51
|
Sun JH, Chen J, Ayala Valenzuela FE, Brown C, Masser-Frye D, Jones M, Romero LP, Rinaldi B, Li WL, Li QQ, Wu D, Gerard B, Thorpe E, Bayat A, Shi YS. X-linked neonatal-onset epileptic encephalopathy associated with a gain-of-function variant p.R660T in GRIA3. PLoS Genet 2021; 17:e1009608. [PMID: 34161333 PMCID: PMC8259962 DOI: 10.1371/journal.pgen.1009608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/06/2021] [Accepted: 05/18/2021] [Indexed: 12/02/2022] Open
Abstract
The X-linked GRIA3 gene encodes the GLUA3 subunit of AMPA-type glutamate receptors. Pathogenic variants in this gene were previously reported in neurodevelopmental diseases, mostly in male patients but rarely in females. Here we report a de novo pathogenic missense variant in GRIA3 (c.1979G>C; p. R660T) identified in a 1-year-old female patient with severe epilepsy and global developmental delay. When exogenously expressed in human embryonic kidney (HEK) cells, GLUA3_R660T showed slower desensitization and deactivation kinetics compared to wildtype (wt) GLUA3 receptors. Substantial non-desensitized currents were observed with the mutant but not for wt GLUA3 with prolonged exposure to glutamate. When co-expressed with GLUA2, the decay kinetics were similarly slowed in GLUA2/A3_R660T with non-desensitized steady state currents. In cultured cerebellar granule neurons, miniature excitatory postsynaptic currents (mEPSCs) were significantly slower in R660T transfected cells than those expressing wt GLUA3. When overexpressed in hippocampal CA1 neurons by in utero electroporation, the evoked EPSCs and mEPSCs were slower in neurons expressing R660T mutant compared to those expressing wt GLUA3. Therefore our study provides functional evidence that a gain of function (GoF) variant in GRIA3 may cause epileptic encephalopathy and global developmental delay in a female subject by enhancing synaptic transmission. Glutamate is the excitatory neurotransmitter in brain, abnormality of which causes excitotoxicity and diseases. Here we identified a pathogenic missense variant in GRIA3 gene in a female patient with severe epilepsy and global developmental delay. The X-linked GRIA3 gene encodes GLUA3, a subunit of glutamate receptors. Through electrophysiological analysis of the mutant GLUA3 in a cell line and mouse neurons, we found this mutant makes strengthened glutamate receptors. This study thus indicates that the variant causes epileptic encephalopathy and global developmental delay by enhancing glutamate signaling in brain.
Collapse
Affiliation(s)
- Jia-Hui Sun
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Jiang Chen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | | | - Carolyn Brown
- Illumina Inc., San Diego, California, United States of America
| | - Diane Masser-Frye
- Division of Genetics, Department of Pediatrics, UC San Diego School of Medicine, Rady Children’s Hospital, San Diego, California, United States of America
| | - Marilyn Jones
- Division of Genetics, Department of Pediatrics, UC San Diego School of Medicine, Rady Children’s Hospital, San Diego, California, United States of America
| | - Leslie Patron Romero
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, Mexico
| | - Berardo Rinaldi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Wenhui Laura Li
- Breakthrough Genomics Inc., Irvine, California, United States of America
| | - Qing-Qing Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Dan Wu
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Benedicte Gerard
- Laboratoires de diagnostic génétique, Institut Medical d’Alsace, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
| | - Erin Thorpe
- Illumina Inc., San Diego, California, United States of America
- * E-mail: (ET); (AB); (YSS)
| | - Allan Bayat
- Department for Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
- * E-mail: (ET); (AB); (YSS)
| | - Yun Stone Shi
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
- * E-mail: (ET); (AB); (YSS)
| |
Collapse
|
52
|
Wang YH, Huang TL, Chen X, Yu SX, Li W, Chen T, Li Y, Kuang YQ, Shu HF. Glioma-Derived TSP2 Promotes Excitatory Synapse Formation and Results in Hyperexcitability in the Peritumoral Cortex of Glioma. J Neuropathol Exp Neurol 2021; 80:137-149. [PMID: 33382873 DOI: 10.1093/jnen/nlaa149] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Seizures are common in patients with glioma, especially low-grade glioma (LGG). However, the epileptogenic mechanisms are poorly understood. Recent evidence has indicated that abnormal excitatory synaptogenesis plays an important role in epileptogenesis. The thrombospondin (TSP) family is a key regulator of synaptogenesis. Thus, this study aimed to elucidate the role of TSP2 in epileptogenesis in glioma-related epilepsy. The expression of TSP2 was increased in tumor tissue specimens from LGG patients, and this increase may have contributed to an increase in the density of spines and excitatory synapses in the peritumoral area. A glioma cell-implanted rat model was established by stereotactic implantation of wild-type TSP2-expressing, TSP2-overexpressing or TSP2-knockout C6 cells into the neocortex. Similarly, an increase in the density of excitatory synapses was also observed in the peritumoral area of the implanted tumor. In addition, epileptiform discharges occurred in the peritumoral cortex and were positively correlated with the TSP2 level in glioma tissues. Moreover, α2δ1/Rac1 signaling was enhanced in the peritumoral region, and treatment with the α2δ1 antagonist gabapentin inhibited epileptiform discharges in the peritumoral cortex. In conclusion, glioma-derived TSP2 promotes excitatory synapse formation, probably via the α2δ1/Rac1 signaling pathway, resulting in hyperexcitability in the peritumoral cortical networks, which may provide new insight into the epileptogenic mechanisms underlying glioma-related epilepsy.
Collapse
Affiliation(s)
- Yao-Hui Wang
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Tian-Lan Huang
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xin Chen
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China
| | - Si-Xun Yu
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China
| | - Wei Li
- Central Lab, General Hospital of Western Theater Command of PLA, Sichuan Province, China
| | - Tao Chen
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China
| | - Yang Li
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China
| | - Yong-Qin Kuang
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China
| | - Hai-Feng Shu
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
53
|
Lin H, Yang Y, Hou C, Huang Y, Zhou L, Zheng J, Lv G, Mao R, Chen S, Xu P, Zhou Y, Wang P, Zhou D. Validation of the functions and prognostic values of synapse-associated proteins in lower-grade glioma. Biosci Rep 2021; 41:BSR20210391. [PMID: 33969375 PMCID: PMC8164110 DOI: 10.1042/bsr20210391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Synapse and synapse-associated proteins (SAPs) play critical roles in various neurodegeneration diseases and brain tumors. However, in lower-grade gliomas (LGG), SAPs have not been explored systematically. Herein, we are going to explore SAPs expression profile and its clinicopathological significance in LGG which can offer new insights to glioma therapy. In the present study, we integrate a list of SAPs that covered 231 proteins with synaptogenesis activity and post synapse formation. The LGG RNA-seq data were downloaded from GEO, TCGA and CGGA database. The prognosis associated SAPs in key modules of PPI (protein-protein interaction networks) was regarded as hub SAPs. Western blot, quantitative reverse transcription PCR (qRT-PCR) and immunochemistry results from HPA database were used to verify the expression of hub SAPs. There were 68 up-regulated SAPs and 44 down-regulated SAPs in LGG tissue compared with normal brain tissue. Data from function enrichment analysis revealed functions of differentially expressed SAPs in synapse organization and glutamatergic receptor pathway in LGGs. Survival analysis revealed that four SAPs, GRIK2, GABRD, GRID2 and ARC were correlate with the prognosis of LGG patients. Interestingly, we found that GABRD were up-regulated in LGG patients with seizures, indicating that SAPs may link to the pathogenesis of seizures in glioma patients. The four-SAPs signature was revealed as an independent prognostic factor in gliomas. Our study presented a novel strategy to assess the prognostic risks of LGGs, based on the expression of SAPs.
