51
|
Bunma C, Noinarin P, Phetcharaburanin J, Chareonsudjai S. Burkholderia pseudomallei biofilm resists Acanthamoeba sp. grazing and produces 8-O-4'-diferulic acid, a superoxide scavenging metabolite after passage through the amoeba. Sci Rep 2023; 13:16578. [PMID: 37789212 PMCID: PMC10547685 DOI: 10.1038/s41598-023-43824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
Burkholderia pseudomallei, an etiological agent of melioidosis is an environmental bacterium that can survive as an intracellular pathogen. The biofilm produced by B. pseudomallei is crucial for cellular pathogenesis of melioidosis. The purpose of this investigation is to explore the role of biofilm in survival of B. pseudomallei during encounters with Acanthamoeba sp. using B. pseudomallei H777 (a biofilm wild type), M10 (a biofilm defect mutant) and C17 (a biofilm-complemented strain). The results demonstrated similar adhesion to amoebae by both the biofilm wild type and biofilm mutant strains. There was higher initial internalisation, but the difference diminished after longer encounter with the amoeba. Interestingly, confocal laser scanning microscopy demonstrated that pre-formed biofilm of B. pseudomallei H777 and C17 were markedly more persistent in the face of Acanthamoeba sp. grazing than that of M10. Metabolomic analysis revealed a significant increased level of 8-O-4'-diferulic acid, a superoxide scavenger metabolite, in B. pseudomallei H777 serially passaged in Acanthamoeba sp. The interaction between B. pseudomallei with a free-living amoeba may indicate the evolutionary pathway that enables the bacterium to withstand superoxide radicals in intracellular environments. This study supports the hypothesis that B. pseudomallei biofilm persists under grazing by amoebae and suggests a strategy of metabolite production that turns this bacterium from saprophyte to intracellular pathogen.
Collapse
Affiliation(s)
- Chainarong Bunma
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Parumon Noinarin
- Department of Occupational Health and Safety, Faculty of Public Health, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | - Jutarop Phetcharaburanin
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen, Thailand.
| |
Collapse
|
52
|
Donohue ME, Hert ZL, Karrick CE, Rowe AK, Wright PC, Randriamanandaza LJ, Zakamanana F, Nomenjanahary ES, Everson KM, Weisrock DW. Lemur Gut Microeukaryotic Community Variation Is Not Associated with Host Phylogeny, Diet, or Habitat. MICROBIAL ECOLOGY 2023; 86:2149-2160. [PMID: 37133496 DOI: 10.1007/s00248-023-02233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
Identifying the major forces driving variation in gut microbiomes enhances our understanding of how and why symbioses between hosts and microbes evolved. Gut prokaryotic community variation is often closely associated with host evolutionary and ecological variables. Whether these same factors drive variation in other microbial taxa occupying the animal gut remains largely untested. Here, we present a one-to-one comparison of gut prokaryotic (16S rRNA metabarcoding) and microeukaryotic (18S rRNA metabarcoding) community patterning among 12 species of wild lemurs. Lemurs were sampled from dry forests and rainforests of southeastern Madagascar and display a range of phylogenetic and ecological niche diversity. We found that while lemur gut prokaryotic community diversity and composition vary with host taxonomy, diet, and habitat, gut microeukaryotic communities have no detectable association with any of these factors. We conclude that gut microeukaryotic community composition is largely random, while gut prokaryotic communities are conserved among host species. It is likely that a greater proportion of gut microeukaryotic communities comprise taxa with commensal, transient, and/or parasitic symbioses compared with gut prokaryotes, many of which form long-term relationships with the host and perform important biological functions. Our study highlights the importance of greater specificity in microbiome research; the gut microbiome contains many "omes" (e.g., prokaryome, eukaryome), each comprising different microbial taxa shaped by unique selective pressures.
Collapse
Affiliation(s)
- Mariah E Donohue
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA.
| | - Zoe L Hert
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Carly E Karrick
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Amanda K Rowe
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Patricia C Wright
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Centre ValBio Research Station, Ranomafana, MD, USA
| | | | | | | | - Kathryn M Everson
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
| |
Collapse
|
53
|
Abstract
Apicomplexan parasites constitute more than 6,000 species infecting a wide range of hosts. These include important pathogens such as those causing malaria and toxoplasmosis. Their evolutionary emergence coincided with the dawn of animals. Mitochondrial genomes of apicomplexan parasites have undergone dramatic reduction in their coding capacity, with genes for only three proteins and ribosomal RNA genes present in scrambled fragments originating from both strands. Different branches of the apicomplexans have undergone rearrangements of these genes, with Toxoplasma having massive variations in gene arrangements spread over multiple copies. The vast evolutionary distance between the parasite and the host mitochondria has been exploited for the development of antiparasitic drugs, especially those used to treat malaria, wherein inhibition of the parasite mitochondrial respiratory chain is selectively targeted with little toxicity to the host mitochondria. We describe additional unique characteristics of the parasite mitochondria that are being investigated and provide greater insights into these deep-branching eukaryotic pathogens.
Collapse
Affiliation(s)
- Ian M Lamb
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA;
| | - Ijeoma C Okoye
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA;
| | - Michael W Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA;
| | - Akhil B Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
54
|
Coyle MC, Tajima AM, Leon F, Choksi SP, Yang A, Espinoza S, Hughes TR, Reiter JF, Booth DS, King N. An RFX transcription factor regulates ciliogenesis in the closest living relatives of animals. Curr Biol 2023; 33:3747-3758.e9. [PMID: 37552984 PMCID: PMC10530576 DOI: 10.1016/j.cub.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Cilia allowed our protistan ancestors to sense and explore their environment, avoid predation, and capture bacterial prey.1,2,3 Regulated ciliogenesis was likely critical for early animal evolution,2,4,5,6 and in modern animals, deploying cilia in the right cells at the right time is crucial for development and physiology. Two transcription factors, RFX and FoxJ1, coordinate ciliogenesis in animals7,8,9 but are absent from the genomes of many other ciliated eukaryotes, raising the question of how the regulation of ciliogenesis in animals evolved.10,11 By comparing the genomes of animals with those of their closest living relatives, the choanoflagellates, we found that the genome of their last common ancestor encoded at least three RFX paralogs and a FoxJ1 homolog. Disruption of the RFX homolog cRFXa in the model choanoflagellate Salpingoeca rosetta resulted in delayed cell proliferation and aberrant ciliogenesis, marked by the collapse and resorption of nascent cilia. In cRFXa mutants, ciliogenesis genes and foxJ1 were significantly downregulated. Moreover, the promoters of S. rosetta ciliary genes are enriched for DNA motifs matching those bound by the cRFXa protein in vitro. These findings suggest that an ancestral cRFXa homolog coordinated ciliogenesis in the progenitors of animals and choanoflagellates and that the selective deployment of the RFX regulatory module may have been necessary to differentiate ciliated from non-ciliated cell types during early animal evolution.
Collapse
Affiliation(s)
- Maxwell C Coyle
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Adia M Tajima
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Fredrick Leon
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Semil P Choksi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ally Yang
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, M5S 3E1, Canada
| | - Sarah Espinoza
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, M5S 3E1, Canada
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - David S Booth
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Nicole King
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
55
|
Ušák D, Haluška S, Pleskot R. Callose synthesis at the center point of plant development-An evolutionary insight. PLANT PHYSIOLOGY 2023; 193:54-69. [PMID: 37165709 DOI: 10.1093/plphys/kiad274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Polar callose deposition into the extracellular matrix is tightly controlled in time and space. Its presence in the cell wall modifies the properties of the surrounding area, which is fundamental for the correct execution of numerous processes such as cell division, male gametophyte development, intercellular transport, or responses to biotic and abiotic stresses. Previous studies have been invaluable in characterizing specific callose synthases (CalSs) during individual cellular processes. However, the complex view of the relationships between a particular CalS and a specific process is still lacking. Here we review the recent proceedings on the role of callose and individual CalSs in cell wall remodelling from an evolutionary perspective and with a particular focus on cytokinesis. We provide a robust phylogenetic analysis of CalS across the plant kingdom, which implies a 3-subfamily distribution of CalS. We also discuss the possible linkage between the evolution of CalSs and their function in specific cell types and processes.
Collapse
Affiliation(s)
- David Ušák
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Samuel Haluška
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Roman Pleskot
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
| |
Collapse
|
56
|
Feix AS, Cruz-Bustos T, Ruttkowski B, Joachim A. In vitro cultivation methods for coccidian parasite research. Int J Parasitol 2023; 53:477-489. [PMID: 36400306 DOI: 10.1016/j.ijpara.2022.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
Abstract
The subclass Coccidia comprises a large group of protozoan parasites, including important pathogens of humans and animals such as Toxoplasma gondii, Neospora caninum, Eimeria spp., and Cystoisospora spp. Their life cycle includes a switch from asexual to sexual stages and is often restricted to a single host species. Current research on coccidian parasites focuses on cell biology and the underlying mechanisms of protein expression and trafficking in different life stages, host cell invasion and host-parasite interactions. Furthermore, novel anticoccidial drug targets are evaluated. Given the variety of research questions and the requirement to reduce and replace animal experimentation, in vitro cultivation of Coccidia needs to be further developed and refined to meet these requirements. For these purposes, established culture systems are constantly improved. In addition, new in vitro culture systems lately gained considerable importance in research on Coccidia. Well established and optimized in vitro cultures of monolayer cells can support the viability and development of parasite stages and even allow completion of the life cycle in vitro, as shown for Cystoisospora suis and Eimeria tenella. Furthermore, new three-dimensional cell culture models are used for propagation of Cryptosporidium spp. (close relatives of the coccidians), and the infection of three-dimensional organoids with T. gondii also gained popularity as the interaction between the parasite and host tissue can be studied in more detail. The latest advances in three-dimensional culture systems are organ-on-a-chip models, that to date have only been tested for T. gondii but promise to accelerate research in other coccidians. Lastly, the completion of the life cycle of C. suis and Cryptosporidium parvum was reported to continue in a host cell-free environment following the first occurrence of asexual stages. Such axenic cultures are becoming increasingly available and open new avenues for research on parasite life cycle stages and novel intervention strategies.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Teresa Cruz-Bustos
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
57
|
Li S, Qi B, Peng X, Wang W, Wang W, Liu P, Liu B, Peng Z, Wang Q, Li Y. Genome size and GC content of myxomycetes. Eur J Protistol 2023; 90:125991. [PMID: 37331249 DOI: 10.1016/j.ejop.2023.125991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/20/2023]
Abstract
More than 1272 myxomycetes species have been described, accounting for more than half of all Amoebozoa species. However, the genome size of only three myxomycetes species has been reported. Therefore, we used flow cytometry to present an extensive survey and a phylogeny-based analysis of genome size and GC content evolution in 144 myxomycetes species. The genome size of myxomycetes ranged from 18.7 Mb to 470.3 Mb, and the GC content ranged from 38.7% to 70.1%. Bright-spored clade showed larger genome sizes and more intra-order genome size variations than the dark-spored clade. GC content and genome size were positively correlated in both bright-spored and dark-spored clades, and spore size was positively correlated with genome size and GC content in the bright-spored clade. We provided the first genome size data set in Myxomycetes, and our results will provide helpful information for future Myxomycetes studies, such as genome sequencing.
