51
|
Poe S, Anderson CG. The existence and evolution of morphotypes in Anolis lizards: coexistence patterns, not adaptive radiations, distinguish mainland and island faunas. PeerJ 2019; 6:e6040. [PMID: 30627481 PMCID: PMC6321754 DOI: 10.7717/peerj.6040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
The evolution of distinct ecologies and correlated morphologies ("ecomorphs," in combination) among similar species allows sympatric occupation of diverse microhabitats. Particular ecomorphs may evolve repeatedly, that is, convergently, as separate lineages arrive at similar solutions. Caribbean Anolis lizards (anoles) are a classic ecomorph system, particularly well-studied for the diverse morphotypes resulting from adaptive radiations. But few studies have analyzed the equally species-diverse mainland Anolis. Here, we use clustering analyses of nine traits for 336 species of Anolis to objectively identify morphological groups (morphotypes). We analyze the presence of recovered morphotypes on mainland and islands in general and relative to the composition of 76 mainland and 91 island anole assemblages. We test for evolutionary convergence of morphotypes within and between mainland and island environments by mapping our recovered morphotypes onto recent phylogenetic estimates and by analyzing four of our measured traits using program SURFACE. We find that particular morphotypes tend to be restricted to either mainland or island environments. Morphotype diversity and convergence are not concentrated within either island or mainland environments. Morphotype content of assemblages differs between mainland and island areas, with island assemblages displaying greater numbers of morphotypes than mainland assemblages. Taken with recent research, these results suggest a restructuring of one of the classic adaptive radiation stories and a reconsideration of research concerning island-mainland faunal differences. Island radiations of anoles are unexceptional relative to mainland radiations with regard to species count, rates of speciation and phenotypic evolution, morphotype diversity, and rates of convergence. But local island assemblage appear to be more diverse than mainland assemblages. The explanation for this assemblage disparity may reside in one of the classic hypothesized island-mainland environmental differences (i.e., greater numbers of predators/competitors/environmental complexity on the mainland). Similarity between mainland and island anole radiations may indicate exceptional evolution in the anole clade overall or ordinary evolution in an extraordinarily studied clade.
Collapse
Affiliation(s)
- Steven Poe
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Christopher G Anderson
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
52
|
Mayerl CJ, Youngblood JP, Rivera G, Vance JT, Blob RW. Variation in Morphology and Kinematics Underlies Variation in Swimming Stability and Turning Performance in Freshwater Turtles. Integr Org Biol 2018. [DOI: 10.1093/iob/oby001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Among swimming animals, stable body designs often sacrifice performance in turning, and high turning performance may entail costs in stability. However, some rigid-bodied animals appear capable of both high stability and turning performance during swimming by propelling themselves with independently controlled structures that generate mutually opposing forces. Because such species have traditionally been studied in isolation, little is known about how variation within rigid-bodied designs might influence swimming performance. Turtles are a lineage of rigid-bodied animals, in which most species use contralateral limbs and mutually opposing forces to swim. We tested the stability and turning performance of two species of turtles, the pleurodire Emydura subglobosa and the cryptodire Chrysemys picta. Emydura subglobosa exhibited both greater stability and turning performance than C. picta, potentially through the use of subequally-sized (and larger) propulsive structures, faster limb movements, and decreased limb excursions. These data show how, within a given body design, combinations of different traits can serve as mechanisms to improve aspects of performance with competing functional demands.
Collapse
Affiliation(s)
- C J Mayerl
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - J P Youngblood
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - G Rivera
- Department of Biology, Creighton University, Omaha, NE 68178, USA
| | - J T Vance
- Department of Biology, College of Charleston, Charleston, SC 29424, USA
| | - R W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
53
|
Robinson CD, Gifford ME. Covariation between Thermally Mediated Color and Performance Traits in a Lizard. Physiol Biochem Zool 2018; 91:1013-1025. [PMID: 30080441 DOI: 10.1086/699616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Physiological changes in response to environmental cues are not uncommon. Temperature has strong, predictable effects on many traits, such that many traits in ectotherms follow stereotyped thermal performance curves in response to increasing temperature. The prairie lizard-an abundant lizard throughout the central United States-has thermally sensitive, blue abdominal and throat patches. Currently, the role of these patches is not well understood. In this study, we set out to investigate whether individual plasticity in patch color paralleled individual plasticity in sprint speed (do they covary), and if the plasticity in these two patches signal redundant or independent information, testing competing hypotheses suggested for the evolution of multiple signals. We found that both abdominal and throat patch hue follow classical thermal performance curves, suggesting that at the species level hue is a good predictor of sprinting ability. At the individual level, we found that color and performance were statistically repeatable, so individuals with relatively high phenotypic values maintain relatively high phenotypic values across all temperatures. Additionally, we found that abdominal and patch hue covary with sprinting speed at the individual level. Together, these results suggest that the bluest individuals are the fastest individuals across temperatures. However, we found that abdominal and throat patch hue do not covary with each other at the individual level, suggesting that these signals may have independent functions. The importance of examining the function of individual variation cannot be overstated, and overall, more work is needed to better understand both the proximate and ultimate mechanisms underlying signal plasticity in this species and others.
Collapse
|
54
|
Resolving tradeoffs among crypsis, escape behavior, and microhabitat use in sexually dichromatic species. Oecologia 2018; 189:91-104. [PMID: 30430233 DOI: 10.1007/s00442-018-4301-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Variation in color pattern between populations of cryptic animals is common and typically attributed to selection pressures from visual predators combined with variation in substrate composition. However, little is known about how cryptic color pattern relates to varied rates of predation, and few studies simultaneously analyze patterns of escape behavior and microhabitat use along with variation in color pattern, even though these traits evolve in tandem. Here, we use a combination of calibrated photographs and spectrometry to examine the influence of spatial heterogeneity in rates of predation on dorsal brightness in the Florida scrub lizard (Sceloporus woodi), a cryptic and sexually dimorphic species. Simultaneously, we analyze patterns of escape behavior and microhabitat use measured in the field. The results of this study indicate that populations inhabiting environments of increased predation have less color variation and more closely match the color of local substrate than populations sampled in environments of relaxed predation. Populations exposed to increased predation also show more pronounced escape behavior and are more selective in their use of microhabitat. Interestingly, geographic variation of dorsal brightness, escape behavior, and microhabitat use were greater for females than for males. Our results not only provide empirical evidence for theories of adaptive coloration, but suggest that sexual dichromatism can be maintained by selection pressures related to predation.