Collapse
Affiliation(s)
- Han Lin
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yong Yang
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chongxian Hou
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuqing Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Liting Zhou
- International Department, Affiliated High School of South China Normal University, Guangzhou, China
| | - Jiantao Zheng
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Guangzhao Lv
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Rui Mao
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shanwei Chen
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Peihong Xu
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yujun Zhou
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Southern Medical University, Guangzhou, China
| | - Peng Wang
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
54
|
Alcoreza OB, Patel DC, Tewari BP, Sontheimer H. Dysregulation of Ambient Glutamate and Glutamate Receptors in Epilepsy: An Astrocytic Perspective. Front Neurol 2021; 12:652159. [PMID: 33828523 PMCID: PMC8019783 DOI: 10.3389/fneur.2021.652159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Given the important functions that glutamate serves in excitatory neurotransmission, understanding the regulation of glutamate in physiological and pathological states is critical to devising novel therapies to treat epilepsy. Exclusive expression of pyruvate carboxylase and glutamine synthetase in astrocytes positions astrocytes as essential regulators of glutamate in the central nervous system (CNS). Additionally, astrocytes can significantly alter the volume of the extracellular space (ECS) in the CNS due to their expression of the bi-directional water channel, aquaporin-4, which are enriched at perivascular endfeet. Rapid ECS shrinkage has been observed following epileptiform activity and can inherently concentrate ions and neurotransmitters including glutamate. This review highlights our emerging knowledge on the various potential contributions of astrocytes to epilepsy, particularly supporting the notion that astrocytes may be involved in seizure initiation via failure of homeostatic responses that lead to increased ambient glutamate. We also review the mechanisms whereby ambient glutamate can influence neuronal excitability, including via generation of the glutamate receptor subunit GluN2B-mediated slow inward currents, as well as indirectly affect neuronal excitability via actions on metabotropic glutamate receptors that can potentiate GluN2B currents and influence neuronal glutamate release probabilities. Additionally, we discuss evidence for upregulation of System x c - , a cystine/glutamate antiporter expressed on astrocytes, in epileptic tissue and changes in expression patterns of glutamate receptors.
Collapse
Affiliation(s)
- Oscar B Alcoreza
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States.,School of Medicine, Virginia Tech Carilion, Roanoke, VA, United States.,Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, United States
| | - Dipan C Patel
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States
| | - Bhanu P Tewari
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States
| | - Harald Sontheimer
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States
| |
Collapse
|
55
|
Petralia F, Tignor N, Reva B, Koptyra M, Chowdhury S, Rykunov D, Krek A, Ma W, Zhu Y, Ji J, Calinawan A, Whiteaker JR, Colaprico A, Stathias V, Omelchenko T, Song X, Raman P, Guo Y, Brown MA, Ivey RG, Szpyt J, Guha Thakurta S, Gritsenko MA, Weitz KK, Lopez G, Kalayci S, Gümüş ZH, Yoo S, da Veiga Leprevost F, Chang HY, Krug K, Katsnelson L, Wang Y, Kennedy JJ, Voytovich UJ, Zhao L, Gaonkar KS, Ennis BM, Zhang B, Baubet V, Tauhid L, Lilly JV, Mason JL, Farrow B, Young N, Leary S, Moon J, Petyuk VA, Nazarian J, Adappa ND, Palmer JN, Lober RM, Rivero-Hinojosa S, Wang LB, Wang JM, Broberg M, Chu RK, Moore RJ, Monroe ME, Zhao R, Smith RD, Zhu J, Robles AI, Mesri M, Boja E, Hiltke T, Rodriguez H, Zhang B, Schadt EE, Mani DR, Ding L, Iavarone A, Wiznerowicz M, Schürer S, Chen XS, Heath AP, Rokita JL, Nesvizhskii AI, Fenyö D, Rodland KD, Liu T, Gygi SP, Paulovich AG, Resnick AC, Storm PB, Rood BR, Wang P. Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer. Cell 2020; 183:1962-1985.e31. [PMID: 33242424 PMCID: PMC8143193 DOI: 10.1016/j.cell.2020.10.044] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.
Collapse
Affiliation(s)
- Francesca Petralia
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Tignor
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mateusz Koptyra
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuankun Zhu
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Antonio Colaprico
- Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasileios Stathias
- Department of Pharmacology, Institute for Data Science and Computing, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, USA
| | - Tatiana Omelchenko
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pichai Raman
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yiran Guo
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miguel A Brown
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard G Ivey
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John Szpyt
- Thermo Fisher Scientific Center for Multiplexed Proteomics, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sanjukta Guha Thakurta
- Thermo Fisher Scientific Center for Multiplexed Proteomics, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gonzalo Lopez
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Selim Kalayci
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02412, USA
| | - Lizabeth Katsnelson
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ying Wang
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jacob J Kennedy
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Lei Zhao
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Krutika S Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brian M Ennis
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Zhang
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Valerie Baubet
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lamiya Tauhid
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jena V Lilly
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer L Mason
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bailey Farrow
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nathan Young
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah Leary
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Javad Nazarian
- Children's National Research Institute, George Washington University School of Medicine, Washington, DC 20010, USA; Department of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich 8032, Switzerland
| | - Nithin D Adappa
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James N Palmer
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert M Lober
- Department of Neurosurgery, Dayton Children's Hospital, Dayton, OH 45404, USA
| | - Samuel Rivero-Hinojosa
- Children's National Research Institute, George Washington University School of Medicine, Washington, DC 20010, USA
| | - Liang-Bo Wang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Joshua M Wang
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Matilda Broberg
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02412, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Neurology, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, 61-701 Poznań, Poland; International Institute for Molecular Oncology, 61-203 Poznań, Poland
| | - Stephan Schürer
- Department of Pharmacology, Institute for Data Science and Computing, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, USA
| | - Xi S Chen
- Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allison P Heath
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Fenyö
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Steven P Gygi
- Thermo Fisher Scientific Center for Multiplexed Proteomics, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Phillip B Storm
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Brian R Rood
- Children's National Research Institute, George Washington University School of Medicine, Washington, DC 20010, USA.
| | - Pei Wang
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
56
|
Civita P, Valerio O, Naccarato AG, Gumbleton M, Pilkington GJ. Satellitosis, a Crosstalk between Neurons, Vascular Structures and Neoplastic Cells in Brain Tumours; Early Manifestation of Invasive Behaviour. Cancers (Basel) 2020; 12:E3720. [PMID: 33322379 PMCID: PMC7763100 DOI: 10.3390/cancers12123720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 01/06/2023] Open
Abstract
The secondary structures of Scherer commonly known as perineuronal and perivascular satellitosis have been identified as a histopathological hallmark of diffuse, invasive, high-grade gliomas. They are recognised as perineuronal satellitosis when clusters of neoplastic glial cells surround neurons cell bodies and perivascular satellitosis when such tumour cells surround blood vessels infiltrating Virchow-Robin spaces. In this review, we provide an overview of emerging knowledge regarding how interactions between neurons and glioma cells can modulate tumour evolution and how neurons play a key role in glioma growth and progression, as well as the role of perivascular satellitosis into mechanisms of glioma cells spread. At the same time, we review the current knowledge about the role of perineuronal satellitosis and perivascular satellitosis within the tumour microenvironment (TME), in order to highlight critical knowledge gaps in research space.
Collapse
Affiliation(s)
- Prospero Civita
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3NB, UK;
| | - Ortenzi Valerio
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University Hospital, 56100 Pisa, Italy; (O.V.); (A.G.N.)
| | - Antonio Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University Hospital, 56100 Pisa, Italy; (O.V.); (A.G.N.)
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3NB, UK;
| | - Geoffrey J. Pilkington
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3NB, UK;
- Division of Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry & Neurology, King’s College London, London SE5 9RX, UK
| |
Collapse
|
57
|
Radin DP, Tsirka SE. Interactions between Tumor Cells, Neurons, and Microglia in the Glioma Microenvironment. Int J Mol Sci 2020; 21:E8476. [PMID: 33187183 PMCID: PMC7698134 DOI: 10.3390/ijms21228476] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Despite significant strides made in understanding the pathophysiology of high-grade gliomas over the past two decades, most patients succumb to these neoplasias within two years of diagnosis. Furthermore, there are various co-morbidities associated with glioma and standard of care treatments. Emerging evidence suggests that aberrant glutamate secretion in the glioma microenvironment promotes tumor progression and contributes to the development of co-morbidities, such as cognitive defects, epilepsy, and widespread neurodegeneration. Recent data clearly illustrate that neurons directly synapse onto glioma cells and drive their proliferation and spread via glutamatergic action. Microglia are central nervous system-resident myeloid cells, modulate glioma growth, and possess the capacity to prune synapses and encourage synapse formation. However, current literature has yet to investigate the potential role of microglia in shaping synapse formation between neurons and glioma cells. Herein, we present the literature concerning glutamate's role in glioma progression, involving hyperexcitability and excitotoxic cell death of peritumoral neurons and stimulation of glioma proliferation and invasion. Furthermore, we discuss instances in which microglia are more likely to sculpt or encourage synapse formation during glioma treatment and propose studies to delineate the role of microglia in synapse formation between neurons and glioma cells. The sex-dependent oncogenic or oncolytic actions of microglia and myeloid cells, in general, are considered in addition to the functional differences between microglia and macrophages in tumor progression. We also put forth tractable methods to safely perturb aberrant glutamatergic action in the tumor microenvironment without significantly increasing the toxicities of the standard of care therapies for glioma therapy.
