM colonization in exotic pines but that shifts in ECM communities may also be context-dependent.
Collapse
|
89
|
Barbato D, Perini C, Mocali S, Bacaro G, Tordoni E, Maccherini S, Marchi M, Cantiani P, De Meo I, Bianchetto E, Landi S, Bruschini S, Bettini G, Gardin L, Salerni E. Teamwork makes the dream work: Disentangling cross-taxon congruence across soil biota in black pine plantations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:659-669. [PMID: 30529969 DOI: 10.1016/j.scitotenv.2018.11.320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Soil plays a fundamental role in many ecological processes, throughout a complex network of above- and below-ground interactions. This has aroused increasing interest in the use of correlates for biodiversity assessment and has demonstrated their reliability with respect to proxies based on environmental data alone. Although co-variation of species richness and composition in forests has been discussed in the literature, only a few studies have explored these elements in forest plantations, which are generally thought to be poor in biodiversity, being aimed at timber production. Based on this premise our aims were 1) to test if cross-taxon congruence across different groups of organisms (bacteria, vascular plants, mushrooms, ectomycorrhizae, mycelium, carabids, microarthropods, nematodes) is consistent in artificial stands; 2) to evaluate the strength of relationships due to the existing environmental gradients as expressed by abiotic and biotic factors (soil, spatial-topographic, dendrometric variables). Correlations between groups were studied with Mantel and partial Mantel tests, while variance partition analysis was applied to assess the relative effect of environmental variables on the robustness of observed relationships. Significant cross-taxon congruence was observed across almost all taxonomic groups pairs. However, only bacteria/mycelium and mushrooms/mycelium correlations remained significant after removing the environmental effect, suggesting that a strong abiotic influence drives species composition. Considering variation partitioning, the results highlighted the importance of bacteria as a potential indicator: bacteria were the taxonomic group with the highest compositional variance explained by the predictors used; furthermore, they proved to be involved in the only cases where the variance attributed solely to the pure effect of biotic or abiotic predictors was significant. Remarkably, the co-dependent effect of all predictors always explained the highest portion of total variation in all dependent taxa, testifying the intricate and dynamic interplay of environmental factors and biotic interactions in explaining cross-taxon congruence in forest plantations.
Collapse
Affiliation(s)
- Debora Barbato
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Claudia Perini
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Stefano Mocali
- CREA - Research Centre for Agriculture and Environment, Via di Lanciola 12/A, 50125 Cascine del Riccio Firenze, Italy.
| | - Giovanni Bacaro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| | - Enrico Tordoni
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| | - Simona Maccherini
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Maurizio Marchi
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy.
| | - Paolo Cantiani
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy.
| | - Isabella De Meo
- CREA - Research Centre for Agriculture and Environment, Via di Lanciola 12/A, 50125 Cascine del Riccio Firenze, Italy.
| | - Elisa Bianchetto
- CREA - Research Centre for Agriculture and Environment, Via di Lanciola 12/A, 50125 Cascine del Riccio Firenze, Italy.
| | - Silvia Landi
- CREA - Research Centre for Plant Protection and Certification, Via di Lanciola 12/A, 50125 Cascine del Riccio Firenze, Italy.
| | - Silvia Bruschini
- Compagnia delle Foreste Srl, Via Pietro Aretino 8, 52100 Arezzo, Italy.
| | | | - Lorenzo Gardin
- SOILDATA Srl Suolo territorio ambiente, Via Guerrazzi 2R, 50132 Firenze, Italy.