Collapse
Affiliation(s)
- Shu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Bao Qi
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Xueyan Peng
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Wei Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Wan Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Pu Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zhanwu Peng
- Information Center, Jilin Agricultural University, Changchun, China.
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
58
|
Kezlya E, Tseplik N, Kulikovskiy M. Genetic Markers for Metabarcoding of Freshwater Microalgae: Review. BIOLOGY 2023; 12:1038. [PMID: 37508467 PMCID: PMC10376359 DOI: 10.3390/biology12071038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The metabarcoding methods for studying the diversity of freshwater microalgae and routine biomonitoring are actively used in modern research. A lot of experience has been accumulated already, and many methodological questions have been solved (such as the influence of the methods and time of sample conservation, DNA extraction and bioinformatical processing). The reproducibility of the method has been tested and confirmed. However, one of the main problems-choosing a genetic marker for the study-still lacks a clear answer. We analyzed 70 publications and found out that studies on eukaryotic freshwater microalgae use 12 markers (different nuclear regions 18S and ITS and plastids rbcL, 23S and 16S). Each marker has its peculiarities; they amplify differently and have various levels of efficiency (variability) in different groups of algae. The V4 and V9 18S and rbcL regions are used most often. We concentrated especially on the studies that compare the results of using different markers and microscopy. We summarize the data on the primers for each region and on how the choice of a marker affects the taxonomic composition of a community.
Collapse
Affiliation(s)
- Elena Kezlya
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| | - Natalia Tseplik
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| | - Maxim Kulikovskiy
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| |
Collapse
|
59
|
Mérou N, Lecadet C, Ubertini M, Pouvreau S, Arzul I. Environmental distribution and seasonal dynamics of Marteilia refringens and Bonamia ostreae, two protozoan parasites of the European flat oyster, Ostrea edulis. Front Cell Infect Microbiol 2023; 13:1154484. [PMID: 37384224 PMCID: PMC10293890 DOI: 10.3389/fcimb.2023.1154484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Marteilia refringens and Bonamia ostreae are protozoan parasites responsible for mortalities of farmed and wild flat oysters Ostrea edulis in Europe since 1968 and 1979, respectively. Despite almost 40 years of research, the life-cycle of these parasites is still poorly known, especially regarding their environmental distribution. Methods We carried out an integrated field study to investigate the dynamics of M. refringens and B. ostreae in Rade of Brest, where both parasites are known to be present. We used real-time PCR to monitor seasonally over four years the presence of both parasites in flat oysters. In addition, we used previously developed eDNA based-approaches to detect parasites in planktonic and benthic compartments for the last two years of the survey. Results M. refringens was detected in flat oysters over the whole sampling period, sometimes with a prevalence exceeding 90%. It was also detected in all the sampled environmental compartments, suggesting their involvement in parasite transmission and overwintering. In contrast, B. ostreae prevalence in flat oysters was low and the parasite was almost never detected in planktonic and benthic compartments. Finally, the analysis of environmental data allowed describing the seasonal dynamics of both parasites in Rade of Brest: M. refringens was more detected in summer and fall than in winter and spring, contrary to B. ostreae which showed higher prevalence in winter and spring. Discussion The present study emphasizes the difference between M. refringens and B. ostreae ecology, the former presenting a wider environmental distribution than the latter, which seems closely associated to flat oysters. Our findings highlight the key role of planktonic and benthic compartments in M. refringens transmission and storage or potential overwintering, respectively. More generally, we provide here a method that could be useful not only to further investigate non cultivable pathogens life-cycle, but also to support the design of more integrated surveillance programs.
Collapse
Affiliation(s)
- Nicolas Mérou
- Adaptation et Santé des Invertébrés Marins (ASIM), Ifremer, La Tremblade, France
- POS3IDON, R&D Department, Saint Malo, France
| | - Cyrielle Lecadet
- Adaptation et Santé des Invertébrés Marins (ASIM), Ifremer, La Tremblade, France
| | | | - Stéphane Pouvreau
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Unité Mixte de Recherche (UMR) 6539 Ifremer/Université de Bretagne Occidentale (UBO)/Institut de Recherche pour le Développement (IRD)/Centre National de la Recherche Scientifique (CNRS), Ifremer, Argenton-en-Landunvez, France
| | - Isabelle Arzul
- Adaptation et Santé des Invertébrés Marins (ASIM), Ifremer, La Tremblade, France
| |
Collapse
|
60
|
Kim DJ, Woo RM, Kim KS, Woo SD. Screening of Entomopathogenic Fungal Culture Extracts with Honeybee Nosemosis Inhibitory Activity. INSECTS 2023; 14:538. [PMID: 37367354 DOI: 10.3390/insects14060538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
This study aimed to select the most effective culture extracts for controlling honeybee nosemosis using 342 entomopathogenic fungi of 24 species from 18 genera. The germination inhibitory activity of the fungal culture extract on Nosema ceranae spores was evaluated using an in vitro germination assay method. Among 89 fungal culture extracts showing germination inhibitory activity of approximately 80% or more, 44 fungal culture extracts that maintained their inhibitory activity even at a concentration of 1% were selected. Finally, the honeybee nosemosis inhibitory activity was evaluated using the cultured extracts of five fungal isolates having a Nosema inhibitory activity of approximately 60% or more, even when the extract was removed after treatment. As a result, the proliferation of Nosema spores was reduced by all fungal culture extract treatments. However, only the treatment of the culture extracts from Paecilomyces marquandii 364 and Pochonia bulbillosa 60 showed a reduction in honeybee mortality due to nosemosis. In particular, the extracts of these two fungal isolates also increased the survival of honeybees.
Collapse
Affiliation(s)
- Dong-Jun Kim
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
- Process Development Team, R&D Division, Plolagen Co., Ltd., Seoul 03722, Republic of Korea
| | - Ra-Mi Woo
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyu-Seek Kim
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Soo-Dong Woo
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
61
|
Advances in molecular interactions on the Rhizoctonia solani-sugar beet pathosystem. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
62
|
Britez JD, Rodriguez AE, Di Ciaccio L, Marugán-Hernandez V, Tomazic ML. What Do We Know about Surface Proteins of Chicken Parasites Eimeria? Life (Basel) 2023; 13:1295. [PMID: 37374079 DOI: 10.3390/life13061295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Poultry is the first source of animal protein for human consumption. In a changing world, this sector is facing new challenges, such as a projected increase in demand, higher standards of food quality and safety, and reduction of environmental impact. Chicken coccidiosis is a highly widespread enteric disease caused by Eimeria spp. which causes significant economic losses to the poultry industry worldwide; however, the impact on family poultry holders or backyard production-which plays a key role in food security in small communities and involves mainly rural women-has been little explored. Coccidiosis disease is controlled by good husbandry measures, chemoprophylaxis, and/or live vaccination. The first live vaccines against chicken coccidiosis were developed in the 1950s; however, after more than seven decades, none has reached the market. Current limitations on their use have led to research in next-generation vaccines based on recombinant or live-vectored vaccines. Next-generation vaccines are required to control this complex parasitic disease, and for this purpose, protective antigens need to be identified. In this review, we have scrutinised surface proteins identified so far in Eimeria spp. affecting chickens. Most of these surface proteins are anchored to the parasite membrane by a glycosylphosphatidylinositol (GPI) molecule. The biosynthesis of GPIs, as well as the role of currently identified surface proteins and interest as vaccine candidates has been summarised. The potential role of surface proteins in drug resistance and immune escape and how these could limit the efficacy of control strategies was also discussed.
Collapse
Affiliation(s)
- Jesica Daiana Britez
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Anabel Elisa Rodriguez
- Instituto Nacional de Tecnología Agropecuaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Lucía Di Ciaccio
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | | | - Mariela Luján Tomazic
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Ciudad Autónoma de Buenos Aires 1113, Argentina
| |
Collapse
|
63
|
López-García P, Moreira D. The symbiotic origin of the eukaryotic cell. C R Biol 2023; 346:55-73. [PMID: 37254790 DOI: 10.5802/crbiol.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Eukaryogenesis represented a major evolutionary transition that led to the emergence of complex cells from simpler ancestors. For several decades, the most accepted scenario involved the evolution of an independent lineage of proto-eukaryotes endowed with an endomembrane system, including a nuclear compartment, a developed cytoskeleton and phagocytosis, which engulfed the alphaproteobacterial ancestor of mitochondria. However, the recent discovery by metagenomic and cultural approaches of Asgard archaea, which harbour many genes in common with eukaryotes and are their closest relatives in phylogenomic trees, rather supports scenarios based on the symbiosis of one Asgard-like archaeon and one or more bacteria at the origin of the eukaryotic cell. Here, we review the recent discoveries that led to this conceptual shift, briefly evoking current models of eukaryogenesis and the challenges ahead to discriminate between them and to establish a detailed, plausible scenario that accounts for the evolution of eukaryotic traits from those of their prokaryotic ancestors.