Collapse
Affiliation(s)
| | - Stella E. Tsirka
- Stony Brook Medical Scientist Training Program, Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, NY 11794-8651, USA;
| |
Collapse
|
58
|
Pasqualini C, Kozaki T, Bruschi M, Nguyen THH, Minard-Colin V, Castel D, Grill J, Ginhoux F. Modeling the Interaction between the Microenvironment and Tumor Cells in Brain Tumors. Neuron 2020; 108:1025-1044. [PMID: 33065047 DOI: 10.1016/j.neuron.2020.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Despite considerable recent advances in understanding and treating many other cancers, malignant brain tumors remain associated with low survival or severe long-term sequelae. Limited progress, including development of immunotherapies, relates in part to difficulties in accurately reproducing brain microenvironment with current preclinical models. The cellular interactions among resident microglia, recruited tumor-associated macrophages, stromal cells, glial cells, neurons, and cancer cells and how they affect tumor growth or behavior are emerging, yet many questions remain. The role of the blood-brain barrier, extracellular matrix components, and heterogeneity among tumor types and within different regions of a single tumor further complicate the matter. Here, we focus on brain microenvironment features impacted by tumor biology. We also discuss limits of current preclinical models and how complementary models, such as humanized animals and organoids, will allow deeper mechanistic insights on cancer biology, allowing for more efficient testing of therapeutic strategies, including immunotherapy, for brain cancers.
Collapse
Affiliation(s)
- Claudia Pasqualini
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Marco Bruschi
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Thi Hai Hoa Nguyen
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Véronique Minard-Colin
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France; INSERM U1015, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - David Castel
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Jacques Grill
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France; Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France.
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore; Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
59
|
Monje M. Synaptic Communication in Brain Cancer. Cancer Res 2020; 80:2979-2982. [PMID: 32381657 DOI: 10.1158/0008-5472.can-20-0646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
Increasing evidence indicates that the nervous system plays a critical role in cancer progression. This is particularly true in cancers that occur within the central nervous system. Communication between neurons and cancer cells is a fundamental component of brain cancer pathophysiology, both for primary gliomas and for brain metastases. Neuronal activity drives growth of glial malignancies through secreted growth factors and through direct electrochemical synaptic communication. Reciprocally, brain cancers influence neuronal function, increasing neuronal activity and modulating the function of the circuits into which the cancer cells structurally and electrically integrate. Advancing understanding of neuron-cancer interactions will elucidate new therapeutic strategies for these presently lethal brain cancers.
Collapse
Affiliation(s)
- Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California.
| |
Collapse
|
60
|
Hatcher A, Yu K, Meyer J, Aiba I, Deneen B, Noebels JL. Pathogenesis of peritumoral hyperexcitability in an immunocompetent CRISPR-based glioblastoma model. J Clin Invest 2020; 130:2286-2300. [PMID: 32250339 PMCID: PMC7190940 DOI: 10.1172/jci133316] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Seizures often herald the clinical appearance of gliomas or appear at later stages. Dissecting their precise evolution and cellular pathogenesis in brain malignancies could inform the development of staged therapies for these highly pharmaco-resistant epilepsies. Studies in immunodeficient xenograft models have identified local interneuron loss and excess glial glutamate release as chief contributors to network disinhibition, but how hyperexcitability in the peritumoral microenvironment evolves in an immunocompetent brain is unclear. We generated gliomas in WT mice via in utero deletion of key tumor suppressor genes and serially monitored cortical epileptogenesis during tumor infiltration with in vivo electrophysiology and GCAMP7 calcium imaging, revealing a reproducible progression from hyperexcitability to convulsive seizures. Long before seizures, coincident with loss of inhibitory cells and their protective scaffolding, gain of glial glutamate antiporter xCT expression, and reactive astrocytosis, we detected local Iba1+ microglial inflammation that intensified and later extended far beyond tumor boundaries. Hitherto unrecognized episodes of cortical spreading depolarization that arose frequently from the peritumoral region may provide a mechanism for transient neurological deficits. Early blockade of glial xCT activity inhibited later seizures, and genomic reduction of host brain excitability by deleting MapT suppressed molecular markers of epileptogenesis and seizures. Our studies confirmed xenograft tumor-driven pathobiology and revealed early and late components of tumor-related epileptogenesis in a genetically tractable, immunocompetent mouse model of glioma, allowing the complex dissection of tumor versus host pathogenic seizure mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeffrey L. Noebels
- Department of Neuroscience
- Department of Neurology, and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
61
|
Aziz-Bose R, Monje M. Diffuse intrinsic pontine glioma: molecular landscape and emerging therapeutic targets. Curr Opin Oncol 2020; 31:522-530. [PMID: 31464759 DOI: 10.1097/cco.0000000000000577] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brainstem malignancy. Despite advances in understanding of the molecular underpinnings of the tumor in the past decade, the dismal prognosis of DIPG has thus far remained unchanged. This review seeks to highlight promising therapeutic targets within three arenas: DIPG cell-intrinsic vulnerabilities, immunotherapeutic approaches to tumor clearance, and microenvironmental dependencies that promote tumor growth. RECENT FINDINGS Promising therapeutic strategies from recent studies include epigenetic modifying agents such as histone deacetylase inhibitors, bromodomain and extra-terminal motif (BET) protein inhibitors, and CDK7 inhibitors. Tumor-specific immunotherapies are emerging. Key interactions between DIPG and normal brain cells are coming to light, and targeting critical microenvironmental mechanisms driving DIPG growth in the developing childhood brain represents a new direction for therapy. SUMMARY Several DIPG treatment strategies are being evaluated in early clinical trials. Ultimately, we suspect that a multifaceted therapeutic approach utilizing cell-intrinsic, microenvironmental, and immunotherapeutic targets will be necessary for eradicating DIPG.
Collapse
Affiliation(s)
| | - Michelle Monje
- Department of Neurology and Neurological Sciences.,Stanford Institute for Stem Cell Biology and Regenerative Medicine.,Stanford Cancer Institute.,Department of Pediatrics.,Department of Psychiatry and Behavioral Sciences.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
62
|
Montgomery MK, Kim SH, Dovas A, Zhao HT, Goldberg AR, Xu W, Yagielski AJ, Cambareri MK, Patel KB, Mela A, Humala N, Thibodeaux DN, Shaik MA, Ma Y, Grinband J, Chow DS, Schevon C, Canoll P, Hillman EMC. Glioma-Induced Alterations in Neuronal Activity and Neurovascular Coupling during Disease Progression. Cell Rep 2020; 31:107500. [PMID: 32294436 PMCID: PMC7443283 DOI: 10.1016/j.celrep.2020.03.064] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Diffusely infiltrating gliomas are known to cause alterations in cortical function, vascular disruption, and seizures. These neurological complications present major clinical challenges, yet their underlying mechanisms and causal relationships to disease progression are poorly characterized. Here, we follow glioma progression in awake Thy1-GCaMP6f mice using in vivo wide-field optical mapping to monitor alterations in both neuronal activity and functional hemodynamics. The bilateral synchrony of spontaneous neuronal activity gradually decreases in glioma-infiltrated cortical regions, while neurovascular coupling becomes progressively disrupted compared to uninvolved cortex. Over time, mice develop diverse patterns of high amplitude discharges and eventually generalized seizures that appear to originate at the tumors' infiltrative margins. Interictal and seizure events exhibit positive neurovascular coupling in uninfiltrated cortex; however, glioma-infiltrated regions exhibit disrupted hemodynamic responses driving seizure-evoked hypoxia. These results reveal a landscape of complex physiological interactions occurring during glioma progression and present new opportunities for exploring novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mary Katherine Montgomery
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Sharon H Kim
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hanzhi T Zhao
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Alexander R Goldberg
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Weihao Xu
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Alexis J Yagielski
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Morgan K Cambareri
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Kripa B Patel
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nelson Humala
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David N Thibodeaux
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Mohammed A Shaik
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Ying Ma
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Jack Grinband
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniel S Chow
- Department of Radiological Sciences, University of California, Irvine, Orange, CA 92868, USA
| | - Catherine Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
63
|
Abstract
The nervous system is intimately involved in physiological processes from development and growth to tissue homeostasis and repair throughout the body. It logically follows that the nervous system has the potential to play analogous roles in the context of cancer. Progress toward understanding the crucial role of the nervous system in cancer has accelerated in recent years, but much remains to be learned. Here, we highlight rapidly evolving concepts in this burgeoning research space and consider next steps toward understanding and therapeutically targeting the neural regulation of cancer.