| | - Elena Salerni
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| |
Collapse
|
90
|
Pither J, Pickles BJ, Simard SW, Ordonez A, Williams JW. Below-ground biotic interactions moderated the postglacial range dynamics of trees. THE NEW PHYTOLOGIST 2018; 220:1148-1160. [PMID: 29770964 DOI: 10.1111/nph.15203] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/03/2018] [Indexed: 05/05/2023]
Abstract
Tree range shifts during geohistorical global change events provide a useful real-world model for how future changes in forest biomes may proceed. In North America, during the last deglaciation, the distributions of tree taxa varied significantly as regards the rate and direction of their responses for reasons that remain unclear. Local-scale processes such as establishment, growth, and resilience to environmental stress ultimately influence range dynamics. Despite the fact that interactions between trees and soil biota are known to influence local-scale processes profoundly, evidence linking below-ground interactions to distribution dynamics remains scarce. We evaluated climate velocity and plant traits related to dispersal, environmental tolerance and below-ground symbioses, as potential predictors of the geohistorical rates of expansion and contraction of the core distributions of tree genera between 16 and 7 ka bp. The receptivity of host genera towards ectomycorrhizal fungi was strongly supported as a positive predictor of poleward rates of distribution expansion, and seed mass was supported as a negative predictor. Climate velocity gained support as a positive predictor of rates of distribution contraction, but not expansion. Our findings indicate that understanding how tree distributions, and thus forest ecosystems, respond to climate change requires the simultaneous consideration of traits, biotic interactions and abiotic forcing.
Collapse
Affiliation(s)
- Jason Pither
- Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Okanagan Campus, 3187 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Brian J Pickles
- School of Biological Sciences, University of Reading, Harborne Building, Whiteknights, Reading, RG6 6AS, UK
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Alejandro Ordonez
- Department of Bioscience - Section for Ecoinformatics and Biodiversity, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark
- Queen's University Belfast - School of Biological Sciences, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - John W Williams
- Department of Geography and Center for Climatic Research, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
91
|
Miyamoto Y, Terashima Y, Nara K. Temperature niche position and breadth of ectomycorrhizal fungi: Reduced diversity under warming predicted by a nested community structure. GLOBAL CHANGE BIOLOGY 2018; 24:5724-5737. [PMID: 30218546 DOI: 10.1111/gcb.14446] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/23/2018] [Accepted: 09/07/2018] [Indexed: 05/16/2023]
Abstract
Species with narrow niche breadths are assumed to be more susceptible to environmental changes than those with wide niche breadths. Although information on niche properties is necessary for predicting biological responses to environmental changes, such information is largely missing for soil microbes. In this study, we present the temperature niche positions and breadths of a functionally important group of eukaryotic soil microbes, ectomycorrhizal (EM) fungi. We compiled high-quality EM fungal sequence data from 26 forested sites in Japan (with mean annual temperatures ranging from 1.6 to 23.6°C) to create temperature niche profiles for each individual fungal species. Nested theory and a newly developed weighted-randomization null model were applied to 75 fungal operational taxonomic units (OTUs) with high occurrence records to examine potential preferences for certain temperature positions and breadths. Our analyses revealed that (a) many EM fungal OTUs were restricted to habitats with low mean annual temperatures, (b) fungal OTUs observed at colder sites exhibited narrower temperature breadths than expected by chance, (c) the composition of EM fungal OTUs exhibited a nested pattern along the temperature gradient, and (d) EM fungal richness was highest at colder sites, where the greatest degree of overlap in OTU occurrence was observed. These findings imply that future warming may limit the distribution of many EM fungal species that are currently adapted to only cold climates. This could eventually reduce EM fungal biodiversity, which is linked to forest function through symbiotic associations with trees. This study demonstrates the distribution and environmental ranges of various EM fungal species and can contribute to develop species distribution models with the aim of conserving microbes in the face of climate change.