Collapse
|
64
|
Gunathilaka MDTL. Utilization of Marine Seaweeds as a Promising Defense Against COVID-19: a Mini-review. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023:10.1007/s10126-023-10214-7. [PMID: 37243809 DOI: 10.1007/s10126-023-10214-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/04/2023] [Indexed: 05/29/2023]
Abstract
COVID-19 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which mainly affects the respiratory system. It has been declared as a "pandemic" in March 2020 by the World Health Organization due to the high spreading rate. SARS-CoV-2 binds with the angiotensin-converting enzyme 2 (ACE2) receptors on the cell surface which leads to the downregulation of ACE2 and upregulation of angiotensin-converting enzyme (ACE) receptors. The elevated level of cytokines and ACE receptors leads to the severity of SARS-CoV-2 infection. Due to the limited availability of vaccines and recurrent attacks of COVID-19 mainly in low-income countries, it is important to search for natural remedies to prevent or treat COVID-19 infection. Marine seaweeds are a rich source of bioactive compounds such as phlorotannins; fucoidan; carotenoids; omega-3 and omega-6 fatty acids; vitamins B12, D, and C; and minerals including zinc and selenium that exhibit antioxidant, antiviral, and anti-inflammatory activities. Furthermore, bioactive compounds present in marine seaweeds have the ability to inhibit ACEs by inducing ACE2 which exhibits anti-inflammatory effects in COVID-19. Correspondingly, soluble dietary fibers present in seaweeds are served as prebiotics by generating short-chain fatty acids through fermentation. Hence, seaweeds can be utilized to reduce the gastrointestinal infections associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- M D T L Gunathilaka
- Department of Biomedical Science, Faculty of Health Science, NSBM Green University, Mahenwatta, Pitipana, Homagama, Sri Lanka.
| |
Collapse
|
65
|
Costa MRA, Cardoso MML, Selmeczy GB, Padisák J, Becker V. Phytoplankton functional responses induced by extreme hydrological events in a tropical reservoir. HYDROBIOLOGIA 2023:1-19. [PMID: 37363742 PMCID: PMC10184627 DOI: 10.1007/s10750-023-05241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2023]
Abstract
Climate change is affecting the global hydrological cycle, causing drastic changes in precipitation patterns. Extreme climatic events are becoming more frequent and intense than in the past, leading to water-level fluctuations and affecting aquatic ecosystems. Semiarid regions are very susceptible to changing climate. We analyzed a 10 years dataset from a tropical semiarid reservoir during extreme hydrological events (heavy rains and prolonged drought), and evaluated phytoplankton functional responses to environmental conditions. We found, as hypothesized, that phytoplankton functional structure change in a temporal scale due to water-volume fluctuation induced by the rainfall pattern. Depth and inorganic material acted as environmental filters selecting phytoplankton groups. High water level seems to improve water quality and low water level worsen it. Colonial and filamentous cyanobacteria dominate the wet period; however, it may have a critical threshold during severe periods of drought, which will lead to dominance of groups well adapted to low light conditions and with mixotrophic metabolism. Phytoplankton functional approaches can simplify phytoplankton identification and reflect better the environmental conditions than the taxonomic approach. Therefore, these approaches can help to understand the shifts in aquatic ecosystems under extreme hydrological events and predict functional response of phytoplankton being an important tool to water management and conservation. Supplementary Information The online version contains supplementary material available at 10.1007/s10750-023-05241-3.
Collapse
Affiliation(s)
- Mariana R. A. Costa
- ELKH-PE Limnoecology Research Group, Egyetem u. 10, Veszprém, 8200 Hungary
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000, Natal, RN Brazil
| | - Maria M. L. Cardoso
- Secretaria da Educação da Ciência e Tecnologia do Estado da Paraíba, Avenida Dr. João da Mata, nº 200, Jaguaribe, João Pessoa, PB Brasil
| | - Géza B. Selmeczy
- ELKH-PE Limnoecology Research Group, Egyetem u. 10, Veszprém, 8200 Hungary
- University of Pannonia, Center of Natural Science, Limnology Research Group, Egyetem u. 10, H-8200 Veszprém, Hungary, University of Pannonia, Egyetem u. 10, Veszprém, 8200 Hungary
| | - Judit Padisák
- ELKH-PE Limnoecology Research Group, Egyetem u. 10, Veszprém, 8200 Hungary
- University of Pannonia, Center of Natural Science, Limnology Research Group, Egyetem u. 10, H-8200 Veszprém, Hungary, University of Pannonia, Egyetem u. 10, Veszprém, 8200 Hungary
| | - Vanessa Becker
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000, Natal, RN Brazil
- Departamento de Engenharia Civil e Ambiental, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000, Natal, RN Brasil
| |
Collapse
|
66
|
McCourt RM, Lewis LA, Strother PK, Delwiche CF, Wickett NJ, de Vries J, Bowman JL. Green land: Multiple perspectives on green algal evolution and the earliest land plants. AMERICAN JOURNAL OF BOTANY 2023; 110:e16175. [PMID: 37247371 DOI: 10.1002/ajb2.16175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 05/31/2023]
Abstract
Green plants, broadly defined as green algae and the land plants (together, Viridiplantae), constitute the primary eukaryotic lineage that successfully colonized Earth's emergent landscape. Members of various clades of green plants have independently made the transition from fully aquatic to subaerial habitats many times throughout Earth's history. The transition, from unicells or simple filaments to complex multicellular plant bodies with functionally differentiated tissues and organs, was accompanied by innovations built upon a genetic and phenotypic toolkit that have served aquatic green phototrophs successfully for at least a billion years. These innovations opened an enormous array of new, drier places to live on the planet and resulted in a huge diversity of land plants that have dominated terrestrial ecosystems over the past 500 million years. This review examines the greening of the land from several perspectives, from paleontology to phylogenomics, to water stress responses and the genetic toolkit shared by green algae and plants, to the genomic evolution of the sporophyte generation. We summarize advances on disparate fronts in elucidating this important event in the evolution of the biosphere and the lacunae in our understanding of it. We present the process not as a step-by-step advancement from primitive green cells to an inevitable success of embryophytes, but rather as a process of adaptations and exaptations that allowed multiple clades of green plants, with various combinations of morphological and physiological terrestrialized traits, to become diverse and successful inhabitants of the land habitats of Earth.
Collapse
Affiliation(s)
- Richard M McCourt
- Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, Philadelphia, PA, 19118, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Paul K Strother
- Department of Earth and Environmental Sciences, Boston College Weston Observatory, 381 Concord Road, Weston, MA, 02493, USA
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Norman J Wickett
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA
| | - Jan de Vries
- Göttingen Center for Molecular Biosciences, Department of Applied Bioinformatics, University of Göttingen Goldschmidtstr. 1, Göttingen, 37077, Germany
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
67
|
Bourland W. Morphologic and molecular characterization of Apertospathula pilata n. sp., a novel freshwater spathidiid (Ciliophora, Litostomatea) from Idaho, USA. Eur J Protistol 2023; 89:125990. [PMID: 37207517 DOI: 10.1016/j.ejop.2023.125990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Order Spathidiida Foissner and Foissner, 1988 comprises a large group of morphologically diverse, primarily predatory, free living ciliates, the phylogeny of which has remained stubbornly unresolved. Families Arcuospathidiidae and Apertospathulidae are two morphologically similar groups established on the basis of differences in the morphology of the oral bulge and circumoral kinety. While Arcuospathidiidae is non-monophyletic in 18S rRNA gene analyses, the Apertospathulidae has been represented by only a single Apertospathula sequence in public databases. In this report, a novel freshwater species, Apertospathula pilata n. sp. is described on the basis of living observation, silver impregnation, and scanning electron microscopy. The phylogeny of the new species is assessed based on the rRNA cistron. The main features distinguishing A. pilata n. sp. from all congeners are: the oral bulge extrusomes (filiform, up to 25 µm long), the combination of body size (130-193 µm) and shape (spatulate), the extensive oral bulge length (41% of the cell length after protargol impregnation), and multiple micronuclei (one to five, two on average). The monophyly of Apertospathulidae Foissner, Xu and Kreutz, 2005 is rejected.
Collapse
Affiliation(s)
- William Bourland
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
68
|
Mallén-Ponce MJ, Gámez-Arcas S, Pérez-Pérez ME. Redox partner interactions in the ATG8 lipidation system in microalgae. Free Radic Biol Med 2023; 203:58-68. [PMID: 37028463 DOI: 10.1016/j.freeradbiomed.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
Autophagy is a catabolic pathway that functions as a degradative and recycling process to maintain cellular homeostasis in most eukaryotic cells, including photosynthetic organisms such as microalgae. This process involves the formation of double-membrane vesicles called autophagosomes, which engulf the material to be degraded and recycled in lytic compartments. Autophagy is mediated by a set of highly conserved autophagy-related (ATG) proteins that play a fundamental role in the formation of the autophagosome. The ATG8 ubiquitin-like system catalyzes the conjugation of ATG8 to the lipid phosphatidylethanolamine, an essential reaction in the autophagy process. Several studies identified the ATG8 system and other core ATG proteins in photosynthetic eukaryotes. However, how ATG8 lipidation is driven and regulated in these organisms is not fully understood yet. A detailed analysis of representative genomes from the entire microalgal lineage revealed a high conservation of ATG proteins in these organisms with the remarkable exception of red algae, which likely lost ATG genes before diversification. Here, we examine in silico the mechanisms and dynamic interactions between different components of the ATG8 lipidation system in plants and algae. Moreover, we also discuss the role of redox post-translational modifications in the regulation of ATG proteins and the activation of autophagy in these organisms by reactive oxygen species.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005, Paris, France
| | - Samuel Gámez-Arcas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092, Sevilla, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092, Sevilla, Spain.
| |
Collapse
|
69
|
Müller J, Hemphill A. Toxoplasma gondii infection: novel emerging therapeutic targets. Expert Opin Ther Targets 2023; 27:293-304. [PMID: 37212443 PMCID: PMC10330558 DOI: 10.1080/14728222.2023.2217353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Toxoplasmosis constitutes a challenge for public health, animal production, and welfare. So far, only a limited panel of drugs has been marketed for clinical applications. In addition to classical screening, the investigation of unique targets of the parasite may lead to the identification of novel drugs. AREAS COVERED Herein, the authors describe the methodology to identify novel drug targets in Toxoplasma gondii and review the literature with a focus on the last two decades. EXPERT OPINION Over the last two decades, the investigation of essential proteins of T. gondii as potential drug targets has fostered the hope of identifying novel compounds for the treatment of toxoplasmosis. Despite good efficacies in vitro, only a few classes of these compounds are effective in suitable rodent models, and none has cleared the hurdle to applications in humans. This shows that target-based drug discovery is in no way better than classical screening approaches. In both cases, off-target effects and adverse side effects in the hosts must be considered. Proteomics-driven analyses of parasite- and host-derived proteins that physically bind drug candidates may constitute a suitable tool to characterize drug targets, irrespectively of the drug discovery methods.