Collapse
|
55
|
Gómez Alés R, Acosta JC, Astudillo V, Córdoba M, Blanco GM, Miles D. Effect of temperature on the locomotor performance of species in a lizard assemblage in the Puna region of Argentina. J Comp Physiol B 2018; 188:977-990. [PMID: 30288595 DOI: 10.1007/s00360-018-1185-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
Locomotion is relevant to the ecology of reptiles because of its presumed influence on an organism's Darwinian fitness. Moreover, in ectothermic species, physiological performance capacity is affected by body temperature. We analyzed two components of locomotor performance in three species of lizards, Phymaturus extrilidus, Liolaemus parvus, and Liolaemus ruibali, in the Puna environment of Argentina. First, we estimated the thermal sensitivity of locomotion by measuring sprint speed at four different body temperatures. We included two measures of sprint speed: initial velocity and long sprint for sustained runs. Based on these data, we calculated the optimal temperature for performance and the optimal performance breadth. We also estimated endurance capacity at a single temperature. Maximum sprint speed for L. parvus was greater than L. ruibali and P. extrilidus in both initial velocity and long sprint. In contrast, L. parvus exhibited lower levels of endurance than L. ruibali and P. extrilidus. However, endurance in L. ruibali exceeded that of P. extrilidus. The species differed in the optimal temperature for the initial velocity with the lowest for L. ruibali (31.8 °C) followed by P. extrilidus (33.25 °C) and then L. parvus (36.25 °C). The optimal temperature for long sprint varied between 32 and 36 °C for all species. We found that all species attained maximum performance at body temperatures commonly experienced during daily activity, which was higher than the thermal quality of the environment. We found evidence for thermal sensitivity in locomotor performance in these species. However, we also show that the broad thermal breadth of performance suggests that the lizards are capable of sustaining near optimal levels of locomotor performance at ambient temperatures that would appear to be suboptimal. Thus, this lizard assemblage is capable of coping with the highly variable climatic conditions in the Puna region of Argentina.
Collapse
Affiliation(s)
- Rodrigo Gómez Alés
- DIBIOVA (Gabinete Diversidad y Biología de Vertebrados del Árido), Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina. .,CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), San Juan, Argentina.
| | - Juan Carlos Acosta
- DIBIOVA (Gabinete Diversidad y Biología de Vertebrados del Árido), Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina.,CIGEOBIO-CONICET, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina
| | - Vanesa Astudillo
- DIBIOVA (Gabinete Diversidad y Biología de Vertebrados del Árido), Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina.,CIGEOBIO-CONICET, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina
| | - Mariela Córdoba
- DIBIOVA (Gabinete Diversidad y Biología de Vertebrados del Árido), Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina.,CIGEOBIO-CONICET, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina
| | - Graciela Mirta Blanco
- DIBIOVA (Gabinete Diversidad y Biología de Vertebrados del Árido), Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina.,CIGEOBIO-CONICET, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina
| | - Donald Miles
- Department of Biological Sciences, and Ohio Center for Ecological and Evolutionary Studies, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
56
|
Taylor JN, Ternes WM, Lattanzio MS. Natural selection favors local specialization in a widespread habitat generalist. Evolution 2018; 72:2090-2099. [DOI: 10.1111/evo.13584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/14/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Julie N. Taylor
- Department of Organismal and Environmental BiologyChristopher Newport University Newport News Virginia 23606
| | - William M. Ternes
- Department of Organismal and Environmental BiologyChristopher Newport University Newport News Virginia 23606
| | - Matthew S. Lattanzio
- Department of Organismal and Environmental BiologyChristopher Newport University Newport News Virginia 23606
| |
Collapse
|
57
|
Moser FN, van Rijssel JC, Mwaiko S, Meier JI, Ngatunga B, Seehausen O. The onset of ecological diversification 50 years after colonization of a crater lake by haplochromine cichlid fishes. Proc Biol Sci 2018; 285:rspb.2018.0171. [PMID: 30111604 DOI: 10.1098/rspb.2018.0171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/23/2018] [Indexed: 12/29/2022] Open
Abstract
Adaptive radiation research typically relies on the study of evolution in retrospective, leaving the predictive value of the concept hard to evaluate. Several radiations, including the cichlid fishes in the East African Great Lakes, have been studied extensively, yet no study has investigated the onset of the intraspecific processes of niche expansion and differentiation shortly after colonization of an adaptive zone by cichlids. Haplochromine cichlids of one of the two lineages that seeded the Lake Victoria radiation recently arrived in Lake Chala, a lake perfectly suited for within-lake cichlid speciation. Here, we infer the colonization and demographic history, quantify phenotypic, ecological and genomic diversity and diversification, and investigate the selection regime to ask if the population shows signs of diversification resembling the onset of adaptive radiation. We find that since their arrival in the lake, haplochromines have colonized a wide range of depth habitats associated with ecological and morphological expansion and the beginning of phenotypic differentiation and potentially nascent speciation, consistent with the very early onset of an adaptive radiation process. Moreover, we demonstrate evidence of rugged phenotypic fitness surfaces, indicating that current ecological selection may contribute to the phenotypic diversification.
Collapse
Affiliation(s)
- Florian N Moser
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Jacco C van Rijssel
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland.,Wageningen Marine Research, Wageningen University and Research, Ijmuiden, The Netherlands
| | - Salome Mwaiko
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Joana I Meier
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Benjamin Ngatunga
- Tanzania Fisheries Research Institute, Box 9750, Dar Es Salaam, Tanzania
| | - Ole Seehausen
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland .,Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
58
|
Poe S, Latella IM. Empirical test of the native–nonnative distinction: Native and nonnative assemblages of
Anolis
lizards are similar in morphology and phylogeny. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Steven Poe
- Department of Biology and Museum of Southwestern BiologyUniversity of New Mexico Albuquerque New Mexico
| | - Ian M. Latella
- Department of Biology and Museum of Southwestern BiologyUniversity of New Mexico Albuquerque New Mexico
| |
Collapse
|
59
|
|
60
|
Martins F, Kruuk L, Llewelyn J, Moritz C, Phillips B. Heritability of climate-relevant traits in a rainforest skink. Heredity (Edinb) 2018; 122:41-52. [PMID: 29789644 DOI: 10.1038/s41437-018-0085-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/19/2018] [Accepted: 04/15/2018] [Indexed: 11/09/2022] Open
Abstract
There is justified concern about the impact of global warming on the persistence of tropical ectotherms. There is also growing evidence for strong selection on climate-relevant physiological traits. Understanding the evolutionary potential of populations is especially important for low dispersal organisms in isolated populations, because these populations have little choice but to adapt. Despite this, direct estimates of heritability and genetic correlations for physiological traits in ectotherms-which will determine their evolutionary responses to selection-are sparse, especially for reptiles. Here we examine the heritabilities and genetic correlations for a set of four morphological and six climate-relevant physiological traits in an isolated population of an Australian rainforest lizard, Lampropholis coggeri. These traits show considerable variation across populations in this species, suggesting local adaptation. From laboratory crosses, we estimated very low to moderate heritability of temperature-related physiological traits (h2 < 0.31), but significant and higher heritability of desiccation resistance (h2~0.42). These values contrasted with uniformly higher heritabilities (h2 > 0.51) for morphological traits. At the phenotypic level, there were positive associations among the morphological traits and between thermal limits. Growth rate was positively correlated with thermal limits, but there was no indication that morphology and physiology were linked in any other way. We found some support for a specialist-generalist trade-off in the thermal performance curve, but otherwise there was no evidence for evolutionary constraints, suggesting broadly labile multivariate trait structure. Our results indicate little potential to respond to selection on thermal traits in this population and provide new insights into the capacity of tropical ectotherms to adapt in situ to rapid climate change.
