51
|
Molinari E, Sayer JA. Emerging treatments and personalised medicine for ciliopathies associated with cystic kidney disease. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1372282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elisa Molinari
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John A. Sayer
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
52
|
|
53
|
Sharma K, Caroli A, Quach LV, Petzold K, Bozzetto M, Serra AL, Remuzzi G, Remuzzi A. Kidney volume measurement methods for clinical studies on autosomal dominant polycystic kidney disease. PLoS One 2017; 12:e0178488. [PMID: 28558028 PMCID: PMC5448775 DOI: 10.1371/journal.pone.0178488] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/13/2017] [Indexed: 01/25/2023] Open
Abstract
Background In autosomal dominant polycystic kidney disease (ADPKD), total kidney volume (TKV) is regarded as an important biomarker of disease progression and different methods are available to assess kidney volume. The purpose of this study was to identify the most efficient kidney volume computation method to be used in clinical studies evaluating the effectiveness of treatments on ADPKD progression. Methods and findings We measured single kidney volume (SKV) on two series of MR and CT images from clinical studies on ADPKD (experimental dataset) by two independent operators (expert and beginner), twice, using all of the available methods: polyline manual tracing (reference method), free-hand manual tracing, semi-automatic tracing, Stereology, Mid-slice and Ellipsoid method. Additionally, the expert operator also measured the kidney length. We compared different methods for reproducibility, accuracy, precision, and time required. In addition, we performed a validation study to evaluate the sensitivity of these methods to detect the between-treatment group difference in TKV change over one year, using MR images from a previous clinical study. Reproducibility was higher on CT than MR for all methods, being highest for manual and semiautomatic contouring methods (planimetry). On MR, planimetry showed highest accuracy and precision, while on CT accuracy and precision of both planimetry and Stereology methods were comparable. Mid-slice and Ellipsoid method, as well as kidney length were fast but provided only a rough estimate of kidney volume. The results of the validation study indicated that planimetry and Stereology allow using an importantly lower number of patients to detect changes in kidney volume induced by drug treatment as compared to other methods. Conclusions Planimetry should be preferred over fast and simplified methods for accurately monitoring ADPKD progression and assessing drug treatment effects. Expert operators, especially on MR images, are required for performing reliable estimation of kidney volume. The use of efficient TKV quantification methods considerably reduces the number of patients to enrol in clinical investigations, making them more feasible and significant.
Collapse
Affiliation(s)
- Kanishka Sharma
- Bioengineering Department, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Anna Caroli
- Bioengineering Department, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Le Van Quach
- Bioengineering Department, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Katja Petzold
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Michela Bozzetto
- Bioengineering Department, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Andreas L. Serra
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Giuseppe Remuzzi
- Bioengineering Department, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
- Unit of Nephrology and Dialysis, ASST Papa Giovanni XXIII, Bergamo, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Andrea Remuzzi
- Bioengineering Department, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
- Department of Management, Information and Production Engineering, University of Bergamo, Bergamo, Italy
- * E-mail:
| |
Collapse
|
54
|
Beneficial effect of combined treatment with octreotide and pasireotide in PCK rats, an orthologous model of human autosomal recessive polycystic kidney disease. PLoS One 2017; 12:e0177934. [PMID: 28542433 PMCID: PMC5436842 DOI: 10.1371/journal.pone.0177934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
Increased intracellular cyclic AMP (cAMP) in renal tubular epithelia accelerates the progression of polycystic kidney disease (PKD). Thus, decreasing cAMP levels by an adenylyl cyclase inhibitory G protein activator is considered to be an effective approach in ameliorating PKD. In fact, pasireotide (PAS) was effective in reducing disease progression in animal models of PKD. However, hyperglycemia caused by the administration of PAS is an adverse effect in its clinical use. Whereas, co-administration of octreotide (OCT) with PAS did not increase serum glucose in normal rats. In the current study, we examined the efficacy of combined treatment with OCT and PAS in PCK rats, an autosomal recessive PKD model. Four-week-old PCK males were treated with the long-acting release type of OCT, PAS, or a combination of both (OCT/PAS) for 12 weeks. After termination, serum and renal tissue were used for analyses. Kidney weight, kidney weight per body weight, renal cyst area, renal Ki67 expression, and serum urea nitrogen were significantly decreased either in the PAS or OCT/PAS group, compared with vehicle. Renal tissue cAMP content was significantly decreased by PAS or OCT/PAS treatment, but not OCT, compared with vehicle. As a marker of cellular mTOR signaling activity, renal phospho-S6 kinase expression was significantly decreased by OCT/PAS treatment compared with vehicle, OCT, or PAS. Serum glucose was significantly increased by PAS administration, whereas no difference was shown between vehicle and OCT/PAS, possibly because serum glucagon was decreased either by the treatment of OCT alone or co-application of OCT/PAS. In conclusion, since serum glucose levels are increased by the use of PAS, its combination with OCT may reduce the risk of hyperglycemia associated with PAS monotherapy against PKD progression.
Collapse
|
55
|
Tangri N, Hougen I, Alam A, Perrone R, McFarlane P, Pei Y. Total Kidney Volume as a Biomarker of Disease Progression in Autosomal Dominant Polycystic Kidney Disease. Can J Kidney Health Dis 2017; 4:2054358117693355. [PMID: 28321323 PMCID: PMC5347417 DOI: 10.1177/2054358117693355] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/17/2016] [Indexed: 11/24/2022] Open
Abstract
Purpose of review: Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder characterized by the formation of kidney cysts and kidney enlargement, which progresses to kidney failure by the fifth to seventh decade of life in a majority of patients. Disease progression is evaluated primarily through serum creatinine and estimated glomerular filtration rate (eGFR) measurements; however, it is known that serum creatinine and eGFR values typically do not change until the fourth or fifth decade of life. Until recently, therapy only existed to target complications of ADPKD. As therapeutic agents continue to be investigated for use in ADPKD, a suitable biomarker of disease progression in place of serum creatinine is needed. Sources of information: This review summarizes recent research regarding the use of total kidney volume as a biomarker in ADPKD, as presented at the Canadian Society of Nephrology symposium held in April 2015. Findings: Measurement of patients’ total kidney volume made using ultrasound (US) or magnetic resonance imaging (MRI) has been shown by the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) study to be directly correlated with both increases in cyst volume and change in glomerular filtration rate (GFR). Additional studies have shown total kidney volume to have an association with complications of ADPKD as well. Limitations: Areas for further study continue to exist in comparison of methods of measuring total kidney volume. Implications: We believe that the evidence suggests that total kidney volume may be an appropriate surrogate marker for ADPKD disease progression.
Collapse
Affiliation(s)
- Navdeep Tangri
- Renal Program, Seven Oaks General Hospital, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
- Navdeep Tangri, Renal Program, Seven Oaks General Hospital, 2PD08-2300 McPhillips Street, Winnipeg, Manitoba, Canada R2V 3M3.
| | - Ingrid Hougen
- Renal Program, Seven Oaks General Hospital, Winnipeg, Manitoba, Canada
| | - Ahsan Alam
- Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | - Phil McFarlane
- St. Michael’s Hospital, University of Toronto, Toronto, Canada
| | - York Pei
- University Health Network, University of Toronto, Ontario, Canada
| |
Collapse
|
56
|
The importance of total kidney volume in evaluating progression of polycystic kidney disease. Nat Rev Nephrol 2016; 12:667-677. [PMID: 27694979 DOI: 10.1038/nrneph.2016.135] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The rate at which autosomal dominant polycystic kidney disease (ADPKD) progresses to end-stage renal disease varies widely and is determined by genetic and non-genetic factors. The ability to determine the prognosis of children and young adults with ADPKD is important for the effective life-long management of the disease and to enable the efficacy of emerging therapies to be determined. Total kidney volume (TKV) reflects the sum volume of hundreds of individual cysts with potentially devastating effects on renal function. The sequential measurement of TKV has been advanced as a dynamic biomarker of disease progression, yet doubt remains among nephrologists and regulatory agencies as to its usefulness. Here, we review the mechanisms that lead to an increase in TKV in ADPKD, and examine the evidence supporting the conclusion that TKV provides a metric of disease progression that can be used to assess the efficacy of potential therapeutic regimens in children and adults with ADPKD. Moreover, we propose that TKV can be used to monitor treatment efficacy in patients with normal levels of renal function, before the pathologic processes of ADPKD cause extensive fibrosis and irreversible loss of functioning renal tissue.
Collapse
|
57
|
Mallett A, Lee VW, Mai J, Lopez-Vargas P, Rangan GK. KHA-CARI Autosomal Dominant Polycystic Kidney Disease Guideline: Pharmacological Management. Semin Nephrol 2016; 35:582-589.e17. [PMID: 26718162 DOI: 10.1016/j.semnephrol.2015.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Andrew Mallett
- Kidney Health Service and Conjoint Kidney Research Laboratory, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Centre for Kidney Disease Research, Centre for Chronic Disease and CKD, School of Medicine and Centre for Rare Diseases Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Vincent W Lee
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, Australia; Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Sydney, Australia
| | - Jun Mai
- Department of Nephrology, Liverpool and Bankstown Hospital, South Western Sydney Local Health District, Sydney, Australia
| | - Pamela Lopez-Vargas
- KHA-CARI Guidelines, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Sydney, Australia; Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Gopala K Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Sydney, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, Australia
| |
Collapse
|
58
|
Rysz J, Gluba-Brzózka A, Franczyk B, Banach M, Bartnicki P. Combination drug versus monotherapy for the treatment of autosomal dominant polycystic kidney disease. Expert Opin Pharmacother 2016; 17:2049-56. [DOI: 10.1080/14656566.2016.1232394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
59
|
D'Agnolo HMA, Kievit W, Takkenberg RB, Riaño I, Bujanda L, Neijenhuis MK, Brunenberg EJL, Beuers U, Banales JM, Drenth JPH. Ursodeoxycholic acid in advanced polycystic liver disease: A phase 2 multicenter randomized controlled trial. J Hepatol 2016; 65:601-607. [PMID: 27212247 DOI: 10.1016/j.jhep.2016.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/28/2016] [Accepted: 05/10/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Ursodeoxycholic acid (UDCA) inhibits proliferation of polycystic human cholangiocytes in vitro and hepatic cystogenesis in a rat model of polycystic liver disease (PLD) in vivo. Our aim was to test whether UDCA may beneficially affect liver volume in patients with advanced PLD. METHODS We conducted an international, multicenter, randomized controlled trial in symptomatic PLD patients from three tertiary referral centers. Patients with PLD and total liver volume (TLV) ⩾2500ml were randomly assigned to UDCA treatment (15-20mg/kg/day) for 24weeks, or to no treatment. Primary endpoint was proportional change in TLV. Secondary endpoints were change in symptoms and health-related quality of life. We performed a post-hoc analysis of the effect of UDCA on liver cyst volume (LCV). RESULTS We included 34 patients and were able to assess primary endpoint in 32 patients, 16 with autosomal dominant polycystic kidney disease (ADPKD) and 16 with autosomal dominant polycystic liver disease (ADPLD). Proportional TLV increased by 4.6±7.7% (mean TLV increased from 6697ml to 6954ml) after 24weeks of UDCA treatment compared to 3.1±3.8% (mean TLV increased from 5512ml to 5724ml) in the control group (p=0.493). LCV was not different after 24weeks between controls and UDCA treated patients (p=0.848). However, UDCA inhibited LCV growth in ADPKD patients compared to ADPKD controls (p=0.049). CONCLUSIONS UDCA administration for 24weeks did not reduce TLV in advanced PLD, but UDCA reduced LCV growth in ADPKD patients. Future studies might explore whether ADPKD and ADPLD patients respond differently to UDCA treatment. LAY SUMMARY Current therapies for polycystic liver disease are invasive and have high recurrence risks. Our trial showed that the drug, ursodeoxycholic acid, was not able to reduce liver volume in patients with polycystic liver disease. However, a subgroup analysis in patients that have kidney cysts as well showed that liver cyst volume growth was reduced in patients who received ursodeoxycholic acid in comparison to patients who received no treatment. Trial registration number https://www.clinicaltrials.gov/: NCT02021110. EudraCT Number https://www.clinicaltrialsregister.eu/: 2013-003207-19.