Collapse
Affiliation(s)
- Shawn Gillespie
- Cancer Biology Graduate Program, Stanford University, Stanford, California 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
64
|
Gillespie S, Monje M. An active role for neurons in glioma progression: making sense of Scherer's structures. Neuro Oncol 2019; 20:1292-1299. [PMID: 29788372 DOI: 10.1093/neuonc/noy083] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Perineuronal satellitosis, the microanatomical clustering of glioma cells around neurons in the tumor microenvironment, has been recognized as a histopathological hallmark of high-grade gliomas since the seminal observations of Scherer in the 1930s. In this review, we explore the emerging understanding that neuron‒glioma cell interactions regulate malignancy and that neuronal activity is a critical determinant of glioma growth and progression. Elucidation of the interplay between normal and malignant neural circuitry is critical to realizing the promise of effective therapies for these seemingly intractable diseases. Here, we review current knowledge regarding the role of neuronal activity in the glioma microenvironment and highlight critical knowledge gaps in this burgeoning research space.
Collapse
Affiliation(s)
- Shawn Gillespie
- Cancer Biology Graduate Program, Stanford University, Stanford, California
| | - Michelle Monje
- Cancer Biology Graduate Program, Stanford University, Stanford, California.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
65
|
Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, Tam LT, Espenel C, Ponnuswami A, Ni L, Woo PJ, Taylor KR, Agarwal A, Regev A, Brang D, Vogel H, Hervey-Jumper S, Bergles DE, Suvà ML, Malenka RC, Monje M. Electrical and synaptic integration of glioma into neural circuits. Nature 2019; 573:539-545. [PMID: 31534222 PMCID: PMC7038898 DOI: 10.1038/s41586-019-1563-y] [Citation(s) in RCA: 771] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 08/12/2019] [Indexed: 12/26/2022]
Abstract
High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated release of growth factors promotes glioma growth, but this alone is insufficient to explain the effect that neuronal activity exerts on glioma progression. Here we show that neuron and glioma interactions include electrochemical communication through bona fide AMPA receptor-dependent neuron-glioma synapses. Neuronal activity also evokes non-synaptic activity-dependent potassium currents that are amplified by gap junction-mediated tumour interconnections, forming an electrically coupled network. Depolarization of glioma membranes assessed by in vivo optogenetics promotes proliferation, whereas pharmacologically or genetically blocking electrochemical signalling inhibits the growth of glioma xenografts and extends mouse survival. Emphasizing the positive feedback mechanisms by which gliomas increase neuronal excitability and thus activity-regulated glioma growth, human intraoperative electrocorticography demonstrates increased cortical excitability in the glioma-infiltrated brain. Together, these findings indicate that synaptic and electrical integration into neural circuits promotes glioma progression.
Collapse
Affiliation(s)
| | - Wade Morishita
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Nancy Pritzker Laboratory, Stanford University, Stanford, CA, USA
| | - Anna C Geraghty
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Dana Silverbush
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Marlene Arzt
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Lydia T Tam
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Cedric Espenel
- Cell Sciences Imaging Facility, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Pamelyn J Woo
- Department of Neurology, Stanford University, Stanford, CA, USA
| | | | - Amit Agarwal
- Department of Neuroscience, Johns Hopkins University, Baltimore, MA, USA.,The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA
| | - David Brang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Hannes Vogel
- Department of Neurology, Stanford University, Stanford, CA, USA.,Department of Pathology, Stanford University, Stanford, CA, USA.,Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Dwight E Bergles
- Department of Neuroscience, Johns Hopkins University, Baltimore, MA, USA
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Robert C Malenka
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Nancy Pritzker Laboratory, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA. .,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA. .,Department of Pathology, Stanford University, Stanford, CA, USA. .,Department of Pediatrics, Stanford University, Stanford, CA, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
66
|
Leclercq K, Liefferinge JV, Albertini G, Neveux M, Dardenne S, Mairet‐Coello G, Vandenplas C, Deprez T, Chong S, Foerch P, Bentea E, Sato H, Maher P, Massie A, Smolders I, Kaminski RM. Anticonvulsant and antiepileptogenic effects of system xc− inactivation in chronic epilepsy models. Epilepsia 2019; 60:1412-1423. [DOI: 10.1111/epi.16055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Joeri Van Liefferinge
- Department of Pharmaceutical Chemistry Drug Analysis and Drug Information Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | - Giulia Albertini
- Department of Pharmaceutical Chemistry Drug Analysis and Drug Information Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | | | | | | | | | | | | | | | - Eduard Bentea
- Department of Pharmaceutical Biotechnology and Molecular Biology Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | - Hideyo Sato
- Faculty of Medicine Niigata University Niigata Japan
| | - Pamela Maher
- Cellular Neurobiology Laboratory The Salk Institute for Biological Studies La Jolla California
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry Drug Analysis and Drug Information Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | | |
Collapse
|
67
|
Neal A, Moffat BA, Stein JM, Nanga RPR, Desmond P, Shinohara RT, Hariharan H, Glarin R, Drummond K, Morokoff A, Kwan P, Reddy R, O'Brien TJ, Davis KA. Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging. NEUROIMAGE-CLINICAL 2019; 22:101694. [PMID: 30822716 PMCID: PMC6396013 DOI: 10.1016/j.nicl.2019.101694] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/10/2019] [Accepted: 01/27/2019] [Indexed: 01/04/2023]
Abstract
Introduction Diffuse gliomas are incurable malignancies, which undergo inevitable progression and are associated with seizure in 50–90% of cases. Glutamate has the potential to be an important glioma biomarker of survival and local epileptogenicity if it can be accurately quantified noninvasively. Methods We applied the glutamate-weighted imaging method GluCEST (glutamate chemical exchange saturation transfer) and single voxel MRS (magnetic resonance spectroscopy) at 7 Telsa (7 T) to patients with gliomas. GluCEST contrast and MRS metabolite concentrations were quantified within the tumour region and peritumoural rim. Clinical variables of tumour aggressiveness (prior adjuvant therapy and previous radiological progression) and epilepsy (any prior seizures, seizure in last month and drug refractory epilepsy) were correlated with respective glutamate concentrations. Images were separated into post-hoc determined patterns and clinical variables were compared across patterns. Results Ten adult patients with a histo-molecular (n = 9) or radiological (n = 1) diagnosis of grade II-III diffuse glioma were recruited, 40.3 +/− 12.3 years. Increased tumour GluCEST contrast was associated with prior adjuvant therapy (p = .001), and increased peritumoural GluCEST contrast was associated with both recent seizures (p = .038) and drug refractory epilepsy (p = .029). We distinguished two unique GluCEST contrast patterns with distinct clinical and radiological features. MRS glutamate correlated with GluCEST contrast within the peritumoural voxel (R = 0.89, p = .003) and a positive trend existed in the tumour voxel (R = 0.65, p = .113). Conclusion This study supports the role of glutamate in diffuse glioma biology. It further implicates elevated peritumoural glutamate in epileptogenesis and altered tumour glutamate homeostasis in glioma aggressiveness. Given the ability to non-invasively visualise and quantify glutamate, our findings raise the prospect of 7 T GluCEST selecting patients for individualised therapies directed at the glutamate pathway. Larger studies with prospective follow-up are required. 7 T GluCEST glioma imaging is feasible, producing high quality quantifiable images. Increased peritumoural GluCEST contrast correlates with drug resistant epilepsy. Increased tumour GluCEST contrast is associated with prior adjuvant therapy. Two GluCEST patterns were identified with distinct clinico-radiological features. GluCEST contrast correlates with MRS glutamate in peritumoural regions.
Collapse
Affiliation(s)
- Andrew Neal
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Australia; Department of Neurology, Royal Melbourne Hospital, Australia.
| | - Bradford A Moffat
- Melbourne Node of the National Imaging Facility, Department of Radiology, University of Melbourne, Australia
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Ravi Prakash Reddy Nanga
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Patricia Desmond
- Department of Radiology, Royal Melbourne Hospital, Australia; Department of Radiology and Medicine, University of Melbourne, Australia
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Hari Hariharan
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Glarin
- Department of Radiology, Royal Melbourne Hospital, Australia; Department of Radiology and Medicine, University of Melbourne, Australia
| | - Katharine Drummond
- Department of Neurosurgery, Royal Melbourne Hospital, Australia; Department of Surgery, University of Melbourne, Australia; Melbourne Brain Centre, The Royal Melbourne Hospital, Australia
| | - Andrew Morokoff
- Department of Neurosurgery, Royal Melbourne Hospital, Australia; Department of Surgery, University of Melbourne, Australia
| | - Patrick Kwan
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Australia; Department of Neurology, Royal Melbourne Hospital, Australia; Department of Neuroscience, Central Clinical School, Monash University, Australia; Department of Neurology, The Alfred Hospital Monash University, Australia
| | - Ravinder Reddy
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Terence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Australia; Department of Neurology, Royal Melbourne Hospital, Australia; Department of Neuroscience, Central Clinical School, Monash University, Australia; Department of Neurology, The Alfred Hospital Monash University, Australia
| | - Kathryn A Davis
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
68
|
Abstract
Glioma cells diffusely infiltrate the surrounding brain tissue where they intermingle with nonneoplastic brain cells, including astrocytes, microglia, oligodendrocytes and neurons. The infiltrative margins of glioma represent the structural and functional interface between neoplastic and nonneoplastic brain tissue that underlies neurologic alterations associated with glioma, including epilepsy and neurologic deficits. Technological advancements in molecular analysis, including single cell sequencing, now allow us to assess alterations in specific cell types in the brain tumor microenvironment, which can enhance the development of novel therapies that target glioma growth and glioma-induced neurologic symptoms.