Collapse
Affiliation(s)
- Felipe Martins
- Research School of Biology, Dept. of Ecology and Evolution, The Australian National University Acton, Canberra, ACT, 2601, Australia.
| | - Loeske Kruuk
- Research School of Biology, Dept. of Ecology and Evolution, The Australian National University Acton, Canberra, ACT, 2601, Australia
| | - John Llewelyn
- Centre for Tropical Biodiversity and Climate, James Cook University, Townsville, QLD, 4811, Australia
| | - Craig Moritz
- Research School of Biology, Dept. of Ecology and Evolution, The Australian National University Acton, Canberra, ACT, 2601, Australia
| | - Ben Phillips
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
61
|
Charters JE, Heiniger J, Clemente CJ, Cameron SF, Amir Abdul Nasir AF, Niehaus AC, Wilson RS. Multidimensional analyses of physical performance reveal a size‐dependent trade‐off between suites of traits. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jordan E. Charters
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| | - Jaime Heiniger
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| | - Christofer J. Clemente
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
- School of Life Sciences University of the Sunshine Coast Sippy Downs Qld Australia
| | - Skye F. Cameron
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| | | | - Amanda C. Niehaus
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| | - Robbie S. Wilson
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| |
Collapse
|
62
|
Sathe EA, Husak JF. Substrate-specific locomotor performance is associated with habitat use in six-lined racerunners (Aspidoscelis sexlineata). Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Erik A Sathe
- Department of Biology, University of St. Thomas, St. Paul, MN, USA
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, MN, USA
| |
Collapse
|
63
|
Renaud S, Ledevin R, Pisanu B, Chapuis JL, Quillfeldt P, Hardouin EA. Divergent in shape and convergent in function: Adaptive evolution of the mandible in Sub-Antarctic mice. Evolution 2018. [PMID: 29528493 DOI: 10.1111/evo.13467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Convergent evolution in similar environments constitutes strong evidence of adaptive evolution. Transported with people around the world, house mice colonized even remote areas, such as Sub-Antarctic islands. There, they returned to a feral way of life, shifting towards a diet enriched in terrestrial macroinvertebrates. Here, we test the hypothesis that this triggered convergent evolution of the mandible, a morphological character involved in food consumption. Mandible shape from four Sub-Antarctic islands was compared to phylogeny, tracing the history of colonization, and climatic conditions. Mandible shape was primarily influenced by phylogenetic history, thus discarding the hypothesis of convergent evolution. The biomechanical properties of the jaw were then investigated. Incisor in-lever and temporalis out-lever suggested an increase in the velocity of incisor biting, in agreement with observations on various carnivorous and insectivorous rodents. The mechanical advantage related to incisor biting also revealed an increased functional performance in Sub-Antarctic populations, and appears to be an adaptation to catch prey more efficiently. The amount of change involved was larger than expected for a plastic response, suggesting microevolutionary processes were evolved. This study thus denotes some degree of adaptive convergent evolution related to changes in habitat-related changes in dietary items in Sub-Antarctic mice, but only regarding simple, functionally relevant aspects of mandible morphology.
Collapse
Affiliation(s)
- Sabrina Renaud
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université Lyon 1, CNRS, Campus de la Doua, F-69100 Villeurbanne, France
| | - Ronan Ledevin
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université Lyon 1, CNRS, Campus de la Doua, F-69100 Villeurbanne, France.,Current Address: UMR5199 PACEA, Université de Bordeaux, Allée Geoffroy Saint Hilaire, Bâtiment B8, F-33615 Pessac, France
| | - Benoit Pisanu
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204, Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS, Université Pierre et Marie Curie, 61 rue Buffon, F-75005 Paris, France
| | - Jean-Louis Chapuis
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204, Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS, Université Pierre et Marie Curie, 61 rue Buffon, F-75005 Paris, France
| | - Petra Quillfeldt
- Justus-Liebig-Universität, AG Verhaltensökologie und Ökophysiologie der Tiere, Heinrich-Buff-Ring 38, D-35392 Giessen, Germany
| | - Emilie A Hardouin
- Department of Life and Environmental Sciences, Faculty of Sciences and Technology, Bournemouth University, Christchurch House, Talbot Campus, Poole, Dorset, BH12 5BB, United Kingdom
| |
Collapse
|
64
|
Wild KH, Gienger CM. Fire-disturbed landscapes induce phenotypic plasticity in lizard locomotor performance. J Zool (1987) 2018. [DOI: 10.1111/jzo.12545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- K. H. Wild
- Department of Biology and Center of Excellence for Field Biology; Austin Peay State University; Clarksville TN USA
- Institute for Applied Ecology; University of Canberra; Canberra ACT Australia
| | - C. M. Gienger
- Department of Biology and Center of Excellence for Field Biology; Austin Peay State University; Clarksville TN USA
| |
Collapse
|
65
|
Sparkman A, Howe S, Hynes S, Hobbs B, Handal K. Parallel behavioral and morphological divergence in fence lizards on two college campuses. PLoS One 2018; 13:e0191800. [PMID: 29444102 PMCID: PMC5812597 DOI: 10.1371/journal.pone.0191800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/11/2018] [Indexed: 11/24/2022] Open
Abstract
The spread of urban development has dramatically altered natural habitats, modifying community relationships, abiotic factors, and structural features. Animal populations living in these areas must perish, emigrate, or find ways to adjust to a suite of new selective pressures. Those that successfully inhabit the urban environment may make behavioral, physiological, and/or morphological adjustments that represent either evolutionary change and/or phenotypic plasticity. We tested for effects of urbanization on antipredator behavior and associated morphology across an urban-wild gradient in the western fence lizard (Sceloporus occidentalis) in two California counties, Santa Barbara and San Luis Obispo. We compared college campuses in both counties with adjacent rural habitats, conducting field trials that allowed us to characterize antipredator behavior in response to the acute stress of capture. We found notable divergence between campus and rural behavior, with campus lizards more frequently exhibiting diminished escape behavior, including tonic immobility, and lower sprint speeds. Furthermore, campus females had significantly shorter limbs, and while this did not explain variation in sprint speed, those with shorter limbs were more likely to show tonic immobility. We hypothesize that these parallel behavioral and morphological changes on both campuses reflect adjustment to a novel environment involving changes in predation and human presence.