Collapse
Affiliation(s)
- Hedwig M A D'Agnolo
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wietske Kievit
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - R Bart Takkenberg
- Department of Gastroenterology and Hepatology, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Ioana Riaño
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), IKERBASQUE, CIBERehd, San Sebastián, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), IKERBASQUE, CIBERehd, San Sebastián, Spain
| | - Myrte K Neijenhuis
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ellen J L Brunenberg
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), IKERBASQUE, CIBERehd, San Sebastián, Spain
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
60
|
Irazabal MV, Blais JD, Perrone RD, Gansevoort RT, Chapman AB, Devuyst O, Higashihara E, Harris PC, Zhou W, Ouyang J, Czerwiec FS, Torres VE. Prognostic Enrichment Design in Clinical Trials for Autosomal Dominant Polycystic Kidney Disease: The TEMPO 3:4 Clinical Trial. Kidney Int Rep 2016; 1:213-220. [PMID: 29142926 PMCID: PMC5678619 DOI: 10.1016/j.ekir.2016.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 01/26/2023] Open
Abstract
Introduction Patients with slowly progressive autosomal dominant polycystic kidney disease (ADPKD) are unlikely to experience outcomes during randomized controlled trials (RCTs). An image classification of ADPKD into typical (diffuse cyst distribution) class 1A to E (by age- and height-adjusted total kidney volume [TKV]) and atypical (asymmetric cyst distribution) class 2 was proposed for prognostic enrichment design, recommending inclusion of only classes 1C to 1E in RCTs. Methods A post hoc exploratory analysis was conducted of the TEMPO 3:4 Trial, a prospective, randomized, double-blinded, controlled clinical trial in adult subjects with ADPKD, an estimated creatinine clearance >60 ml/min and total kidney volume >750 ml. Results Due to the entry criteria, the study population of TEMPO 3:4 was enriched for classes 1C-E (89.5 % of 1436 patients with baseline magnetic resonance images) compared to unselected populations (e.g., 60.5% of 590 Mayo Clinic patients). The effects of tolvaptan on TKV and eGFR slopes were greater in classes 1C to E than in 1B. In TEMPO 3:4, tolvaptan reduced TKV and eGFR slopes from 5.51% to 2.80% per year and from −3.70 to −2.78 ml/min/1.73 m2 per year, and lowered the risk for a composite endpoint of clinical progression events (hazard ratio = 0.87). Restricting enrollment to classes 1C to E would have reduced TKV and eGFR slopes from 5.78% to 2.91% per year and from −3.93 to −2.82 ml/min/1.73 m2 per year, and the risk of the composite endpoint (hazard ratio = 0.84, P = 0.003), with 10.5% fewer patients. Discussion Prognostic enrichment strategies such as the entry criteria used for TEMPO 3:4 or preferably the proposed image classification should be used in RCTs for ADPKD to increase power and to reduce cost.
Collapse
Affiliation(s)
- Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jaime D Blais
- Otsuka Pharmaceutical Development and Commercialization Inc.; Global Medical Affairs, Princeton, NJ
| | | | | | - Arlene B Chapman
- Division of Nephrology, University of Chicago, Chicago, Illinois, USA
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Eiji Higashihara
- Department of Urology, Kyorin University School of Medicine, Mitaka, Japan
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Wen Zhou
- Otsuka Pharmaceutical Development and Commercialization Inc., Biostatistics, Rockville, Maryland, USA
| | - John Ouyang
- Otsuka Pharmaceutical Development and Commercialization Inc., Biostatistics, Rockville, Maryland, USA
| | - Frank S Czerwiec
- Otsuka Pharmaceutical Development and Commercialization Inc., Global Clinical Development, Rockville, Maryland, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
61
|
Pisani A, Sabbatini M, Imbriaco M, Riccio E, Rubis N, Prinster A, Perna A, Liuzzi R, Spinelli L, Santangelo M, Remuzzi G, Ruggenenti P. Long-term Effects of Octreotide on Liver Volume in Patients With Polycystic Kidney and Liver Disease. Clin Gastroenterol Hepatol 2016; 14:1022-1030.e4. [PMID: 26844873 DOI: 10.1016/j.cgh.2015.12.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/17/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Short-term studies have shown that somatostatin analogues are effective in patients with polycystic kidney and liver disease. We evaluated the long-term effects of long-acting release octreotide (octreotide LAR), a somatostatin inhibitor, vs placebo in these patients. METHODS We performed a controlled study of adults with polycystic kidney and liver disease (estimated glomerular filtration rate, 40 mL/min/1.73m(2) or more) at a single center in Italy. We analyzed data from 27 patients randomly assigned to groups given octreotide LAR (40 mg, n = 14) or placebo (n = 13) each month for 3 years. The primary outcome was absolute and percentage change in total liver volume (TLV), which was measured by magnetic resonance imaging at baseline, after 3 years of treatment, and then 2 years after treatment ended. RESULTS Baseline characteristics were similar between groups. After 3 years, TLV decreased by 130.2 ± 133.2 mL in patients given octreotide LAR (7.8% ± 7.4%) (P = .003) but increased by 144.3 ± 316.8 mL (6.1% ± 14.1%) in patients given placebo. Change vs baseline differed significantly between groups (P = .004). Two years after treatment ended, TLV had decreased 14.4 ± 138.4 mL (0.8% ± 9.7%) from baseline in patients given octreotide LAR but increased by 224.4 ± 331.7 mL (11.0% ± 14.4%) in patients given placebo. Changes vs baseline still differed significantly between groups (P = .046). Decreases in TLV were similar in each sex; the change in TLV was greatest among subjects with larger baseline TLV. No patient withdrew because of side effects. CONCLUSIONS In a placebo-controlled study of patients with polycystic kidney and liver disease, 3 years of treatment with octreotide LAR significantly reduced liver volume; reductions were maintained for 2 years after treatment ended. Octreotide LAR was well-tolerated. ClinicalTrials.gov number: NCT02119052.
Collapse
Affiliation(s)
- Antonio Pisani
- Nephrology Unit, Department of Public Health, Federico II University, Naples, Italy
| | - Massimo Sabbatini
- Nephrology Unit, Department of Public Health, Federico II University, Naples, Italy
| | | | - Eleonora Riccio
- Nephrology Unit, Department of Public Health, Federico II University, Naples, Italy
| | - Nadia Rubis
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Centre for Rare Diseases "Aldo e Cele Daccò", Bergamo, Italy
| | - Anna Prinster
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Annalisa Perna
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Centre for Rare Diseases "Aldo e Cele Daccò", Bergamo, Italy
| | - Raffaele Liuzzi
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Letizia Spinelli
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Michele Santangelo
- Department of Surgical Sciences and Nephrology, Federico II University, Naples, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Centre for Rare Diseases "Aldo e Cele Daccò", Bergamo, Italy; Nephrology and Dialysis Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| | - Piero Ruggenenti
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Centre for Rare Diseases "Aldo e Cele Daccò", Bergamo, Italy; Nephrology and Dialysis Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | | |
Collapse
|
62
|
Kim H, Hwang YH. Clinical Trials and a View Toward the Future of ADPKD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 933:105-121. [PMID: 27730438 DOI: 10.1007/978-981-10-2041-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In light of the advances in the understanding of cystogenesis in clinical syndromes, potential therapeutic targets have been proposed. Among ciliopathies, autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary disease, and is characterized by the progressive enlargement of bilateral renal cysts, resulting in end-stage kidney failure. Progress in genetics and molecular pathobiology has enabled the development of therapeutic agents that can modulate aberrant molecular pathways. Recently, clinical trials using somatostatin analogs and vasopressin receptor antagonists were conducted, and resulted in the approval of tolvaptan in managing kidney disease in some countries. We will summarize the developments of therapeutic agents based on pathogenesis, and discuss recent findings in clinical trials. Moreover, issues such as the timing of the intervention and outcome assessment will be discussed.
Collapse
Affiliation(s)
- Hyunsuk Kim
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Young-Hwan Hwang
- Department of Internal Medicine, Eulji General Hospital, 14, Hangeulbiseok-gil, Nowon-gu, Seoul, 01830, South Korea
| |
Collapse
|
63
|
Validation of Effective Therapeutic Targets for ADPKD Using Animal Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 933:71-84. [DOI: 10.1007/978-981-10-2041-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
64
|
Akoh JA. Current management of autosomal dominant polycystic kidney disease. World J Nephrol 2015; 4:468-479. [PMID: 26380198 PMCID: PMC4561844 DOI: 10.5527/wjn.v4.i4.468] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/17/2015] [Accepted: 08/30/2015] [Indexed: 02/06/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most frequent cause of genetic renal disease affecting approximately 4 to 7 million individuals worldwide and accounting for 7%-15% of patients on renal replacement therapy, is a systemic disorder mainly involving the kidney but cysts can also occur in other organs such as the liver, pancreas, arachnoid membrane and seminal vesicles. Though computed tomography and magnetic resonance imaging (MRI) were similar in evaluating 81% of cystic lesions of the kidney, MRI may depict septa, wall thickening or enhancement leading to upgrade in cyst classification that can affect management. A screening strategy for intracranial aneurysms would provide 1.0 additional year of life without neurological disability to a 20-year-old patient with ADPKD and reduce the financial impact on society of the disease. Current treatment strategies include reducing: cyclic adenosine monophosphate levels, cell proliferation and fluid secretion. Several randomised clinical trials (RCT) including mammalian target of rapamycin inhibitors, somatostatin analogues and a vasopressin V2 receptor antagonist have been performed to study the effect of diverse drugs on growth of renal and hepatic cysts, and on deterioration of renal function. Prophylactic native nephrectomy is indicated in patients with a history of cyst infection or recurrent haemorrhage or to those in whom space must be made to implant the graft. The absence of large RCT on various aspects of the disease and its treatment leaves considerable uncertainty and ambiguity in many aspects of ADPKD patient care as it relates to end stage renal disease (ESRD). The outlook of patients with ADPKD is improving and is in fact much better than that for patients in ESRD due to other causes. This review highlights the need for well-structured RCTs as a first step towards trying newer interventions so as to develop updated clinical management guidelines.