Collapse
Affiliation(s)
- Joachim Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
70
|
Morrissette N, Abbaali I, Ramakrishnan C, Hehl AB. The Tubulin Superfamily in Apicomplexan Parasites. Microorganisms 2023; 11:microorganisms11030706. [PMID: 36985278 PMCID: PMC10056924 DOI: 10.3390/microorganisms11030706] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Microtubules and specialized microtubule-containing structures are assembled from tubulins, an ancient superfamily of essential eukaryotic proteins. Here, we use bioinformatic approaches to analyze features of tubulins in organisms from the phylum Apicomplexa. Apicomplexans are protozoan parasites that cause a variety of human and animal infectious diseases. Individual species harbor one to four genes each for α- and β-tubulin isotypes. These may specify highly similar proteins, suggesting functional redundancy, or exhibit key differences, consistent with specialized roles. Some, but not all apicomplexans harbor genes for δ- and ε-tubulins, which are found in organisms that construct appendage-containing basal bodies. Critical roles for apicomplexan δ- and ε-tubulin are likely to be limited to microgametes, consistent with a restricted requirement for flagella in a single developmental stage. Sequence divergence or the loss of δ- and ε-tubulin genes in other apicomplexans appears to be associated with diminished requirements for centrioles, basal bodies, and axonemes. Finally, because spindle microtubules and flagellar structures have been proposed as targets for anti-parasitic therapies and transmission-blocking strategies, we discuss these ideas in the context of tubulin-based structures and tubulin superfamily properties.
Collapse
Affiliation(s)
- Naomi Morrissette
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: ; Tel.: +1-949-824-9243
| | - Izra Abbaali
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Chandra Ramakrishnan
- Institute for Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| | - Adrian B. Hehl
- Institute for Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| |
Collapse
|
71
|
Wang X, Jiang C, Gu S, Liu Z, Xiong J, Warren A, Miao W. Large-scale phylogenetic analysis provides insights into the diversification and evolution of sessilid peritrich ciliates (Protista: Ciliophora). J Eukaryot Microbiol 2023; 70:e12950. [PMID: 36177660 DOI: 10.1111/jeu.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/13/2022] [Accepted: 09/25/2022] [Indexed: 12/01/2022]
Abstract
The Peritrichia is a speciose and morphologically distinctive assemblage of ciliated protists that was first observed by Antonie van Leeuwenhoek over 340 years ago. In the last two decades, the phylogenetic relationships of this group have been increasingly debated as morphological and molecular analyses have generated contrasting conclusions, mainly owing to limited sampling. In the present study, we performed expanded phylogenetic analyses of 152 sessilid peritrichs collected from 14 different provinces of China and 141 SSU rDNA peritrich sequences from GenBank. The results of the analyses revealed new divergent relationships between and within major clades that challenge the morphological classification of this group including, (1) the recovery of four major phylogenetically divergent clades in the monophyletic order Sessilida, (2) aboral structures such as the stalk and spasmoneme were evolutionary labile, (3) the stalk or/and spasmoneme was lost in each divergent clade indicating that parallel evolution occurred in sessilid peritrichs and (4) the life cycle and habit drive the diversity of aboral structures as well as diversification and evolution in peritrichs.
Collapse
Affiliation(s)
- Xueyan Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuanqi Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Siyu Gu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhencheng Liu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, UK
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Freshwater Ecology and Biotechnology of China, Wuhan, China.,CAS Center for Excellence in Animal Evolution and Genetics, Kunming, China
| |
Collapse
|
72
|
Braga CQ, Milech A, dos Santos Bermann C, Ianiski LB, Stibbe PC, de Lemos AB, Bonel J, de Avila Botton S, Pereira DIB. Exposure of Culex quinquefasciatus to the oomycete Pythium insidiosum: A protocol for in vitro studies. Fungal Biol 2023; 127:969-974. [PMID: 37024156 DOI: 10.1016/j.funbio.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/06/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Pythium insidiosum causes pythiosis, an infection that affects different species of mammals, including humans, and inhabits marshy ecosystems of tropical, subtropical, and temperate regions worldwide. Therefore, this study proposes a protocol to expose Culex quinquefasciatus to P. insidiosum zoospores. Cx. quinquefasciatus immatures (eggs, larvae, and pupae) were exposed to zoospores (8x103 zoospores/mL) of the oomycete for 24 h. The exposure of Cx. quinquefasciatus to the zoospores from L1 to the emergence of adults was evaluated, and P. insidiosum detection was performed by microbiological culture, polymerase chain reaction, and histopathological analysis of stage 4 larvae. The protocol used to produce Cx. quinquefasciatus colonies and adapted for this study proved viable for research on the interaction between P. insidiosum and this Culicidae species. Moreover, P. insidiosum presence was evident in all larval stages of the mosquito, although the presence of the oomycete was not detected in the eggs, pupae, and adults. This study is a pioneer in the development of a protocol to evaluate Cx. quinquefasciatus exposure to P. insidiosum zoospores, and under experimental conditions, P. insidiosum can establish itself in Cx. quinquefasciatus larval stages. The developed protocol is expected to serve as a basis for developing studies to evaluate the interactions of P. insidiosum with these mosquitoes and shed more light on the participation of culicids in expanding the ecological niche of P. insidiosum.
Collapse
|
73
|
Mitsi K, Richter DJ, Arroyo AS, López-Escardó D, Antó M, Oterino AG, Ruiz-Trillo I. Taxonomic composition, community structure and molecular novelty of microeukaryotes in a temperate oligomesotrophic lake as revealed by metabarcoding. Sci Rep 2023; 13:3119. [PMID: 36813945 PMCID: PMC9947120 DOI: 10.1038/s41598-023-30228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Microbial eukaryotes are diverse and ecologically important organisms, yet sampling constraints have hindered the understanding of their distribution and diversity in freshwater ecosystems. Metabarcoding has provided a powerful complement to traditional limnological studies, revealing an unprecedented diversity of protists in freshwater environments. Here, we aim to expand our knowledge of the ecology and diversity of protists in lacustrine ecosystems by targeting the V4 hypervariable region of the 18S rRNA gene in water column, sediment and biofilm samples collected from Sanabria Lake (Spain) and surrounding freshwater ecosystems. Sanabria is a temperate lake, which are relatively understudied by metabarcoding in comparison to alpine and polar lakes. The phylogenetic diversity of microbial eukaryotes detected in Sanabria spans all currently recognized eukaryotic supergroups, with Stramenopiles being the most abundant and diverse supergroup in all sampling sites. Parasitic microeukaryotes account for 21% of the total protist ASVs identified in our study and were dominated by Chytridiomycota, both in terms of richness and abundance, in all sampling sites. Sediments, biofilms and water column samples harbour distinct microbial communities. Phylogenetic placement of poorly assigned and abundant ASVs indicates molecular novelty inside Rhodophyta, Bigyra, early-branching Nucletmycea and Apusomonadida. In addition, we report the first freshwater incidence of the previously exclusively marine genera Abeoforma and Sphaeroforma. Our results contribute to a deeper understanding of microeukaryotic communities in freshwater ecosystems, and provide the first molecular reference for future biomonitoring surveys in Sanabria Lake.
Collapse
Affiliation(s)
- Konstantina Mitsi
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de La Barceloneta, 37-49, 08033, Barcelona, Spain.
| | - Daniel J. Richter
- grid.507636.10000 0004 0424 5398Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de La Barceloneta, 37-49, 08033 Barcelona, Spain
| | - Alicia S. Arroyo
- grid.507636.10000 0004 0424 5398Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de La Barceloneta, 37-49, 08033 Barcelona, Spain
| | - David López-Escardó
- grid.418218.60000 0004 1793 765XInstitut de Ciències del Mar (CSIC), Passeig Marítim de La Barceloneta, 37-49, 08033 Barcelona, Spain
| | - Meritxell Antó
- grid.507636.10000 0004 0424 5398Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de La Barceloneta, 37-49, 08033 Barcelona, Spain
| | | | - Iñaki Ruiz-Trillo
- grid.507636.10000 0004 0424 5398Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de La Barceloneta, 37-49, 08033 Barcelona, Spain ,grid.425902.80000 0000 9601 989XInstitució Catalana de Recerca I Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
74
|
A three-gene phylogeny supports taxonomic rearrangements in the family Didymiaceae (Myxomycetes). Mycol Prog 2023. [DOI: 10.1007/s11557-022-01858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
75
|
Koteska D, Marter P, Huang S, Pradella S, Petersen J, Schulz S. Volatiles of the Apicomplexan Alga Chromera velia and Associated Bacteria. Chembiochem 2023; 24:e202200530. [PMID: 36416092 PMCID: PMC10107727 DOI: 10.1002/cbic.202200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Volatiles released by the apicomplexan alga Chromera velia CCAP1602/1 and their associated bacteria have been investigated. A metagenome analysis allowed the identification of the most abundant heterotrophic bacteria of the phycosphere, but the isolation of additional strains showed that metagenomics underestimated the complexity of the algal microbiome, However, a culture-independent approach revealed the presence of a planctomycete that likely represents a novel bacterial family. We analysed algal and bacterial volatiles by open-system-stripping analysis (OSSA) on Tenax TA desorption tubes, followed by thermodesorption, cryofocusing and GC-MS-analysis. The analyses of the alga and the abundant bacterial strains Sphingopyxis litoris A01A-101, Algihabitans albus A01A-324, "Coraliitalea coralii" A01A-333 and Litoreibacter sp. A01A-347 revealed sulfur- and nitrogen-containing compounds, ketones, alcohols, aldehydes, aromatic compounds, amides and one lactone, as well as the typical algal products, apocarotenoids. The compounds were identified by gas chromatographic retention indices, comparison of mass spectra and syntheses of reference compounds. A major algal metabolite was 3,4,4-trimethylcyclopent-2-en-1-one, an apocarotenoid indicating the presence of carotenoids related to capsanthin, not reported from algae so far. A low overlap in volatiles bouquets between C. velia and the bacteria was found, and the xenic algal culture almost exclusively released algal components.