Collapse
Affiliation(s)
- Amanda Sparkman
- Department of Biology, Westmont College, Santa Barbara, California, United States of America
- * E-mail:
| | - Stephen Howe
- Department of Biology, University of Akron, Akron, Ohio, United States of America
| | - Stephanie Hynes
- Department of Biology, Westmont College, Santa Barbara, California, United States of America
| | - Brooke Hobbs
- Department of Biology, Westmont College, Santa Barbara, California, United States of America
| | - Karina Handal
- Department of Biology, Westmont College, Santa Barbara, California, United States of America
| |
Collapse
|
66
|
Zamora-Camacho FJ. Locomotor performance in a running toad: roles of morphology, sex and agrosystem versus natural habitat. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
67
|
Kagawa K, Takimoto G. Hybridization can promote adaptive radiation by means of transgressive segregation. Ecol Lett 2017; 21:264-274. [PMID: 29243294 DOI: 10.1111/ele.12891] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/07/2017] [Accepted: 11/08/2017] [Indexed: 01/17/2023]
Abstract
Understanding the mechanisms of rapid adaptive radiation has been a central problem of evolutionary ecology. Recently, there is a growing recognition that hybridization between different evolutionary lineages can facilitate adaptive radiation by creating novel phenotypes. Yet, theoretical plausibility of this hypothesis remains unclear because, for example, hybridization can negate pre-existing species richness. Here, we theoretically investigate whether and under what conditions hybridization promotes ecological speciation and adaptive radiation using an individual-based model to simulate genome evolution following hybridization between two allopatrically evolved lineages. The model demonstrated that transgressive segregation through hybridization can facilitate adaptive radiation, most powerfully when novel vacant ecological niches are highly dissimilar, phenotypic effect size of mutations is small and there is moderate genetic differentiation between parental lineages. These results provide a theoretical basis for the effect of hybridization facilitating adaptive radiation.
Collapse
Affiliation(s)
- Kotaro Kagawa
- The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8562, Japan.,Department of Fish Ecology and Evolution, Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland
| | - Gaku Takimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
68
|
Gilbert AL, Miles DB. Natural selection on thermal preference, critical thermal maxima and locomotor performance. Proc Biol Sci 2017; 284:rspb.2017.0536. [PMID: 28814653 DOI: 10.1098/rspb.2017.0536] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/26/2017] [Indexed: 11/12/2022] Open
Abstract
Climate change is resulting in a radical transformation of the thermal quality of habitats across the globe. Whereas species have altered their distributions to cope with changing environments, the evidence for adaptation in response to rising temperatures is limited. However, to determine the potential of adaptation in response to thermal variation, we need estimates of the magnitude and direction of natural selection on traits that are assumed to increase persistence in warmer environments. Most inferences regarding physiological adaptation are based on interspecific analyses, and those of selection on thermal traits are scarce. Here, we estimate natural selection on major thermal traits used to assess the vulnerability of ectothermic organisms to altered thermal niches. We detected significant directional selection favouring lizards with higher thermal preferences and faster sprint performance at their optimal temperature. Our analyses also revealed correlational selection between thermal preference and critical thermal maxima, where individuals that preferred warmer body temperatures with cooler critical thermal maxima were favoured by selection. Recent published estimates of heritability for thermal traits suggest that, in concert with the strong selective pressures we demonstrate here, evolutionary adaptation may promote long-term persistence of ectotherms in altered thermal environments.
Collapse
Affiliation(s)
- Anthony L Gilbert
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Donald B Miles
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
69
|
Bergmann PJ, Pettinelli KJ, Crockett ME, Schaper EG. It's just sand between the toes: how particle size and shape variation affect running performance and kinematics in a generalist lizard. J Exp Biol 2017; 220:3706-3716. [DOI: 10.1242/jeb.161109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/11/2017] [Indexed: 01/13/2023]
Abstract
ABSTRACT
Animals must cope with and be able to move effectively on a variety of substrates. Substrates composed of granular media, such as sand and gravel, are extremely common in nature, and vary tremendously in particle size and shape. Despite many studies of the properties of granular media and comparisons of locomotion between granular and solid substrates, the effects of systematically manipulating these media on locomotion is poorly understood. We studied granular media ranging over four orders of magnitude in particle size, and differing in the amount of particle shape variation, to determine how these factors affected substrate physical properties and sprinting in the generalist lizard Eremias arguta. We found that media with intermediate particle sizes had high bulk densities, low angles of stability and low load-bearing capacities. Rock substrates with high shape variation had higher values for all three properties than glass bead substrates with low shape variation. We found that E. arguta had the highest maximum velocities and accelerations on intermediate size particles, and higher velocities on rock than glass beads. Lizards had higher stride frequencies and lower duty factors on intermediate particle size substrates, but their stride lengths did not change with substrate. Our findings suggest that sand and gravel may represent different locomotor challenges for animals. Sand substrates provide animals with an even surface for running, but particles shift underfoot. In contrast, gravel particles are heavy, so move far less underfoot, yet provide the animal with an uneven substrate.
Collapse
|
70
|
Hagey TJ, Harte S, Vickers M, Harmon LJ, Schwarzkopf L. There's more than one way to climb a tree: Limb length and microhabitat use in lizards with toe pads. PLoS One 2017; 12:e0184641. [PMID: 28953920 PMCID: PMC5617165 DOI: 10.1371/journal.pone.0184641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 08/28/2017] [Indexed: 11/29/2022] Open
Abstract
Ecomorphology links microhabitat and morphology. By comparing ecomorphological associations across clades, we can investigate the extent to which evolution can produce similar solutions in response to similar challenges. While Anolis lizards represent a well-studied example of repeated convergent evolution, very few studies have investigated the ecomorphology of geckos. Similar to anoles, gekkonid lizards have independently evolved adhesive toe pads and many species are scansorial. We quantified gecko and anole limb length and microhabitat use, finding that geckos tend to have shorter limbs than anoles. Combining these measurements with microhabitat observations of geckos in Queensland, Australia, we observed geckos using similar microhabitats as reported for anoles, but geckos with relatively longer limbs were using narrower perches, differing from patterns observed in anoles and other lizards. We also observed arboreal geckos with relatively shorter proximal limb segments as compared to rock-dwelling and terrestrial geckos, similar to patterns observed for other lizards. We conclude that although both geckos and anoles have adhesive pads and use similar microhabitats, their locomotor systems likely complement their adhesive pads in unique ways and result in different ecomorphological patterns, reinforcing the idea that species with convergent morphologies still have idiosyncratic characteristics due to their own separate evolutionary histories.