Collapse
|
65
|
Neijenhuis MK, Gevers TJG, Nevens F, Hogan MC, Torres VE, Kievit W, Drenth JPH. Somatostatin analogues improve health-related quality of life in polycystic liver disease: a pooled analysis of two randomised, placebo-controlled trials. Aliment Pharmacol Ther 2015; 42:591-598. [PMID: 26129925 DOI: 10.1111/apt.13301] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/23/2015] [Accepted: 06/10/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Polycystic liver disease is associated with impaired health-related quality of life (HRQL). Somatostatin analogues reduce hepatomegaly in polycystic liver disease. AIM To determine whether somatostatin analogues improve HRQL and to identify factors associated with change in HRQL in polycystic liver disease. METHODS We pooled data from two randomized, double-blind, placebo-controlled trials that evaluated HRQL using the Short-Form 36 (SF-36) in 96 polycystic liver disease patients treated 6-12 months with somatostatin analogues or placebo. The SF-36 contains a summarizing physical and mental component score and was administered at baseline and at the end of treatment. We used random effect models to delineate the effect of somatostatin analogues on HRQL. We determined the effect of demographics, height-adjusted liver volume, change in liver volume, somatostatin analogue-associated side effects with change in HRQL. In patients with autosomal dominant polycystic kidney disease, we estimated the effect of height-adjusted kidney volume and change in kidney volume in relation to HRQL. RESULTS Physical component scores improved with somatostatin analogues, but remained unchanged with placebo (3.41 ± 1.29 vs. -0.71 ± 1.54, P = 0.044). Treatment had no impact on the mental component score. Large liver volume was independently associated with larger HRQL decline during follow up (-4.04 ± 2.02 points per logarithm liver volume, P = 0.049). In autosomal dominant polycystic kidney disease, patients with large liver and kidney volumes had larger decline in HRQL (5.36 ± 2.54 points per logarithm liver volume; P = 0.040 and -4.00 ± 1.88 per logarithm kidney volume; P = 0.039). CONCLUSION Somatostatin analogues improve HRQL in symptomatic polycystic liver disease. Halting the progressive nature of polycystic liver disease is necessary to prevent further decline of HRQL in severe hepatomegaly.
Collapse
Affiliation(s)
- M K Neijenhuis
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - T J G Gevers
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - F Nevens
- Department of Hepatology, University Hospital Leuven, Leuven, Belgium
| | - M C Hogan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - V E Torres
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - W Kievit
- Department of Health Evidence, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - J P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
66
|
Woon C, Bielinski-Bradbury A, O'Reilly K, Robinson P. A systematic review of the predictors of disease progression in patients with autosomal dominant polycystic kidney disease. BMC Nephrol 2015; 16:140. [PMID: 26275819 PMCID: PMC4536696 DOI: 10.1186/s12882-015-0114-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/20/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder characterised by progressive renal cyst formation leading to renal failure in the majority of patients. The likelihood and rate of ADPKD progression is difficult to predict and there is a clear need to identify prognostic indicators that could be used to anticipate ADPKD progression, to aid the management of patients in clinical practice. METHODS A systematic literature review was conducted to identify publications detailing the natural history of ADPKD, including diagnosis, prognosis and progression. Publications were identified and filtered, and data were extracted, based on a predefined research protocol. RESULTS The review identified 2799 journal articles and 444 conference abstracts; 254 articles, including observational studies, clinical trials and reviews, proceeded to data extraction. Disease progression was associated with a variety of prognostic indicators, most commonly age and total kidney volume (TKV). In the identified clinical trials, the absence of a consistent measure of disease progression led to variation in the primary endpoints used. Consequently, there was difficulty in consistently and effectively demonstrating and comparing the efficacy of investigational treatments across studies. More consistency was found in the observational studies, where disease progression was most frequently measured by TKV and glomerular filtration rate. CONCLUSIONS This systematic review identified age and TKV as the most commonly cited prognostic indicators in the published ADPKD literature. It is envisaged that this review may inform future research, trial design and predictive models of ADPKD natural history, helping to optimise patient care.
Collapse
Affiliation(s)
- Claire Woon
- Double Helix Consulting, Complete House, Macclesfield, Cheshire, UK.
| | | | | | | |
Collapse
|
67
|
Hogan MC, Masyuk T, Bergstralh E, Li B, Kremers WK, Vaughan LE, Ihrke A, Severson AL, Irazabal MV, Glockner J, LaRusso NF, Torres VE. Efficacy of 4 Years of Octreotide Long-Acting Release Therapy in Patients With Severe Polycystic Liver Disease. Mayo Clin Proc 2015; 90:1030-7. [PMID: 26166166 PMCID: PMC4928579 DOI: 10.1016/j.mayocp.2015.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/17/2015] [Accepted: 05/01/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To observe the effect on total liver volume (TLV) on and off therapy in selected symptomatic patients with autosomal dominant polycystic kidney disease (ADPKD) or autosomal dominant polycystic liver disease (PLD) who received octreotide long-acting release (OctLAR) for up to 4 years. PATIENTS AND METHODS Twenty-eight of 42 participants in a prospective 2-year clinical trial of OctLAR (40 mg monthly) consisting of double-blind, randomized (year 1) and open-label treatment (year 2) phases reenrolled in a 2-year open-label extension (OLE) study after being off OctLAR a mean of 8.3 months (original study: July 1, 2007, through June 30, 2013). Participants underwent magnetic resonance imaging at baseline, years 1 and 2, reenrollment, and study completion. Primary end point: change in TLV; secondary end points: changes in total kidney volume, glomerular filtration rate, quality of life (QoL), safety, vital signs, and laboratory parameters. RESULTS Twenty-five participants (59.5%) completed the OLE. Off therapy, TLVs increased a mean ± SD of 3.4%±8.2% per year; after resuming therapy, TLVs decreased a mean ± SD of -4.7%±6.1% per year. Despite regrowth off treatment, overall reductions were observed, with a median (interquartile range) TLV of 4047 mL (3107-7402 mL) at baseline and 3477 (2653-7131 mL) at study completion (-13.2%; P<.001) and with improved health-related QoL. Total kidney volumes increased, and glomerular filtration rates declined from 58.2 mL/min to 54.5 mL/min (n=16) in patients with ADPKD on therapy from baseline to study completion. CONCLUSION Therapy with OctLAR over 4 years in selected patients with symptomatic PLD arrested PLD progression, alleviating symptoms and improving health-related QoL. Discontinuation led to organ regrowth. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00426153.
Collapse
Affiliation(s)
- Marie C Hogan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN.
| | - Tetyana Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Eric Bergstralh
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Bill Li
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Walter K Kremers
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Lisa E Vaughan
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Angela Ihrke
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | | | - Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | | | | | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| |
Collapse
|
68
|
Bolignano D, Palmer SC, Ruospo M, Zoccali C, Craig JC, Strippoli GFM. Interventions for preventing the progression of autosomal dominant polycystic kidney disease. Cochrane Database Syst Rev 2015; 2015:CD010294. [PMID: 26171904 PMCID: PMC8406618 DOI: 10.1002/14651858.cd010294.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited disorder causing kidney disease. Current clinical management of ADPKD focuses primarily on symptom control and reducing associated complications, particularly hypertension. In recent years, improved understanding of molecular and cellular mechanisms involved in kidney cyst growth and disease progression has resulted in new pharmaceutical agents to target disease pathogenesis to prevent progressive disease. OBJECTIVES We aimed to evaluate the effects of interventions for preventing ADPKD progression on kidney function, kidney endpoints, kidney structure, patient-centred endpoints (such as cardiovascular events, sudden death, all-cause mortality, hospitalisations, BP control, quality of life, and kidney pain), as well as the general and specific adverse effects related to their use. SEARCH METHODS We searched the Cochrane Renal Group's Specialised Register to 6 June 2015 using relevant search terms. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing any interventions for preventing the progression of ADPKD with other interventions or placebo were considered for inclusion without language restriction. DATA COLLECTION AND ANALYSIS Two authors independently assessed study risks of bias and extracted data. We summarised treatment effects on clinical outcomes, kidney function and structure and adverse events using random effects meta-analysis. We assessed heterogeneity in estimated treatment effects using the Cochran Q test and I(2) statistic. Summary treatment estimates were calculated as a mean difference (MD) or standardised mean difference (SMD) for continuous outcomes and a risk ratio (RR) for dichotomous outcomes together with their 95% confidence intervals. MAIN RESULTS We included 30 studies (2039 participants) that investigated 11 pharmacological interventions (angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARBs), calcium channel blockers, beta blockers, vasopressin receptor 2 (V2R) antagonists, mammalian target of rapamycin (mTOR) inhibitors, somatostatin analogues, antiplatelet agents, eicosapentaenoic acids, statins and vitamin D compounds) in this review.ACEi significantly reduced diastolic blood pressure (9 studies, 278 participants: MD -4.96 mm Hg, 95% CI -8.88 to -1.04), but had uncertain effects on kidney volumes (MD -42.50 mL, 95% CI -115.68 to 30.67), GFR (MD -3.41 mL/min/1.73 m(2), 95% CI -15.83 to 9.01), and SCr (MD -0.02 mg/dL, 95% CI -0.14 to 0.09), in data largely restricted to children. ACEi did not show different effects on GFR (MD -8.19 mL/min/1.73 m(2), 95% CI -29.46 to 13.07) and albuminuria (SMD -0.19, 95% CI -1.77 to 1.39) when compared with beta-blockers, or SCr (MD 0.00 mg/dL, 95% CI -0.09 to 0.10) when compared with ARBs.Data for effects of V2R antagonists on kidney function and volumes compared to placebo were limited to narrative information within a single study while these agents increased thirst (1444 participants: RR 2.70, 95% CI 2.24 to 3.24) and dry mouth (1455 participants: RR 1.33, 95% CI 1.01 to 1.76).Compared with no treatment, mTOR inhibitors had uncertain effects on kidney function (2 studies, 115 participants: MD 4.45 mL/min/1.73 m(2), 95% CI -3.20 to 12.11) and kidney volume (MD -0.08 L, 95% CI -0.75 to 0.59) but in three studies (560 participants) caused angioedema (RR 13.39, 95% CI 2.56 to 70.00), oral ulceration (RR 6.77, 95% CI 4.42 to 10.38), infections (RR 1.14, 95% CI 1.04 to 1.25) and diarrhoea (RR 1.70, 95% CI 1.26 to 2.29).Somatostatin analogues (6 studies, 138 participants) slightly improved SCr (MD -0.43 mg/dL, 95% CI -0.86 to -0.01) and total kidney volume (MD -0.62 L, 95% CI -1.22 to -0.01) but had no definite effects on GFR (MD 9.50 mL/min, 95% CI -4.45 to 23.44) and caused diarrhoea (RR 3.72, 95% CI 1.43 to 9.68).Data for calcium channel blockers, eicosapentaenoic acids, statins, vitamin D compounds and antiplatelet agents were sparse and inconclusive.Random sequence generation was adequate in eight studies, and in almost half of the studies, blinding was not present or not specified. Most studies did not adequately report outcomes, which adversely affected our ability to assess this bias. The overall drop-out rate was over 10% in nine studies, and few were conducted using intention-to-treat analyses. AUTHORS' CONCLUSIONS Although several interventions are available for patients with ADPKD, at present there is little or no evidence that treatment improves patient outcomes in this population and is associated with frequent adverse effects. Additional large randomised studies focused on patient-centred outcomes are needed.
