51
|
Guo Y, Huang S, Ma Y, Zhang J, Wen Y, Zhou L, Yuan G, Cheng J. MiR-377 mediates the expression of Syk to attenuate atherosclerosis lesion development in ApoE−/− mice. Biomed Pharmacother 2019; 118:109332. [DOI: 10.1016/j.biopha.2019.109332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 01/31/2023] Open
|
52
|
Thwe PM, Fritz DI, Snyder JP, Smith PR, Curtis KD, O'Donnell A, Galasso NA, Sepaniac LA, Adamik BJ, Hoyt LR, Rodriguez PD, Hogan TC, Schmidt AF, Poynter ME, Amiel E. Syk-dependent glycolytic reprogramming in dendritic cells regulates IL-1β production to β-glucan ligands in a TLR-independent manner. J Leukoc Biol 2019; 106:1325-1335. [PMID: 31509298 PMCID: PMC6883127 DOI: 10.1002/jlb.3a0819-207rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 11/12/2022] Open
Abstract
Dendritic cells (DCs) activated via TLR ligation experience metabolic reprogramming, in which the cells are heavily dependent on glucose and glycolysis for the synthesis of molecular building blocks essential for maturation, cytokine production, and the ability to stimulate T cells. Although the TLR-driven metabolic reprogramming events are well documented, fungal-mediated metabolic regulation via C-type lectin receptors such as Dectin-1 and Dectin-2 is not clearly understood. Here, we show that activation of DCs with fungal-associated β-glucan ligands induces acute glycolytic reprogramming that supports the production of IL-1β and its secretion subsequent to NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. This acute glycolytic induction in response to β-glucan ligands requires spleen tyrosine kinase signaling in a TLR-independent manner, suggesting now that different classes of innate immune receptors functionally induce conserved metabolic responses to support immune cell activation. These studies provide new insight into the complexities of metabolic regulation of DCs immune effector function regarding cellular activation associated with protection against fungal microbes.
Collapse
Affiliation(s)
- Phyu M Thwe
- Cellular, Molecular, and Biomedical (CMB) Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | | | - Julia P Snyder
- Cellular, Molecular, and Biomedical (CMB) Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | | | | | | | | | - Leslie A Sepaniac
- Cellular, Molecular, and Biomedical (CMB) Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | | | | | - Princess D Rodriguez
- Cellular, Molecular, and Biomedical (CMB) Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | | | | | - Matthew E Poynter
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Eyal Amiel
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
53
|
Luo L, Curson JEB, Liu L, Wall AA, Tuladhar N, Lucas RM, Sweet MJ, Stow JL. SCIMP is a universal Toll‐like receptor adaptor in macrophages. J Leukoc Biol 2019; 107:251-262. [DOI: 10.1002/jlb.2ma0819-138rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Lin Luo
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane Queensland Australia
| | - James E. B. Curson
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane Queensland Australia
| | - Liping Liu
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane Queensland Australia
| | - Adam A. Wall
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane Queensland Australia
| | - Neeraj Tuladhar
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane Queensland Australia
| | - Richard M. Lucas
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane Queensland Australia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane Queensland Australia
| | - Jennifer L. Stow
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
54
|
Kim J, Yoo JY, Suh JM, Park S, Kang D, Jo H, Bae YS. The flagellin-TLR5-Nox4 axis promotes the migration of smooth muscle cells in atherosclerosis. Exp Mol Med 2019; 51:1-13. [PMID: 31292433 PMCID: PMC6802658 DOI: 10.1038/s12276-019-0275-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
We hypothesized that NADPH oxidase 4 (Nox4) is involved in the formation of neointimal atherosclerotic plaques through the migration of smooth muscle cells (SMCs) in response to flagellin. Here, we demonstrate that TLR5-mediated Nox4 activation regulates the migration of SMCs, leading to neointimal plaque formation in atherosclerosis. To investigate the molecular mechanism by which the TLR5-Nox4 cascade mediates SMC migration, we analyzed the signaling cascade in primary vascular SMCs (VSMCs) from wild-type (WT) or Nox4 KO mice. Stimulation of VSMCs from Nox4 KO mice with flagellin failed to induce H2O2 production and Rac activation compared with stimulation of VSMCs from WT mice. Moreover, the migration of Nox4-deficient VSMCs was attenuated in response to flagellin in transwell migration and wound healing assays. Finally, we performed partial carotid artery ligation in ApoE KO and Nox4ApoE DKO mice fed a high-fat diet (HFD) with or without recombinant FliC (rFliC) injection. Injection of rFliC into ApoE KO mice fed a HFD resulted in significantly increased SMC migration into the intimal layer, whereas SMC accumulation was not detected in Nox4ApoE DKO mice. We conclude that activation of the TLR5-Nox4 cascade plays an important role in the formation of neointimal atherosclerotic plaques.
Collapse
Affiliation(s)
- Jinoh Kim
- 0000 0001 2171 7754grid.255649.9Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Jung-Yeon Yoo
- 0000 0001 2171 7754grid.255649.9Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Jung Min Suh
- 0000 0001 2171 7754grid.255649.9Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Sujin Park
- 0000 0001 2171 7754grid.255649.9Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Dongmin Kang
- 0000 0001 2171 7754grid.255649.9Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Hanjoong Jo
- 0000 0001 0941 6502grid.189967.8Department of Biotechnology, Emory University, Atlanta, GA USA
| | - Yun Soo Bae
- 0000 0001 2171 7754grid.255649.9Department of Life Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|
55
|
Syk and Hrs Regulate TLR3-Mediated Antiviral Response in Murine Astrocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6927380. [PMID: 31089414 PMCID: PMC6476135 DOI: 10.1155/2019/6927380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/22/2018] [Accepted: 01/13/2019] [Indexed: 12/02/2022]
Abstract
Toll-like receptors (TLRs) sense the presence of pathogen-associated molecular patterns. Nevertheless, the mechanisms modulating TLR-triggered innate immune responses are not yet fully understood. Complex regulatory systems exist to appropriately direct immune responses against foreign or self-nucleic acids, and a critical role of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), endosomal sorting complex required for transportation-0 (ESCRT-0) subunit, has recently been implicated in the endolysosomal transportation of TLR7 and TLR9. We investigated the involvement of Syk, Hrs, and STAM in the regulation of the TLR3 signaling pathway in a murine astrocyte cell line C8-D1A following cell stimulation with a viral dsRNA mimetic. Our data uncover a relationship between TLR3 and ESCRT-0, point out Syk as dsRNA-activated kinase, and suggest the role for Syk in mediating TLR3 signaling in murine astrocytes. We show molecular events that occur shortly after dsRNA stimulation of astrocytes and result in Syk Tyr-342 phosphorylation. Further, TLR3 undergoes proteolytic processing; the resulting TLR3 N-terminal form interacts with Hrs. The knockdown of Syk and Hrs enhances TLR3-mediated antiviral response in the form of IFN-β, IL-6, and CXCL8 secretion. Understanding the role of Syk and Hrs in TLR3 immune responses is of high importance since activation and precise execution of the TLR3 signaling pathway in the brain seem to be particularly significant in mounting an effective antiviral defense. Infection of the brain with herpes simplex type 1 virus may increase the secretion of amyloid-β by neurons and astrocytes and be a causal factor in degenerative diseases such as Alzheimer's disease. Errors in TLR3 signaling, especially related to the precise regulation of the receptor transportation and degradation, need careful observation as they may disclose foundations to identify novel or sustain known therapeutic targets.
Collapse
|
56
|
Al-Harbi NO, Nadeem A, Ahmad SF, Alanazi MM, Aldossari AA, Alasmari F. Amelioration of sepsis-induced acute kidney injury through inhibition of inflammatory cytokines and oxidative stress in dendritic cells and neutrophils respectively in mice: Role of spleen tyrosine kinase signaling. Biochimie 2019; 158:102-110. [DOI: 10.1016/j.biochi.2018.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
|
57
|
Slomiany BL, Slomiany A. Syk: a new target for attenuation of Helicobacter pylori-induced gastric mucosal inflammatory responses. Inflammopharmacology 2019; 27:203-211. [PMID: 30820719 DOI: 10.1007/s10787-019-00577-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
The magnitude of gastric mucosal inflammatory response to H. pylori relies primarily on the extent of its key endotoxin, LPS, engagement of Toll-like receptor-4 (TLR4) and the initiation of signal transduction events converging on mitogen-activated protein kinase (MAPK) and IκB complex (IKK) cascades. These cascades, in turn, exert their control over the assembly of transcription factors, NFκB and AP1, implicated in the induction of the expression of iNOS and COX-2 proinflammatory genes. The LPS-induced TLR4 activation and the ensuing phosphorylation of its intracellular tyrosine domain by Src-family kinases not only leads to recruitment to the cytoplasmic domain of TLR4 of adaptor molecules directly involved in propagation of the signaling cascades converging on MAPK and IKK, but also provides a propitious docking site for a non-receptor tyrosine kinase, spleen tyrosine kinase (Syk), the activation of which apparently leads to upregulation in the expression of proinflammatory genes. Here, we review the pathways engaged by H. pylori in the recruitment and interaction of Syk with TLR4 in gastric mucosa, and discuss the cascades involved in Syk-mediated amplification in proinflammatory signaling. We focus, moreover, on the potential role of drugs targeting Syk and TLR4 in the treatment of H. pylori-related gastric disease.
Collapse
Affiliation(s)
- Bronislaw L Slomiany
- Research Center, C855, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103-2400, USA.
| | - Amalia Slomiany
- Research Center, C855, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103-2400, USA
| |
Collapse
|
58
|
Torres-Hernandez A, Wang W, Nikiforov Y, Tejada K, Torres L, Kalabin A, Wu Y, Haq MIU, Khan MY, Zhao Z, Su W, Camargo J, Hundeyin M, Diskin B, Adam S, Rossi JAK, Kurz E, Aykut B, Shadaloey SAA, Leinwand J, Miller G. Targeting SYK signaling in myeloid cells protects against liver fibrosis and hepatocarcinogenesis. Oncogene 2019; 38:4512-4526. [PMID: 30742098 DOI: 10.1038/s41388-019-0734-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Liver fibrosis and fibrosis-associated hepatocarcinogenesis are driven by chronic inflammation and are leading causes of morbidity and death worldwide. SYK signaling regulates critical processes in innate and adaptive immunity, as well as parenchymal cells. We discovered high SYK expression in the parenchymal hepatocyte, hepatic stellate cell (HSC), and the inflammatory compartments in the fibrotic liver. We postulated that targeting SYK would mitigate hepatic fibrosis and oncogenic progression. We found that inhibition of SYK with the selective small molecule inhibitors Piceatannol and PRT062607 markedly protected against toxin-induced hepatic fibrosis, associated hepatocellular injury and intra-hepatic inflammation, and hepatocarcinogenesis. SYK inhibition resulted in increased intra-tumoral expression of the p16 and p53 but decreased expression of Bcl-xL and SMAD4. Further, hepatic expression of genes regulating angiogenesis, apoptosis, cell cycle regulation, and cellular senescence were affected by targeting SYK. We found that SYK inhibition mitigated both HSC trans-differentiation and acquisition of an inflammatory phenotype in T cells, B cells, and myeloid cells. However, in vivo experiments employing selective targeted deletion of SYK indicated that only SYK deletion in the myeloid compartment was sufficient to confer protection against fibrogenic progression. Targeting SYK promoted myeloid cell differentiation into hepato-protective TNFαlow CD206hi phenotype downregulating mTOR, IL-8 signaling and oxidative phosphorylation. Collectively, these data suggest that SYK is an attractive target for experimental therapeutics in treating hepatic fibrosis and oncogenesis.