Collapse
Affiliation(s)
- Diana Koteska
- Institut für Organische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Pia Marter
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Sixing Huang
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Silke Pradella
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Stefan Schulz
- Institut für Organische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
76
|
Pérez-Uz B, Galfione VC, Ochoa-Hueso R, Martín-Cereceda M. Protist Diversity Responses to Experimental N Deposition in Biological Crusts of a Semiarid Mediterranean Ecosystem. Protist 2023; 174:125929. [PMID: 36455480 DOI: 10.1016/j.protis.2022.125929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Biological soil crusts (BSC) are associations of different macro and microorganisms and aggregated soil particles located on the surface of soils in many different habitats. BSC harbour a diverse and complex community of ciliates and testate amoebae. These phagotrophic protists play an important role in C and N recycling in soil ecosystems but have not been frequently studied in BSC. In this context, the effects of three increasing N inputs on ciliates and testate amoebae in crusts from a semi-arid Mediterranean ecosystem were evaluated. A field experiment with artificial N-deposition was designed to mimic the effects caused by anthropogenic N depositions. The results have shown that the protist populations of these semi-arid Mediterranean environments have lower species richness than other soil environments. The increase in N produces a net loss of diversity in the populations studied and shifts in the community structure. It has also been shown that some ciliates and testate amoebae, due to their population responses to increased N concentrations, could potentially be used as bio-indicators of N contamination in these BSCs.
Collapse
Affiliation(s)
- Blanca Pérez-Uz
- Dept. Genética, Fisiología y Microbiología, Fac. Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain.
| | - Virginia C Galfione
- Dept. Genética, Fisiología y Microbiología, Fac. Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Raul Ochoa-Hueso
- Instituto de Investigación Vitivinicola y Agroalimentaria, Universidad de Cádiz, Puerto Real, Spain
| | - Mercedes Martín-Cereceda
- Dept. Genética, Fisiología y Microbiología, Fac. Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
77
|
Fonseca C, Mendonça Filho JG, Reolid M, Duarte LV, de Oliveira AD, Souza JT, Lézin C. First putative occurrence in the fossil record of choanoflagellates, the sister group of Metazoa. Sci Rep 2023; 13:1242. [PMID: 36690681 PMCID: PMC9870899 DOI: 10.1038/s41598-022-26972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023] Open
Abstract
Choanoflagellates are microeukaryotes that inhabit freshwater and marine environments and have long been regarded as the closest living relatives of Metazoa. Knowledge on the evolution of choanoflagellates is key for the understanding of the ancestry of animals, and although molecular clock evidence suggests the appearance of choanoflagellates by late Neoproterozoic, no specimens of choanoflagellates are known to occur in the fossil record. Here the first putative occurrence of choanoflagellates in sediments from the Cretaceous (Cenomanian-Turonian) is described by means of several cutting-edge petrographic techniques, and a discussion of its paleoenvironmental significance is performed. Furthermore, their placement in the organic matter classification systems is argued, with a placement in the Zoomorph Subgroup (Palynomorph Group) of the dispersed organic matter classification system being proposed. Regarding the ICCP System 1994, incorporation of choanoflagellates is, at a first glance, straightforward within the liptinite group, but the definition of a new maceral may be necessary to accommodate the genetic origin of these organisms. While modern choanoflagellates may bring light to the cellular foundations of animal origins, this discovery may provide an older term of comparison to their extant specimens and provide guidelines for possible identification of these organic components in other locations and ages throughout the geological record.
Collapse
Affiliation(s)
- Carolina Fonseca
- Laboratório de Palinofácies e Fácies Orgânica (LAFO), Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira, 274, prédio do CCMN, sala J1020, Campus Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, CEP 21.949-900, Brazil.
- Universidade de Coimbra, MARE - Centro de Ciências do Mare do Ambiente, ARNET - Aquatic Research Network, Departamento de Ciências da Terra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal.
| | - João Graciano Mendonça Filho
- Laboratório de Palinofácies e Fácies Orgânica (LAFO), Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira, 274, prédio do CCMN, sala J1020, Campus Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, CEP 21.949-900, Brazil
| | - Matías Reolid
- Departamento de Geología and CEACTEMA, Universidad de Jaén, Campus Las Lagunillas sn, 23071, Jaén, Spain
| | - Luís V Duarte
- Universidade de Coimbra, MARE - Centro de Ciências do Mare do Ambiente, ARNET - Aquatic Research Network, Departamento de Ciências da Terra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - António Donizeti de Oliveira
- Laboratório de Palinofácies e Fácies Orgânica (LAFO), Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira, 274, prédio do CCMN, sala J1020, Campus Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, CEP 21.949-900, Brazil
| | - Jaqueline Torres Souza
- Laboratório de Palinofácies e Fácies Orgânica (LAFO), Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira, 274, prédio do CCMN, sala J1020, Campus Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, CEP 21.949-900, Brazil
| | - Carine Lézin
- Université Toulouse III - Paul Sabatier, OMP, GET (Géosciences Environnement Toulouse), CNRS, IRD, 14 Avenue Édouard Belin, 31400, Toulouse, France
| |
Collapse
|
78
|
Essential Oils and Terpenic Compounds as Potential Hits for Drugs against Amitochondriate Protists. Trop Med Infect Dis 2023; 8:tropicalmed8010037. [PMID: 36668944 PMCID: PMC9865018 DOI: 10.3390/tropicalmed8010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The human anaerobic or microaerophilic protists Giardia duodenalis, Entamoeba histolytica, and Trichomonas vaginalis are classified as amitochondriate parasites, a group of unicellular organisms that lack canonical mitochondria organelles. These microorganisms suffered adaptations to survive in hostile microenvironments and together represent an increasing threat to public health in developing countries. Nevertheless, the current therapeutic drugs to manage the infections are scarce and often cause several side effects. Furthermore, refractory cases associated with the emergence of parasitic resistance are concerns that guide the search for new pharmacological targets and treatment alternatives. Herein, essential oils and terpenic compounds with activity against amitochondriate parasites with clinical relevance are summarized and insights into possible mechanisms of action are made. This review aims to contribute with future perspectives for research with these natural products as potential alternatives for the acquisition of new molecules for the treatment of amitochondriate protists.
Collapse
|
79
|
He L, Tronstad KJ, Maheshwari A. Mitochondrial Dynamics during Development. NEWBORN (CLARKSVILLE, MD.) 2023; 2:19-44. [PMID: 37206581 PMCID: PMC10193651 DOI: 10.5005/jp-journals-11002-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitochondria are dynamic membrane-bound organelles in eukaryotic cells. These are important for the generation of chemical energy needed to power various cellular functions and also support metabolic, energetic, and epigenetic regulation in various cells. These organelles are also important for communication with the nucleus and other cellular structures, to maintain developmental sequences and somatic homeostasis, and for cellular adaptation to stress. Increasing information shows mitochondrial defects as an important cause of inherited disorders in different organ systems. In this article, we provide an extensive review of ontogeny, ultrastructural morphology, biogenesis, functional dynamics, important clinical manifestations of mitochondrial dysfunction, and possibilities for clinical intervention. We present information from our own clinical and laboratory research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus.
Collapse
Affiliation(s)
- Ling He
- Department of Pediatrics and Pharmacology, Johns Hopkins University, Baltimore, United States of America
| | | | - Akhil Maheshwari
- Founding Chairman, Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
80
|
Leterme S, Bastien O, Aiese Cigliano R, Amato A, Michaud M. Phylogenetic and Structural Analyses of VPS13 Proteins in Archaeplastida Reveal Their Complex Evolutionary History in Viridiplantae. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231211976. [PMID: 38033810 PMCID: PMC10683392 DOI: 10.1177/25152564231211976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
VPS13 is a lipid transfer protein family conserved among Eukaryotes and playing roles in fundamental processes involving vesicular transport and membrane expansion including autophagy and organelle biogenesis. VPS13 folds into a long hydrophobic tunnel, allowing lipid transport, decorated by distinct domains involved in protein localization and regulation. Whereas VPS13 organization and function have been extensively studied in yeast and mammals, information in organisms originating from primary endosymbiosis is scarce. In the higher plant Arabidopsis thaliana, four paralogs, AtVPS13S, X, M1, and M2, were identified, AtVPS13S playing a role in the regulation of root growth, cell patterning, and reproduction. In this work, we performed phylogenetic, as well as domain and structural modeling of VPS13 proteins in Archaeplastida in order to understand their general organization and evolutionary history. We confirmed the presence of human VPS13B orthologues in some phyla and described two new VPS13 families presenting a particular domain arrangement: VPS13R in Rhodophytes and VPS13Y in Chlorophytes and Streptophytes. By focusing on Viridiplantae, we were able to draw the evolutionary history of these proteins made by multiple gene gains and duplications as well as domain rearrangements. We showed that some Chlorophytes have only three (AtVPS13M, S, Y) whereas some Charophytes have up to six VPS13 paralogs (AtVPS13M1, M2, S, Y, X, B). We also highlighted specific structural features of VPS13M and X paralogs. This study reveals the complex evolution of VPS13 family and opens important perspectives for their functional characterization in photosynthetic organisms.