Collapse
Affiliation(s)
- Davide Bolignano
- CNR ‐ Italian National Council of ResearchInstitute of Clinical PhysiologyCNR‐IFC Via Vallone Petrara c/o Ospedali RiunitiReggio CalabriaItaly89100
| | - Suetonia C Palmer
- University of Otago ChristchurchDepartment of Medicine2 Riccarton AvePO Box 4345ChristchurchNew Zealand8140
| | - Marinella Ruospo
- DiaverumMedical Scientific OfficeLundSweden
- Amedeo Avogadro University of Eastern PiedmontDivision of Nephrology and Transplantation, Department of Translational MedicineVia Solaroli 17NovaraItaly28100
| | - Carmine Zoccali
- CNR ‐ Italian National Council of ResearchInstitute of Clinical PhysiologyCNR‐IFC Via Vallone Petrara c/o Ospedali RiunitiReggio CalabriaItaly89100
| | - Jonathan C Craig
- The University of SydneySydney School of Public HealthEdward Ford Building A27SydneyNSWAustralia2006
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchWestmeadNSWAustralia2145
| | - Giovanni FM Strippoli
- DiaverumMedical Scientific OfficeLundSweden
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchWestmeadNSWAustralia2145
- University of BariDepartment of Emergency and Organ TransplantationBariItaly
- Diaverum AcademyBariItaly
| | | |
Collapse
|
69
|
Chapman AB, Devuyst O, Eckardt KU, Gansevoort RT, Harris T, Horie S, Kasiske BL, Odland D, Pei YP, Perrone RD, Pirson Y, Schrier RW, Torra R, Torres VE, Watnick T, Wheeler DC. Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2015; 88:17-27. [PMID: 25786098 PMCID: PMC4913350 DOI: 10.1038/ki.2015.59] [Citation(s) in RCA: 375] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/23/2015] [Accepted: 01/28/2015] [Indexed: 02/06/2023]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) affects up to 12 million individuals and is the fourth most common cause for renal replacement therapy worldwide. There have been many recent advances in the understanding of its molecular genetics and biology, and in the diagnosis and management of its manifestations. Yet, diagnosis, evaluation, prevention, and treatment vary widely and there are no broadly accepted practice guidelines. Barriers to translation of basic science breakthroughs to clinical care exist, with considerable heterogeneity across countries. The Kidney Disease: Improving Global Outcomes Controversies Conference on ADPKD brought together a panel of multidisciplinary clinical expertise and engaged patients to identify areas of consensus, gaps in knowledge, and research and health-care priorities related to diagnosis; monitoring of kidney disease progression; management of hypertension, renal function decline and complications; end-stage renal disease; extrarenal complications; and practical integrated patient support. These are summarized in this review.
Collapse
Affiliation(s)
| | | | | | | | | | - Shigeo Horie
- Juntendo University Graduate School of Medicine, Bunkyou, Tokyo Japan
| | | | | | - York P. Pei
- University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Ronald D. Perrone
- Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Yves Pirson
- Université Catholique de Louvain, Brussels, Belgium
| | | | - Roser Torra
- Fundació Puigvert, REDinREN, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | - Terry Watnick
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
70
|
Santoro D, Pellicanò V, Visconti L, Trifirò G, Buemi M, Cernaro V. An overview of experimental and early investigational therapies for the treatment of polycystic kidney disease. Expert Opin Investig Drugs 2015; 24:1199-218. [PMID: 26125126 DOI: 10.1517/13543784.2015.1059421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION At present, treatment of autosomal dominant polycystic kidney disease (ADPKD) is essentially supportive as there is still no specific therapy. However, recent advances with ADPKD pathophysiology have stimulated research for new therapeutic strategies. AREAS COVERED The aim of this systematic review is to analyze the experimental and early investigational therapies currently under evaluation in this field. Data from completed clinical trials were retrieved from the currently available scientific literature and from the ClinicalTrials.gov website. EXPERT OPINION Among the drugs currently being explored, mammalian target of rapamycin inhibitors reduce kidney volume enlargement but their role remains uncertain. The most promising drug is the V2 receptor antagonist tolvaptan, which reduces the increased rate of total kidney volume and slows down glomerular filtration rate decline. The main candidates for the treatment of cysts growth, both in the kidney and in the liver whenever present, are the somatostatin analogues, such as lanreotide and octreotide and more recently pasireotide. As for other therapies, some favorable results have been achieved but data are still not sufficient to establish if these approaches may be beneficial in slowing ADPKD progression in the future.
Collapse
Affiliation(s)
- Domenico Santoro
- University of Messina, AOU G. Martino PAD C, Department of Internal Medicine and Pharmacology , Via Consolare Valeria, 98100 Messina , Italy +39 090 2212331 ; +39 090 2212331 ;
| | | | | | | | | | | |
Collapse
|
71
|
Noël N, Rieu P. [Pathophysiology, epidemiology, clinical presentation, diagnosis and treatment options for autosomal dominant polycystic kidney disease]. Nephrol Ther 2015; 11:213-25. [PMID: 26113401 DOI: 10.1016/j.nephro.2015.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 01/12/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the leading genetic cause of end-stage renal disease (ESRD) worldwide. Its prevalence is evaluated according to studies and population between 1/1000 and 1/4000 live births and it accounts for 6 to 8% of incident ESRD patients in developed countries. ADPKD is characterized by numerous cysts in both kidneys and various extrarenal manifestations that are detailed in this review. Clinico-radiological and genetic diagnosis are also discussed. Mutations in the PKD1 and PKD2 codifying for polycystin-1 (PC-1) and polycystin-2 (PC-2) are responsible for the 85 and 15% of ADPKD cases, respectively. In primary cilia of normal kidney epithelial cells, PC-1 and PC-2 interact forming a complex involved in flow- and cilia-dependant signalling pathways where intracellular calcium and cAMP play a central role. Alteration of these multiple signal transduction pathways leads to cystogenesis accompanied by dysregulated planar cell polarity, excessive cell proliferation and fluid secretion, and pathogenic interactions of epithelial cells with an abnormal extracellular matrix. The mass effect of expanding cyst is responsible for the decline in glomerular filtration rate that occurs late in the course of the disease. For many decades, the treatment for ADPKD aims to lessen the condition's symptoms, limit kidney damage, and prevent complications. Recently, the development of promising specific treatment raises the hope to slow the growth of cysts and delay the disease. Treatment strategies targeting cAMP signalling such as vasopressin receptor antagonists or somatostatin analogs have been tested successfully in clinical trials with relative safety. Newer treatments supported by preclinical trials will become available in the next future. Recognizing early markers of renal progression (clinical, imaging, and genetic markers) to identify high-risk patients and multidrug approaches with synergistic effects may provide new opportunities for the treatment of ADPKD.
Collapse
Affiliation(s)
- Natacha Noël
- Service de néphrologie, centre hospitalier universitaire de Reims, 51100 Reims, France
| | - Philippe Rieu
- Service de néphrologie, centre hospitalier universitaire de Reims, 51100 Reims, France.
| |
Collapse
|
72
|
Leonhard WN, Zandbergen M, Veraar K, van den Berg S, van der Weerd L, Breuning M, de Heer E, Peters DJM. Scattered Deletion of PKD1 in Kidneys Causes a Cystic Snowball Effect and Recapitulates Polycystic Kidney Disease. J Am Soc Nephrol 2015; 26:1322-33. [PMID: 25361818 PMCID: PMC4446864 DOI: 10.1681/asn.2013080864] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 07/23/2014] [Indexed: 12/21/2022] Open
Abstract
In total, 1 in 1000 individuals carries a germline mutation in the PKD1 or PKD2 gene, which leads to autosomal dominant polycystic kidney disease (ADPKD). Cysts can form early in life and progressively increase in number and size during adulthood. Extensive research has led to the presumption that somatic inactivation of the remaining allele initiates the formation of cysts, and the progression is further accelerated by renal injury. However, this hypothesis is primarily on the basis of animal studies, in which the gene is inactivated simultaneously in large percentages of kidney cells. To mimic human ADPKD in mice more precisely, we reduced the percentage of Pkd1-deficient kidney cells to 8%. Notably, no pathologic changes occurred for 6 months after Pkd1 deletion, and additional renal injury increased the likelihood of cyst formation but never triggered rapid PKD. In mildly affected mice, cysts were not randomly distributed throughout the kidney but formed in clusters, which could be explained by increased PKD-related signaling in not only cystic epithelial cells but also, healthy-appearing tubules near cysts. In the majority of mice, these changes preceded a rapid and massive onset of severe PKD that was remarkably similar to human ADPKD. Our data suggest that initial cysts are the principal trigger for a snowball effect driving the formation of new cysts, leading to the progression of severe PKD. In addition, this approach is a suitable model for mimicking human ADPKD and can be used for preclinical testing.