Collapse
|
69
|
Dunn-Pirio AM, Woodring S, Lipp E, Herndon JE, Healy P, Weant M, Randazzo D, Desjardins A, Friedman HS, Peters KB. Adjunctive perampanel for glioma-associated epilepsy. EPILEPSY & BEHAVIOR CASE REPORTS 2018; 10:114-117. [PMID: 30377587 PMCID: PMC6202665 DOI: 10.1016/j.ebcr.2018.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022]
Abstract
Glioma-associated epilepsy is associated with excessive glutamate signaling. We hypothesized that perampanel, an amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor antagonist, would treat glioma-related epilepsy. We conducted a single-arm study of adjunctive perampanel for patients with focal-onset glioma-associated seizures. The most common related adverse events were fatigue and dizziness. Three out of 8 participants had self-reported seizure reduction and an additional 3 reported improved control. Of these 6, 5 had isocitrate dehydrogenase 1 mutant gliomas. We conclude that perampanel is safe for patients with glioma-related focal-onset epilepsy. Further study into the association between AMPA signaling, IDH1 status and seizures is warranted. Seizures represent a major cause of morbidity in the brain tumor population. Perampanel is safe in patients with gliomas. Add-on therapy for glioma-related epilepsy can include perampanel.
Collapse
Affiliation(s)
- Anastasie M Dunn-Pirio
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States of America
| | - Sarah Woodring
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States of America
| | - Eric Lipp
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States of America
| | - James E Herndon
- Department of Biostatistics, Duke University Medical Center, Durham, NC, United States of America
| | - Patrick Healy
- Department of Biostatistics, Duke University Medical Center, Durham, NC, United States of America
| | - Mallika Weant
- Department of Pharmacy, Duke University Medical Center, Durham, NC, United States of America
| | - Dina Randazzo
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States of America
| | - Annick Desjardins
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States of America
| | - Henry S Friedman
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States of America
| | - Katherine B Peters
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
70
|
Brain tumor related-epilepsy. Neurol Neurochir Pol 2018; 52:436-447. [PMID: 30122210 DOI: 10.1016/j.pjnns.2018.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Gliomas are commonly associated with the development of epilepsy; in some cases the two conditions share common pathogenic mechanisms and may influence each other. Brain tumor related-epilepsy (BTRE) complicates the clinical management of gliomas and can substantially affect daily life. STATE OF THE ART The incidence of seizures is high in patients with slow growing tumors located in the frontotemporal regions. However, recent studies suggest that epileptogenesis may be more associated with tumor molecular genetic markers than tumor grade or location. Although the exact mechanism of epileptogenesis in glioma is incompletely understood, glutamate-induced excitotoxicity and disruption of intracellular communication have garnered the most attention. CLINICAL MANAGEMENT Management of BTRE requires a multidisciplinary approach involving the use of antiepileptic drugs (AEDs), surgery aided by electrocorticography, and adjuvant chemoradiation. FUTURE DIRECTIONS Insight into the mechanisms of glioma growth and epileptogenesis is essential to identify new treatment targets and to develop effective treatment for both conditions. Selecting AEDs tailored to act against known tumor molecular markers involved in the epileptogenesis could enhance treatment value and help inform individualized medicine in BRTE.
Collapse
|
71
|
Johung T, Monje M. Neuronal activity in the glioma microenvironment. Curr Opin Neurobiol 2017; 47:156-161. [PMID: 29096244 DOI: 10.1016/j.conb.2017.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 01/08/2023]
Abstract
Gliomas are the most common primary brain tumor and high-grade gliomas the leading cause of brain tumor-related death in both children and adults. An appreciation for the crucial role of the nervous system in the tumor microenvironment is emerging for cancers in general, and the neural regulation of glioma progression has come into sharp focus. Here, we review what is known about the influence of active neurons on glioma pathobiology.
Collapse
Affiliation(s)
- Tessa Johung
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Michelle Monje
- Departments of Neurology, Pediatrics, and Pathology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
72
|
Gibson EM, Geraghty AC, Monje M. Bad wrap: Myelin and myelin plasticity in health and disease. Dev Neurobiol 2017; 78:123-135. [PMID: 28986960 DOI: 10.1002/dneu.22541] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/31/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
Human central nervous system myelin development extends well into the fourth decade of life, and this protracted period underscores the potential for experience to modulate myelination. The concept of myelin plasticity implies adaptability in myelin structure and function in response to experiences during development and beyond. Mounting evidence supports this concept of neuronal activity-regulated changes in myelin-forming cells, including oligodendrocyte precursor cell proliferation, oligodendrogenesis and modulation of myelin microstructure. In healthy individuals, myelin plasticity in associative white matter structures of the brain is implicated in learning and motor function in both rodents and humans. Activity-dependent changes in myelin-forming cells may influence the function of neural networks that depend on the convergence of numerous neural signals on both a temporal and spatial scale. However, dysregulation of myelin plasticity can disadvantageously alter myelin microstructure and result in aberrant circuit function or contribute to pathological cell proliferation. Emerging roles for myelin plasticity in normal neurological function and in disease are discussed. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 123-135, 2018.
Collapse
Affiliation(s)
- Erin M Gibson
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| | - Anna C Geraghty
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| |
Collapse
|
73
|
Brain Tumor-Related Epilepsy: a Current Review of the Etiologic Basis and Diagnostic and Treatment Approaches. Curr Neurol Neurosci Rep 2017; 17:70. [DOI: 10.1007/s11910-017-0777-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
74
|
Venkatesh H, Monje M. Neuronal Activity in Ontogeny and Oncology. Trends Cancer 2017; 3:89-112. [PMID: 28718448 DOI: 10.1016/j.trecan.2016.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 01/06/2023]
Abstract
The nervous system plays a central role in regulating the stem cell niche in many organs, and thereby pivotally modulates development, homeostasis, and plasticity. A similarly powerful role for neural regulation of the cancer microenvironment is emerging. Neurons promote the growth of cancers of the brain, skin, prostate, pancreas, and stomach. Parallel mechanisms shared in development and cancer suggest that neural modulation of the tumor microenvironment may prove a universal theme, although the mechanistic details of such modulation remain to be discovered for many malignancies. We review here what is known about the influences of active neurons on stem cell and cancer microenvironments across a broad range of tissues, and we discuss emerging principles of neural regulation of development and cancer.
Collapse
Affiliation(s)
- Humsa Venkatesh
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA; Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
75
|
Buklina SB, Bykanov AE, Pitskhelauri DI. [Clinical characteristics of epileptic seizures in insular gliomas]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 116:13-19. [PMID: 28139619 DOI: 10.17116/jnevro201611612113-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To study the characteristics of epileptic seizures in insular gliomas. MATERIAL AND METHODS Forty-five patients with insular gliomas were examined. The spread of a tumor was established by MRI results and intraoperational findings. A tumor within the insular only was found in 9 out of 45 patients (7 left-sided and 2 right-sided). In 36 patients, a tumor slightly spread into temporal lobe pole and medial-basal regions of the frontal lobe (27 left-sided and 18 right-sided). The control group consisted of 50 patients with tumors of temporal and frontal lobes. RESULTS Paroxysmal symptoms were similar in patients with tumors of the insular and patients with tumors of temporal lobes. Seizures in patients with frontal lobe tumors differed significantly from insular and temporal tumors, with the exception of a tumor localized in the opercula area. The following quantitative differences were identified: different forms of unconsciousness were significantly less frequent in symptomatic epilepsy in patients with insular tumor than in epilepsy caused by temporal lobe tumors (36% of patients vs 84% in temporal tumors (p<0.0001)). In patients with insular tumors, olfactory and taste hallucinations occur more often compared to temporal lobe tumors (51% vs 16% (p<0.003). The frequency of paroxysmal seizures of fear and anxiety in patients with those tumors was similar (20% with insular tumors and 14 with temporal tumors). An autonomic component of episeizures did not differ between tumors of both localizations. Olfactory and taste hallucinations were qualitatively similar in insular and temporal lobe tumors: smell and taste were unpleasant or associated with a danger: smell of burning, gas, something spoiled, sour, tart chemistry, taste of somethong metallic, chemical, sour. No pleasant smell or taste were reported. CONCLUSION Epileptic seizures in insular tumors had similarities and certain differences compared with temporal seizures that well reflect function of the insula and its links, in the first turn, with limbic system structures.