Collapse
Affiliation(s)
- Yumiko Miyamoto
- Arctic Research Center, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Yoshie Terashima
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara-cho, Nakagami-gun, Okinawa, Japan
| | - Kazuhide Nara
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| |
Collapse
|
92
|
Effects of host species, environmental filtering and forest age on community assembly of ectomycorrhizal fungi in fragmented forests. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
93
|
Wu BW, Gao C, Chen L, Buscot F, Goldmann K, Purahong W, Ji NN, Wang YL, Lü PP, Li XC, Guo LD. Host Phylogeny Is a Major Determinant of Fagaceae-Associated Ectomycorrhizal Fungal Community Assembly at a Regional Scale. Front Microbiol 2018; 9:2409. [PMID: 30364168 PMCID: PMC6191505 DOI: 10.3389/fmicb.2018.02409] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/20/2018] [Indexed: 01/28/2023] Open
Abstract
Environmental filtering (niche process) and dispersal limitation (neutral process) are two of the primary forces driving community assembly in ecosystems, but how these processes affect the Fagaceae-associated ectomycorrhizal (EM) fungal community at regional scales is so far poorly documented. We examined the EM fungal communities of 61 plant species in six genera belonging to the Fagaceae distributed across Chinese forest ecosystems (geographic distance up to ∼3,757 km) using Illumina Miseq sequencing of ITS2 sequences. The relative effects of environmental filtering (e.g., host plant phylogeny, soil and climate) and dispersal limitation (e.g., spatial distance) on the EM fungal community were distinguished using multiple models. In total, 2,706 operational taxonomic units (OTUs) of EM fungi, corresponding to 54 fungal lineages, were recovered at a 97% sequence similarity level. The EM fungal OTU richness was significantly affected by soil pH and nutrients and by host phylogeny. The EM fungal community composition was significantly influenced by combinations of host phylogeny, spatial distance, soil and climate. Furthermore, host phylogeny had the greatest effect on EM fungal community. The study suggests that the assembly of the EM fungal community is governed by both environmental filtering and dispersal limitation, with host effect being the most important determinant at the regional scale.
Collapse
Affiliation(s)
- Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Kezia Goldmann
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
94
|
Weißbecker C, Wubet T, Lentendu G, Kühn P, Scholten T, Bruelheide H, Buscot F. Experimental Evidence of Functional Group-Dependent Effects of Tree Diversity on Soil Fungi in Subtropical Forests. Front Microbiol 2018; 9:2312. [PMID: 30356699 PMCID: PMC6189305 DOI: 10.3389/fmicb.2018.02312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Deconvoluting the relative contributions made by specific biotic and abiotic drivers to soil fungal community compositions facilitates predictions about the functional responses of ecosystems to environmental changes, such as losses of plant diversity, but it is hindered by the complex interactions involved. Experimental assembly of tree species allows separation of the respective effects of plant community composition (biotic components) and soil properties (abiotic components), enabling much greater statistical power than can be achieved in observational studies. We therefore analyzed these contributions by assessing, via pyrotag sequencing of the internal transcribed spacer (ITS2) rDNA region, fungal communities in young subtropical forest plots included in a large experiment on the effects of tree species richness. Spatial variables and soil properties were the main drivers of soil fungal alpha and beta-diversity, implying strong early-stage environmental filtering and dispersal limitation. Tree related variables, such as tree community composition, significantly affected arbuscular mycorrhizal and pathogen fungal community structure, while differences in tree host species and host abundance affected ectomycorrhizal fungal community composition. At this early stage of the experiment, only a limited amount of carbon inputs (rhizodeposits and leaf litter) was being provided to the ecosystem due to the size of the tree saplings, and persisting legacy effects were observed. We thus expect to find increasing tree related effects on fungal community composition as forest development proceeds.