Collapse
Affiliation(s)
| | | | | | | | - Louise van der Weerd
- Departments of Human Genetics, Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
73
|
Alam A, Dahl NK, Lipschutz JH, Rossetti S, Smith P, Sapir D, Weinstein J, McFarlane P, Bichet DG. Total Kidney Volume in Autosomal Dominant Polycystic Kidney Disease: A Biomarker of Disease Progression and Therapeutic Efficacy. Am J Kidney Dis 2015; 66:564-76. [PMID: 25960302 DOI: 10.1053/j.ajkd.2015.01.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/22/2015] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common potentially life-threatening monogenic disorder in humans, characterized by progressive development and expansion of fluid-filled cysts in the kidneys and other organs. Ongoing cyst growth leads to progressive kidney enlargement, whereas kidney function remains stable for decades as a result of hyperfiltration and compensation by unaffected nephrons. Kidney function irreversibly declines only in the late stages of the disease, when most of the parenchyma is lost to cystic and fibrotic tissue and the remaining compensatory capacity is overwhelmed. Hence, conventional kidney function measures, such as glomerular filtration rate, do not adequately assess disease progression in ADPKD, especially in its early stages. Given the recent development of potential targeted therapies in ADPKD, it has become critically important to identify relevant biomarkers that can be used to determine the degree of disease progression and evaluate the effects of therapeutic interventions on the course of the disease. We review the current evidence to provide an informed perspective on whether total kidney volume (TKV) is a suitable biomarker for disease progression and whether TKV can be used as an efficacy end point in clinical trials. We conclude that because cystogenesis is the central factor leading to kidney enlargement, TKV appears to be an appropriate biomarker and is gaining wider acceptance. Several studies have identified TKV as a relevant imaging biomarker for monitoring and predicting disease progression and support its use as a prognostic end point in clinical trials.
Collapse
Affiliation(s)
- Ahsan Alam
- McGill University Health Centre, Montreal, Quebec, Canada.
| | | | | | | | | | - Daniel Sapir
- Halton Healthcare Services, Oakville, Ontario, Canada
| | | | | | - Daniel G Bichet
- Hôpital du Sacré-Cœur de Montréal, Department of Medicine, Molecular and Integrative Physiology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
74
|
Gevers TJG, Hol JC, Monshouwer R, Dekker HM, Wetzels JFM, Drenth JPH. Effect of lanreotide on polycystic liver and kidneys in autosomal dominant polycystic kidney disease: an observational trial. Liver Int 2015; 35:1607-1614. [PMID: 25369108 DOI: 10.1111/liv.12726] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/28/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIM Several trials have demonstrated that somatostatin analogues decrease liver volume in mixed populations of patients with autosomal dominant polycystic kidney disease (ADPKD) and isolated polycystic liver disease. Chronic renal dysfunction in ADPKD may affect treatment efficacy of lanreotide and possibly enhances risk for adverse events. The aim of this open-label clinical trial (RESOLVE trial) was to assess the efficacy of 6-month lanreotide treatment, 120 mg, subcutaneously every 4 weeks in ADPKD patients with symptomatic polycystic liver disease. METHODS Primary outcome was change in liver volume after 6 months; secondary outcomes were changes in kidney volume, estimated glomerular filtration rate (eGFR), symptom relief and health-related quality of life (Euro-Qol5D). We excluded patients with an eGFR <30 ml/min/1.73 m(2) . We used the Wilcoxon signed-rank test or paired two-sided t-test to analyze within-group differences. RESULTS We included 43 ADPKD patients with polycystic liver disease (84% female, median age 50 years, mean eGFR 63 ml/min/1.73 m(2) ). Median liver volume decreased from 4859 ml to 4595 ml (-3.1%; P < 0.001), and median kidney volume decreased from 1023 ml to 1012 ml (-1.7%; P = 0.006). eGFR declined 3.5% after the first injection, remained stable up to study end, to decline again after lanreotide withdrawal. Lanreotide significantly relieved post-prandial fullness, shortness of breath and abdominal distension. Three participants had a suspected episode of hepatic or renal cyst infection during this study. CONCLUSION Lanreotide reduced polycystic liver and kidney volumes and decreases symptoms in ADPKD patients. Moreover, eGFR decreased acutely after starting lanreotide, stabilized thereafter and declined again after withdrawal. TRIAL REGISTRATION NUMBER Clinical trials.gov NCT01354405 (REGISTRATION: 13 May 2011).
Collapse
Affiliation(s)
- Tom J G Gevers
- Department of Gastroenterology and Hepatology, Radboudumc, Nijmegen, the Netherlands
| | | | | | | | | | | |
Collapse
|
75
|
LaRiviere WB, Irazabal MV, Torres VE. Novel therapeutic approaches to autosomal dominant polycystic kidney disease. Transl Res 2015; 165:488-98. [PMID: 25438190 PMCID: PMC4363282 DOI: 10.1016/j.trsl.2014.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/17/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder characterized by the progressive growth of renal cysts that, over time, destroy the architecture of the renal parenchyma and typically lead to kidney failure by the sixth decade of life. ADPKD is common and represents a leading cause of renal failure worldwide. Currently, there are no Food and Drug Administration-approved treatments for the disease, and the existing standard of care is primarily supportive in nature. However, significant advances in the understanding of the molecular biology of the disease have inspired investigation into potential new therapies. Several drugs designed to slow or arrest the progression of ADPKD have shown promise in preclinical models and clinical trials, including vasopressin receptor antagonists and somatostatin analogs. This article examines the literature underlying the rationale for molecular therapies for ADPKD and reviews the existing clinical evidence for their indication for human patients with the disease.
Collapse
Affiliation(s)
- Wells B LaRiviere
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn
| | - Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
76
|
Kazancioglu R, Gursu M. New options in the treatment of autosomal dominant polycystic kidney disease. Ren Fail 2015; 37:535-41. [PMID: 25682970 DOI: 10.3109/0886022x.2015.1013404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant polycystic disease (ADPKD) is one of the most common monogenic disorders, and globally is among the most common hereditary causes of end stage kidney disease. Until recently, the causes of this disease remained obscure. However, in the past decade there have been enormous advances in the understanding of the pathophysiology and genetics of this condition, and recent studies have suggested the possibility of specific treatment for slowing cyst growth. This review will focus on the new options for the control of ADPKD.
Collapse
Affiliation(s)
- Rumeyza Kazancioglu
- Department of Nephrology, Bezmialem Vakif University School of Medicine , Istanbul , Turkey and
| | | |
Collapse
|
77
|
Hopp K, Hommerding CJ, Wang X, Ye H, Harris PC, Torres VE. Tolvaptan plus pasireotide shows enhanced efficacy in a PKD1 model. J Am Soc Nephrol 2015; 26:39-47. [PMID: 24994926 PMCID: PMC4279738 DOI: 10.1681/asn.2013121312] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/14/2014] [Indexed: 01/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a leading cause of ESRD. A central defect associated with ADPKD pathology is elevated levels of 3', 5'-cyclic AMP (cAMP). Compounds such as tolvaptan and pasireotide, which indirectly reduce adenylyl cyclase 6 (AC6) activity, have hence proven effective in slowing cyst progression. Here, we tested the efficacy of these compounds individually and in combination in a hypomorphic PKD1 model, Pkd1(R3277C/R3277C) (Pkd1(RC/RC)), in a 5-month preclinical trial. Initially, the Pkd1(RC/RC) model was inbred into the C57BL/6 background, minimizing disease variability, and the pathogenic effect of elevating cAMP was confirmed by treatment with the AC6 stimulant desmopressin. Treatment with tolvaptan or pasireotide alone markedly reduced cyst progression and in combination showed a clear additive effect. Furthermore, combination treatment significantly reduced cystic and fibrotic volume and decreased cAMP to wild-type levels. We also showed that Pkd1(RC/RC) mice experience hepatic hypertrophy that can be corrected by pasireotide. The observed additive effect reinforces the central role of AC6 and cAMP in ADPKD pathogenesis and highlights the likely benefit of combination therapy for patients with ADPKD.
Collapse
Affiliation(s)
| | | | | | - Hong Ye
- Division of Nephrology and Hypertension and
| | - Peter C Harris
- Division of Nephrology and Hypertension and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
78
|
Irazabal MV, Rangel LJ, Bergstralh EJ, Osborn SL, Harmon AJ, Sundsbak JL, Bae KT, Chapman AB, Grantham JJ, Mrug M, Hogan MC, El-Zoghby ZM, Harris PC, Erickson BJ, King BF, Torres VE. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol 2015; 26:160-72. [PMID: 24904092 PMCID: PMC4279733 DOI: 10.1681/asn.2013101138] [Citation(s) in RCA: 449] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/30/2014] [Indexed: 01/11/2023] Open
Abstract
The rate of renal disease progression varies widely among patients with autosomal dominant polycystic kidney disease (ADPKD), necessitating optimal patient selection for enrollment into clinical trials. Patients from the Mayo Clinic Translational PKD Center with ADPKD (n=590) with computed tomography/magnetic resonance images and three or more eGFR measurements over ≥6 months were classified radiologically as typical (n=538) or atypical (n=52). Total kidney volume (TKV) was measured using stereology (TKVs) and ellipsoid equation (TKVe). Typical patients were randomly partitioned into development and internal validation sets and subclassified according to height-adjusted TKV (HtTKV) ranges for age (1A-1E, in increasing order). Consortium for Radiologic Imaging Study of PKD (CRISP) participants (n=173) were used for external validation. TKVe correlated strongly with TKVs, without systematic underestimation or overestimation. A longitudinal mixed regression model to predict eGFR decline showed that log2HtTKV and age significantly interacted with time in typical patients, but not in atypical patients. When 1A-1E classifications were used instead of log2HtTKV, eGFR slopes were significantly different among subclasses and, except for 1A, different from those in healthy kidney donors. The equation derived from the development set predicted eGFR in both validation sets. The frequency of ESRD at 10 years increased from subclass 1A (2.4%) to 1E (66.9%) in the Mayo cohort and from 1C (2.2%) to 1E (22.3%) in the younger CRISP cohort. Class and subclass designations were stable. An easily applied classification of ADPKD based on HtTKV and age should optimize patient selection for enrollment into clinical trials and for treatment when one becomes available.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kyongtae T Bae
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Arlene B Chapman
- Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Jared J Grantham
- The Kidney Institute, Department of Internal Medicine, Kansas University Medical Center, Kansas City, Kansas; and
| | - Michal Mrug
- Division of Nephrology, University of Alabama and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | | | | | | | - Bradley J Erickson
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Bernard F King
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | |
Collapse
|
79
|
Zoja C, Corna D, Locatelli M, Rottoli D, Pezzotta A, Morigi M, Zanchi C, Buelli S, Guglielmotti A, Perico N, Remuzzi A, Remuzzi G. Effects of MCP-1 inhibition by bindarit therapy in a rat model of polycystic kidney disease. Nephron Clin Pract 2014; 129:52-61. [PMID: 25531096 DOI: 10.1159/000369149] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Experimental and clinical evidence suggested that monocyte chemoattractant protein-1 (MCP-1/CCL2) has a role in the development of interstitial inflammation and renal failure in polycystic kidney disease (PKD). We investigated whether bindarit, an inhibitor of MCP-1/CCL2 synthesis, could influence the evolution of PKD in PCK rats. METHODS PCK rats were treated from 5 to 15 weeks of age with vehicle or bindarit. Sprague-Dawley rats served as control. For in vitro studies, murine podocytes were exposed to albumin with or without bindarit. RESULTS MCP-1 mRNA was upregulated in the kidney of PCK rats and reduced by bindarit. Treatment limited overexpression of MCP-1 protein by epithelial cells of dilated tubules and cysts, and interstitial inflammatory cells. Excessive renal accumulation of monocytes/macrophages was lowered by bindarit by 41%. Serum creatinine slightly increased in PCK rats on vehicle and was similar to controls after bindarit. Kidney and liver cysts were not affected by treatment. Bindarit significantly reduced progressive proteinuria of PCK rats. The antiproteinuric effect was associated with the restoration of the defective nephrin expression in podocytes of PCK rats. Bindarit limited podocyte foot process effacement and ameliorated slit diaphragm frequency. In cultured podocytes, bindarit reduced MCP-1 production in response to albumin and inhibited albumin-induced cytoskeletal remodeling and cell migration. CONCLUSION This study showed that although bindarit did not prevent renal cyst growth, it limited interstitial inflammation and renal dysfunction and reduced proteinuria in PKD. Thus, bindarit could be considered a therapeutic intervention complementary to therapies specifically acting to block renal cyst growth.