Collapse
Affiliation(s)
- Travis J. Hagey
- BEACON Center for Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - Scott Harte
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Mathew Vickers
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Biology and Climate Change, Commonwealth Scientific and Industrial Research Organization, Townsville, Queensland, Australia
| | - Luke J. Harmon
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Lin Schwarzkopf
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
71
|
Peiman KS, Robinson BW. Comparative Analyses of Phenotypic Trait Covariation within and among Populations. Am Nat 2017; 190:451-468. [PMID: 28937814 DOI: 10.1086/693482] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Many morphological, behavioral, physiological, and life-history traits covary across the biological scales of individuals, populations, and species. However, the processes that cause traits to covary also change over these scales, challenging our ability to use patterns of trait covariance to infer process. Trait relationships are also widely assumed to have generic functional relationships with similar evolutionary potentials, and even though many different trait relationships are now identified, there is little appreciation that these may influence trait covariation and evolution in unique ways. We use a trait-performance-fitness framework to classify and organize trait relationships into three general classes, address which ones more likely generate trait covariation among individuals in a population, and review how selection shapes phenotypic covariation. We generate predictions about how trait covariance changes within and among populations as a result of trait relationships and in response to selection and consider how these can be tested with comparative data. Careful comparisons of covariation patterns can narrow the set of hypothesized processes that cause trait covariation when the form of the trait relationship and how it responds to selection yield clear predictions about patterns of trait covariation. We discuss the opportunities and limitations of comparative approaches to evaluate hypotheses about the evolutionary causes and consequences of trait covariation and highlight the importance of evaluating patterns within populations replicated in the same and in different selective environments. Explicit hypotheses about trait relationships are key to generating effective predictions about phenotype and its evolution using covariance data.
Collapse
|
72
|
Effects of age- and sex-specific density on behaviour and survival in a territorial lizard (Anolis sagrei). Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
73
|
San-Jose LM, Huyghe K, Schuerch J, Fitze PS. More melanized males bite stronger but run slower: potential performance trade-offs related to melanin-based coloration. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
74
|
García-Navas V, Noguerales V, Cordero PJ, Ortego J. Phenotypic disparity in Iberian short-horned grasshoppers (Acrididae): the role of ecology and phylogeny. BMC Evol Biol 2017; 17:109. [PMID: 28472922 PMCID: PMC5418863 DOI: 10.1186/s12862-017-0954-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/19/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The combination of model-based comparative techniques, disparity analyses and ecomorphological correlations constitutes a powerful method to gain insight into the evolutionary mechanisms that shape morphological variation and speciation processes. In this study, we used a time-calibrated phylogeny of 70 Iberian species of short-horned grasshoppers (Acrididae) to test for patterns of morphological disparity in relation to their ecology and phylogenetic history. Specifically, we examined the role of substrate type and level of ecological specialization in driving different aspects of morphological evolution (locomotory traits, chemosensitive organs and cranial morphology) in this recent radiation. RESULTS We found a bimodal distribution of locomotory attributes corresponding to the two main substrate type guilds (plant vs. ground); plant-perching species tend to exhibit larger wings and thicker femora than those that remain on the ground. This suggests that life form (i.e., substrate type) is an important driving force in the evolution of morphological traits in short-horned grasshoppers, irrespective of ancestry. Substrate type and ecological specialization had no significant influence on head shape, a trait that showed a strong phylogenetic conservatism. Finally, we also found a marginal significant association between the length of antennae and the level of ecological specialization, suggesting that the development of sensory organs may be favored in specialist species. CONCLUSIONS Our results provide evidence that even in taxonomic groups showing limited morphological and ecological disparity, natural selection seems to play a more important role than genetic drift in driving the speciation process. Overall, this study suggests that morphostatic radiations should not necessarily be considered as "non-adaptive" and that the speciation process can bind both adaptive divergence mechanisms and neutral speciation processes related with allopatric and/or reproductive isolation.
Collapse
Affiliation(s)
- Vicente García-Navas
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Avenida Américo Vespucio 26, E-41092, Seville, Spain.
| | - Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, E-13071, Ciudad Real, Spain
| | - Pedro J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, E-13071, Ciudad Real, Spain
| | - Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Avenida Américo Vespucio 26, E-41092, Seville, Spain
| |
Collapse
|
75
|
A multivariate approach to understanding shifts in escape strategies of urban lizards. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2307-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
76
|
Petelo M, Swierk L. Trait allometries generate super-honesty in Anolis dewlaps and may underlie sexual dimorphism. Integr Zool 2017; 12:97-111. [PMID: 27605422 DOI: 10.1111/1749-4877.12238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whether or not sexually selected traits consistently exhibit positive allometry (i.e. are disproportionately large in larger individuals) is an ongoing debate. Multiple models and exceptions to this rule suggest that the underlying drivers of sexual trait allometry are nuanced. Here, we compare allometries of sexual and non-sexual traits of a species (Anolis aquaticus) within a well-studied lizard genus to test the competing hypotheses that sexual traits are, or are not, defined by positive allometry. We further consider the relationships of trait functions, which are relatively well understood in the genus Anolis, and allometry to identify potential drivers of allometric patterns. In particular, we explore how trait allometries interact to influence total organism function and generate sexual dimorphism. We quantified size (of targeted traits) and color of a sexual signal (the dewlap) in Anolis aquaticus in the field. The dewlap conveyed information relevant to intra-sexual combat and exhibited positive allometry. Overall, our results suggest that using single-trait allometries as indicators of past selection provides only an incomplete understanding of trait evolution. Although the function of positive allometry in some individual sexual signals (e.g. those conveying "super-honest" information) may be straightforward, we illustrate how scaling relationships interact synergistically to influence the function of phenotypes and propose avenues for future research.
Collapse
Affiliation(s)
- Maria Petelo
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, USA
| | - Lindsey Swierk
- Las Cruces Biological Station, Organization for Tropical Studies, San Vito, Coto Brus, Costa Rica
| |
Collapse
|
77
|
Pruitt JN, Howell KA, Gladney SJ, Yang Y, Lichtenstein JLL, Spicer ME, Echeverri SA, Pinter-Wollman N. Behavioral Hypervolumes of Predator Groups and Predator-Predator Interactions Shape Prey Survival Rates and Selection on Prey Behavior. Am Nat 2017; 189:254-266. [PMID: 28221831 PMCID: PMC5476219 DOI: 10.1086/690292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals' behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system.