Collapse
Affiliation(s)
- Christina Weißbecker
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research - UFZ, Halle, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research - UFZ, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Guillaume Lentendu
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research - UFZ, Halle, Germany.,Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Peter Kühn
- Chair of Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany
| | - Thomas Scholten
- Chair of Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Martin Luther University Halle Wittenberg, Halle, Germany
| | - François Buscot
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research - UFZ, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
95
|
Scott N, Pec GJ, Karst J, Landhäusser SM. Additive or synergistic? Early ectomycorrhizal fungal community response to mixed tree plantings in boreal forest reclamation. Oecologia 2018; 189:9-19. [PMID: 30094634 DOI: 10.1007/s00442-018-4241-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022]
Abstract
Ectomycorrhizal fungi are an important component to ecosystem function in the boreal forest. Underlying factors influencing fungal community composition and richness, such as host identity and soil type have been studied, but interactions between these factors have been less explored. Furthermore, mixed-species stands may have additive or synergistic effects on ectomycorrhizal fungi species richness, but this effect is challenging to test on natural sites due to difficulty in finding monospecific and mixed-species stands with similar site conditions and history. Forest reclamation areas can provide an opportunity to explore some of these fundamental questions, as site conditions and history are often known and managed, with the added benefit that knowledge emerging from these studies can be used to evaluate the recovery of degraded forest landscapes. Here, we compared the richness and composition of ectomycorrhizal fungi in young single- and mixed-species stands established on a reclamation area designed to inform strategies to restore upland boreal forests disturbed by oil sands mining. Seedlings of three host tree species (Populus tremuloides, Pinus banksiana, Picea glauca) were planted in single- and mixed-species stands on three different salvaged soils (forest floor material, peat, subsoil). After four growing seasons, there was no difference in total ectomycorrhizal fungi species richness and composition in mixed- versus combined single-species stands indicating that an additive effect of host tree species prevailed early in development. However, there were compositional shifts in fungal communities across both the host tree species and the salvaged soil type, with soil type being the strongest driver.
Collapse
Affiliation(s)
- Natalie Scott
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.
| | - Gregory J Pec
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Justine Karst
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Simon M Landhäusser
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
96
|
Ni Y, Yang T, Zhang K, Shen C, Chu H. Fungal Communities Along a Small-Scale Elevational Gradient in an Alpine Tundra Are Determined by Soil Carbon Nitrogen Ratios. Front Microbiol 2018; 9:1815. [PMID: 30131790 PMCID: PMC6091257 DOI: 10.3389/fmicb.2018.01815] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/19/2018] [Indexed: 11/29/2022] Open
Abstract
Elevational gradients are associated not only with variations in temperature and precipitation, but also with shifts in vegetation types and changes in soil physicochemical properties. While large-scale elevational patterns of soil microbial diversity, such as monotonic declines and hump-shaped models, have been reported, it is unclear whether within-ecosystem elevational distribution patterns exist for soil fungal communities at the small scale. Using Illumina Miseq DNA sequencing, we present a comprehensive analysis of soil fungal diversity and community compositions in an alpine tundra ecosystem at elevations ranging from 2000 to 2500 m on the Changbai Mountain, China. Soil fungal community composition differed among elevations, and the fungal diversity (i.e., species richness and Chao1) increased along elevations. Soil fungal richness was negatively correlated with soil carbon/nitrogen (C/N) ratio, and community composition varied according to the C/N ratio. In addition, the relative abundances of Basidiomycota and Leotiomycetes were similarly negatively correlated with C/N ratio. For functional guilds, our data showed that mycoparasite and foliar epiphyte abundances were also influenced by C/N ratio. These results indicated that soil C/N ratio might be a key factor in determining soil fungal distribution at small-scale elevational gradients.
Collapse
Affiliation(s)
- Yingying Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Kaoping Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Congcong Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
97
|
Rudawska M, Leski T, Wilgan R, Karliński L, Kujawska M, Janowski D. Mycorrhizal associations of the exotic hickory trees, Carya laciniosa and Carya cordiformis, grown in Kórnik Arboretum in Poland. MYCORRHIZA 2018; 28:549-560. [PMID: 29934745 PMCID: PMC6182374 DOI: 10.1007/s00572-018-0846-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
We studied mycorrhizal associations of North American Carya laciniosa and Carya cordiformis trees, successfully acclimated to local habitat conditions of the historic Kórnik Arboretum in Poland, in order to better understand mycorrhizal host range extensions in new environments. The root systems of Carya seedlings (1-3 years old), regenerated under a canopy of mature hickory trees, were analyzed using microscopic, morphological, and molecular techniques. Our results, for the first time, indicate that C. laciniosa and C. cordiformis have both arbuscular and ectomycorrhizal associations. In the cleared and stained roots of both Carya species, typical structures of arbuscular mycorrhizae (vesicles, arbuscules, hyphal coils, and intercellular nonseptate hyphae) were detected. On the basis of ITS rDNA sequencing, 40 ectomycorrhizal fungal taxa were revealed, with 25 on C. laciniosa and 19 on C. cordiformis. Only four fungal species (Cenococcum geophilum sensu lato, Russula recondita, Xerocomellus cisalpinus, Humaria hemisphaerica) were shared by both Carya species. The high number of infrequent fungal taxa found, as well as the calculated richness estimator, indicates that the real ectomycorrhizal community of C. laciniosa and C. cordiformis is probably richer. The ability of the exotic Carya species to form arbuscular and ectomycorrhizal linkages with native fungi could be a factor in the successful establishment of these tree species under the conditions of Kórnik Arboretum.