Collapse
|
80
|
Myint TM, Rangan GK, Webster AC. Treatments to slow progression of autosomal dominant polycystic kidney disease: systematic review and meta-analysis of randomized trials. Nephrology (Carlton) 2014; 19:217-26. [PMID: 24460701 DOI: 10.1111/nep.12211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2014] [Indexed: 01/13/2023]
Abstract
AIM Autosomal dominant polycystic kidney disease (ADPKD) is a monogenetic disorder that leads to kidney failure. Our aim was to undertake a meta-analysis of randomized trials of interventions that have been hypothesized to reduce the progression of total kidney volume (TKV) and renal function in ADPKD. METHODS Relevant trials were identified, and outcomes were: change in TKV, total cyst volume (TCV), renal function and adverse events. Meta-analysis used random effects, with results expressed as mean difference and risk ratio both with 95% confidence intervals (CI). RESULTS Eleven trials (2262 patients) were included. Compared with placebo, Target of Rapamycin complex 1 (TORC1) inhibitors (5 trials, n = 619), showed no significant change in TKV (P = 0.21), TCV (P = 0.06) or eGFR (P = 0.22). Somatostatin analogues (3 trials, n = 157) reduced TKV by 9% (95% CI -10.33 to -7.58%) but did not alter eGFR. The vasopressin receptor antagonist (n = 1455) attenuated TKV increase to 3%/year (95% CI -3.48 to -2.52) and slowed kidney function decline over a 3-year period. A single trial (n = 41) of eicosapentaenoic acid did not alter the progression of either TKV (P = 0.9) or renal dysfunction (P = 0.78). Adverse events were significant for interventions in all trials compared with placebo. CONCLUSION These data suggest that somatostatin analogues and vasopressin receptor antagonists attenuate TKV increase. The neutral effects of TORC1 inhibitors on TKV could be true, or due to heterogeneity in study population, drug efficacy and follow-up duration. In the future, further well-designed and powered trials of longer duration using new biomarkers or therapeutic agents with better tolerance are required.
Collapse
Affiliation(s)
- Thida M Myint
- Department of Renal Medicine and Transplantation, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
81
|
McGovern AP, Jones S, van Vlymen J, Saggar AK, Sandford R, de Lusignan S. Identification of people with autosomal dominant polycystic kidney disease using routine data: a cross sectional study. BMC Nephrol 2014; 15:182. [PMID: 25412767 PMCID: PMC4258046 DOI: 10.1186/1471-2369-15-182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/10/2014] [Indexed: 12/03/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) causes progressive renal damage and is a leading cause of end-stage renal failure. With emerging therapies it is important to devise a method for early detection. We aimed to identify factors from routine clinical data which can be used to distinguish people with a high likelihood of having ADPKD in a primary health care setting. Method A cross-sectional study was undertaken using data from the Quality Intervention in Chronic Kidney Disease trial extracted from 127 primary care practices in England. The health records of 255 people with ADPKD were compared to the general population. Logistic regression was used to identify clinical features which distinguish ADPKD. These clinical features were used to stratify individual risk using a risk score tool. Results Renal impairment, proteinuria, haematuria, a diastolic blood pressure over 90 mmHg and multiple antihypertensive medications were more common in ADPKD than the general population and were used to build a regression model (area under the receiver operating characteristic curve; 0.79). Age, gender, haemoglobin and urinary tract infections were not associated with ADPKD. A risk score (range −3 to +10) of ≥0 gave a sensitivity of 70.2% and specificity 74.9% of for detection. Conclusions Stratification of ADPKD likelihood from routine data may be possible. This approach could be a valuable component of future screening programs although further longitudinal analyses are needed.
Collapse
Affiliation(s)
- Andrew P McGovern
- Department of Health Care Management and Policy, University of Surrey, Guildford, UK.
| | | | | | | | | | | |
Collapse
|
82
|
Higashihara E, Nutahara K, Okegawa T, Tanbo M, Mori H, Miyazaki I, Nitatori T, Kobayashi K. Safety study of somatostatin analogue octreotide for autosomal dominant polycystic kidney disease in Japan. Clin Exp Nephrol 2014; 19:746-52. [PMID: 25351823 DOI: 10.1007/s10157-014-1047-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/22/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND The total kidney volume (TKV) and total liver volume (TLV) increase and renal function decreases progressively in patients with autosomal dominant polycystic kidney disease (ADPKD). Somatostatin analogues, such as octreotide, reduce these increases in TKV and TLV. The aim of this study was to examine the safety of the short-term administration of octreotide long-acting release (octreotide-LAR) in a small number of cases. METHODS Four ADPKD patients with an estimated glomerular filtration rate (eGFR) > 45 mL/min/1.73 m(2), TKV > 1,000 mL, and TLV > 3,000 mL were enrolled. Two 20-mg octreotide-LAR intramuscular injections were repeated every 4 weeks for 24 weeks. Laboratory and clinical assessments were repeated every 4 weeks, and TKV and TLV were measured by magnetic resonance imaging before and after the study. RESULTS In the laboratory tests, there was no abnormal variable except for a significant decrease of alanine aminotransferase. The means of TKV and TLV decreased from 2,007 to 1,903 mL and from 9,197 to 8,866 mL, respectively, but the changes were not significant. eGFR did not change significantly. Adverse events involved loose stools in two patients, as well as injection site granuloma and abdominal pain in one patient each, which resolved spontaneously. CONCLUSION Octreotide-LAR may be safe and effective for preventing TKV and TLV increases (UMIN000009214).
Collapse
Affiliation(s)
- Eiji Higashihara
- Department of ADPKD Research, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Chang E, Park EY, Woo YM, Kang DH, Hwang YH, Ahn C, Park JH. Restoring multidrug resistance-associated protein 3 attenuates cell proliferation in the polycystic kidney. Am J Physiol Renal Physiol 2014; 308:F1004-11. [PMID: 25143454 DOI: 10.1152/ajprenal.00159.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/19/2014] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by abnormal proliferation of renal tubular epithelial cells, resulting in the loss of renal function. Despite identification of the genes responsible for ADPKD, few effective drugs are currently available for the disease. Thus finding additional effective drug targets is necessary. The functions of multidrug- resistance-associated protein 3 (MRP3) have been reported only in the field of drug resistance, and the renal functions of MRP3 are mostly unknown. In this study, we found that MRP3 was significantly downregulated in kidneys of human patients with ADPKD and polycystic kidney disease (PKD) mouse models. Our results suggest that downregulated MRP3 stimulated renal epithelial cell proliferation through the B-Raf/MEK/ERK signaling pathway. In contrast, we found that restoring MRP3 reduced cell proliferation and cystogenesis in vitro. These results suggest that the renal function of MRP3 is related to renal cell proliferation and cyst formation and that restoring MRP3 may be an effective therapeutic approach for PKD.
Collapse
Affiliation(s)
- EunSun Chang
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Eun Young Park
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yu mi Woo
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Duk-Hee Kang
- Department of Nephrology in Ewha Woman's University, Seoul, Republic of Korea
| | - Young-Hwan Hwang
- Department of Internal Medicine, Eulji General Hospital, Seoul, Republic of Korea; and
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea;
| |
Collapse
|
84
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2, which encode polycystin-1 and polycystin-2, respectively. Rodent models are available to study the pathogenesis of polycystic kidney disease (PKD) and for preclinical testing of potential therapies-either genetically engineered models carrying mutations in Pkd1 or Pkd2 or models of renal cystic disease that do not have mutations in these genes. The models are characterized by age at onset of disease, rate of disease progression, the affected nephron segment, the number of affected nephrons, synchronized or unsynchronized cyst formation and the extent of fibrosis and inflammation. Mouse models have provided valuable mechanistic insights into the pathogenesis of PKD; for example, mutated Pkd1 or Pkd2 cause renal cysts but additional factors are also required, and the rate of cyst formation is increased in the presence of renal injury. Animal studies have also revealed complex genetic and functional interactions among various genes and proteins associated with PKD. Here, we provide an update on the preclinical models commonly used to study the molecular pathogenesis of ADPKD and test potential therapeutic strategies. Progress made in understanding the pathophysiology of human ADPKD through these animal models is also discussed.
Collapse
Affiliation(s)
- Hester Happé
- Department of Human Genetics, Leiden University Medical Center, S4-P, PO Box 9600, Albinusdreef 2, Leiden, 2333 ZA Leiden, Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, S4-P, PO Box 9600, Albinusdreef 2, Leiden, 2333 ZA Leiden, Netherlands
| |
Collapse
|
85
|
Kanaan N, Devuyst O, Pirson Y. Renal transplantation in autosomal dominant polycystic kidney disease. Nat Rev Nephrol 2014; 10:455-65. [PMID: 24935705 DOI: 10.1038/nrneph.2014.104] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In patients with autosomal dominant polycystic kidney disease (ADPKD) evaluated for kidney transplantation, issues related to native nephrectomy, cystic liver involvement, screening for intracranial aneurysms and living-related kidney donation deserve special consideration. Prophylactic native nephrectomy is restricted to patients with a history of cyst infection or recurrent haemorrhage or to those in whom space must be made to implant the graft. Patients with liver involvement require pretransplant imaging. Selection of patients for pretransplant screening of intracranial aneurysms should follow the general recommendations for patients with ADPKD. In living related-donor candidates aged <30 years and at-risk of ADPKD, molecular genetic testing should be carried out when ultrasonography and MRI findings are normal or equivocal. After kidney transplantation, patient and graft survival rates are excellent and the volume of native kidneys decreases. However, liver cysts continue to grow and treatment with a somatostatin analogue should be considered in patients with massive cyst involvement. Cerebrovascular events have a marginal effect on post-transplant morbidity and mortality. An increased risk of new-onset diabetes mellitus and nonmelanoma skin cancers has been reported, but several studies have challenged these findings. Finally, no data currently support the preferential use of mammalian target of rapamycin inhibitors as immunosuppressive agents in transplant recipients with ADPKD.