Collapse
Affiliation(s)
- Alejandro Torres-Hernandez
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Wei Wang
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Yuri Nikiforov
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Karla Tejada
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Luisana Torres
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Aleksandr Kalabin
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Yue Wu
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Muhammad Israr Ul Haq
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Mohammed Y Khan
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Zhen Zhao
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Wenyu Su
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Jimmy Camargo
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Mautin Hundeyin
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Brian Diskin
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Salma Adam
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Juan A Kochen Rossi
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Emma Kurz
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Berk Aykut
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Sorin A A Shadaloey
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Joshua Leinwand
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - George Miller
- S.A. Localio Laboratory, Departments of Surgery, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA. .,Departments of Cell Biology, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA.
| |
Collapse
|
59
|
Nadeem A, Ahmad SF, Al-Harbi NO, Al-Harbi MM, Ibrahim KE, Kundu S, Attia SM, Alanazi WA, AlSharari SD. Inhibition of spleen tyrosine kinase signaling protects against acute lung injury through blockade of NADPH oxidase and IL-17A in neutrophils and γδ T cells respectively in mice. Int Immunopharmacol 2019; 68:39-47. [PMID: 30611000 DOI: 10.1016/j.intimp.2018.12.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022]
Abstract
Acute lung injury (ALI) is one of the most serious complications in critically ill patients which often leads to morbidity and mortality. ALI characterized by severe inflammation of lungs occurs due to uncontrolled inflammatory immune response. However, the immunological mechanism(s) are far from being understood. The spleen tyrosine kinase (SYK), a key component of immune receptor signaling, plays a critical role in the modulation of inflammatory signaling in different immune cells. However, its role in ALI remains to be explored. Therefore, in this study, we investigated the effect of R406, a SYK inhibitor in lipopolysaccharide (LPS)-induced ALI mouse model. LPS led to increased SYK expression in neutrophils and gamma delta (γδ) T cells. This was associated with increased neutrophilic airway inflammation, vascular permeability, myeloperoxidase activity in the lung with upregulated expression of NADPH oxidase (NOX2)/MCP-1/TNF-α in neutrophils and IL-17A in γδ T cells/lung. Pulmonary inflammation was associated with higher mortality in mice with ALI. Inhibition of SYK signaling using R406 in the lung led to blockade of neutrophilic airway inflammation, vascular permeability, pro-inflammatory cytokine release and oxidative stress in innate immune cells, i.e. γδ T cells and neutrophils and the lung. R406 administered LPS group had better survival rate than LPS group. This suggests that SYK upregulation in γδ T cells and neutrophils plays an important role in inflammatory process during ALI. In conclusion, R406 exhibited a great potential to block the LPS-induced airway inflammation and mortality which could be developed as a potential future therapy in ALI.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Swati Kundu
- Department of Biochemistry, South Campus, University of Delhi, New Delhi, India
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
60
|
Lee SH, Suk K. Kinase-Based Taming of Brain Microglia Toward Disease-Modifying Therapy. Front Cell Neurosci 2018; 12:474. [PMID: 30568577 PMCID: PMC6289980 DOI: 10.3389/fncel.2018.00474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
Microglia are the primary immune cells residing in the central nervous system (CNS), where they play essential roles in the health and disease. Depending on the CNS inflammatory milieu, they exist in either resting or activated states. Chronic neuroinflammation mediated by activated microglia is now considered to be a common characteristic shared by many neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis, which currently pose a significant socioeconomic burden to the global healthcare system. Accumulating evidence has indicated protein kinases (PKs) as important drug targets for therapeutic interventions of these detrimental diseases. Here, we review recent findings suggesting that selected PKs potentially participate in microglia-mediated neuroinflammation. Taming microglial phenotypes by modulating the activity of these PKs holds great promise for the development of disease-modifying therapies for many neurodegenerative diseases.
Collapse
Affiliation(s)
- Sun-Hwa Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
61
|
Bian X, Wu L, Mu L, Yin X, Wei X, Zhong X, Yang Y, Wang J, Li Y, Guo Z, Ye J. Spleen tyrosine kinase from Nile tilapia (Oreochromis niloticus): Molecular characterization, expression pattern upon bacterial infection and the potential role in BCR signaling and inflammatory response. FISH & SHELLFISH IMMUNOLOGY 2018; 82:162-172. [PMID: 30114435 DOI: 10.1016/j.fsi.2018.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Spleen tyrosine kinase (SYK), a member of non-receptor tyrosine kinase family, plays an important role in immune responses against pathogen infection, which is capable of activating B cells signaling pathway and regulating inflammatory response. In this study, Nile tilapia (Oreochromis niloticus) ortholog (OnSYK) was identified and characterized at expression pattern against bacterial infection, function in B cells activation pathway and inflammatory response. The cDNA of OnSYK ORF contained 1851 bp of nucleotide sequence encoding polypeptides of 616 amino acids. The deduced OnSYK protein was highly homologous to other species SYK, containing two SH2 domains and a TyrKc domain. Spatial mRNA expression analysis revealed that OnSYK had wide tissue distribution and was highly expressed in the liver. After challenge of Streptococcus agalactiae (S. agalactiae) in vivo, mRNA expression of OnSYK was significantly up-regulated in the head kidney, spleen and liver. The up-regulation of OnSYK transcript was also displayed in the head kidney and spleen leukocytes stimulation with S. agalactiae and LPS in vitro, which was confirmed at protein level in the head kidney leukocytes by FACS analysis. In addition, after induction with mouse anti-OnIgM monoclonal antibody in vitro, the expressions of OnSYK and its downstream molecules (OnLYN, OnBLNK and OnAP-1) were significantly up-regulated in the head kidney leukocytes, and pharmacological inhibition of SYK activity with inhibitor (P505-15) significantly attenuated the expressions of OnLYN, OnBLNK and OnAP-1. Moreover, upon LPS challenge, the expressions of OnSYK, OnTNF-α, OnIL-6 and OnAP-1 were also up-regulated in the head kidney monocytes/macrophages. After treatment with SYK inhibitor (BAY 61-3606), the expressions of OnTNF-α, OnIL-6 and OnAP-1 were inhibited in the LPS-challenged head kidney monocytes/macrophages. Taken together, the results of this study indicated that OnSYK, playing potential roles in BCR signaling and inflammatory response, was likely to get involved in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Xia Bian
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiufang Wei
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiaofang Zhong
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Yanjian Yang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Junru Wang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Yuan Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Zheng Guo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China.
| |
Collapse
|
62
|
Therapeutic inhibition of spleen tyrosine kinase in inflammatory macrophages using PLGA nanoparticles for the treatment of non-alcoholic steatohepatitis. J Control Release 2018; 288:227-238. [PMID: 30219279 DOI: 10.1016/j.jconrel.2018.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/28/2018] [Accepted: 09/09/2018] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is the leading cause of cirrhosis worldwide and the most rapidly growing indication for liver transplantation. Macrophages are the important cellular component in the inflammatory milieu in NASH. Inflammatory and pro-fibrotic mediators produced by macrophages causes significant tissue injury in many inflammatory diseases. Therefore, inhibition of the inflammatory macrophages would be a promising approach to attenuate NASH. In this study, we studied the implication of SYK pathway in NASH, and investigated PLGA nanoparticles-based delivery of SYK pathway inhibitor as an effective and promising therapeutic approach for the treatment of NASH. We found positive correlation between SYK expression with the pathogenesis of NASH and alcoholic hepatitis in patients. Importantly, SYK expression was significantly induced in M1-differentiated inflammatory macrophages. To inhibit SYK pathway specifically, we used a small-molecule inhibitor R406 that blocks Fc-receptor signaling pathway and reduces immune complex-mediated inflammation. R406 dose-dependently inhibited nitric-oxide release and M1-specific markers in M1-differentiated macrophages. Thereafter, we synthesized PLGA nanoparticles to deliver R406 to increase the drug pharmacokinetics for the efficient treatment of NASH. We investigated the therapeutic efficacy of R406-PLGA in-vitro in differentiated macrophages, and in-vivo in Methionine-Choline-deficient (MCD)-diet induced NASH mouse model. R406-PLGA inhibited M1-specific differentiation markers in RAW and bone-marrow-derived macrophages. In-vivo, R406 and more strongly R406-PLGA ameliorated fibrosis, inflammation and steatosis in mice. R406 and more significantly R406-PLGA reduced ALT, AST, cholesterol and triglyceride plasma levels. These results suggest that delivery of SYK inhibitor using PLGA nanoparticles can be a potential therapeutic approach for the treatment of Non-alcoholic steatohepatitis.
Collapse
|
63
|
RAGE and TLRs as Key Targets for Antiatherosclerotic Therapy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7675286. [PMID: 30225265 PMCID: PMC6129363 DOI: 10.1155/2018/7675286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/08/2018] [Indexed: 02/08/2023]
Abstract
Receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs) are the key factors indicating a danger to the organism. They recognize the microbial origin pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). The primary response induced by PAMPs or DAMPs is inflammation. Excessive stimulation of the innate immune system occurs in arterial wall with the participation of effector cells. Persistent adaptive responses can also cause tissue damage and disease. However, inflammation mediated by the molecules innate responses is an important way in which the adaptive immune system protects us from infection. The specific detection of PAMPs and DAMPs by host receptors drives a cascade of signaling that converges at nuclear factor-κB (NF-κB) and interferon regulatory factors (IRFs) and induces the secretion of proinflammatory cytokines, type I interferon (IFN), and chemokines, which promote direct killing of the pathogen. Therefore, signaling of these receptors' pathways also appear to present new avenue for the modulation of inflammatory responses and to serve as potential novel therapeutic targets for antiatherosclerotic therapy.