Collapse
Affiliation(s)
- Jonathan N. Pruitt
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93608
| | - Kimberly A. Howell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15620
| | - Shaniqua J. Gladney
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15620
| | - Yusan Yang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15620
| | - James L. L. Lichtenstein
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93608
| | - Michelle Elise Spicer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15620
| | - Sebastian A. Echeverri
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15620
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
78
|
Contrasting post-settlement selection results in many-to-one mapping of high performance phenotypes in the Hawaiian waterfall-climbing goby Sicyopterus stimpsoni. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9889-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
79
|
Limb proportions show developmental plasticity in response to embryo movement. Sci Rep 2017; 7:41926. [PMID: 28165010 PMCID: PMC5292730 DOI: 10.1038/srep41926] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023] Open
Abstract
Animals have evolved limb proportions adapted to different environments, but it is not yet clear to what extent these proportions are directly influenced by the environment during prenatal development. The developing skeleton experiences mechanical loading resulting from embryo movement. We tested the hypothesis that environmentally-induced changes in prenatal movement influence embryonic limb growth to alter proportions. We show that incubation temperature influences motility and limb bone growth in West African Dwarf crocodiles, producing altered limb proportions which may, influence post-hatching performance. Pharmacological immobilisation of embryonic chickens revealed that altered motility, independent of temperature, may underpin this growth regulation. Use of the chick also allowed us to merge histological, immunochemical and cell proliferation labelling studies to evaluate changes in growth plate organisation, and unbiased array profiling to identify specific cellular and transcriptional targets of embryo movement. This disclosed that movement alters limb proportions and regulates chondrocyte proliferation in only specific growth plates. This selective targeting is related to intrinsic mTOR (mechanistic target of rapamycin) pathway activity in individual growth plates. Our findings provide new insights into how environmental factors can be integrated to influence cellular activity in growing bones and ultimately gross limb morphology, to generate phenotypic variation during prenatal development.
Collapse
|
80
|
Donihue CM. Aegean wall lizards switch foraging modes, diet, and morphology in a human-built environment. Ecol Evol 2016; 6:7433-7442. [PMID: 28725410 PMCID: PMC5513264 DOI: 10.1002/ece3.2501] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/11/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022] Open
Abstract
Foraging mode is a functional trait with cascading impacts on ecological communities. The foraging syndrome hypothesis posits a suite of concurrent traits that vary with foraging mode; however, comparative studies testing this hypothesis are typically interspecific. While foraging modes are often considered typological for a species when predicting foraging‐related traits or mode‐specific cascading impacts, intraspecific mode switching has been documented in some lizards. Mode‐switching lizards provide an opportunity to test foraging syndromes and explore how intraspecific variability in foraging mode might affect local ecological communities.Because lizard natural history is intimately tied to habitat use and structure, I tested for mode switching between populations of the Aegean wall lizard, Podarcis erhardii, inhabiting undisturbed habitat and human‐built rock walls on the Greek island of Naxos. I observed foraging behavior among 10 populations and tested lizard morphological and performance predictions at each site. Furthermore, I investigated the diet of lizards at each site relative to the available invertebrate community.I found that lizards living on rock walls were significantly more sedentary—sit and wait—than lizards at nonwall sites. I also found that head width increased in females and the ratio of hindlimbs to forelimbs in both sexes increased as predicted. Diet also changed, with nonwall lizards consuming a higher proportion of sedentary prey. Lizard bite force also varied significantly between sites; however, the pattern observed was opposite to that predicted, suggesting that bite force in these lizards may more closely relate to intraspecific competition than to diet.This study demonstrates microgeographic variability in lizard foraging mode as a result of human land use. In addition, these results demonstrate that foraging mode syndromes can shift intraspecifically with potential cascading effects on local ecological communities.
Collapse
Affiliation(s)
- Colin M Donihue
- School of Forestry and Environmental Studies Yale University New Haven CT USA.,Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| |
Collapse
|
81
|
Logan ML, Duryea MC, Molnar OR, Kessler BJ, Calsbeek R. Spatial variation in climate mediates gene flow across an island archipelago. Evolution 2016; 70:2395-2403. [DOI: 10.1111/evo.13031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/27/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Michael L. Logan
- Department of Biology; Dartmouth College; 78 College Street Hanover New Hampshire 03755
- Department of Botany and Zoology; Stellenbosch University; Merriman Street Stellenbosch 7800 South Africa
| | - M. C. Duryea
- Department of Biology; Dartmouth College; 78 College Street Hanover New Hampshire 03755
- Department of Biology; Lund University; Sölvegatan 37 22362 Lund Sweden
| | - Orsolya R. Molnar
- Department of Biology; Dartmouth College; 78 College Street Hanover New Hampshire 03755
- Department of Biology; Universidad Federal de Rio Grande de Norte; Natal, Rio Grande de Norte Brazil
| | - Benji J. Kessler
- Department of Biology; Dartmouth College; 78 College Street Hanover New Hampshire 03755
- Department of Environmental Science, Policy, and Management; University of California, Berkeley; 130 Mulford Hall Berkely California 94720
| | - Ryan Calsbeek
- Department of Biology; Dartmouth College; 78 College Street Hanover New Hampshire 03755
| |
Collapse
|
82
|
Siliceo-Cantero HH, García A, Reynolds RG, Pacheco G, Lister BC. Dimorphism and divergence in island and mainland Anoles. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hugo H. Siliceo-Cantero
- Posgrado en Ciencias Biológicas; Instituto de Biología; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Andres García
- Estación de Biología Chamela; Instituto de Biología; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - R. Graham Reynolds
- Department of Organismic and Evolutionary Biology & Museum of Comparative Zoology; Harvard University; Cambridge MA 02138 USA
| | - Gualberto Pacheco
- Posgrado en Ciencias Biológicas; Instituto de Ecología; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Bradford C. Lister
- Department of Biological Sciences; Rensselaer Polytechnic Institute; Troy NY 12180 USA