Collapse
Affiliation(s)
- Sébastien Leterme
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Olivier Bastien
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | | | - Alberto Amato
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Morgane Michaud
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| |
Collapse
|
81
|
Cryptic and ubiquitous aplastidic cryptophytes are key freshwater flagellated bacterivores. THE ISME JOURNAL 2023; 17:84-94. [PMID: 36207492 PMCID: PMC9751141 DOI: 10.1038/s41396-022-01326-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
Morphology-based microscopic approaches are insufficient for a taxonomic classification of bacterivorous heterotrophic nanoflagellates (HNF) in aquatic environments since their cells do not display reliably distinguishable morphological features. This leads to a considerable lack of ecological insights into this large and taxonomically diverse functional guild. Here, we present a combination of fluorescence in situ hybridization followed by catalyzed reporter deposition (CARD-FISH) and environmental sequence analyses which revealed that morphologically indistinguishable, so far largely cryptic and uncultured aplastidic cryptophytes are ubiquitous and prominent protistan bacterivores in diverse freshwater ecosystems. Using a general probe for Cryptophyceae and its heterotrophic CRY1 lineage, we analyzed different water layers in 24 freshwater lakes spanning a broad range of trophic states, sizes and geographical locations. We show that bacterivorous aplastidic cryptophytes and the CRY1 lineage accounted for ca. 2/3 and ¼ of total HNF, respectively, in both epilimnetic and hypolimnetic samples. These heterotrophic cryptophytes were generally smaller and more abundant than their chloroplast-bearing counterparts. They had high uptake rates of bacteria, hinting at their important roles in channeling carbon flow from prokaryotes to higher trophic levels. The worldwide ubiquity of Cryptophyceae and its CRY1 lineage was supported by 18S rRNA gene sequence analyses across a diverse set of 297 freshwater metagenomes. While cryptophytes have been considered to be mainly plastidic "algae", we show that it is the aplastidic counterparts that contribute considerably to bacterial mortality rates. Additionally, our results suggest an undiscovered diversity hidden amongst these abundant and morphologically diverse aplastidic cryptophytes.
Collapse
|
82
|
Gilmour DJ. Diversity of algae and their biotechnological potential. Adv Microb Physiol 2023; 82:301-321. [PMID: 36948657 DOI: 10.1016/bs.ampbs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
This chapter will discuss the diversity of algae and show that the diversity is much greater than just obligately oxygenic photosynthetic algae and that it includes many mixotrophic and heterotrophic organisms that are more similar to the major groups of microorganisms. The photosynthetic groups are seen as part of the plant kingdom, whereas the non-photosynthetic groups are not related to plants at all. The organisation of algal groups has become complex and confusing - The chapter will address the problems within this area of eukaryotic taxonomy. The metabolic diversity of algae and the ability to genetically engineer algae are key components in developing the biotechnology of algae. As more researchers become interested in exploiting algae for a number of industrial products, it is important to understand the relationships between different groups of algae and the relationships of algae with the rest of the living world.
Collapse
|
83
|
Lecointe K, Coulon P, Krzewinski F, Charlet R, Bortolus C, Sendid B, Cornu M. Parietal composition of Lichtheimia corymbifera: Differences between spore and germ tube stages and host-pathogen interactions. Med Mycol 2022; 61:6960681. [PMID: 36565722 DOI: 10.1093/mmy/myac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022] Open
Abstract
The molecular composition and structural organization of the cell wall of filamentous fungi underlie the ability of the host to identify them as pathogens. Although the organization of the fungal cell wall, composed of 90% polysaccharides, is similar from one fungus to another, small variations condition their ability to trigger pattern recognition receptors. Because the incidence of mucormycosis, an emerging life-threatening infection caused by the species of the order Mucorales is increasing worldwide, the precise composition of the cell wall of two strains of Lichtheimia corymbifera was investigated in the early growth stages of germination (spores and germ-tubes) using trimethylsilylation and confocal microscopy. This study also characterizes the response of THP-1 cells to Mucorales. The study identified the presence of uncommon monosaccharides (fucose, galactose, and glucuronic acid) whose respective proportions vary according to the germination stage, revealing early parietal reorganization. Immunofluorescence studies confirmed the exposure of β-glucan on the surface of swollen spores and germ-tubes. Both spores and germ-tubes of L. corymbifera promoted an early and strong pro-inflammatory response, through TLR-2. Our results show the singularity of the cell wall of the order Mucorales, opening perspectives for the development of specific diagnostic biomarkers.
Collapse
Affiliation(s)
- Karine Lecointe
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Pauline Coulon
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Frédéric Krzewinski
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France
| | - Rogatien Charlet
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France
| | - Clovis Bortolus
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France
| | - Boualem Sendid
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Marjorie Cornu
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| |
Collapse
|
84
|
Shɨshkin-Skarð Y, Drachko D, Zlatogursky VV. Shedding light on the origin of Acanthocystidae: Ricksol blepharistes gen. n., sp. n. (Ricksolidae fam. n., Panacanthocystida, Centroplasthelida), with notes on the evolution of the genera Acanthocystis, Ozanamia gen. n. (Ozanamiidae fam. n.), and “Heterophrys-like organisms”. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
85
|
Müller J, Schlange C, Heller M, Uldry AC, Braga-Lagache S, Haynes RK, Hemphill A. Proteomic characterization of Toxoplasma gondii ME49 derived strains resistant to the artemisinin derivatives artemiside and artemisone implies potential mode of action independent of ROS formation. Int J Parasitol Drugs Drug Resist 2022; 21:1-12. [PMID: 36512904 PMCID: PMC9763631 DOI: 10.1016/j.ijpddr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The sesquiterpene lactone artemisinin and its amino-artemisinin derivatives artemiside (GC008) and artemisone (GC003) are potent antimalarials. The mode of action of artemisinins against Plasmodium sp is popularly ascribed to 'activation' of the peroxide group by heme-Fe(II) or labile Fe(II) to generate C-radicals that alkylate parasite proteins. An alternative postulate is that artemisinins elicit formation of reactive oxygen species by interfering with flavin disulfide reductases resposible for maintaining intraparasitic redox homeostasis. However, in contradistinction to the heme-activation mechanism, the amino-artemisinins are effective in vitro against non-heme-degrading apicomplexan parasites including T. gondii, with IC 50 values of 50-70 nM, and induce distinct ultrastructural alterations. However, T. gondii strains readily adapted to increased concentrations (2.5 μM) of these two compounds within few days. Thus, T. gondii strains that were resistant against artemisone and artemiside were generated by treating the T. gondii reference strain ME49 with stepwise increasing amounts of these compounds, yielding the artemisone resistant strain GC003R and the artemiside resistant strain GC008R. Differential analyses of the proteomes of these resistant strains compared to the wildtype ME49 revealed that 215 proteins were significantly downregulated in artemisone resistant tachyzoites and only 8 proteins in artemiside resistant tachyzoites as compared to their wildtype. Two proteins, namely a hypothetical protein encoded by ORF TGME49_236950, and the rhoptry neck protein RON2 encoded by ORF TGME49_300100 were downregulated in both resistant strains. Interestingly, eight proteins involved in ROS scavenging including catalase and superoxide dismutase were amongst the differentially downregulated proteins in the artemisone-resistant strain. In parallel, ROS formation was significantly enhanced in isolated tachyzoites from the artemisone resistant strain and - to a lesser extent - in tachyzoites from the artemiside resistant strain as compared to wildtype tachyzoites. These findings suggest that amino-artemisinin derivatives display a mechanism of action in T. gondii distinct from Plasmodium.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, University of Bern, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Carling Schlange
- Institute of Parasitology, University of Bern, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Richard K Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Andrew Hemphill
- Institute of Parasitology, University of Bern, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Länggass-Strasse 122, CH-3012, Bern, Switzerland.
| |
Collapse
|
86
|
Gololobova MA, Belyakova GA. Position of Algae on the Tree of Life. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:312-326. [PMID: 36781528 DOI: 10.1134/s0012496622060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/15/2023]
Abstract
Issues related to evolution of algal chloroplasts are considered. The position of algae on the Tree of Life is discussed. Algae are now included in five of the monophyletic eukaryotic supergroups: Archaeplastida (Glaucocystophyta, Rhodophyta, Prasinodermophyta, Chlorophyta, and Charophyta), TSAR (Ochrophyta; Dinophyta; Chlorarachniophyta; and photosynthetic species of the genera Chromera, Vetrella, and Paulinella), Haptista (Prymnesiophyta and Rappemonads), Cryptista (Cryptophyta), and Discoba (Euglenophyta). The algal divisions and the respective supergroups are characterized in brief.
Collapse
Affiliation(s)
- M A Gololobova
- Biological Faculty, Moscow State University, Moscow, Russia.
| | - G A Belyakova
- Biological Faculty, Moscow State University, Moscow, Russia
| |
Collapse
|
87
|
Vainshelbaum NM, Giuliani A, Salmina K, Pjanova D, Erenpreisa J. The Transcriptome and Proteome Networks of Malignant Tumours Reveal Atavistic Attractors of Polyploidy-Related Asexual Reproduction. Int J Mol Sci 2022; 23:ijms232314930. [PMID: 36499258 PMCID: PMC9736112 DOI: 10.3390/ijms232314930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
The expression of gametogenesis-related (GG) genes and proteins, as well as whole genome duplications (WGD), are the hallmarks of cancer related to poor prognosis. Currently, it is not clear if these hallmarks are random processes associated only with genome instability or are programmatically linked. Our goal was to elucidate this via a thorough bioinformatics analysis of 1474 GG genes in the context of WGD. We examined their association in protein-protein interaction and coexpression networks, and their phylostratigraphic profiles from publicly available patient tumour data. The results show that GG genes are upregulated in most WGD-enriched somatic cancers at the transcriptome level and reveal robust GG gene expression at the protein level, as well as the ability to associate into correlation networks and enrich the reproductive modules. GG gene phylostratigraphy displayed in WGD+ cancers an attractor of early eukaryotic origin for DNA recombination and meiosis, and one relative to oocyte maturation and embryogenesis from early multicellular organisms. The upregulation of cancer-testis genes emerging with mammalian placentation was also associated with WGD. In general, the results suggest the role of polyploidy for soma-germ transition accessing latent cancer attractors in the human genome network, which appear as pre-formed along the whole Evolution of Life.