Collapse
|
64
|
Levistilide A Ameliorates NLRP3 Expression Involving the Syk-p38/JNK Pathway and Peripheral Obliterans in Rats. Mediators Inflamm 2018; 2018:7304096. [PMID: 30158835 PMCID: PMC6109531 DOI: 10.1155/2018/7304096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/23/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation is one of the most important pathogeneses of thromboangiitis obliterans (TAO). The NLRP3 inflammasome plays a vital role in the body's immune response and disease development. It can be activated by numerous types of pathogens or danger signals. As the core of the inflammatory response, the NLRP3 inflammasome may provide a new target for the treatment of various inflammatory diseases. Levistilide A (LA) is a phthalide dimer isolated from umbelliferous plants. Its pharmacological effect is largely unknown. This study revealed the effects of LA on endothelial cell activation, NLRP3, IL-1β, TNF-α, IL-32, and CCL-2, VCAM-1, MCP-1, and the spleen tyrosine kinase (Syk)--p38/JNK signaling axis and its effect on vasculitis in rats. Results LA inhibited endothelial activation and the expression of IL-1β, TNF-α, IL-32, CCL-2, VCAM-1, and MCP-1. LA directly obstructed Syk phosphorylation and activity in a dose-dependent manner, inhibited the activity of p38 and JNK, and reduced the expression of NLRP3 in human umbilical vein endothelial cells and vascular tissue of rats with vasculitis. Conclusion LA suppressed NLRP3 gene expression by blocking the Syk--p38/JNK pathway and reduced damage to the rats' limbs in the thromboangiitis obliterans model.
Collapse
|
65
|
Uchida D, Takaki A, Adachi T, Okada H. Beneficial and Paradoxical Roles of Anti-Oxidative Nutritional Support for Non-Alcoholic Fatty Liver Disease. Nutrients 2018; 10:E977. [PMID: 30060482 PMCID: PMC6116036 DOI: 10.3390/nu10080977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is being recognized as a key factor in the progression of chronic liver disease (CLD), especially non-alcoholic fatty liver disease (NAFLD). Many NAFLD treatment guidelines recommend the use of antioxidants, especially vitamin E. Many prospective studies have described the beneficial effects of such agents for the clinical course of NAFLD. However, as these studies are usually short-term evaluations, lasting only a few years, whether or not antioxidants continue to exert favorable long-term effects, including in cases of concomitant hepatocellular carcinoma, remains unclear. Antioxidants are generally believed to be beneficial for human health and are often commercially available as health-food products. Patients with lifestyle-related diseases often use such products to try to be healthier without practicing lifestyle intervention. However, under some experimental NAFLD conditions, antioxidants have been shown to encourage the progression of hepatocellular carcinoma, as oxidative stress is toxic for cancer cells, just as for normal cells. In this review, we will highlight the paradoxical effects of antioxidants against NAFLD and related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Takuya Adachi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
66
|
Dagher Z, Xu S, Negoro PE, Khan NS, Feldman MB, Reedy JL, Tam JM, Sykes DB, Mansour MK. Fluorescent Tracking of Yeast Division Clarifies the Essential Role of Spleen Tyrosine Kinase in the Intracellular Control of Candida glabrata in Macrophages. Front Immunol 2018; 9:1058. [PMID: 29868018 PMCID: PMC5964189 DOI: 10.3389/fimmu.2018.01058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/27/2018] [Indexed: 01/07/2023] Open
Abstract
Macrophages play a critical role in the elimination of fungal pathogens. They are sensed via cell surface pattern-recognition receptors and are phagocytosed into newly formed organelles called phagosomes. Phagosomes mature through the recruitment of proteins and lysosomes, resulting in addition of proteolytic enzymes and acidification of the microenvironment. Our earlier studies demonstrated an essential role of Dectin-1-dependent activation of spleen tyrosine kinase (Syk) in the maturation of fungal containing phagosomes. The absence of Syk activity interrupted phago-lysosomal fusion resulting in arrest at an early phagosome stage. In this study, we sought to define the contribution of Syk to the control of phagocytosed live Candida glabrata in primary macrophages. To accurately measure intracellular yeast division, we designed a carboxyfluorescein succinimidyl ester (CFSE) yeast division assay in which bright fluorescent parent cells give rise to dim daughter cells. The CFSE-labeling of C. glabrata did not affect the growth rate of the yeast. Following incubation with macrophages, internalized CFSE-labeled C. glabrata were retrieved by cellular lysis, tagged using ConA-647, and the amount of residual CFSE fluorescence was assessed by flow cytometry. C. glabrata remained undivided (CFSE bright) for up to 18 h in co-culture with primary macrophages. Treatment of macrophages with R406, a specific Syk inhibitor, resulted in loss of intracellular control of C. glabrata with initiation of division within 4 h. Delayed Syk inhibition after 8 h was less effective indicating that Syk is critically required at early stages of macrophage–fungal interaction. In conclusion, we demonstrate a new method of tracking division of C. glabrata using CFSE labeling. Our results suggest that early Syk activation is essential for macrophage control of phagocytosed C. glabrata.
Collapse
Affiliation(s)
- Zeina Dagher
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shuying Xu
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paige E Negoro
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Nida S Khan
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Biomedical Engineering and Biotechnology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Michael B Feldman
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, United States
| | - Jennifer L Reedy
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jenny M Tam
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Michael K Mansour
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
67
|
Ann SJ, Kim KK, Cheon EJ, Noh HM, Hwang I, Yu JW, Park S, Kang SM, Manabe I, Miller YI, Kim S, Lee SH. Palmitate and minimally-modified low-density lipoprotein cooperatively promote inflammatory responses in macrophages. PLoS One 2018. [PMID: 29518116 PMCID: PMC5843266 DOI: 10.1371/journal.pone.0193649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increased consumption of Western-type diets and environmental insults lead to wide-spread increases in the plasma levels of saturated fatty acids and lipoprotein oxidation. The aim of this study is to examine whether palmitate and minimally modified low-density lipoprotein (mmLDL) exert an additive effect on macrophage activation. We found that CXCL2 and TNF-α secretion as well as ERK and p38 phosphorylation were additively increased by co-treatment of J774 macrophages with palmitate and mmLDL in the presence of lipopolysaccharide (LPS). Furthermore, the analysis of differentially expressed genes using the KEGG database revealed that several pathways, including cytokine-cytokine receptor interaction, and genes were significantly altered. These results were validated with real-time PCR, showing upregulation of Il-6, Csf3, Il-1β, and Clec4d. The present study demonstrated that palmitate and mmLDL additively potentiate the LPS-induced activation of macrophages. These results suggest the existence of synergistic mechanisms by which saturated fatty acids and oxidized lipoproteins activate immune cells.
Collapse
Affiliation(s)
- Soo-jin Ann
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ka-Kyung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jeong Cheon
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye-Min Noh
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
| | - Sungha Park
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Min Kang
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, La Jolla, United States of America
| | - Sangwoo Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (SH Lee); (S Kim)
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (SH Lee); (S Kim)
| |
Collapse
|
68
|
Helicobacter pylori LPS-induced gastric mucosal spleen tyrosine kinase (Syk) recruitment to TLR4 and activation occurs with the involvement of protein kinase Cδ. Inflammopharmacology 2018; 26:805-815. [PMID: 29353412 DOI: 10.1007/s10787-017-0430-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Spleen tyrosine kinase (Syk) has emerged recently as a major effector of proinflammatory genes expression induced by LPS-elicited TLR4 activation, and manifested by the up-amplification in the production of inflammatory mediators, including PGE2 and NO. Here, we investigated the nature of factors involved in the recruitment and interaction of Syk with TLR4 in gastric mucosa in response to H. pylori LPS. We show that stimulation of gastric mucosal cells with the LPS leads to localization of Syk with the membrane-associated TLR4 complex and its activation through phosphorylation on Tyr. Furthermore, we reveal that the membrane translocation of Syk upon the LPS stimulation occurs with the involvement of protein kinase Cδ (PKCδ)-mediated phosphorylation of Syk on Ser. Thus, our findings demonstrate that H. pylori LPS-induced up-regulation in Syk activity proceeds through the stage of PKCδ-mediated Syk phosphorylation on Ser, required for its recruitment to the membrane-anchored TLR4, followed by the kinase activation through phosphorylation on Tyr. Hence, the phase of PKCδ-mediated Syk phosphorylation on Ser affects the extent of amplification in gastric mucosal inflammatory response to H. pylori.
Collapse
|
69
|
Serbulea V, Upchurch CM, Ahern KW, Bories G, Voigt P, DeWeese DE, Meher AK, Harris TE, Leitinger N. Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism. Mol Metab 2018; 7:23-34. [PMID: 29153923 PMCID: PMC5784323 DOI: 10.1016/j.molmet.2017.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/28/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Macrophages control tissue homeostasis and inflammation by sensing and responding to environmental cues. However, the metabolic adaptation of macrophages to oxidative tissue damage and its translation into inflammatory mechanisms remains enigmatic. METHODS Here we identify the critical regulatory pathways that are induced by endogenous oxidation-derived DAMPs (oxidized phospholipids, OxPL) in vitro, leading to formation of a unique redox-regulatory metabolic phenotype (Mox), which is strikingly different from conventional classical or alternative macrophage activation. RESULTS Unexpectedly, metabolomic analyses demonstrated that Mox heavily rely on glucose metabolism and the pentose phosphate pathway (PPP) to support GSH production and Nrf2-dependent antioxidant gene expression. While the metabolic adaptation of macrophages to OxPL involved transient suppression of aerobic glycolysis, it also led to upregulation of inflammatory gene expression. In contrast to classically activated (M1) macrophages, Hif1α mediated expression of OxPL-induced Glut1 and VEGF but was dispensable for Il1β expression. Mechanistically, we show that OxPL suppress mitochondrial respiration via TLR2-dependent ceramide production, redirecting TCA metabolites to GSH synthesis. Finally, we identify spleen tyrosine kinase (Syk) as a critical downstream signaling mediator that translates OxPL-induced effects into ceramide production and inflammatory gene regulation. CONCLUSIONS Together, these data demonstrate the metabolic and bioenergetic requirements that enable macrophages to translate tissue oxidation status into either antioxidant or inflammatory responses via sensing OxPL. Targeting dysregulated redox homeostasis in macrophages could therefore lead to novel therapies to treat chronic inflammation.