| |
Collapse
|
83
|
Vega R, Mcdevitt AD, Kryštufek B, Searle JB. Ecogeographical patterns of morphological variation in pygmy shrewsSorex minutus(Soricomorpha: Soricinae) within a phylogeographical and continental-and-island framework. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rodrigo Vega
- Section of Life Sciences; School of Human and Life Sciences; Canterbury Christ Church University; North Holmes Road Canterbury CT1 1QU Kent UK
- Departamento de Ecología de la Biodiversidad; Instituto de Ecología, UNAM; Ciudad Universitaria; México DF 04510 México
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
| | - Allan D. Mcdevitt
- School of Environment and Life Sciences; University of Salford; Salford M5 4WT UK
| | - Boris Kryštufek
- Slovenian Museum of Natural History; Presernova 20 Ljubljana SI-1000 Slovenia
- Science and Research Centre of Koper; Institute for Biodiversity Studies; University of Primorska; Koper 6000 Slovenia
| | - Jeremy B. Searle
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
84
|
Mayerl CJ, Brainerd EL, Blob RW. Pelvic girdle mobility of cryptodire and pleurodire turtles during walking and swimming. ACTA ACUST UNITED AC 2016; 219:2650-8. [PMID: 27340204 DOI: 10.1242/jeb.141622] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/15/2016] [Indexed: 11/20/2022]
Abstract
Movements of the pelvic girdle facilitate terrestrial locomotor performance in a wide range of vertebrates by increasing hind limb excursion and stride length. The extent to which pelvic movements contribute to limb excursion in turtles is unclear because the bony shell surrounding the body presents a major obstacle to their visualization. In the Cryptodira, which are one of the two major lineages of turtles, pelvic anatomy indicates the potential for rotation inside the shell. However, in the Pleurodira, the other major suborder, the pelvis shows a derived fusion to the shell, preventing pelvic motion. In addition, most turtles use their hind limbs for propulsion during swimming as well as walking, and the different locomotor demands between water and land could lead to differences in the contributions of pelvic rotation to limb excursion in each habitat. To test these possibilities, we used X-ray reconstruction of moving morphology (XROMM) to compare pelvic mobility and femoral motion during walking and swimming between representative species of cryptodire (Pseudemys concinna) and pleurodire (Emydura subglobosa) turtles. We found that the pelvis yawed substantially in cryptodires during walking and, to a lesser extent, during swimming. These movements contributed to greater femoral protraction during both walking and swimming in cryptodires when compared with pleurodires. Although factors related to the origin of pelvic-shell fusion in pleurodires are debated, its implications for their locomotor function may contribute to the restriction of this group to primarily aquatic habits.
Collapse
Affiliation(s)
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
85
|
Martin CH. Context dependence in complex adaptive landscapes: frequency and trait-dependent selection surfaces within an adaptive radiation of Caribbean pupfishes. Evolution 2016; 70:1265-82. [PMID: 27130447 DOI: 10.1111/evo.12932] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/14/2016] [Indexed: 01/16/2023]
Abstract
The adaptive landscape provides the foundational bridge between micro- and macroevolution. One well-known caveat to this perspective is that fitness surfaces depend on ecological context, including competitor frequency, traits measured, and resource abundance. However, this view is based largely on intraspecific studies. It is still unknown how context-dependence affects the larger features of peaks and valleys on the landscape which ultimately drive speciation and adaptive radiation. Here, I explore this question using one of the most complex fitness landscapes measured in the wild in a sympatric pupfish radiation endemic to San Salvador Island, Bahamas by tracking survival and growth of laboratory-reared F2 hybrids. I present new analyses of the effects of competitor frequency, dietary isotopes, and trait subsets on this fitness landscape. Contrary to expectations, decreasing competitor frequency increased survival only among very common phenotypes, whereas less common phenotypes rarely survived despite few competitors, suggesting that performance, not competitor frequency, shapes large-scale features of the fitness landscape. Dietary isotopes were weakly correlated with phenotype and growth, but did not explain additional survival variation. Nonlinear fitness surfaces varied substantially among trait subsets, revealing one-, two-, and three-peak landscapes, demonstrating the complexity of selection in the wild, even among similar functional traits.
Collapse
Affiliation(s)
- Christopher H Martin
- Department of Biology, University of North Carolina at Chapel Hill, Campus Box 3280, 120 South Road, Chapel Hill, North Carolina, 27599-3280.
| |
Collapse
|
86
|
Winchell KM, Reynolds RG, Prado-Irwin SR, Puente-Rolón AR, Revell LJ. Phenotypic shifts in urban areas in the tropical lizard Anolis cristatellus. Evolution 2016; 70:1009-22. [PMID: 27074746 DOI: 10.1111/evo.12925] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/18/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Urbanization is an increasingly important dimension of global change, and urban areas likely impose significant natural selection on the species that reside within them. Although many species of plants and animals can survive in urban areas, so far relatively little research has investigated whether such populations have adapted (in an evolutionary sense) to their newfound milieu. Even less of this work has taken place in tropical regions, many of which have experienced dramatic growth and intensification of urbanization in recent decades. In the present study, we focus on the neotropical lizard, Anolis cristatellus. We tested whether lizard ecology and morphology differ between urban and natural areas in three of the most populous municipalities on the island of Puerto Rico. We found that environmental conditions including temperature, humidity, and substrate availability differ dramatically between neighboring urban and natural areas. We also found that lizards in urban areas use artificial substrates a large proportion of the time, and that these substrates tend to be broader than substrates in natural forest. Finally, our morphological data showed that lizards in urban areas have longer limbs relative to their body size, as well as more subdigital scales called lamellae, when compared to lizards from nearby forested habitats. This shift in phenotype is exactly in the direction predicted based on habitat differences between our urban and natural study sites, combined with our results on how substrates are being used by lizards in these areas. Findings from a common-garden rearing experiment using individuals from one of our three pairs of populations provide evidence that trait differences between urban and natural sites may be genetically based. Taken together, our data suggest that anoles in urban areas are under significant differential natural selection and may be evolutionarily adapting to their human-modified environments.