Collapse
Affiliation(s)
- S B Buklina
- FGBOU 'Nauchno-issledovatel'skij institut nejrohirurgii', Moskva, Rossija
| | - A E Bykanov
- FGBOU 'Nauchno-issledovatel'skij institut nejrohirurgii', Moskva, Rossija
| | - D I Pitskhelauri
- FGBOU 'Nauchno-issledovatel'skij institut nejrohirurgii', Moskva, Rossija
| |
Collapse
|
76
|
Pyka T, Gempt J, Bette S, Ringel F, Förster S. Positron emission tomography and magnetic resonance spectroscopy in cerebral gliomas. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0222-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
77
|
Abstract
The nervous system is emerging as a regulator of malignancy. In this issue of Cancer Cell, Hayakawa et al. demonstrate a feedforward signaling loop in which tumor-derived nerve growth factor promotes enteric tumor innervation, and recruited nerves drive cancer growth through acetylcholine-regulated Wnt signaling and stimulation of further NGF release.
Collapse
Affiliation(s)
- Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
78
|
MacKenzie G, O'Toole KK, Moss SJ, Maguire J. Compromised GABAergic inhibition contributes to tumor-associated epilepsy. Epilepsy Res 2016; 126:185-96. [PMID: 27513374 PMCID: PMC5308901 DOI: 10.1016/j.eplepsyres.2016.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/02/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
Glioblastoma Multiforme (GBM) is the most common form of primary brain tumor with 30-50% of patients presenting with epilepsy. These tumor-associated seizures are often resistant to traditional antiepileptic drug treatment and persist after tumor resection. This suggests that changes in the peritumoral tissue underpin epileptogenesis. It is known that glioma cells extrude pathological concentrations of glutamate which is thought to play a role in tumor progression and the development of epilepsy. Given that pathological concentrations of glutamate have been shown to dephosphorylate and downregulate the potassium chloride cotransporter KCC2, we hypothesized that glioma-induced alterations in KCC2 in the peritumoral region may play a role in tumor-associated epilepsy. Consistent with this hypothesis, we observe a decrease in total KCC2 expression and a dephosphorylation of KCC2 at residue Ser940 in a glioma model which exhibits hyperexcitability and the development of spontaneous seizures. To determine whether the reduction of KCC2 could potentially contribute to tumor-associated epilepsy, we generated mice with a focal knockdown of KCC2 by injecting AAV2-Cre-GFP into the cortex of floxed KCC2 mice. The AAV2-Cre-mediated knockdown of KCC2 was sufficient to induce the development of spontaneous seizures. Further, blocking NKCC1 with bumetanide to offset the loss of KCC2 reduced the seizure susceptibility in glioma-implanted mice. These findings support a mechanism of tumor-associated epilepsy involving downregulation of KCC2 in the peritumoral region leading to compromised GABAergic inhibition and suggest that modulating chloride homeostasis may be useful for seizure control.
Collapse
Affiliation(s)
- Georgina MacKenzie
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Kate K O'Toole
- Training in Education and Critical Research Skills (TEACRS) Program, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States.
| |
Collapse
|
79
|
Neal A, Morokoff A, O'Brien TJ, Kwan P. Postoperative seizure control in patients with tumor-associated epilepsy. Epilepsia 2016; 57:1779-1788. [PMID: 27666131 DOI: 10.1111/epi.13562] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The patterns of postoperative seizure control and response to antiepileptic drugs (AEDs) in tumor-associated epilepsy (TAE) are poorly understood. We aim to document these characteristics in patients with supratentorial gliomas. METHODS This was a retrospective analysis of 186 patients with supratentorial gliomas. Seizure patterns were classified into four groups: A, no postoperative seizure; B, early postoperative seizure control within 6 months; C, fluctuating seizure control; and D, never seizure-free. Rates and duration of seizure freedom, subsequent seizure relapse, and response to AED were analyzed. RESULTS Among patients included, 49 (26.3%) had grade II, 28 (15.1%) had grade III, and 109 (58.6%) had grade IV glioma. Outcome pattern A was observed in 95 (51.1%), B in 22 (11.8%), C in 45 (24.2%), and D in 24 (12.9%). One hundred nineteen patients had at least one seizure and were classified as having TAE. Compared to pattern A, pattern B was predicted by histologic progression; pattern C by tumor grade, preoperative seizure, and histologic progression, and pattern D by preoperative seizure and gross total resection. Among patients with TAE, 57.5% of grade II, 68.2% of grade III, and 26.3% of grade IV experienced a period of 12-month seizure freedom. After first 12-month seizure remission, 39.1%, 60.0%, and 13.3% of grade II, III, and IV gliomas, respectively, experienced subsequent seizure; 22.6% of those with TAE reached terminal seizure freedom of at least 12 months on their first postoperative AED regimen, 6.5% on their second regimen, and 5.4% on subsequent regimens. SIGNIFICANCE Distinct patterns of postoperative seizure control exist in gliomas; they have specific risk factor profiles, and we hypothesize these correspond to unique pathogenic mechanisms. Twelve-month seizure freedom with subsequent relapse is frequent in grade II-III gliomas. Response to AEDs is markedly poorer than with non-TAE, highlighting the complex epileptogenicity of gliomas.
Collapse
Affiliation(s)
- Andrew Neal
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Andrew Morokoff
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurosurgery, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Terence John O'Brien
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Patrick Kwan
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
80
|
Hunsberger HC, Wang D, Petrisko TJ, Alhowail A, Setti SE, Suppiramaniam V, Konat GW, Reed MN. Peripherally restricted viral challenge elevates extracellular glutamate and enhances synaptic transmission in the hippocampus. J Neurochem 2016; 138:307-16. [PMID: 27168075 PMCID: PMC4936939 DOI: 10.1111/jnc.13665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 01/23/2023]
Abstract
Peripheral infections increase the propensity and severity of seizures in susceptible populations. We have previously shown that intraperitoneal injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), elicits hypersusceptibility of mice to kainic acid (KA)-induced seizures. This study was undertaken to determine whether this seizure hypersusceptibility entails alterations in glutamate signaling. Female C57BL/6 mice were intraperitoneally injected with PIC, and after 24 h, glutamate homeostasis in the hippocampus was monitored using the enzyme-based microelectrode arrays. PIC challenge robustly increased the level of resting extracellular glutamate. While pre-synaptic potassium-evoked glutamate release was not affected, glutamate uptake was profoundly impaired and non-vesicular glutamate release was augmented, indicating functional alterations of astrocytes. Electrophysiological examination of hippocampal slices from PIC-challenged mice revealed a several fold increase in the basal synaptic transmission as compared to control slices. PIC challenge also increased the probability of pre-synaptic glutamate release as seen from a reduction of paired-pulse facilitation and synaptic plasticity as seen from an enhancement of long-term potentiation. Altogether, our results implicate a dysregulation of astrocytic glutamate metabolism and an alteration of excitatory synaptic transmission as the underlying mechanism for the development of hippocampal hyperexcitability, and consequently seizure hypersusceptibility following peripheral PIC challenge. Peripheral infections/inflammations enhance seizure susceptibility. Here, we explored the effect of peritoneal inflammation induced by a viral mimic on glutamate homeostasis and glutamatergic neurotransmission in the mouse hippocampus. We found that peritoneal inflammation elevated extracellular glutamate concentration and enhanced the probability of pre-synaptic glutamate release resulting in hyperexcitability of neuronal networks. These mechanisms are likely to underlie the enhanced seizure propensity.