Collapse
Affiliation(s)
- Vlad Serbulea
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Clint M Upchurch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Katelyn W Ahern
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Gael Bories
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Paxton Voigt
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Dory E DeWeese
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Akshaya K Meher
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
70
|
Khajeh Alizadeh Attar M, Anwar MA, Eskian M, Keshavarz-Fathi M, Choi S, Rezaei N. Basic understanding and therapeutic approaches to target toll-like receptors in cancerous microenvironment and metastasis. Med Res Rev 2017; 38:1469-1484. [PMID: 29283184 DOI: 10.1002/med.21480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/24/2017] [Accepted: 12/02/2017] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) are transmembrane components that sense danger signals, like damage- and pathogen-associated molecular pattern molecules, as receptors, and maintain homeostasis in tissues. They are mainly involved in immune system activation through a variety of mediators, which either carry out (1) elimination of pathogenic threats and redressing homeostatic imbalances or (2) contribution to the initiation and worsening of pathological conditions, including cancers. Under physiological conditions, TLRs coordinate the innate and adaptive immunity, and inhibit autoimmune disorders. In pathological conditions, such as cancer, they can present both tumor and receptor-specific roles. Although the roles of individual TLRs in various cancers have been described, the effects of targeting TLRs to treat cancer and prevent metastasis are still controversial. A growing body of literature has suggested contribution of both activators and inhibitors of TLR signaling pathway for cancer treatment, dependent on several context-specific factors. In short, TLRs can play dual roles with contradictory outcomes in neoplastic conditions. This hampers the development of TLR-based therapeutic interventions. A better understanding of the interwoven TLR pathways in cancerous microenvironment is necessary to design TLR-based therapies. In this review, we consider the molecular mechanisms of TLRs signaling and their involvement in tumor progression. Therapeutic modalities targeting TLRs for cancer treatment are discussed as well.
Collapse
Affiliation(s)
- Mojtaba Khajeh Alizadeh Attar
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Mahsa Eskian
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, United Kingdom
| |
Collapse
|
71
|
Hashimoto R, Kakigi R, Nakamura K, Itoh S, Daida H, Okada T, Katoh Y. LPS enhances expression of CD204 through the MAPK/ERK pathway in murine bone marrow macrophages. Atherosclerosis 2017; 266:167-175. [DOI: 10.1016/j.atherosclerosis.2017.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/09/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
|
72
|
Alhazmi A, Choi J, Ulanova M. Syk inhibitor R406 downregulates inflammation in an in vitro model of Pseudomonas aeruginosa infection. Can J Physiol Pharmacol 2017; 96:182-190. [PMID: 29020462 DOI: 10.1139/cjpp-2017-0307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As Pseudomonas aeruginosa infections are characterized by strong inflammation of infected tissues, anti-inflammatory therapies in combination with antibiotics have been considered for the treatment of associated diseases. Syk tyrosine kinase is an important regulator of inflammatory responses, and its specific inhibition was explored as a therapeutic option in several inflammatory conditions; however, this has not been studied in bacterial infections. We used a model of in vitro infection of human monocytic cell line THP-1 and lung epithelial cell line H292 with both wild-type and flagella-deficient mutant of P. aeruginosa strain K, as well as with clinical isolates from cystic fibrosis patients, to study the effect of a small molecule Syk inhibitor R406 on inflammatory responses induced by this pathogen. One-hour pretreatment of THP-1 cells with 10 μmol/L R406 resulted in a significant downregulation of the expression of the adhesion molecule ICAM-1, pro-inflammatory cytokines TNF-α and IL-1β, and phosphorylated signaling proteins ERK2, JNK, p-38, and IκBα, as well as significantly decreased TNF-α release by infected H292 cells. The results suggest that Syk is involved in the regulation of inflammatory responses to P. aeruginosa, and R406 may potentially be useful in dampening the damage caused by severe inflammation associated with this infection.
Collapse
Affiliation(s)
- Alaa Alhazmi
- a Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Joshua Choi
- b Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| | - Marina Ulanova
- a Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.,b Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
73
|
Chee ME, Majumder K, Mine Y. Intervention of Dietary Dipeptide Gamma-l-Glutamyl-l-Valine (γ-EV) Ameliorates Inflammatory Response in a Mouse Model of LPS-Induced Sepsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5953-5960. [PMID: 28691814 DOI: 10.1021/acs.jafc.7b02109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sepsis, the systemic inflammatory response syndrome (SIRS) with infection is one of the leading causes of death in critically ill patients in the developed world due to the lack of effective antisepsis treatments. This study examined the efficacy of dietary dipeptide gamma-l-glutamyl-l-valine (γ-EV), which was characterized previously as an anti-inflammatory peptide, in an LPS-induced mouse model of sepsis. BALB/c mice were administered γ-EV via oral gavage followed by an intraperitoneal injection of LPS to induce sepsis. The γ-EV exhibited antisepsis activity by reducing the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in plasma and small intestine. γ-EV also reduced the phosphorylation of the signaling proteins JNK and IκBα. We concluded that γ-EV could possess an antisepsis effect against bacterial infection in intestine. This study proposes a signaling mechanism whereby the calcium-sensing receptor (CaSR) allosterically activated by γ-EV stimulates the interaction of β-arrestin2 with the TIR(TLR/IL-1R) signaling proteins TRAF6, TAB1, and IκBα to suppress inflammatory signaling.
Collapse
Affiliation(s)
- MacKenzie E Chee
- Department of Food Science, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Kaustav Majumder
- Department of Food Science, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
74
|
Syk Plays a Critical Role in the Expression and Activation of IRAK1 in LPS-Treated Macrophages. Mediators Inflamm 2017; 2017:1506248. [PMID: 28680194 PMCID: PMC5478860 DOI: 10.1155/2017/1506248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/13/2017] [Indexed: 01/10/2023] Open
Abstract
To address how interleukin-1 receptor-associated kinase 1 (IRAK1) is controlled by other enzymes activated by toll-like receptor (TLR) 4, we investigated the possibility that spleen tyrosine kinase (Syk), a protein tyrosine kinase that is activated at an earlier stage during TLR4 activation, plays a central role in regulating the functional activation of IRAK1. Indeed, we found that overexpression of myeloid differentiation primary response gene 88 (MyD88), an adaptor molecule that drives TLR signaling, induced IRAK1 expression and that piceatannol, a Syk inhibitor, successfully suppressed the MyD88-dependent upregulation of IRAK1 under LPS treatment conditions. Interestingly, in Syk-knockout RAW264.7 cells, IRAK1 activity was almost completely blocked after LPS treatment, while providing a Syk-recovery gene to the knockout cells successfully restored IRAK1 expression. According to our measurements of IRAK1 mRNA levels, the transcriptional upregulation of IRAK1 was induced by LPS treatment between 4 and 60 min, and this can be suppressed in Syk knockout cells, providing an effect similar that that seen under piceatannol treatment. The overexpression of Syk reverses this effect and leads to a significantly higher IRAK1 mRNA level. Collectively, our results strongly suggest that Syk plays a critical role in regulating both the activity and transcriptional level of IRAK1.
Collapse
|
75
|
Slomiany BL, Slomiany A. Role of LPS-elicited signaling in triggering gastric mucosal inflammatory responses to H. pylori: modulatory effect of ghrelin. Inflammopharmacology 2017; 25:415-429. [PMID: 28516374 DOI: 10.1007/s10787-017-0360-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022]
Abstract
Infection with Helicobacter pylori is a primary culprit in the etiology of gastric disease, and its cell-wall lipopolysaccharide (LPS) is recognized as a potent endotoxin responsible for triggering a pattern of the mucosal inflammatory responses. The engagement by the LPS of gastric mucosal Toll-like receptor 4 (TLR4) leads to initiation of signal transduction events characterized by the activation of mitogen-activated protein kinase (MAPK) cascade, induction of phosphoinositide-specific phospholipase C (PLC)/protein kinase C (PKC)/phosphatidylinositol 3-kinase (PI3K) pathway, and up-regulation in Src/Akt. These signaling events in turn exert their influence over H. pylori-elicited excessive generation of NO and PGE2 caused by the disturbances in nitric oxide synthase and cyclooxygenase isozyme systems, increase in epidermal growth factor receptor transactivation, and the induction in matrix metalloproteinase-9 (MMP-9) release. Interestingly, the extent of gastric mucosal inflammatory response to H. pylori is influenced by a peptide hormone, ghrelin, the action of which relays on the growth hormone secretagogue receptor type 1a (GHS-R1a)-mediated mobilization of G-protein dependent transduction pathways. Yet, the signals triggered by TLR-4 activation as well as those arising through GHS-R1a stimulation converge at MAPK and PLC/PKC/PI3K pathways that form a key integration node for proinflammatory signals generated by H. pylori LPS as well as for those involved in modulation of inflammation by ghrelin. Hence, therapeutic targeting these signals' convergence and integration node could provide a novel and attractive opportunities for developing more effective treatments of H. pylori-related gastric disease.
Collapse
Affiliation(s)
- B L Slomiany
- Research Center, C855, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103-2400, USA
| | - A Slomiany
- Research Center, C855, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103-2400, USA.
| |
Collapse
|
76
|
Nègre-Salvayre A, Augé N, Camaré C, Bacchetti T, Ferretti G, Salvayre R. Dual signaling evoked by oxidized LDLs in vascular cells. Free Radic Biol Med 2017; 106:118-133. [PMID: 28189852 DOI: 10.1016/j.freeradbiomed.2017.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
The oxidative theory of atherosclerosis relies on the modification of low density lipoproteins (LDLs) in the vascular wall by reactive oxygen species. Modified LDLs, such as oxidized LDLs, are thought to participate in the formation of early atherosclerotic lesions (accumulation of foam cells and fatty streaks), whereas their role in advanced lesions and atherothrombotic events is more debated, because antioxidant supplementation failed to prevent coronary disease events and mortality in intervention randomized trials. As oxidized LDLs and oxidized lipids are present in atherosclerotic lesions and are able to trigger cell signaling on cultured vascular cells and macrophages, it has been proposed that they could play a role in atherogenesis and atherosclerotic vascular remodeling. Oxidized LDLs exhibit dual biological effects, which are dependent on extent of lipid peroxidation, nature of oxidized lipids (oxidized phospholipids, oxysterols, malondialdehyde, α,β-unsaturated hydroxyalkenals), concentration of oxidized LDLs and uptake by scavenger receptors (e.g. CD36, LOX-1, SRA) that signal through different transduction pathways. Moderate concentrations of mildly oxidized LDLs are proinflammatory and trigger cell migration and proliferation, whereas higher concentrations induce cell growth arrest and apoptosis. The balance between survival and apoptotic responses evoked by oxidized LDLs depends on cellular systems that regulate the cell fate, such as ceramide/sphingosine-1-phosphate rheostat, endoplasmic reticulum stress, autophagy and expression of pro/antiapoptotic proteins. In vivo, the intimal concentration of oxidized LDLs depends on the influx (hypercholesterolemia, endothelial permeability), residence time and lipid composition of LDLs, oxidative stress intensity, induction of defense mechanisms (antioxidant systems, heat shock proteins). As a consequence, the local cellular responses to oxidized LDLs may stimulate inflammatory or anti-inflammatory pathways, angiogenic or antiangiogenic responses, survival or apoptosis, thereby contributing to plaque growth, instability, complication (intraplaque hemorrhage, proteolysis, calcification, apoptosis) and rupture. Finally, these dual properties suggest that oxLDLs could be implicated at each step of atherosclerosis development, from early fatty streaks to advanced lesions, depending on the nature and concentration of their oxidized lipid content.