Collapse
Affiliation(s)
- Maria Rudawska
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | - Tomasz Leski
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Robin Wilgan
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Leszek Karliński
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Marta Kujawska
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Daniel Janowski
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
98
|
Zhou J, Diao X, Wang T, Chen G, Lin Q, Yang X, Xu J. Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea. PLoS One 2018; 13:e0197359. [PMID: 29897911 PMCID: PMC5999087 DOI: 10.1371/journal.pone.0197359] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 05/01/2018] [Indexed: 12/19/2022] Open
Abstract
Mangrove endophytic fungi can produce impressive quantities of metabolites with promising antioxidant activities that may be useful to humans as novel physiological agents. In this study, we investigated the phylogenetic diversity and antioxidant potential of 46 fungal endophytes derived from the mangrove species Rhizophora stylosa and R. mucronata from the South China Sea. The fungal isolates were identified using a combination of morphological characteristics and phylogenetic analysis of the internal transcribed spacer (ITS) sequences. Seventeen genera belonging to 8 taxonomic orders of Ascomycota were discovered, specifically, Botryosphaeriales, Capnodiales, Diaporthales, Eurotiales, Glomerellales, Hypocreales, Pleosporales, and Xylariales. The most abundant fungal orders included Xylariales (35.49%) and Diaporthales (27.61%), which were predominantly represented by the culturable species Pestalotiopsis sp. (34.54%) and Diaporthe sp. (18.62%). The stems showed more frequent colonization and species diversity than the roots, leaves, hypocotyls, and flower tissues of the host plant. The antioxidant activities of all the isolated fungal extracts on four different culture media were assessed using improved 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) methods. A relatively high proportion (84.8%) of the isolates displayed antioxidant capacity (%RSA > 50%). Further research also provided the first evidence that HQD-6 could produce flufuran as a significant radical scavenger with IC50 values of 34.85±1.56 and 9.75±0.58 μg/mL, respectively. Our findings suggest that the utilization of a biotope such as that of the endophytic fungal community thriving on the mangrove plants R. stylosa and R. mucronata may be suitable for use as a sustainable resource for natural antioxidants.
Collapse
Affiliation(s)
- Jing Zhou
- Institute of Tropical Agriculture and Forestry, College of Material and Chemical Engineering, Hainan University, Haikou, P. R. China
| | - Xiaoping Diao
- Institute of Tropical Agriculture and Forestry, College of Material and Chemical Engineering, Hainan University, Haikou, P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
| | - Tao Wang
- Institute of Tropical Agriculture and Forestry, College of Material and Chemical Engineering, Hainan University, Haikou, P. R. China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
| | - Xiaobo Yang
- Institute of Tropical Agriculture and Forestry, College of Material and Chemical Engineering, Hainan University, Haikou, P. R. China
- * E-mail: (XY); (JX)
| | - Jing Xu
- Institute of Tropical Agriculture and Forestry, College of Material and Chemical Engineering, Hainan University, Haikou, P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- * E-mail: (XY); (JX)
| |
Collapse
|
99
|
Microbial Diversity: The Gap between the Estimated and the Known. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10020046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
100
|
Miyamoto Y, Narimatsu M, Nara K. Effects of climate, distance, and a geographic barrier on ectomycorrhizal fungal communities in Japan: A comparison across Blakiston's Line. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|