Collapse
Affiliation(s)
- Nada Kanaan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 10 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Olivier Devuyst
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 10 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Yves Pirson
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 10 Avenue Hippocrate, B-1200 Brussels, Belgium
| |
Collapse
|
86
|
Affiliation(s)
- Rex L Mahnensmith
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
87
|
Muto S, Horie S. [The cutting-edge of medicine; the pathology and new treatment of ADPKD]. ACTA ACUST UNITED AC 2014; 103:978-82. [PMID: 24908997 DOI: 10.2169/naika.103.978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
88
|
Abstract
INTRODUCTION Autosomal-dominant polycystic kidney disease (ADPKD) represents a therapeutic challenge as effective treatment to retard the growth of cysts in the kidneys and the liver has not been available despite decades of intense basic and clinical research. AREAS COVERED Several clinical trials have been performed in recent years to study the effect of diverse drugs on the growth of renal and hepatic cysts, and on functional deterioration of the glomerular filtration rate. The drug classes that have been tested in randomized clinical trials include the mammalian target of rapamycin (mTOR) inhibitors, sirolimus and everolimus, the somatostatin analogues (octreotide, lanreotide, pasireotide), and most recently, the vasopressin V2 receptor antagonist, tolvaptan. The results with the mTOR inhibitors were disappointing, but more encouraging with the somatostatin analogues and with tolvaptan. Additional drugs are being tested, which include among others, the SRC-ABL tyrosine kinase inhibitor, bosutinib, and the traditional Chinese herbal medication, triptolide. Additional therapeutic strategies to retard cyst growth aim at blood pressure control via inhibition of the renin-angiotensin system and the sympathetic nervous system. EXPERT OPINION Given the accumulated knowledge, it is currently uncertain whether drugs will become available in the near future to significantly change the course of the relentlessly progressing polycystic kidney disease.
Collapse
Affiliation(s)
- Rudolf P Wüthrich
- University Hospital, Division of Nephrology , Rämistrasse 100, 8091 Zürich , Switzerland +41 44 255 33 84 ; +41 44 255 45 93 ;
| | | |
Collapse
|
89
|
Meijer E, Drenth JPH, d'Agnolo H, Casteleijn NF, de Fijter JW, Gevers TJ, Kappert P, Peters DJM, Salih M, Soonawala D, Spithoven EM, Torres VE, Visser FW, Wetzels JFM, Zietse R, Gansevoort RT. Rationale and design of the DIPAK 1 study: a randomized controlled clinical trial assessing the efficacy of lanreotide to Halt disease progression in autosomal dominant polycystic kidney disease. Am J Kidney Dis 2014; 63:446-455. [PMID: 24342522 PMCID: PMC4042404 DOI: 10.1053/j.ajkd.2013.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 10/04/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND There are limited therapeutic options to slow the progression of autosomal dominant polycystic kidney disease (ADPKD). Recent clinical studies indicate that somatostatin analogues are promising for treating polycystic liver disease and potentially also for the kidney phenotype. We report on the design of the DIPAK 1 (Developing Interventions to Halt Progression of ADPKD 1) Study, which will examine the efficacy of the somatostatin analogue lanreotide on preservation of kidney function in ADPKD. STUDY DESIGN The DIPAK 1 Study is an investigator-driven, randomized, multicenter, controlled, clinical trial. SETTING & PARTICIPANTS We plan to enroll 300 individuals with ADPKD and estimated glomerular filtration rate (eGFR) of 30-60 mL/min/1.73 m(2) who are aged 18-60 years. INTERVENTION Patients will be randomly assigned (1:1) to standard care or lanreotide, 120 mg, subcutaneously every 28 days for 120 weeks, in addition to standard care. OUTCOMES Main study outcome is the slope through serial eGFR measurements starting at week 12 until end of treatment for lanreotide versus standard care. Secondary outcome parameters include change in eGFR from pretreatment versus 12 weeks after treatment cessation, change in kidney volume, change in liver volume, and change in quality of life. MEASUREMENTS Blood and urine will be collected and questionnaires will be filled in following a fixed scheme. Magnetic resonance imaging will be performed for assessment of kidney and liver volume. RESULTS Assuming an average change in eGFR of 5.2 ± 4.3 (SD) mL/min/1.73 m(2) per year in untreated patients, 150 patients are needed in each group to detect a 30% reduction in the rate of kidney function loss between treatment groups with 80% power, 2-sided α = 0.05, and 20% protocol violators and/or dropouts. LIMITATIONS The design is an open randomized controlled trial and measurement of our primary end point does not begin at randomization. CONCLUSIONS The DIPAK 1 Study will show whether subcutaneous administration of lanreotide every 4 weeks attenuates disease progression in patients with ADPKD.
Collapse
Affiliation(s)
- Esther Meijer
- Department of Nephrology, University Medical Center Groningen, University Hospital Groningen, Groningen, the Netherlands.
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Hedwig d'Agnolo
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Niek F Casteleijn
- Department of Nephrology, University Medical Center Groningen, University Hospital Groningen, Groningen, the Netherlands
| | - Johan W de Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom J Gevers
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Peter Kappert
- Department of Radiology, University Medical Center Groningen, Groningen, the Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Mahdi Salih
- Department of Nephrology, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Darius Soonawala
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Edwin M Spithoven
- Department of Nephrology, University Medical Center Groningen, University Hospital Groningen, Groningen, the Netherlands
| | - Vicente E Torres
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Folkert W Visser
- Department of Nephrology, University Medical Center Groningen, University Hospital Groningen, Groningen, the Netherlands
| | - Jack F M Wetzels
- Department of Nephrology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Robert Zietse
- Department of Nephrology, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, University Hospital Groningen, Groningen, the Netherlands
| |
Collapse
|
90
|
Treille S, Bailly JM, Van Cauter J, Dehout F, Guillaume B. The use of lanreotide in polycystic kidney disease: a single-centre experience. Case Rep Nephrol Dial 2014; 4:18-24. [PMID: 24707279 PMCID: PMC3975724 DOI: 10.1159/000358268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The secretion of large volumes of fluid into cysts and changes in the structure and mobility of the cilia of the renal tubular epithelium can lead to nephromegaly. This in turn often causes a deterioration of kidney function and arterial hypertension. In recent clinical studies, somatostatin analogues have demonstrated efficacy in isolated polycystic liver disease and, to a lesser extent, in polycystic kidney disease. Since the publication of these clinical studies, several patients have been referred to us for somatostatin analogue treatment. Here, we report our experience with 6 patients who were treated with lanreotide autogel 120 mg every 4 weeks over 6, 12 or 18 months and were longitudinally followed using CT scans without contrast agents, to evaluate the total bilateral kidney volume. We observed a mean decrease in volume of 4%, with mild to moderate side effects.
Collapse
Affiliation(s)
- S Treille
- Department of Nephrodialysis, Charleroi University Hospital, Charleroi, Belgium
| | - J M Bailly
- Department of Radiology, Charleroi University Hospital, Charleroi, Belgium
| | - J Van Cauter
- Department of Gastroenterology, Charleroi University Hospital, Charleroi, Belgium
| | - F Dehout
- Department of Nephrodialysis, Charleroi University Hospital, Charleroi, Belgium
| | - B Guillaume
- Department of Nephrodialysis, Charleroi University Hospital, Charleroi, Belgium
| |
Collapse
|
91
|
Osmoregulation, vasopressin, and cAMP signaling in autosomal dominant polycystic kidney disease. Curr Opin Nephrol Hypertens 2014; 22:459-70. [PMID: 23736843 DOI: 10.1097/mnh.0b013e3283621510] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent inherited nephropathy. This review will focus on the vasopressin and 3'-5'-cyclic adenosine monophosphate (cAMP) signaling pathways in ADPKD and will discuss how these insights offer new possibilities for the follow-up and treatment of the disease. RECENT FINDINGS Defective osmoregulation is an early manifestation of ADPKD and originates from both peripheral (renal effect of vasopressin) and central (release of vasopressin) components. Copeptin, which is released from the vasopressin precursor, may identify ADPKD patients at risk for rapid disease progression. Increased levels of cAMP in tubular cells, reflecting modifications in intracellular calcium homeostasis and abnormal stimulation of the vasopressin V2 receptor (V2R), play a central role in cystogenesis. Blocking the V2R lowers cAMP in cystic tissues, slows renal cystic progression and improves renal function in preclinical models. A phase III clinical trial investigating the effect of the V2R antagonist tolvaptan in ADPKD patients has shown that this treatment blunts kidney growth, reduces associated symptoms and slows kidney function decline when given over 3 years. SUMMARY These advances open perspectives for the understanding of cystogenesis in ADPKD, the mechanisms of osmoregulation, the role of polycystins in the brain, and the pleiotropic action of vasopressin.
Collapse
|
92
|
Torra R. Tratamiento de la poliquistosis renal autosómica dominante. Med Clin (Barc) 2014; 142:73-9. [DOI: 10.1016/j.medcli.2013.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 01/22/2023]
|
93
|
Liebau MC. An emerging molecular understanding and novel targeted treatment approaches in pediatric kidney diseases. Front Pediatr 2014; 2:68. [PMID: 25050320 PMCID: PMC4076740 DOI: 10.3389/fped.2014.00068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/17/2014] [Indexed: 12/31/2022] Open
Abstract
The evaluation and treatment of the heterogeneous group of kidney diseases poses a challenging field in pediatrics. Many of the pediatric disorders resulting in severe renal affection are exceedingly rare and therapeutic approaches have remained symptomatic for most of these disease entities. The insights obtained from cellular and molecular studies of rare disorders by recent genetic studies have now substantially changed our mechanistic understanding of various important pediatric renal diseases and positive examples of targeted treatment approaches are emerging. Three fields of recent breathtaking developments in pediatric nephrology are the pathophysiology of nephrotic syndrome and proteinuria, the molecular mechanisms underlying atypical hemolytic uremic syndrome, and the genetics and cellular biology of inherited cystic kidney diseases. In all three areas, the combined power of molecular basic science together with deeply characterizing clinical approaches has led to the establishment of novel pathophysiological principles and to the first clinical trials of targeted treatment approaches.