Collapse
Affiliation(s)
| | | | - Caroline Camaré
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France
| | | | | | - Robert Salvayre
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France.
| |
Collapse
|
77
|
Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz VLJ. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med 2017; 214:1269-1280. [PMID: 28356391 PMCID: PMC5413329 DOI: 10.1084/jem.20161117] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/28/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role in immune responses to pathogens by transducing signals in innate immune cells in response to microbial products. TLRs are also expressed on B cells, and TLR signaling in B cells contributes to antibody-mediated immunity and autoimmunity. The SYK tyrosine kinase is essential for signaling from the B cell antigen receptor (BCR), and thus for antibody responses. Surprisingly, we find that it is also required for B cell survival, proliferation, and cytokine secretion in response to signaling through several TLRs. We show that treatment of B cells with lipopolysaccharide, the ligand for TLR4, results in SYK activation and that this is dependent on the BCR. Furthermore, we show that B cells lacking the BCR are also defective in TLR-induced B cell activation. Our results demonstrate that TLR4 signals through two distinct pathways, one via the BCR leading to activation of SYK, ERK, and AKT and the other through MYD88 leading to activation of NF-κB.
Collapse
Affiliation(s)
| | - Josquin Nys
- The Francis Crick Institute, London NW1 1AT, England, UK
| | - Lesley Vanes
- The Francis Crick Institute, London NW1 1AT, England, UK
| | - Nicholas Smithers
- Epinova DPU, Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline, Stevenage SG1 2NY, England, UK
| | - Victor L J Tybulewicz
- The Francis Crick Institute, London NW1 1AT, England, UK .,Imperial College London, London W12 0NN, England, UK
| |
Collapse
|
78
|
Abe T, Hirasaka K, Nikawa T. Involvement of Cbl-b-mediated macrophage inactivation in insulin resistance. World J Diabetes 2017; 8:97-103. [PMID: 28344752 PMCID: PMC5348625 DOI: 10.4239/wjd.v8.i3.97] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/31/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
Aging and overnutrition cause obesity in rodents and humans. It is well-known that obesity causes various diseases by producing insulin resistance (IR). Macrophages infiltrate the adipose tissue (AT) of obese individuals and cause chronic low-level inflammation associated with IR. Macrophage infiltration is regulated by the chemokines that are released from hypertrophied adipocytes and the immune cells in AT. Saturated fatty acids are recognized by toll-like receptor 4 (TLR4) and induce inflammatory responses in AT macrophages (ATMs). The inflammatory cytokines that are released from activated ATMs promote IR in peripheral organs, such as the liver, skeletal muscle and AT. Therefore, ATM activation is a therapeutic target for IR in obesity. The ubiquitin ligase Casitas b-lineage lymphoma-b (Cbl-b) appears to potently suppress macrophage migration and activation. Cbl-b is highly expressed in leukocytes and negatively regulates signals associated with migration and activation. Cbl-b deficiency enhances ATM accumulation and IR in aging- and diet-induced obese mice. Cbl-b inhibits migration-related signals and SFA-induced TLR4 signaling in ATMs. Thus, targeting Cbl-b may be a potential therapeutic strategy to reduce the IR induced by ATM activation. In this review, we summarize the regulatory functions of Cbl-b in ATMs.
Collapse
|
79
|
SCIMP is a transmembrane non-TIR TLR adaptor that promotes proinflammatory cytokine production from macrophages. Nat Commun 2017; 8:14133. [PMID: 28098138 PMCID: PMC5253658 DOI: 10.1038/ncomms14133] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/02/2016] [Indexed: 01/04/2023] Open
Abstract
Danger signals activate Toll-like receptors (TLRs), thereby initiating inflammatory responses. Canonical TLR signalling, via Toll/Interleukin-1 receptor domain (TIR)-containing adaptors and proinflammatory transcription factors such as NF-κB, occurs in many cell types; however, additional mechanisms are required for specificity of inflammatory responses in innate immune cells. Here we show that SCIMP, an immune-restricted, transmembrane adaptor protein (TRAP), promotes selective proinflammatory cytokine responses by direct modulation of TLR4. SCIMP is a non-TIR-containing adaptor, binding directly to the TLR4-TIR domain in response to lipopolysaccharide. In macrophages, SCIMP is constitutively associated with the Lyn tyrosine kinase, is required for tyrosine phosphorylation of TLR4, and facilitates TLR-inducible production of the proinflammatory cytokines IL-6 and IL-12p40. Point mutations in SCIMP abrogating TLR4 binding also prevent SCIMP-mediated cytokine production. SCIMP is, therefore, an immune-specific TLR adaptor that shapes host defence and inflammation. Toll-like receptors engage TIR domain-containing adaptors to control proinflammatory gene expression in response to pathogens and tissue damage. Here the authors show that the non-TIR domain-containing transmembrane protein SCIMP is a previously unrecognized TLR adaptor expressed by macrophages.
Collapse
|
80
|
Tvedt TH, Nepstad I, Bruserud Ø. Antileukemic effects of midostaurin in acute myeloid leukemia - the possible importance of multikinase inhibition in leukemic as well as nonleukemic stromal cells. Expert Opin Investig Drugs 2016; 26:343-355. [PMID: 28001095 DOI: 10.1080/13543784.2017.1275564] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Midostaurin is a multikinase inhibitor that inhibits receptor tyrosine kinases (Flt3, CD117/c-kit, platelet-derived growth factor receptor, vascular endothelial growth factor receptor 2) as well as non-receptor tyrosine kinases (Frg, Src, Syk, Protein kinase C). Combination of midostaurin with conventional intensive chemotherapy followed by one year maintenance monotherapy was recently reported to improve the survival of acute myeloid leukemia (AML) patients with Flt3 mutations. Areas covered: Relevant publications were identified through literature searches in the PubMed database. We searched for (i) original articles describing the results from clinical studies; (ii) published articles describing the importance of midostaurin-inhibited kinases for leukemogenesis and chemosensitivity. Expert opinion: Midostaurin monotherapy is well tolerated, combined with conventional chemotherapy gastrointestinal toxicity increases significantly. Midostaurin alters anthracycline pharmacokinetics. Furthermore, its antileukemic effects may not only be mediated through Flt3 inhibition alone; the inhibition of other kinases may also be important for the overall antileukemic effect. Midostaurin may then have direct effects on the leukemic cells but also indirect antileukemic effects through inhibition of the AML-supporting effects of neighboring stromal cells in the bone marrow microenvironment. Midostaurin may thus be used in combination with intensive chemotherapy, as maintenance treatment or as disease-stabilizing treatment for elderly unfit patients.
Collapse
Affiliation(s)
- Tor Henrik Tvedt
- a Section for Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Ina Nepstad
- b Section for Hematology , Institute of Clinical Science, University of Bergen , Bergen , Norway
| | - Øystein Bruserud
- a Section for Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway.,b Section for Hematology , Institute of Clinical Science, University of Bergen , Bergen , Norway
| |
Collapse
|
81
|
Peterson MR, Haller SE, Ren J, Nair S, He G. CARD9 as a potential target in cardiovascular disease. Drug Des Devel Ther 2016; 10:3799-3804. [PMID: 27920495 PMCID: PMC5125811 DOI: 10.2147/dddt.s122508] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Systemic inflammation and localized macrophage infiltration have been implicated in cardiovascular pathologies, including coronary artery disease, carotid atherosclerosis, heart failure, obesity-associated heart dysfunction, and cardiac fibrosis. Inflammation induces macrophage infiltration and activation and release of cytokines and chemokines, causing tissue dysfunction by instigating a positive feedback loop that further propagates inflammation. Cytosolic adaptor caspase recruitment domain family, member 9 (CARD9) is a protein expressed primarily by dendritic cells, neutrophils, and macrophages, in which it mediates cytokine secretion. The purpose of this review is to highlight the role of CARD9 as a potential target in inflammation-related cardiovascular pathologies.
Collapse
Affiliation(s)
- Matthew R Peterson
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| | - Samantha E Haller
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| | - Jun Ren
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| | - Sreejayan Nair
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| | - Guanglong He
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| |
Collapse
|
82
|
The Role of TLR2, TLR4, and TLR9 in the Pathogenesis of Atherosclerosis. Int J Inflam 2016; 2016:1532832. [PMID: 27795867 PMCID: PMC5067326 DOI: 10.1155/2016/1532832] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/05/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) are key players in the pathogenesis of inflammatory conditions including coronary arterial disease (CAD). They are expressed by a variety of immune cells where they recognize pathogen-associated molecular patterns (PAMPs). TLRs recruit adaptor molecules, including myeloid differentiation primary response protein (MYD88) and TIRF-related adaptor protein (TRAM), to mediate activation of MAPKs and NF-kappa B pathways. They are associated with the development of CAD through various mechanisms. TLR4 is expressed in lipid-rich and atherosclerotic plaques. In TLR2−/− and TLR4−/− mice, atherosclerosis-associated inflammation was diminished. Moreover, TLR2 and TLR4 may induce expression of Wnt5a in advanced staged atheromatous plaque leading to activation of the inflammatory processes. TLR9 is activated by CpG motifs in nucleic acids and have been implicated in macrophage activation and the uptake of oxLDL from the circulation. Furthermore, TLR9 also stimulates interferon-α (INF-α) secretion and increases cytotoxic activity of CD4+ T-cells towards coronary artery tunica media smooth muscle cells. This review outlines the pathophysiological role of TLR2, TLR4, and TLR9 in atherosclerosis, focusing on evidence from animal models of the disease.