Collapse
Affiliation(s)
- Holly C. Hunsberger
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, 26506 WV, USA
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Desheng Wang
- Blanchette Rockefeller Neurosciences Institute, Morgantown, 26506 WV, USA
| | - Tiffany J. Petrisko
- Department of Neurobiology and Anatomy, School of Medicine, West Virginia University, Morgantown, 26506 WV, USA
| | - Ahmad Alhowail
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Sharay E. Setti
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Gregory W. Konat
- Department of Neurobiology and Anatomy, School of Medicine, West Virginia University, Morgantown, 26506 WV, USA
| | - Miranda N. Reed
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| |
Collapse
|
81
|
Neal A, Yuen T, Bjorksten AR, Kwan P, O'Brien TJ, Morokoff A. Peritumoural glutamate correlates with post-operative seizures in supratentorial gliomas. J Neurooncol 2016; 129:259-67. [PMID: 27311724 DOI: 10.1007/s11060-016-2169-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/01/2016] [Indexed: 11/30/2022]
Abstract
To examine the impact of glutamate on post-operative seizures and survival in a cohort of patients with grade II to IV supratentorial glioma. A retrospective analysis was performed on 216 patients who underwent surgery for supratentorial gliomas. Primary explanatory variables were peritumoural and/or tumoural glutamate concentrations, glutamate transporter expression (EAAT2 and SXC). Univariate and multivariate survival analysis was performed with primary outcomes of time to first post-operative seizure and overall survival. Subgroup analysis was performed in patients with de novo glioblastomas who received adjuvant chemoradiotherapy. 47 (21.8 %), 34 (15.8 %) and 135 (62.5 %) WHO grade II, III and IV gliomas respectively were followed for a median of 15.8 months. Following multivariate analysis, there was a non-significant association between higher peritumoural glutamate concentrations and time to first post-operative seizure (HR 2.07, CI 0.98-4.37, p = 0.06). In subgroup analysis of 81 glioblastoma patients who received adjunct chemoradiotherapy, peritumoural glutamate concentration was significantly associated with time to first post-operative seizure (HR 3.10, CI 1.20-7.97, p = 0.02). In both the overall cohort and subgroup analysis no glutamate cycle biomarkers were predictive of overall survival. Increased concentrations of peritumoural glutamate were significantly associated with shorter periods of post-operative seizure freedom in patients with de novo glioblastomas treated with adjuvant chemoradiotherapy. No glutamate cycle biomarkers were predictive of overall survival. These results suggest that therapies targeting glutamate may be beneficial in tumour associated epilepsy.
Collapse
Affiliation(s)
- Andrew Neal
- Department of Neurology, Royal Melbourne Hospital, University of Melbourne, 3050, Parkville, VIC, Australia.
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, 3050, Parkville, VIC, Australia.
| | - Tanya Yuen
- Department of Neurosurgery, Royal Melbourne Hospital, University of Melbourne, 3050, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, 3050, Parkville, VIC, Australia
| | - Andrew R Bjorksten
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, 3050, Parkville, VIC, Australia
| | - Patrick Kwan
- Department of Neurology, Royal Melbourne Hospital, University of Melbourne, 3050, Parkville, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, 3050, Parkville, VIC, Australia
| | - Terence J O'Brien
- Department of Neurology, Royal Melbourne Hospital, University of Melbourne, 3050, Parkville, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, 3050, Parkville, VIC, Australia
| | - Andrew Morokoff
- Department of Neurosurgery, Royal Melbourne Hospital, University of Melbourne, 3050, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, 3050, Parkville, VIC, Australia
| |
Collapse
|
82
|
Kirschstein T, Köhling R. Animal models of tumour-associated epilepsy. J Neurosci Methods 2015; 260:109-17. [PMID: 26092434 DOI: 10.1016/j.jneumeth.2015.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 01/26/2023]
Abstract
Brain tumours cause a sizeable proportion of epilepsies in adulthood, and actually can be etiologically responsible also for childhood epilepsies. Conversely, seizures are often first clinical signs of a brain tumour. Nevertheless, several issues of brain-tumour associated seizures and epilepsies are far from understood, or clarified regarding clinical consensus. These include both the specific mechanisms of epileptogenesis related to different tumour types, the possible relationship between malignancy and seizure emergence, the interaction between tumour mass and surrounding neuronal networks, and - not least - the best treatment options depending on different tumour types. To investigate these issues, experimental models of tumour-induced epilepsies are necessary. This review concentrates on the description of currently used models, focusing on methodological aspects. It highlights advantages and shortcomings of these models, and identifies future experimental challenges.
Collapse
Affiliation(s)
- Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany.
| |
Collapse
|
83
|
Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, Gibson EM, Mount CW, Polepalli J, Mitra SS, Woo PJ, Malenka RC, Vogel H, Bredel M, Mallick P, Monje M. Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion. Cell 2015; 161:803-16. [PMID: 25913192 DOI: 10.1016/j.cell.2015.04.012] [Citation(s) in RCA: 568] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/24/2015] [Accepted: 03/03/2015] [Indexed: 12/18/2022]
Abstract
Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth.
Collapse
Affiliation(s)
- Humsa S Venkatesh
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tessa B Johung
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Viola Caretti
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alyssa Noll
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yujie Tang
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Surya Nagaraja
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erin M Gibson
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher W Mount
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jai Polepalli
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Siddhartha S Mitra
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pamelyn J Woo
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannes Vogel
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Markus Bredel
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Parag Mallick
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
84
|
Campbell SL, Robel S, Cuddapah VA, Robert S, Buckingham SC, Kahle KT, Sontheimer H. GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy. Glia 2015; 63:23-36. [PMID: 25066727 PMCID: PMC4237714 DOI: 10.1002/glia.22730] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 11/07/2022]
Abstract
Seizures frequently accompany gliomas and often escalate to peritumoral epilepsy. Previous work revealed the importance of tumor-derived excitatory glutamate (Glu) release mediated by the cystine-glutamate transporter (SXC) in epileptogenesis. We now show a novel contribution of GABAergic disinhibition to disease pathophysiology. In a validated mouse glioma model, we found that peritumoral parvalbumin-positive GABAergic inhibitory interneurons are significantly reduced, corresponding with deficits in spontaneous and evoked inhibitory neurotransmission. Most remaining peritumoral neurons exhibit elevated intracellular Cl(-) concentration ([Cl(-) ]i ) and consequently depolarizing, excitatory gamma-aminobutyric acid (GABA) responses. In these neurons, the plasmalemmal expression of KCC2, which establishes the low [Cl(-) ]i required for GABAA R-mediated inhibition, is significantly decreased. Interestingly, reductions in inhibition are independent of Glu release, but the presence of both decreased inhibition and decreased SXC expression is required for epileptogenesis. We suggest GABAergic disinhibition renders peritumoral neuronal networks hyper-excitable and susceptible to seizures triggered by excitatory stimuli, and propose KCC2 as a therapeutic target.
Collapse
Affiliation(s)
- Susan L. Campbell
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefanie Robel
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishnu A. Cuddapah
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephanie Robert
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Kristopher T. Kahle
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School; and Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA USA
| | - Harald Sontheimer
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
85
|
Deficiency of very large G-protein-coupled receptor-1 is a risk factor of tumor-related epilepsy: a whole transcriptome sequencing analysis. J Neurooncol 2014; 121:609-16. [PMID: 25511798 DOI: 10.1007/s11060-014-1674-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 11/30/2014] [Indexed: 12/11/2022]
Abstract
The majority of patients with low-grade glioma (LGG) experience epileptic seizures as their initial symptom, while the underlying mechanisms of tumor-related seizures are still far from being fully understood. In addition to tumor type and location, genetic changes of LGGs are considered to be influential factors in causing epileptic seizures. Nevertheless, the molecular biomarkers associated with tumor-related epilepsy have rarely been identified. RNA sequence data from 80 patients with histologically confirmed LGG were collected from the Chinese glioma genome atlas database and significant differences in expression levels of 33 genes were found. One of the genes, Very large G-protein-coupled receptor-1 (VLGR1), had been previously associated with seizures. Therefore, we investigated the association between LGG-related epilepsy and VLGR1, which played a role in idiopathic epilepsy. The level of VLGR1 expression was compared between patients with epileptic seizures and those without using the reads per kilobase transcriptome per million method. To evaluate the prognostic role of VLGR1 gene expression, the progression-free survival was determined by the Kaplan-Meier method and a multivariate Cox model. We demonstrated that VLGR1 had a significantly lower expression level in patients with epileptic seizures compared to seizure-free patients (p = 0.003). Furthermore, VLGR1 was highly associated with the presence of seizures in a multivariate statistical model. However, VLGR1 could not serve as an independent prognostic factor to determine progression-free survival of LGG patients. Based on RNA sequence data analysis, our results suggest that low expression of VLGR1 is a significant risk factor of epileptic seizures in patients with LGG.
Collapse
|
86
|
Di Angelantonio S, Murana E, Cocco S, Scala F, Bertollini C, Molinari MG, Lauro C, Bregestovski P, Limatola C, Ragozzino D. A role for intracellular zinc in glioma alteration of neuronal chloride equilibrium. Cell Death Dis 2014; 5:e1501. [PMID: 25356870 PMCID: PMC4237258 DOI: 10.1038/cddis.2014.437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 11/16/2022]
Abstract
Glioma patients commonly suffer from epileptic seizures. However, the mechanisms of glioma-associated epilepsy are far to be completely understood. Using glioma-neurons co-cultures, we found that tumor cells are able to deeply influence neuronal chloride homeostasis, by depolarizing the reversal potential of γ-aminobutyric acid (GABA)-evoked currents (EGABA). EGABA depolarizing shift is due to zinc-dependent reduction of neuronal KCC2 activity and requires glutamate release from glioma cells. Consistently, intracellular zinc loading rapidly depolarizes EGABA in mouse hippocampal neurons, through the Src/Trk pathway and this effect is promptly reverted upon zinc chelation. This study provides a possible molecular mechanism linking glioma invasion to excitation/inhibition imbalance and epileptic seizures, through the zinc-mediated disruption of neuronal chloride homeostasis.