Collapse
Affiliation(s)
- Ninel M. Vainshelbaum
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
- Faculty of Biology, The University of Latvia, LV-1586 Riga, Latvia
- Correspondence: (N.M.V.); (J.E.)
| | - Alessandro Giuliani
- Environmen and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Kristine Salmina
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
- Correspondence: (N.M.V.); (J.E.)
| |
Collapse
|
88
|
The Genome of the Mitochondrion-Related Organelle in Cepedea longa, a Large Endosymbiotic Opalinid Inhabiting the Recta of Frogs. Int J Mol Sci 2022; 23:ijms232113472. [DOI: 10.3390/ijms232113472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Mitochondrion-related organelles (MROs) are loosely defined as degenerated mitochondria in anaerobic and microaerophilic lineages. Opalinids are commonly regarded as commensals in the guts of cold-blooded amphibians. It may represent an intermediate adaptation stage between the conventional aerobic mitochondria and derived anaerobic MROs. In the present study, we sequenced and analyzed the MRO genome of Cepedea longa. It has a linear MRO genome with large inverted repeat gene regions at both ends. Compared to Blastocystis and Proteromonas lacertae, the MRO genome of C. longa has a higher G + C content and repeat sequences near the central region. Although three Opalinata species have different morphological characteristics, phylogenetic analyses based on eight concatenated nad genes indicate that they are close relatives. The phylogenetic analysis showed that C. longa clustered with P. lacertae with strong support. The 18S rRNA gene-based phylogeny resolved the Opalinea clade as a sister clade to Karotomorpha, which then further grouped with Proteromonas. The paraphyly of Proteromonadea needs to be verified due to the lack of MRO genomes for key species, such as Karotomorpha, Opalina and Protoopalina. Besides, our dataset and analyses offered slight support for the paraphyly of Bigyra.
Collapse
|
89
|
Etheridge RD. Protozoan phagotrophy from predators to parasites: An overview of the enigmatic cytostome-cytopharynx complex of Trypanosoma cruzi. J Eukaryot Microbiol 2022; 69:e12896. [PMID: 35175673 PMCID: PMC11110969 DOI: 10.1111/jeu.12896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Eating is fundamental and from this basic principle, living organisms have evolved innumerable strategies to capture energy and nutrients from their environment. As part of the world's aquatic ecosystems, the expansive family of heterotrophic protozoans uses self-generated currents to funnel prokaryotic prey into an ancient, yet highly enigmatic, oral apparatus known as the cytostome-cytopharynx complex prior to digestion. Despite its near ubiquitous presence in protozoans, little is known mechanistically about how this feeding organelle functions. Intriguingly, one class of these flagellated phagotrophic predators known as the kinetoplastids gave rise to a lineage of obligate parasitic protozoa, the trypanosomatids, that can infect a wide variety of organisms ranging from plants to humans. One parasitic species of humans, Trypanosoma cruzi, has retained this ancestral organelle much like its free-living relatives and continues to use it as its primary mode of endocytosis. In this review, we will highlight foundational observations made regarding the cytostome-cytopharynx complex and examine some of the most pressing questions regarding the mechanistic basis for its function. We propose that T. cruzi has the potential to serve as an excellent model system to dissect the enigmatic process of protozoal phagotrophy and thus enhance our overall understanding of fundamental eukaryotic biology.
Collapse
Affiliation(s)
- Ronald Drew Etheridge
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia, USA
| |
Collapse
|
90
|
Dong J, Liu Y, Ma J, Ma H, Stoeck T, Fan X. Ultrastructure of Diophrys appendiculata and new systematic consideration of the euplotid family Uronychiidae (Protista, Ciliophora). MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:551-568. [PMID: 37078077 PMCID: PMC10077282 DOI: 10.1007/s42995-022-00153-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/13/2022] [Indexed: 05/03/2023]
Abstract
The ultrastructure of ciliates carries important cytological, taxonomical, and evolutionary signals for these single-celled eukaryotic organisms. However, little ultrastructural data have been accumulated for most ciliate groups with systematic problems. In the present work, a well-known marine uronychiid, Diophrys appendiculata, was investigated using electron microscopy and a comparison with, and a discussion considering, phylogenetic analyses were made. The new findings primarily show that: (i) this species lacks the typical alveolar plate, bears cortical ampule-like extrusomes, and has microtubular triads in the dorsal pellicle, and thus exhibits some ultrastructural features in common with most of its previously studied congeners; (ii) each adoral membranelle before the level of frontal cirrus II/2 contains three rows of kinetosomes and each membranelle after the level of frontal cirrus II/2 contains four rows, which might be related with morphogenesis and could be considered as a distinctive character of Diophrys; (iii) some structural details of the buccal field, such as the extra-pellicular fibrils, pellicle, pharyngeal disks and microtubular sheet, were documented. In addition, based on the ultrastructural comparison of representatives, we discuss the differentiation between the subfamilies Diophryinae and Uronychiinae. A hypothetical systematic relationship of members in the order Euplotida based on a wide range of data is also provided.
Collapse
Affiliation(s)
- Jingyi Dong
- School of Life Sciences, East China Normal University, Shanghai, 200241 China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laoshan Laboratory, Qingdao, 266237 China
| | - Yujie Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Jiyang Ma
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Honggang Ma
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Thorsten Stoeck
- Ecology Group, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
91
|
Karpouzas DG, Vryzas Z, Martin-Laurent F. Pesticide soil microbial toxicity: setting the scene for a new pesticide risk assessment for soil microorganisms (IUPAC Technical Report). PURE APPL CHEM 2022. [DOI: 10.1515/pac-2022-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Pesticides constitute an integral part of modern agriculture. However, there are still concerns about their effects on non-target organisms. To address this the European Commission has imposed a stringent regulatory scheme for new pesticide compounds. Assessment of the aquatic toxicity of pesticides is based on a range of advanced tests. This does not apply to terrestrial ecosystems, where the toxicity of pesticides on soil microorganisms, is based on an outdated and crude test (N mineralization). This regulatory gap is reinforced by the recent methodological and standardization advances in soil microbial ecology. The inclusion of such standardized tools in a revised risk assessment scheme will enable the accurate estimation of the toxicity of pesticides on soil microorganisms and on associated ecosystem services. In this review we (i) summarize recent work in the assessment of the soil microbial toxicity of pesticides and point to ammonia-oxidizing microorganisms (AOM) and arbuscular mycorrhizal fungi (AMF) as most relevant bioindicator groups (ii) identify limitations in the experimental approaches used and propose mitigation solutions, (iii) identify scientific gaps and (iv) propose a new risk assessment procedure to assess the effects of pesticides on soil microorganisms.
Collapse
Affiliation(s)
- Dimitrios G. Karpouzas
- Department of Biochemistry and Biotechnology , Laboratory of Plant and Environmental Biotechnology, University of Thessaly , Viopolis 41500 , Larissa , Greece
| | - Zisis Vryzas
- Department of Agricultural Development , Democritus University of Thrace , Orestiada , Greece
| | | |
Collapse
|
92
|
Müller J, Boubaker G, Imhof D, Hänggeli K, Haudenschild N, Uldry AC, Braga-Lagache S, Heller M, Ortega-Mora LM, Hemphill A. Differential Affinity Chromatography Coupled to Mass Spectrometry: A Suitable Tool to Identify Common Binding Proteins of a Broad-Range Antimicrobial Peptide Derived from Leucinostatin. Biomedicines 2022; 10:biomedicines10112675. [PMID: 36359195 PMCID: PMC9687860 DOI: 10.3390/biomedicines10112675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/28/2022] Open
Abstract
Leucinostatins are antimicrobial peptides with a broad range of activities against infectious agents as well as mammalian cells. The leucinostatin-derivative peptide ZHAWOC_6027 (peptide 6027) was tested in vitro and in vivo for activity against the intracellular apicomplexan parasite Toxoplasma gondii. While highly efficacious in vitro (EC50 = 2 nM), subcutaneous application of peptide 6027 (3 mg/kg/day for 5 days) in mice experimentally infected with T. gondii oocysts exacerbated the infection, caused mild clinical signs and elevated cerebral parasite load. Peptide 6027 also impaired the proliferation and viability of mouse splenocytes, most notably LPS-stimulated B cells, in vitro. To identify common potential targets in Toxoplasma and murine splenocytes, we performed differential affinity chromatography (DAC) with cell-free extracts from T. gondii tachyzoites and mouse spleens using peptide 6027 or an ineffective analogue (peptide 21,358) coupled to N-hydroxy-succinimide sepharose, followed by mass spectrometry. Proteins specifically binding to peptide 6027 were identified in eluates from the peptide 6027 column but not in peptide 21,358 nor the mock column eluates. In T. gondii eluates, 269 proteins binding specifically to peptide 6027 were identified, while in eluates from mouse spleen extracts 645 proteins specifically binding to this peptide were detected. Both datasets contained proteins involved in mitochondrial energy metabolism and in protein processing and secretion. These results suggest that peptide 6027 interacts with common targets in eukaryotes involved in essential pathways. Since this methodology can be applied to various compounds as well as target cell lines or organs, DAC combined with mass spectrometry and proteomic analysis should be considered a smart and 3R-relevant way to identify drug targets in pathogens and hosts, thereby eliminating compounds with potential side effects before performing tedious and costly safety and efficacy assessments in animals or humans.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Kai Hänggeli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Noé Haudenschild
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
93
|
Salazar-Ardiles C, Asserella-Rebollo L, Andrade DC. Free-Living Amoebas in Extreme Environments: The True Survival in our Planet. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2359883. [PMID: 36303587 PMCID: PMC9596261 DOI: 10.1155/2022/2359883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022]
Abstract
Free-living amoebas (FLAs) are microorganisms, unicellular protozoa widely distributed in nature and present in different environments, such as water or soil; they are maintained in ecosystems and play a fundamental role in the biological control of bacteria, other protozoa, and mushrooms. In particular circumstances, some can reach humans or animals, promoting several health complications. Notably, FLAs are characterized by a robust capacity to survive in extreme environments. However, currently, there is no updated information on the existence and distribution of this protozoan in inhospitable places. Undoubtedly, the cellular physiology of these protozoan microorganisms is very particular. They can resist and live in extreme environments due to their encysting capacity and tolerance to different osmolarities, temperatures, and other environmental factors, which give them excellent adaptative resistance. In this review, we summarized the most relevant evidence related to FLAs and the possible mechanism, which could explain their adaptative capacity to several extreme environments.