Collapse
|
83
|
Bukong TN, Iracheta-Vellve A, Saha B, Ambade A, Satishchandran A, Gyongyosi B, Lowe P, Catalano D, Kodys K, Szabo G. Inhibition of spleen tyrosine kinase activation ameliorates inflammation, cell death, and steatosis in alcoholic liver disease. Hepatology 2016; 64:1057-71. [PMID: 27302565 PMCID: PMC5033691 DOI: 10.1002/hep.28680] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/22/2016] [Accepted: 05/25/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED The spectrum of alcoholic liver disease (ALD) is a major cause of mortality with limited therapies available. Because alcohol targets numerous signaling pathways in hepatocytes and in immune cells, the identification of a master regulatory target that modulates multiple signaling processes is attractive. In this report, we assessed the role of spleen tyrosine kinase (SYK), a nonreceptor tyrosine kinase, which has a central modulatory role in multiple proinflammatory signaling pathways involved in the pathomechanism of ALD. Using mouse disease models that represent various phases in the progression of human ALD, we found that alcohol, in all of these models, induced SYK activation in the liver, both in hepatocytes and liver mononuclear cells. Furthermore, significant SYK activation also occurred in liver samples and peripheral blood mononuclear cells of patients with ALD/alcoholic hepatitis compared to controls. Functional inhibition of SYK activation in vivo abrogated alcohol-induced hepatic neutrophil infiltration, resident immune cell activation, as well as inflammasome and extracellular signal-regulated kinase 1 and 2-mediated nuclear factor kappa B activation in mice. Strikingly, inhibition of SYK activation diminished alcohol-induced hepatic steatosis and interferon regulatory factor 3-mediated apoptosis. CONCLUSION Our data demonstrate a novel, functional, and multicellular role for SYK phosphorylation in modulating immune cell-driven liver inflammation, hepatocyte cell death, and steatosis at different stages of ALD. These novel findings highlight SYK as a potential multifunctional target in the treatment of alcoholic steatohepatitis. (Hepatology 2016;64:1057-1071).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA.
| |
Collapse
|
84
|
Wittmann A, Lamprinaki D, Bowles KM, Katzenellenbogen E, Knirel YA, Whitfield C, Nishimura T, Matsumoto N, Yamamoto K, Iwakura Y, Saijo S, Kawasaki N. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells. J Biol Chem 2016; 291:17629-38. [PMID: 27358401 PMCID: PMC5016159 DOI: 10.1074/jbc.m116.741256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared with Salmonella enterica O66 LPS, which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-β1,3]GalNAc-α1,3-GalNAc-β1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognize H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-out BM-DCs failed to do so. This receptor cross-talk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several Gram-negative bacteria augment TLR4 responses through interaction with Dectin-2.
Collapse
Affiliation(s)
- Alexandra Wittmann
- From the Food and Health Institute Strategic Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | - Dimitra Lamprinaki
- From the Food and Health Institute Strategic Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | - Kristian M Bowles
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Ewa Katzenellenbogen
- the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw 53-114, Poland
| | - Yuriy A Knirel
- the N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Chris Whitfield
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Takashi Nishimura
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Naoki Matsumoto
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Kazuo Yamamoto
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Yoichiro Iwakura
- the Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan, and
| | - Shinobu Saijo
- the Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Norihito Kawasaki
- From the Food and Health Institute Strategic Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom, the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan,
| |
Collapse
|
85
|
Bukong TN, Iracheta-Vellve A, Gyongyosi B, Ambade A, Catalano D, Kodys K, Szabo G. Therapeutic Benefits of Spleen Tyrosine Kinase Inhibitor Administration on Binge Drinking-Induced Alcoholic Liver Injury, Steatosis, and Inflammation in Mice. Alcohol Clin Exp Res 2016; 40:1524-30. [PMID: 27177528 PMCID: PMC4930418 DOI: 10.1111/acer.13096] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/06/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Binge drinking is increasingly recognized as an important cause of liver disease with limited therapeutic options for patients. Binge alcohol use, similar to chronic alcohol consumption, induces numerous deregulated signaling events that drive liver damage, steatosis, and inflammation. In this article, we evaluated the role of spleen tyrosine kinase (SYK), which modulates numerous signaling events previously identified linked in the development alcohol-induced liver pathology. METHODS A 3-day alcohol binge was administered to C57BL/6 female mice, and features of alcoholic liver disease were assessed. Some mice were treated daily with intraperitoneal injections of a SYK inhibitor (R406; 5 to 10 mg/kg body weight) or drug vehicle control. Liver and serum samples were collected and were assessed by Western blotting, biochemical, ELISA, electrophoretic mobility shift assays, real-time quantitative polymerase chain reaction, and histopathological analysis. RESULTS We found that binge drinking induced significant SYK activation (SYK(Y525/526) ) with no change in total SYK expression in the liver. Functional inhibition of SYK activation using a potent SYK inhibitor, R406, was associated with a significant decrease in alcohol-induced hepatic inflammation as demonstrated by decreased phospho-nuclear factor kappa beta (NF-κB) p65, NF-κB nuclear binding, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1 mRNA in the liver. Compared to vehicle controls, SYK inhibitor treatment decreased alcohol binge-induced hepatocyte injury indicated by histology and serum alanine aminotransferase. Strikingly, SYK inhibitor treatment also resulted in a significant reduction in alcohol-induced liver steatosis. CONCLUSIONS Our novel observations demonstrate the role of SYK, activation in the pathomechanism of binge drinking-induced liver disease highlighting SYK a potential multifaceted therapeutic target.
Collapse
Affiliation(s)
- Terence N Bukong
- University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - Benedek Gyongyosi
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Aditya Ambade
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Donna Catalano
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Karen Kodys
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gyongyi Szabo
- University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
86
|
Cho RL, Yang CC, Lee IT, Lin CC, Chi PL, Hsiao LD, Yang CM. Lipopolysaccharide induces ICAM-1 expression via a c-Src/NADPH oxidase/ROS-dependent NF-κB pathway in human pulmonary alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 310:L639-57. [DOI: 10.1152/ajplung.00109.2014] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 01/06/2016] [Indexed: 11/22/2022] Open
Abstract
Upregulation of intercellular adhesion molecule-1 (ICAM-1) is frequently implicated in lung inflammation. Lipopolysaccharide (LPS) has been shown to play a key role in inflammation via adhesion molecule induction and then causes lung injury. However, the mechanisms underlying LPS-induced ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain unclear. We showed that LPS induced ICAM-1 expression in HPAEpiCs, revealed by Western blotting, RT-PCR, real-time PCR, and promoter assay. Pretreatment with the inhibitor of c-Src (protein phosphatase-1, PP1), reactive oxygen species (ROS) (Edaravone), NADPH oxidase (apocynin and diphenyleneiodonium chloride), EGFR (AG1478), PDGFR (AG1296), phosphatidylinositol-3-kinase (PI3K) (LY294002), MEK1/2 (U0126), or NF-κB (Bay11-7082) and transfection with siRNAs of c-Src, EGFR, PDGFR, Akt, p47 phox, Nox2, Nox4, p42, and p65 markedly reduced LPS-induced ICAM-1 expression and monocyte adherence to HPAEpiCs challenged with LPS. In addition, we established that LPS stimulated phosphorylation of c-Src, EGFR, PDGFR, Akt, or p65, which was inhibited by pretreatment with their respective inhibitors. LPS induced Toll-like receptor 4 (TLR4), MyD88, TNF receptor-associated factor 6 (TRAF6), c-Src, p47 phox, and Rac1 complex formation 2, which was attenuated by transfection with c-Src or TRAF6 siRNA. Furthermore, LPS markedly enhanced NADPH oxidase activation and intracellular ROS generation, which were inhibited by PP1. We established that LPS induced p42/p44 MAPK activation via a c-Src/NADPH oxidase/ROS/EGFR, PDGFR/PI3K/Akt-dependent pathway in these cells. Finally, we observed that LPS significantly enhanced NF-κB and IκBα phosphorylation, NF-κB translocation, and NF-κB promoter activity, which were inhibited by PP1, Edaravone, apocynin, diphenyleneiodonium chloride, AG1478, AG1296, LY294002 , or U0126. These results demonstrated that LPS induces p42/p44 MAPK activation mediated through the TLR4/MyD88/TRAF6/c-Src/NADPH oxidase/ROS/EGFR, PDGFR/PI3K/Akt pathway, which in turn initiates the activation of NF-κB and ultimately induces ICAM-1 expression in HPAEpiCs.
Collapse
Affiliation(s)
- Rou-Ling Cho
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chien-Chung Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Lin-Kou, Kwei-San, Tao-Yuan, Taiwan
| | - I-Ta Lee
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| |
Collapse
|
87
|
Sun D, Sun L, Xu Q, Gong Y, Wang H, Yang J, Yuan Y. SNP-SNP Interaction between TLR4 and MyD88 in Susceptibility to Coronary Artery Disease in the Chinese Han Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13030278. [PMID: 26959040 PMCID: PMC4808941 DOI: 10.3390/ijerph13030278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 12/11/2022]
Abstract
The toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-dependent signaling pathway plays a role in the initiation and progression of coronary artery disease (CAD). We investigated SNP-SNP interactions between the TLR4 and MyD88 genes in CAD susceptibility and assessed whether the effects of such interactions were modified by confounding risk factors (hyperglycemia, hyperlipidemia and Helicobacter pylori (H. pylori) infection). Participants with CAD (n = 424) and controls (n = 424) without CAD were enrolled. Polymerase chain restriction-restriction fragment length polymorphism was performed on genomic DNA to detect polymorphisms in TLR4 (rs10116253, rs10983755, and rs11536889) and MyD88 (rs7744). H. pylori infections were evaluated by enzyme-linked immunosorbent assays, and the cardiovascular risk factors for each subject were evaluated clinically. The significant interaction between TLR4 rs11536889 and MyD88 rs7744 was associated with an increased CAD risk (p value for interaction = 0.024). In conditions of hyperglycemia, the interaction effect was strengthened between TLR4 rs11536889 and MyD88 rs7744 (p value for interaction = 0.004). In hyperlipidemic participants, the interaction strength was also enhanced for TLR4 rs11536889 and MyD88 rs7744 (p value for interaction = 0.006). Thus, the novel interaction between TLR4 rs11536889 and MyD88 rs7744 was related with an increased risk of CAD, that could be strengthened by the presence of hyperglycemia or hyperlipidemia.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Tumor Etiology and Screening, Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China.