Collapse
Affiliation(s)
- S Di Angelantonio
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Piazzale Aldo Moro 5, Roma 00185, Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Roma 00161, Italy
| | - E Murana
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Piazzale Aldo Moro 5, Roma 00185, Italy
| | - S Cocco
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Piazzale Aldo Moro 5, Roma 00185, Italy
| | - F Scala
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Piazzale Aldo Moro 5, Roma 00185, Italy
| | - C Bertollini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Piazzale Aldo Moro 5, Roma 00185, Italy
| | - M G Molinari
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Piazzale Aldo Moro 5, Roma 00185, Italy
| | - C Lauro
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Piazzale Aldo Moro 5, Roma 00185, Italy
| | - P Bregestovski
- INSERM URM 1106, Aix-Marseille University, Brain Dynamics Institute, Marseille, France
| | - C Limatola
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Piazzale Aldo Moro 5, Roma 00185, Italy
- IRCCS Neuromed, Via Atinese, Pozzilli, Italy
| | - D Ragozzino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Piazzale Aldo Moro 5, Roma 00185, Italy
- IRCCS Neuromed, Via Atinese, Pozzilli, Italy
| |
Collapse
|
87
|
Cowie CJ, Cunningham MO. Peritumoral epilepsy: relating form and function for surgical success. Epilepsy Behav 2014; 38:53-61. [PMID: 24894847 PMCID: PMC4265733 DOI: 10.1016/j.yebeh.2014.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 10/28/2022]
Abstract
Seizures are a prominent symptom in patients with both primary and secondary brain tumors. Medical management of seizure control in this patient group is problematic as the mechanisms linking tumorigenesis and epileptogenesis are poorly understood. It is possible that several mechanisms contribute to tumor-associated epileptic zone formation. In this review, we discuss key candidates that may be implicated in peritumoral epileptogenesis and, in so doing, hope to highlight areas for future research. Furthermore, we summarize the current role of antiepileptic medications in this type of epilepsy and examine the changes in surgical practice which may lead to improved seizure rates after tumor surgery. Lastly, we speculate on possible future preoperative and intraoperative considerations for improving seizure control after tumor resection.
Collapse
Affiliation(s)
- Christopher J.A. Cowie
- Department of Neurosurgery, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, UK,Institute of Neuroscience, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, UK
| | - Mark O. Cunningham
- Institute of Neuroscience, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, UK,Corresponding author at: Institute of Neuroscience, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK. Tel.: + 44 191 2088935.
| |
Collapse
|
88
|
Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci 2014; 15:455-65. [PMID: 24946761 PMCID: PMC5304245 DOI: 10.1038/nrn3765] [Citation(s) in RCA: 574] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Malignant gliomas are devastating tumours that frequently kill patients within 1 year of diagnosis. The major obstacle to a cure is diffuse invasion, which enables tumours to escape complete surgical resection and chemo- and radiation therapy. Gliomas use the same tortuous extracellular routes of migration that are travelled by immature neurons and stem cells, frequently using blood vessels as guides. They repurpose ion channels to dynamically adjust their cell volume to accommodate to narrow spaces and breach the blood-brain barrier through disruption of astrocytic endfeet, which envelop blood vessels. The unique biology of glioma invasion provides hitherto unexplored brain-specific therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Vishnu Anand Cuddapah
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 425, Birmingham, Alabama 35294, USA
| | - Stefanie Robel
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 425, Birmingham, Alabama 35294, USA
| | - Stacey Watkins
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 425, Birmingham, Alabama 35294, USA
| | - Harald Sontheimer
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 425, Birmingham, Alabama 35294, USA
| |
Collapse
|
89
|
Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci 2013; 71:1839-54. [PMID: 24281762 DOI: 10.1007/s00018-013-1521-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/22/2013] [Accepted: 11/11/2013] [Indexed: 12/11/2022]
Abstract
Malignant gliomas are relentless tumors that offer a dismal clinical prognosis. They develop many biological advantages that allow them to grow and survive in the unique environment of the brain. The glutamate transporters system x c (-) and excitatory amino acid transporters (EAAT) are emerging as key players in the biology and malignancy of these tumors. Gliomas manipulate glutamate transporter expression and function to alter glutamate homeostasis in the brain, which supports their own growth, invasion, and survival. As a consequence, malignant cells are able to quickly destroy and invade surrounding normal brain. Recent findings are painting a larger picture of these transporters in glioma biology, and as such are providing opportunities for clinical intervention for patients. This review will detail the current understanding of glutamate transporters in the biology of malignant gliomas and highlight some of the unique aspects of these tumors that make them so devastating and difficult to treat.
Collapse
|
90
|
Glutamate et gliomes malins, de l’épilepsie à l’agressivité biologique : implications thérapeutiques. Bull Cancer 2013; 100:829-35. [DOI: 10.1684/bdc.2013.1781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
91
|
van Dellen E, Hillebrand A, Douw L, Heimans JJ, Reijneveld JC, Stam CJ. Local polymorphic delta activity in cortical lesions causes global decreases in functional connectivity. Neuroimage 2013; 83:524-32. [PMID: 23769919 DOI: 10.1016/j.neuroimage.2013.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022] Open
Abstract
Increasing evidence from neuroimaging and modeling studies suggests that local lesions can give rise to global network changes in the human brain. These changes are often attributed to the disconnection of the lesioned areas. However, damaged brain areas may still be active, although the activity is altered. Here, we hypothesize that empirically observed global decreases in functional connectivity in patients with brain lesions can be explained by specific alterations of local neural activity that are the result of damaged tissue. We simulated local polymorphic delta activity (PDA), which typically characterizes EEG/MEG recordings of patients with cerebral lesions, in a realistic model of human brain activity. 78 neural masses were coupled according to the human structural brain network. Lesions were created by altering the parameters of individual neural masses in order to create PDA (i.e. simulating acute focal brain damage); combining this PDA with weakening of structural connections (i.e. simulating brain tumors), and fully deleting structural connections (i.e. simulating a full resection). Not only structural disconnection but also PDA in itself caused a global decrease in functional connectivity, similar to the observed alterations in MEG recordings of patients with PDA due to brain lesions. Interestingly, connectivity between regions that were not lesioned directly also changed. The impact of PDA depended on the network characteristics of the lesioned region in the structural connectome. This study shows for the first time that locally disturbed neural activity, i.e. PDA, may explain altered functional connectivity between remote areas, even when structural connections are unaffected. We suggest that focal brain lesions and the corresponding altered neural activity should be considered in the framework of the full functionally interacting brain network, implying that the impact of lesions reaches far beyond focal damage.
Collapse
Affiliation(s)
- E van Dellen
- Department of Neurology, Cancer Center Amsterdam, VU University Medical Center, De Boelaan 1117, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
92
|
Buckingham SC, Robel S. Glutamate and tumor-associated epilepsy: glial cell dysfunction in the peritumoral environment. Neurochem Int 2013; 63:696-701. [PMID: 23385090 DOI: 10.1016/j.neuint.2013.01.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/30/2012] [Accepted: 01/27/2013] [Indexed: 01/22/2023]
Abstract
Seizures are a serious and debilitating co-morbidity of primary brain tumors that affect most patients, yet their etiology is poorly understood. In many CNS pathologies, including epilepsy and brain injury, high levels of extracellular glutamate have been implicated in seizure generation. It has been shown that gliomas release neurotoxic levels of glutamate through their high expression of system xc-. More recently it was shown that the surrounding peritumoral cortex is spontaneously hyperexcitable. In this review, we discuss how gliomas induce changes in the surrounding environment that may further contribute to elevated extracellular glutamate and tumor-associated seizures. Peritumoral astrocytes become reactive and lose their ability to remove glutamate, while microglia, in response to signals from glioma cells, may release glutamate. In addition, gliomas increase blood brain barrier permeability, allowing seizure-inducing serum components, including glutamate, into the peritumoral region. These factors, working together or alone, may influence the frequency and severity of tumor-associated epilepsy.
Collapse
Affiliation(s)
- Susan C Buckingham
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, Birmingham, AL 35294, USA.
| | | |
Collapse
|