Collapse
Affiliation(s)
- Camila Salazar-Ardiles
- Research Center in High Altitude Medicine and Physiology, Biomedical Department, Faculty of Health Science, University of Antofagasta, Antofagasta, Chile
| | | | - David C. Andrade
- Research Center in High Altitude Medicine and Physiology, Biomedical Department, Faculty of Health Science, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
94
|
da Silva VS, Machado CR. Sex in protists: A new perspective on the reproduction mechanisms of trypanosomatids. Genet Mol Biol 2022; 45:e20220065. [PMID: 36218381 PMCID: PMC9552303 DOI: 10.1590/1678-4685-gmb-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022] Open
Abstract
The Protist kingdom individuals are the most ancestral representatives of eukaryotes. They have inhabited Earth since ancient times and are currently found in the most diverse environments presenting a great heterogeneity of life forms. The unicellular and multicellular algae, photosynthetic and heterotrophic organisms, as well as free-living and pathogenic protozoa represents the protist group. The evolution of sex is directly associated with the origin of eukaryotes being protists the earliest protagonists of sexual reproduction on earth. In eukaryotes, the recombination through genetic exchange is a ubiquitous mechanism that can be stimulated by DNA damage. Scientific evidences support the hypothesis that reactive oxygen species (ROS) induced DNA damage can promote sexual recombination in eukaryotes which might have been a decisive factor for the origin of sex. The fact that some recombination enzymes also participate in meiotic sex in modern eukaryotes reinforces the idea that sexual reproduction emerged as consequence of specific mechanisms to cope with mutations and alterations in genetic material. In this review we will discuss about origin of sex and different strategies of evolve sexual reproduction in some protists such that cause human diseases like malaria, toxoplasmosis, sleeping sickness, Chagas disease, and leishmaniasis.
Collapse
Affiliation(s)
- Verônica Santana da Silva
- Universidade Federal de Minas Gerais, Departamento de Genética,
Ecologia e Evolução, Belo Horizonte, MG, Brazil
| | - Carlos Renato Machado
- Universidade Federal de Minas Gerais, Departamento de Bioquímica e
Imunologia, Belo Horizonte, MG, Brazil
| |
Collapse
|
95
|
Sending the message: specialized RNA export mechanisms in trypanosomes. Trends Parasitol 2022; 38:854-867. [PMID: 36028415 PMCID: PMC9894534 DOI: 10.1016/j.pt.2022.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
Export of RNA from the nucleus is essential for all eukaryotic cells and has emerged as a major step in the control of gene expression. mRNA molecules are required to complete a complex series of processing events and pass a quality control system to protect the cytoplasm from the translation of aberrant proteins. Many of these events are highly conserved across eukaryotes, reflecting their ancient origin, but significant deviation from a canonical pathway as described from animals and fungi has emerged in the trypanosomatids. With significant implications for the mechanisms that control gene expression and hence differentiation, responses to altered environments and fitness as a parasite, these deviations may also reveal additional, previously unsuspected, mRNA export pathways.
Collapse
|
96
|
Petersen J, Rredhi A, Szyttenholm J, Mittag M. Evolution of circadian clocks along the green lineage. PLANT PHYSIOLOGY 2022; 190:924-937. [PMID: 35325228 PMCID: PMC9516769 DOI: 10.1093/plphys/kiac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Circadian clocks govern temporal programs in the green lineage (Chloroplastida) as they do in other photosynthetic pro- and eukaryotes, bacteria, fungi, animals, and humans. Their physiological properties, including entrainment, phase responses, and temperature compensation, are well conserved. The involvement of transcriptional/translational feedback loops in the oscillatory machinery and reversible phosphorylation events are also maintained. Circadian clocks control a large variety of output rhythms in green algae and terrestrial plants, adjusting their metabolism and behavior to the day-night cycle. The angiosperm Arabidopsis (Arabidopsis thaliana) represents a well-studied circadian clock model. Several molecular components of its oscillatory machinery are conserved in other Chloroplastida, but their functions may differ. Conserved clock components include at least one member of the CIRCADIAN CLOCK ASSOCIATED1/REVEILLE and one of the PSEUDO RESPONSE REGULATOR family. The Arabidopsis evening complex members EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO are found in the moss Physcomitrium patens and in the liverwort Marchantia polymorpha. In the flagellate chlorophyte alga Chlamydomonas reinhardtii, only homologs of ELF4 and LUX (named RHYTHM OF CHLOROPLAST ROC75) are present. Temporal ROC75 expression in C. reinhardtii is opposite to that of the angiosperm LUX, suggesting different clock mechanisms. In the picoalga Ostreococcus tauri, both ELF genes are missing, suggesting that it has a progenitor circadian "green" clock. Clock-relevant photoreceptors and thermosensors vary within the green lineage, except for the CRYPTOCHROMEs, whose variety and functions may differ. More genetically tractable models of Chloroplastida are needed to draw final conclusions about the gradual evolution of circadian clocks within the green lineage.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
97
|
Separate To Operate: the Centriole-Free Inner Core of the Centrosome Regulates the Assembly of the Intranuclear Spindle in Toxoplasma gondii. mBio 2022; 13:e0185922. [PMID: 36069445 PMCID: PMC9600614 DOI: 10.1128/mbio.01859-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centrosomes are the main microtubule-organizing center of the cell. They are normally formed by two centrioles, embedded in a cloud of proteins known as pericentriolar material (PCM). The PCM ascribes centrioles with their microtubule nucleation capacity. Toxoplasma gondii, the causative agent of toxoplasmosis, divides by endodyogeny. Successful cell division is critical for pathogenesis. The centrosome, one of the microtubule organizing centers of the cell, plays central roles in orchestrating the temporal and physical coordination of major organelle segregation and daughter cell formation during endodyogeny. The Toxoplasma centrosome is constituted by multiple domains: an outer core, distal from the nucleus; a middle core; and an inner core, proximal to the nucleus. This modular organization has been proposed to underlie T. gondii's cell division plasticity. However, the role of the inner core remains undeciphered. Here, we focus on understanding the function of the inner core by finely studying the localization and role of its only known molecular marker; TgCep250L1. We show that upon conditional degradation of TgCep250L1 parasites are unable to survive. Mutants exhibit severe nuclear segregation defects. In addition, the rest of the centrosome, defined by the position of the centrioles, disconnects from the nucleus. We explore the structural defects underlying these phenotypes by ultrastructure expansion microscopy. We show that TgCep250L1's location changes with respect to other markers, and these changes encompass the formation of the mitotic spindle. Moreover, we show that in the absence of TgCep250L1, the microtubule binding protein TgEB1, fails to localize at the mitotic spindle, while unsegregated nuclei accumulate at the residual body. Overall, our data support a model in which the inner core of the T. gondii centrosome critically participates in cell division by directly impacting the formation or stability of the mitotic spindle. IMPORTANCE Toxoplasma gondii parasites cause toxoplasmosis, arguably the most widespread and prevalent parasitosis of humans and animals. During the clinically relevant stage of its life cycle, the parasites divide by endodyogeny. In this mode of division, the nucleus, containing loosely packed chromatin and a virtually intact nuclear envelope, parcels into two daughter cells generated within a common mother cell cytoplasm. The centrosome is a microtubule-organizing center critical for orchestrating the multiple simultaneously occurring events of endodyogeny. It is organized in two distinct domains: the outer and inner cores. We demonstrate here that the inner core protein TgCEP250L1 is required for replication of T. gondii. Lack of TgCEP250L1 renders parasites able to form daughter cells, while unable to segregate their nuclei. We determine that, in the absence of TgCEP250L1, the mitotic spindle, which is responsible for karyokinesis, does not assemble. Our results support a role for the inner core in nucleation or stabilization of the mitotic spindle in T. gondii.
Collapse
|
98
|
Molecular phylogeny of Chonotrichia (Ciliophora, Phyllopharyngea) inferred from SSU rDNA sequences. Eur J Protistol 2022; 86:125920. [DOI: 10.1016/j.ejop.2022.125920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
|
99
|
Cerón-Romero MA, Fonseca MM, de Oliveira Martins L, Posada D, Katz LA. Phylogenomic Analyses of 2,786 Genes in 158 Lineages Support a Root of the Eukaryotic Tree of Life between Opisthokonts and All Other Lineages. Genome Biol Evol 2022; 14:evac119. [PMID: 35880421 PMCID: PMC9366629 DOI: 10.1093/gbe/evac119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Advances in phylogenomics and high-throughput sequencing have allowed the reconstruction of deep phylogenetic relationships in the evolution of eukaryotes. Yet, the root of the eukaryotic tree of life remains elusive. The most popular hypothesis in textbooks and reviews is a root between Unikonta (Opisthokonta + Amoebozoa) and Bikonta (all other eukaryotes), which emerged from analyses of a single-gene fusion. Subsequent, highly cited studies based on concatenation of genes supported this hypothesis with some variations or proposed a root within Excavata. However, concatenation of genes does not consider phylogenetically-informative events like gene duplications and losses. A recent study using gene tree parsimony (GTP) suggested the root lies between Opisthokonta and all other eukaryotes, but only including 59 taxa and 20 genes. Here we use GTP with a duplication-loss model in a gene-rich and taxon-rich dataset (i.e., 2,786 gene families from two sets of 155 and 158 diverse eukaryotic lineages) to assess the root, and we iterate each analysis 100 times to quantify tree space uncertainty. We also contrasted our results and discarded alternative hypotheses from the literature using GTP and the likelihood-based method SpeciesRax. Our estimates suggest a root between Fungi or Opisthokonta and all other eukaryotes; but based on further analysis of genome size, we propose that the root between Opisthokonta and all other eukaryotes is the most likely.
Collapse
Affiliation(s)
- Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, USA
| | - Miguel M Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Leonardo de Oliveira Martins
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
100
|
Giardia duodenalis carries out canonical homologous recombination and single-strand annealing. Res Microbiol 2022; 173:103984. [DOI: 10.1016/j.resmic.2022.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 04/26/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
|