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Liping Sun
- Department of Tumor Etiology and Screening, Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China.
| | - Qian Xu
- Department of Tumor Etiology and Screening, Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China.
| | - Yuehua Gong
- Department of Tumor Etiology and Screening, Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China.
| | - Honghu Wang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Jun Yang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Yuan Yuan
- Department of Tumor Etiology and Screening, Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China.
| |
Collapse
|
88
|
Chen KH, Hsu HH, Yang HY, Tian YC, Ko YC, Yang CW, Hung CC. Inhibition of spleen tyrosine kinase (syk) suppresses renal fibrosis through anti-inflammatory effects and down regulation of the MAPK-p38 pathway. Int J Biochem Cell Biol 2016; 74:135-44. [PMID: 26948651 DOI: 10.1016/j.biocel.2016.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/19/2016] [Accepted: 03/01/2016] [Indexed: 12/29/2022]
Abstract
Renal fibrosis results from an excessive accumulation of extracellular matrix that occurs in most types of chronic kidney disease. Among the many fibrogenic factors that regulate renal fibrotic processes, transforming growth factor-β1 (TGF-β1) and inflammation after injury play critical roles. Spleen tyrosine kinase (Syk) is important for signaling processes implicated in autoimmune, inflammatory, and allergic diseases. We examined the effects of Syk inhibition on renal fibrosis in vivo and on TGF-β1-induced renal fibroblast activation in vitro. A unilateral ureteral obstruction (UUO) model was induced in male B6 mice. Mice with UUO were administered a Syk inhibitor or saline intraperitoneally 1 day before UUO surgery and daily thereafter. Both kidneys were harvested 7 days after surgery for further analysis. For the in vitro experiments, NRK-49F rat fibroblasts were pre-incubated with a Syk inhibitor before TGF-β1 stimulation. The inhibitory effects of Syk inhibition on signaling pathways down-stream of TGF-β1 were analyzed. In the UUO mouse model, administration of a Syk inhibitor attenuated extracellular matrix protein deposition and expression of α-smooth muscle actin, type I collagen, and fibronectin in a dose-dependent manner. In addition, macrophage infiltration in UUO kidney was reduced by Syk inhibition. Pre-incubation of NRK-49F cells with a Syk inhibitor suppressed TGF-β1-induced myofibroblast activation. Furthermore, inhibitory effects of Syk inhibition on TGF-β1-mediated myofibroblast activation were associated with down-regulation of MAPK-p38. These results suggest that Syk inhibition reduces tubulointerstitial fibrosis in UUO mice and inhibits TGF-β1-induced kidney myofibroblast activation. Syk inhibition could have therapeutic potential for the treatment of renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Kuan-Hsing Chen
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Yi-Ching Ko
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
89
|
Chen R, Gu N, Gao Y, Cen W. TLR4 Asp299Gly (rs4986790) polymorphism and coronary artery disease: a meta-analysis. PeerJ 2015; 3:e1412. [PMID: 26644971 PMCID: PMC4671173 DOI: 10.7717/peerj.1412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/29/2015] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Background. Previous studies have shown conflicting results on the association between toll-like receptor 4 (TLR4) Asp299Gly (rs4986790) polymorphism and coronary artery disease (CAD). The aim of this study was to evaluate the influence of TLR4 Asp299Gly polymorphism on CAD risk, CRP level and the number of stenotic coronary arteries, as well as to investigate whether G allele carriers would benefit more from statin treatment. Methods. PubMed, EMBASE, and CNKI databases were searched until May 2015. All the statistical tests were performed using R version 3.1.2. Odds ratio (OR) and 95% confidence interval (CI) were used to assess the association between TLR4 Asp299Gly polymorphism and CAD risk, the number of stenotic vessels, and the incidence of cardiovascular events according to statin-treated patients. Weighted mean difference (WMD) was calculated for the association between Asp299Gly and CRP level. Results. Overall, 12 case-control studies with 10,258 cases and 5,891 controls were included, and no association of TLR4Asp299Gly polymorphism with CAD was found (G allele vs. A allele: OR = 0.97, 95% CI [0.81-1.17], P = 0.75; AA vs. GG + AG: OR = 0.97, 95% CI [0.80-1.18], P = 0.76; GG vs. AG + AA: OR = 1.08, 95% CI [0.57-2.02], P = 0.82; AG vs. AA + GG: OR = 1.03, 95% CI [0.85-1.25], P = 0.74). Also, no association was noted between Asp299Gly and CRP level (WMD = -0.10, 95% CI [-0.62, 0.41], P = 0.69). Furthermore, no synergistic effect of statin and 299Gly was reported (Statin_AA vs. Statin_ AG/GG OR = 1.12, 95% CI [0.41-3.09], P = 0.82). Discussion. This meta-analysis suggests no association of TLR4 Asp299Gly polymorphism with CAD and CRP level. It is further indicated that the G allele carriers may not benefit more from statin treatment. Further studies should include large sample size and high-quality literature to understand this issue in depth.
Collapse
Affiliation(s)
- Rui Chen
- The First Clinical College, Nanjing University of Chinese Medicine , Nanjing, Jiangsu , China
| | - Ning Gu
- Department of Cardiology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing, Jiangsu , China
| | - Ying Gao
- The First Clinical College, Nanjing University of Chinese Medicine , Nanjing, Jiangsu , China
| | - Wei Cen
- The First Clinical College, Nanjing University of Chinese Medicine , Nanjing, Jiangsu , China
| |
Collapse
|
90
|
Foster GA, Xu L, Chidambaram AA, Soderberg SR, Armstrong EJ, Wu H, Simon SI. CD11c/CD18 Signals Very Late Antigen-4 Activation To Initiate Foamy Monocyte Recruitment during the Onset of Hypercholesterolemia. THE JOURNAL OF IMMUNOLOGY 2015; 195:5380-92. [PMID: 26519532 DOI: 10.4049/jimmunol.1501077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
Abstract
Recruitment of foamy monocytes to inflamed endothelium expressing VCAM-1 contributes to the development of plaque during atherogenesis. Foamy CD11c(+) monocytes arise in the circulation during the onset of hypercholesterolemia and recruit to nascent plaque, but the mechanism of CD11c/CD18 and very late Ag-4 (VLA-4) activation and cooperation in shear-resistant cell arrest on VCAM-1 are ill defined. Within 1 wk of the onset of a Western high-fat diet (WD) in apolipoprotein E-deficient mice, an inflammatory subset of foamy monocytes emerged that made up one fourth of the circulating population. These cells expressed ∼3-fold more CD11c/CD18 and 50% higher chemokine receptors than nonfoamy monocytes. Recruitment from blood to a VCAM-1 substrate under shear stress was assessed ex vivo using a unique artery-on-a-chip microfluidic assay. It revealed that foamy monocytes from mice on a WD increased their adhesiveness over 5 wk, rising to twice that of mice on a normal diet or CD11c(-/-) mice fed a WD. Shear-resistant capture of foamy human or mouse monocytes was initiated by high-affinity CD11c, which directly activated VLA-4 adhesion via phosphorylated spleen tyrosine kinase and paxillin within focal adhesion complexes. Lipid uptake and activation of CD11c are early and critical events in signaling VLA-4 adhesive function on foamy monocytes competent to recruit to VCAM-1 on inflamed arterial endothelium.
Collapse
Affiliation(s)
- Greg A Foster
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Lu Xu
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Alagu A Chidambaram
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Stephanie R Soderberg
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Ehrin J Armstrong
- Division of Cardiology, VA Eastern Colorado Healthcare System, University of Colorado School of Medicine, Denver, CO 80220; and
| | - Huaizhu Wu
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030; Section of Leukocyte Biology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616;
| |
Collapse
|
91
|
IRAK1 mediates TLR4-induced ABCA1 downregulation and lipid accumulation in VSMCs. Cell Death Dis 2015; 6:e1949. [PMID: 26512959 PMCID: PMC5399175 DOI: 10.1038/cddis.2015.212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 12/14/2022]
Abstract
The activation of Toll-like receptor 4 (TLR4) signaling has an important role in promoting lipid accumulation and pro-inflammatory effects in vascular smooth muscle cells (VSMCs), which facilitate atherosclerosis development and progression. Previous studies have demonstrated that excess lipid accumulation in VSMCs is due to an inhibition of the expression of ATP-binding cassette transporter A1 (ABCA1), an important molecular mediator of lipid efflux from VSMCs. However, the underlying molecular mechanisms of this process are unclear. The purpose of this study was to disclose the underlying molecular mechanisms of TLR4 signaling in regulating ABCA1 expression. Primary cultured VSMCs were stimulated with 50 μg/ml oxidized low-density lipoprotein (oxLDL). We determined that enhancing TLR4 signaling using oxLDL significantly downregulated ABCA1 expression and induced lipid accumulation in VSMCs. However, TLR4 knockout significantly rescued oxLDL-induced ABCA1 downregulation and lipid accumulation. In addition, IL-1R-associated kinase 1 (IRAK1) was involved in the effects of TLR4 signaling on ABCA1 expression and lipid accumulation. Silencing IRAK1 expression using a specific siRNA reversed TLR4-induced ABCA1 downregulation and lipid accumulation in vitro. These results were further confirmed by our in vivo experiments. We determined that enhancing TLR4 signaling by administering a 12-week-long high-fat diet (HFD) to mice significantly increased IRAK1 expression, which downregulated ABCA1 expression and induced lipid accumulation. In addition, TLR4 knockout in vivo reversed the effects of the HFD on IRAK1 and ABCA1 expression, as well as on lipid accumulation. In conclusion, IRAK1 is involved in TLR4-mediated downregulation of ABCA1 expression and lipid accumulation in VSMCs.
Collapse
|
92
|
Ghosh S, Geahlen RL. Stress Granules Modulate SYK to Cause Microglial Cell Dysfunction in Alzheimer's Disease. EBioMedicine 2015; 2:1785-98. [PMID: 26870803 PMCID: PMC4740304 DOI: 10.1016/j.ebiom.2015.09.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022] Open
Abstract
Microglial cells in the brains of Alzheimer's patients are known to be recruited to amyloid-beta (Aβ) plaques where they exhibit an activated phenotype, but are defective for plaque removal by phagocytosis. In this study, we show that microglia stressed by exposure to sodium arsenite or Aβ(1–42) peptides or fibrils form extensive stress granules (SGs) to which the tyrosine kinase, SYK, is recruited. SYK enhances the formation of SGs, is active within the resulting SGs and stimulates the production of reactive oxygen and nitrogen species that are toxic to neuronal cells. This sequestration of SYK inhibits the ability of microglial cells to phagocytose Escherichia coli or Aβ fibrils. We find that aged microglial cells are more susceptible to the formation of SGs; and SGs containing SYK and phosphotyrosine are prevalent in the brains of patients with severe Alzheimer's disease. Phagocytic activity can be restored to stressed microglial cells by treatment with IgG, suggesting a mechanism to explain the therapeutic efficacy of intravenous IgG. These studies describe a mechanism by which stress, including exposure to Aβ, compromises the function of microglial cells in Alzheimer's disease and suggest approaches to restore activity to dysfunctional microglial cells. Chronic stress promotes the formation of large, persistent stress granules in microglial cells. SYK is recruited to stress granules, which promotes inflammatory responses and inhibits phagocytosis. Phagocytic activity of stressed cells can be recovered by treatment with IgG.