Collapse
Affiliation(s)
- Max Christoph Liebau
- Department of Pediatrics and Center for Molecular Medicine, University Hospital of Cologne , Cologne , Germany ; Nephrology Research Laboratory, Department II of Internal Medicine, University Hospital of Cologne , Cologne , Germany
| |
Collapse
|
94
|
Torres VE, Harris PC. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol 2014; 25:18-32. [PMID: 24335972 PMCID: PMC3871779 DOI: 10.1681/asn.2013040398] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polycystic kidney disease (PKD) is a leading cause of ESRD worldwide. In PKD, excessive cell proliferation and fluid secretion, pathogenic interactions of mutated epithelial cells with an abnormal extracellular matrix and alternatively activated interstitial macrophages, and the disruption of mechanisms controlling tubular diameter contribute to cyst formation. Studies with animal models suggest that several diverse pathophysiologic mechanisms, including dysregulation of intracellular calcium levels and cAMP signaling, mediate these cystogenic mechanisms. This article reviews the evidence implicating calcium and cAMP as central players in a network of signaling pathways underlying the pathogenesis of PKD and considers the therapeutic relevance of treatment strategies targeting cAMP signaling.
Collapse
Affiliation(s)
- Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
95
|
Bakoyiannis A, Delis S, Triantopoulou C, Dervenis C. Rare cystic liver lesions: A diagnostic and managing challenge. World J Gastroenterol 2013; 19:7603-7619. [PMID: 24282350 PMCID: PMC3837259 DOI: 10.3748/wjg.v19.i43.7603] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
Cystic formations within the liver are a frequent finding among populations. Besides the common cystic lesions, like simple liver cysts, rare cystic liver lesions like cystadenocarcinoma should also be considered in the differential diagnosis. Thorough knowledge of each entity’s nature and course are key elements to successful treatment. Detailed search in PubMed, Cochrane Database, and international published literature regarding rare cystic liver lesions was carried out. In our research are included not only primary rare lesions like cystadenoma, hydatid cyst, and polycystic liver disease, but also secondary ones like metastasis from gastrointestinal stromal tumors lesions. Up-to date knowledge regarding diagnosis and management of rare cystic liver lesions is provided. A diagnostic and therapeutic algorithm is also proposed. The need for a multidisciplinary approach by a team including radiologists and surgeons familiar with liver cystic entities, diagnostic tools, and treatment modalities is stressed. Patients with cystic liver lesions must be carefully evaluated by a multidisciplinary team, in order to receive the most appropriate treatment, since many cystic liver lesions have a malignant potential and evolution.
Collapse
|
96
|
|
97
|
Caroli A, Perico N, Perna A, Antiga L, Brambilla P, Pisani A, Visciano B, Imbriaco M, Messa P, Cerutti R, Dugo M, Cancian L, Buongiorno E, De Pascalis A, Gaspari F, Carrara F, Rubis N, Prandini S, Remuzzi A, Remuzzi G, Ruggenenti P. Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial. Lancet 2013; 382:1485-95. [PMID: 23972263 DOI: 10.1016/s0140-6736(13)61407-5] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease slowly progresses to end-stage renal disease and has no effective therapy. A pilot study suggested that the somatostatin analogue octreotide longacting release (LAR) could be nephroprotective in this context. We aimed to assess the effect of 3 years of octreotide-LAR treatment on kidney and cyst growth and renal function decline in participants with this disorder. METHODS We did an academic, multicentre, randomised, single-blind, placebo-controlled, parallel-group trial in five hospitals in Italy. Adult (>18 years) patients with estimated glomerular filtration rate (GFR) of 40 mL/min per 1·73 m(2) or higher were randomly assigned (central allocation by phone with a computerised list, 1:1 ratio, stratified by centre, block size four and eight) to 3 year treatment with two 20 mg intramuscular injections of octreotide-LAR (n=40) or 0·9% sodium chloride solution (n=39) every 28 days. Study physicians and nurses were aware of the allocated group; participants and outcome assessors were masked to allocation. The primary endpoint was change in total kidney volume (TKV), measured by MRI, at 1 year and 3 year follow-up. Analyses were by modified intention to treat. This study is registered with ClinicalTrials.gov, NCT00309283. FINDINGS Recruitment was between April 27, 2006, and May 12, 2008. 38 patients in the octreotide-LAR group and 37 patients in the placebo group had evaluable MRI scans at 1 year follow-up, at this timepoint, mean TKV increased significantly less in the octreotide-LAR group (46·2 mL, SE 18·2) compared with the placebo group (143·7 mL, 26·0; p=0·032). 35 patients in each group had evaluable MRI scans at 3 year follow-up, at this timepoint, mean TKV increase in the octreotide-LAR group (220·1 mL, 49·1) was numerically smaller than in the placebo group (454·3 mL, 80·8), but the difference was not significant (p=0·25). 37 (92·5%) participants in the octreotide-LAR group and 32 (82·1%) in the placebo group had at least one adverse event (p=0·16). Participants with serious adverse events were similarly distributed in the two treatment groups. However, four cases of cholelithiasis or acute cholecystitis occurred in the octreotide-LAR group and were probably treatment-related. INTERPRETATION These findings provide the background for large randomised controlled trials to test the protective effect of somatostatin analogues against renal function loss and progression to end-stage kidney disease. FUNDING Polycystic Kidney Disease Foundation.
Collapse
Affiliation(s)
- Anna Caroli
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Clinical Research Center for Rare Diseases, Aldo e Cele Daccò, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Looking at the (w)hole: magnet resonance imaging in polycystic kidney disease. Pediatr Nephrol 2013; 28:1771-83. [PMID: 23239392 DOI: 10.1007/s00467-012-2370-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 12/29/2022]
Abstract
Inherited cystic kidney diseases, including autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), are the most common monogenetic causes of end-stage renal disease (ESRD) in children and adults. While ARPKD is a rare and usually severe pediatric disease, the more common ADPKD typically shows a slowly progressive course leading to ESRD in adulthood. At the present time there is no established disease-modifying treatment for either ARPKD or ADPKD. Various therapeutic approaches are currently under investigation, such as V2 receptor antagonists, somatostatins, and mTOR inhibitors. Renal function remains stable for decades in ADPKD, and thus clinically meaningful surrogate markers to assess therapeutic efficacy are needed. Various studies have pointed out that total kidney volume (TKV) is a potential surrogate parameter for disease severity in ADPKD. Recent trials have therefore measured TKV by magnet resonance imaging (MRI) to monitor and to predict disease progression. Here, we discuss novel insights on polycystic kidney disease (PKD), the value of MRI, and the measurement of TKV in the diagnosis and follow-up of PKD, as well as novel emerging therapeutic strategies for ADPKD.
Collapse
|
99
|
Gevers TJG, Inthout J, Caroli A, Ruggenenti P, Hogan MC, Torres VE, Nevens F, Drenth JPH. Young women with polycystic liver disease respond best to somatostatin analogues: a pooled analysis of individual patient data. Gastroenterology 2013; 145:357-65.e652. [PMID: 23665274 DOI: 10.1053/j.gastro.2013.04.055] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/15/2013] [Accepted: 04/30/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Clinical trials have shown that in patients with polycystic liver disease (PLD), short-term treatment with somatostatin analogues (SAs) reduces liver volumes by 4.5%-5.9%, compared with placebo. However, the effects of SA therapy vary among individuals. We collected data from individual patients with PLD to identify subgroups that benefit most from SA therapy. METHODS We analyzed data from 107 patients with PLD from 3 randomized placebo-controlled trials (67 received SAs, 52 received placebo). We used multiple linear regression analysis to determine the effects of SAs based on patients' age, sex, baseline liver volume, and diagnosis (autosomal dominant polycystic liver or kidney disease). The primary outcome was change in liver volume after 6-12 months of treatment. RESULTS The effects of SA therapy did not differ significantly among patients with different diagnoses or baseline liver volumes; the overall difference in liver volume between groups receiving SAs therapy vs placebo was 5.3% (P < .001). Among subjects given placebo, young women (48 years old or younger) had the greatest increase in polycystic liver volume (4.8%; 95% confidence interval: 2.2%-7.4%), and mean liver volumes did not increase in older women and men. Women 48 years old or younger had a greater response to therapy (a reduction in liver volume of 8.0% compared with placebo; P < .001) than older women (a reduction in liver volume of 4.1% compared with placebo; P = .022). CONCLUSIONS Based on a pooled analysis of data from individual patients with PLD, treatment with somatostatin analogues is equally effective for patients with autosomal dominant polycystic kidney disease or polycystic liver disease; efficacy does not depend on size of the polycystic liver. Young female patients appear to have the greatest benefit from 6-12 months of SA therapy, which might avert the progressive course of the disease in this specific group.
Collapse
Affiliation(s)
- Tom J G Gevers
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Temmerman F, Gevers T, Ho TA, Vanslembrouck R, Coudyzer W, van Pelt J, Bammens B, Pirson Y, Drenth JP, Nevens F. Safety and efficacy of different lanreotide doses in the treatment of polycystic liver disease: pooled analysis of individual patient data. Aliment Pharmacol Ther 2013; 38:397-406. [PMID: 23799922 DOI: 10.1111/apt.12384] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/01/2013] [Accepted: 06/04/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Long-acting lanreotide (LAN) 120 mg every 4 weeks reduces liver volume (LV) in patients with polycystic liver diseases (PCLD). Animal studies demonstrated that the inhibition of hepatic and renal cystogenesis is dose dependent. AIM To investigate the safety and efficacy of two different LAN doses in PCLD patients. METHODS The 6-month results of the LOCKCYST I trial, its extension study and the LOCKCYST II trial were pooled. LV at baseline and month 6 was measured by CT-scan and blindly re-analysed by two independent radiologists. RESULTS The study population [132 treatment periods, age 49 years (IQR: 45-55), 114 women] consisted of three groups. Each received treatment every 4 weeks during 6 months: placebo (n = 26); LAN 90 mg (n = 55) or LAN 120 mg (n = 51). The inter-observer variability and agreement in the calculation of LV were excellent. Severe side effects occurred with placebo, LAN 90 mg and LAN 120 mg in respectively 0%, 7% and 16%. Change in LV's after 6 months in these three groups were respectively: increase of +36 mL [(-45)-(+138)]; decrease of -82 mL [(-285)-(+92)] and decrease of -123 mL [(-312)-(+4)] (Kruskal-Wallis One Way anova on Ranks; P = 0.002). Based on ROC analysis, a reduction of ≥120 mL in LV has a positive predictive value of 64% for improving symptoms (ROC analysis AUC: 0.729; sensitivity 73%, specificity 69%, P < 0.0001). CONCLUSIONS Both LAN 90 mg and LAN 120 mg reduce liver volume. LAN 90 mg has less side effects. This suggests that in case of intolerance to LAN 120 mg, a dose reduction to LAN 90 mg is meaningful.
Collapse
Affiliation(s)
- F Temmerman
- Department and Laboratory of Hepatology, University Hospitals KULeuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|