Microglial cells in the brains of patients with Alzheimer's disease are activated, but are defective at phagocytosis of amyloid plaques. Activation and phagocytosis require the SYK tyrosine kinase. Chronic exposure to amyloid-beta promotes the formation of persistent stress granules to which active SYK binds and these are found in the brains of patients with severe Alzheimer's disease. This activation and sequestration of SYK promotes inflammation and inhibits phagocytosis. Phagocytic activity can be recovered by treatment with IgG, which causes a redistribution of SYK within the cell, suggesting potential therapeutic approaches to restoring microglial cell function to diseased or aged brains.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
93
|
Martiny VY, Martz F, Selwa E, Iorga BI. Blind Pose Prediction, Scoring, and Affinity Ranking of the CSAR 2014 Dataset. J Chem Inf Model 2015; 56:996-1003. [DOI: 10.1021/acs.jcim.5b00337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Virginie Y. Martiny
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, LabEx LERMIT, 91198 Gif-sur-Yvette, France
- Department
of Nephrology and Dialysis, AP-HP, Tenon Hospital, INSERM UMR_S 1155, 75020 Paris, France
| | - François Martz
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, LabEx LERMIT, 91198 Gif-sur-Yvette, France
| | - Edithe Selwa
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, LabEx LERMIT, 91198 Gif-sur-Yvette, France
| | - Bogdan I. Iorga
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, LabEx LERMIT, 91198 Gif-sur-Yvette, France
| |
Collapse
|
94
|
Hossen MJ, Jeon SH, Kim SC, Kim JH, Jeong D, Sung NY, Yang S, Baek KS, Kim JH, Yoon DH, Song WO, Yoon KD, Cho SH, Lee S, Kim JH, Cho JY. In vitro and in vivo anti-inflammatory activity of Phyllanthus acidus methanolic extract. JOURNAL OF ETHNOPHARMACOLOGY 2015; 168:217-228. [PMID: 25839115 DOI: 10.1016/j.jep.2015.03.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus acidus (L.) Skeels (Phyllanthaceae) has traditionally been used to treat gastric trouble, rheumatism, bronchitis, asthma, respiratory disorders, and hepatitis. Despite this widespread use, the pharmacological activities of this plant and their molecular mechanisms are poorly understood. Therefore, we evaluated the immunopharmacological activities of the methanolic extract of the aerial parts of this plant (Pa-ME) and validated its pharmacological targets. MATERIALS AND METHODS Lipopolysaccharide (LPS)-treated macrophages, an HCl/EtOH-induced gastritis model, and an acetic acid-injected capillary permeability mouse model were employed to evaluate the anti-inflammatory activity of Pa-ME. Potentially active anti-inflammatory components of this extract were identified by HPLC. The molecular mechanisms of the anti-inflammatory activity were studied by kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes. RESULTS Pa-ME suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and prevented morphological changes in LPS-treated RAW264.7 cells. Moreover, both HCl/EtOH-induced gastric damage and acetic acid-triggered vascular permeability were restored by orally administered Pa-ME. Furthermore, this extract downregulated the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and reduced the nuclear levels of NF-κB. Signalling events upstream of NF-κB translocation, such as phosphorylation of Src and Syk and formation of Src/Syk signalling complexes, were also inhibited by Pa-ME. The enzymatic activities of Src and Syk were also suppressed by Pa-ME. Moreover, Src-induced and Syk-induced luciferase activity and p85/Akt phosphorylation were also inhibited by Pa-ME. Of the identified flavonoids, kaempferol and quercetin were revealed as partially active anti-inflammatory components in Pa-ME. CONCLUSION Pa-ME exerts anti-inflammatory activity in vitro and in vivo by suppressing Src, Syk, and their downstream transcription factor, NF-κB.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea; Department of Animal Science, Patuakhali Science and Technology University, Bangladesh
| | - Sung Ho Jeon
- Department of Life Science Hallym University, Chuncheon 200-702, Republic of Korea
| | - Seung Cheol Kim
- Division of Gynecologic Oncology Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital College of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Nak Yoon Sung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sungjae Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jun Ho Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Deok Hyo Yoon
- Department of Biochemistry, Kangwon National University, Chuncheon 220-700, Republic of Korea
| | - Won O Song
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Kee Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | - Sang-Ho Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
95
|
Muramyl dipeptide enhances thermal injury-induced inflammatory cytokine production and organ function injury in rats. Shock 2015; 42:161-7. [PMID: 24667616 DOI: 10.1097/shk.0000000000000164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The bacterial infection following thermal injury is a very important factor of excessive inflammatory response and multiple organ damage. Muramyl dipeptide (MDP) is the key structure of gram-positive bacteria and gram-negative bacteria triggering the innate immune system. The aim of the present study was to determine the effect of MDP on thermal injury-induced inflammatory responses, organ function injury, and mortality in rats. Fifty male Sprague-Dawlay rats were randomly divided into three groups: normal control group, scald group, and MDP group. Scald group only suffered 20% total body surface area third-degree thermal injury. Muramyl dipeptide 5 mg·kg was administered through the femoral vein at 24 h after thermal injury in the MDP group. Plasma inflammatory cytokine levels were measured by enzyme-linked immunosorbent assay. An additional 90 male Sprague-Dawley rats were randomly divided into three groups to observe the survival rate in 72 h. Plasma levels of interleukin-6, interleukin-10, interferon-γ, and high-mobility group box 1; the white blood cell counts; the serum concentrations of alanine aminotransferase, aspartate aminotransferase, total bilirubin, creatine kinase isoenzyme-MB, blood urea nitrogen, and creatinine; and the activity of lung tissue myeloperoxidase significantly increased after thermal injury alone. Compared with the scald group, MDP led to more serious inflammatory responses and organ function damage and higher mortality (P < 0.05, respectively). These data indicate that MDP exacerbates thermal injury-induced inflammatory cytokine production, accompanied by multiple organ dysfunction syndrome and high mortality in rats.
Collapse
|
96
|
Lin YC, Huang DY, Wang JS, Lin YL, Hsieh SL, Huang KC, Lin WW. Syk is involved in NLRP3 inflammasome-mediated caspase-1 activation through adaptor ASC phosphorylation and enhanced oligomerization. J Leukoc Biol 2015; 97:825-835. [PMID: 25605870 DOI: 10.1189/jlb.3hi0814-371rr] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/03/2014] [Accepted: 11/30/2014] [Indexed: 12/27/2022] Open
Abstract
NLRP3 is the most crucial member of the NLR family, as it detects the existence of pathogen invasion and self-derived molecules associated with cellular damage. Several studies have reported that excessive NLRP3 inflammasome-mediated caspase-1 activation is a key factor in the development of diseases. Recent studies have reported that Syk is involved in pathogen-induced NLRP3 inflammasome activation; however, the detailed mechanism linking Syk to NLRP3 inflammasome remains unclear. In this study, we showed that Syk mediates NLRP3 stimuli-induced processing of procaspase-1 and the consequent activation of caspase-1. Moreover, the kinase activity of Syk is required to potentiate caspase-1 activation in a reconstituted NLRP3 inflammasome system in HEK293T cells. The adaptor protein ASC bridges NLRP3 with the effector protein caspase-1. Herein, we find that Syk can associate directly with ASC and NLRP3 by its kinase domain but interact indirectly with procaspase-1. Syk can phosphorylate ASC at Y146 and Y187 residues, and the phosphorylation of both residues is critical to enhance ASC oligomerization and the recruitment of procaspase-1. Together, our results reveal a new molecular pathway through which Syk promotes NLRP3 inflammasome formation, resulting from the phosphorylation of ASC. Thus, the control of Syk activity might be effective to modulate NLRP3 inflammasome activation and treat NLRP3-related immune diseases.
Collapse
Affiliation(s)
- Ying-Cing Lin
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Duen-Yi Huang
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jang-Shiun Wang
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ling Lin
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shie-Liang Hsieh
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-Chin Huang
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Wan Lin
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
97
|
Zheng XX, Zhou T, Wang XA, Tong XH, Ding JW. Histone deacetylases and atherosclerosis. Atherosclerosis 2014; 240:355-66. [PMID: 25875381 DOI: 10.1016/j.atherosclerosis.2014.12.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/13/2023]
Abstract
Atherosclerosis is the most common pathological process that leads to cardiovascular diseases, a disease of large- and medium-sized arteries that is characterized by a formation of atherosclerotic plaques consisting of necrotic cores, calcified regions, accumulated modified lipids, smooth muscle cells (SMCs), endothelial cells, leukocytes, and foam cells. Recently, the question about how to suppress the occurrence of atherosclerosis and alleviate the progress of cardiovascular disease becomes the hot topic. Accumulating evidence suggests that histone deacetylases(HDACs) play crucial roles in arteriosclerosis. This review summarizes the effect of HDACs and HDAC inhibitors(HDACi) on the progress of atherosclerosis.
Collapse
Affiliation(s)
- Xia-xia Zheng
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Tian Zhou
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Xin-An Wang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Xiao-hong Tong
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Jia-wang Ding
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China.
| |
Collapse
|
98
|
Ramessur Chandran S, Tesch GH, Han Y, Woodman N, Mulley WR, Kanellis J, Blease K, Ma FY, Nikolic-Paterson DJ. Spleen tyrosine kinase contributes to acute renal allograft rejection in the rat. Int J Exp Pathol 2014; 96:54-62. [PMID: 25529862 DOI: 10.1111/iep.12110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/30/2014] [Indexed: 11/29/2022] Open
Abstract
Kidney allografts induce strong T-cell and antibody responses which mediate acute rejection. Spleen tyrosine kinase (Syk) is expressed by most leucocytes, except mature T cells, and is involved in intracellular signalling following activation of the Fcγ-receptor, B-cell receptor and some integrins. A role for Syk signalling has been established in antibody-dependent native kidney disease, but little is known of Syk in acute renal allograft rejection. Sprague-Dawley rats underwent bilateral nephrectomy and received an orthotopic Wistar renal allograft. Recipient rats were treated with a Syk inhibitor (CC0482417, 30 mg/kg/bid), or vehicle, from 1 h before surgery until being killed 5 days later. Vehicle-treated recipients developed severe allograft failure with marked histologic damage in association with dense leucocyte infiltration (T cells, macrophages, neutrophils and NK cells) and deposition of IgM, IgG and C3. Immunostaining identified Syk expression by many infiltrating leucocytes. CC0482417 treatment significantly improved allograft function and reduced histologic damage, although allograft injury was still clearly evident. CC0482417 failed to prevent T-cell infiltration and activation within the allograft. However, CC0482417 significantly attenuated acute tubular necrosis, infiltration of macrophages and neutrophils and thrombosis of peritubular capillaries. In conclusion, this study identifies a role for Syk in acute renal allograft rejection. Syk inhibition may be a useful addition to T-cell-based immunotherapy in renal transplantation.
Collapse
Affiliation(s)
- Sharmila Ramessur Chandran
- Department of Nephrology, Monash Medical Centre, Clayton, Vic., Australia; Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Clayton, Vic., Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Jia SJ, Niu PP, Cong JZ, Zhang BK, Zhao M. TLR4 signaling: A potential therapeutic target in ischemic coronary artery disease. Int Immunopharmacol 2014; 23:54-9. [DOI: 10.1016/j.intimp.2014.08.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/06/2014] [Accepted: 08/13/2014] [Indexed: 01/12/2023]
|
100
|
Wang T, Dai Y, Dun Y, Zhang C, Wan J, Deng L, Zhou Z, Liu C, Yuan D. Chikusetsusaponin V inhibits inflammatory responses via NF-κB and MAPK signaling pathways in LPS-induced RAW 264.7 macrophages. Immunopharmacol Immunotoxicol 2014; 36:404-11. [DOI: 10.3109/08923973.2014.960088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|