Collapse
Affiliation(s)
- Kristin M Winchell
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, 02125.
| | - R Graham Reynolds
- Department of Biology, University of North Carolina Asheville, Asheville, North Carolina, 28804
| | - Sofia R Prado-Irwin
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, 02138
| | - Alberto R Puente-Rolón
- Departamento de Ciencias y Tecnología, Universidad Interamericana de Puerto Rico, Recinto Arecibo, Arecibo, Puerto Rico, 00614
| | - Liam J Revell
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, 02125
| |
Collapse
|
87
|
Age- and sex-specific variations in microhabitat and macrohabitat use in a territorial lizard. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2121-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
88
|
Donihue C. Microgeographic variation in locomotor traits among lizards in a human-built environment. PeerJ 2016; 4:e1776. [PMID: 26989616 PMCID: PMC4793326 DOI: 10.7717/peerj.1776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/18/2016] [Indexed: 12/03/2022] Open
Abstract
Microgeographic variation in fitness-relevant traits may be more common than previously appreciated. The fitness of many vertebrates is directly related to their locomotor capacity, a whole-organism trait integrating behavior, morphology, and physiology. Because locomotion is inextricably related to context, I hypothesized that it might vary with habitat structure in a wide-ranging lizard, Podarcis erhardii, found in the Greek Cyclade Islands. I compared lizard populations living on human-built rock walls, a novel habitat with complex vertical structure, with nearby lizard populations that are naive to human-built infrastructure and live in flat, loose-substrate habitat. I tested for differences in morphology, behavior, and performance. Lizards from built sites were larger and had significantly (and relatively) longer forelimbs and hindlimbs. The differences in hindlimb morphology were especially pronounced for distal components—the foot and longest toe. These morphologies facilitated a significant behavioral shift in jumping propensity across a rocky experimental substrate. I found no difference in maximum velocity between these populations; however, females originating from wall sites potentially accelerated faster over the rocky experimental substrate. The variation between these closely neighboring populations suggests that the lizards inhabiting walls have experienced a suite of trait changes enabling them to take advantage of the novel habitat structure created by humans.
Collapse
Affiliation(s)
- Colin Donihue
- School of Forestry and Environmental Studies, Yale University , New Haven, CT , USA
| |
Collapse
|
89
|
Husak JF. Measuring Selection on Physiology in the Wild and Manipulating Phenotypes (in Terrestrial Nonhuman Vertebrates). Compr Physiol 2015; 6:63-85. [PMID: 26756627 DOI: 10.1002/cphy.c140061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To understand why organisms function the way that they do, we must understand how evolution shapes physiology. This requires knowledge of how selection acts on physiological traits in nature. Selection studies in the wild allow us to determine how variation in physiology causes variation in fitness, revealing how evolution molds physiology over evolutionary time. Manipulating phenotypes experimentally in a selection study shifts the distribution of trait variation in a population to better explore potential constraints and the adaptive value of physiological traits. There is a large database of selection studies in the wild on a variety of traits, but very few of those are physiological traits. Nevertheless, data available so far suggest that physiological traits, including metabolic rate, thermal physiology, whole-organism performance, and hormone levels, are commonly subjected to directional selection in nature, with stabilizing and disruptive selection less common than predicted if physiological traits are optimized to an environment. Selection studies on manipulated phenotypes, including circulating testosterone and glucocorticoid levels, reinforce this notion, but reveal that trade-offs between survival and reproduction or correlational selection can constrain the evolution of physiology. More studies of selection on physiological traits in nature that quantify multiple traits are necessary to better determine the manner in which physiological traits evolve and whether different types of traits (dynamic performance vs. regulatory) evolve differently.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
90
|
Olberding JP, Herrel A, Higham TE, Garland T. Limb segment contributions to the evolution of hind limb length in phrynosomatid lizards. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeffrey P. Olberding
- Department of Integrative Biology; University of South Florida, 4202 E. Fowler Avenue; SCA110, Tampa FL 33620 USA
| | - Anthony Herrel
- Département d'Ecologie et de Gestion de la Biodiversité; Muséum National d’ Histoire Naturelle; Paris France
- Evolutionary Morphology of Vertebrates; Ghent University; K.L. Ledeganckstraat 35 B-9000 Gent Belgium
| | - Timothy E. Higham
- Department of Biology; University of California; 900 University Avenue Riverside CA 92521 USA
| | - Theodore Garland
- Department of Biology; University of California; 900 University Avenue Riverside CA 92521 USA
| |
Collapse
|
91
|
Halliday WD, Blouin-Demers G. A stringent test of the thermal coadaptation hypothesis in flour beetles. J Therm Biol 2015; 52:108-16. [PMID: 26267505 DOI: 10.1016/j.jtherbio.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/11/2015] [Accepted: 06/07/2015] [Indexed: 12/01/2022]
Abstract
Whole-organism performance depends on body temperature and ectotherms have variable body temperatures. The thermal coadaptation hypothesis posits that thermal reaction norms have coevolved with thermal preference such that organisms attain optimal performance under a narrow range of body temperatures commonly experienced in the wild. Since thermal reaction norms are often similar, researchers interested in the effects of temperature on fitness often use one easily measured thermal reaction norm, such as locomotor performance, and assume it is a good proxy for fitness when testing the thermal coadaptation hypothesis. The extent to which this assumption holds, however, is often untested. In this study, we provide a stringent test of the thermal coadaptation hypothesis in red and in confused flour beetles by comparing the thermal reaction norm for reproductive output to the preferred body temperature range. We also test the assumption that locomotor performance can serve as a proxy for the thermal reaction norm for reproductive output, a more ultimate index of fitness. In both species, we measured the number of eggs laid, righting time, and sprint speed at eight temperatures, as well as the thermal preference in a thermal gradient. The number of eggs laid increased with female sprint speed and with male righting time, and all three performances had similar thermal reaction norms, with 80% of the maximum achieved between 23 and 37°C. Red flour beetles had preferred body temperatures that matched the optimal temperature for performance; confused flour beetles had lower preferred body temperature than the optimal temperature for performance. We found support for the assumption that locomotor performance can serve as a proxy for reproductive output in flour beetles, but we only found evidence for thermal coadaptation in one of the two species.
Collapse
Affiliation(s)
- William D Halliday
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5.
| | - Gabriel Blouin-Demers
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
92
|
Sathe EA, Husak JF. Sprint sensitivity and locomotor trade-offs in green anole (Anolis carolinensis) lizards. J Exp Biol 2015. [DOI: 10.1242/jeb.116053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
How well an organism completes an ecologically relevant task – its performance – is often considered a key factor in determining individual fitness. Historically, ecomorphological studies have examined how morphological traits determine individual performance in a static manner, assuming that differential fitness in a population is due indirectly to differences in morphological traits that determine a simple measure of performance. This assumption, however, ignores many ecological factors that can constrain performance in nature, such as substrate variation and individual behavior. We examined some of these complexities in the morphology–performance–fitness paradigm, primarily the impact that substrate variation has on performance. We measured maximal sprint speed of green anole lizards on four substrates that varied in size and complexity and are used by or available to individuals in nature. Performance decreased significantly from a broad substrate to a narrow substrate, and lizards were three times slower on a complex substrate than the broadest substrate. We also detected trade-offs in running on substrates with different diameters and in cluttered versus uncluttered environments. Furthermore, morphological predictors of performance varied among substrates. This indicates that natural selection may act on different morphological traits, depending on which substrates are used by individuals, as well as an individual's ability to cope with changes in substrate rather than maximal capacities.
Collapse
Affiliation(s)
- Erik A. Sathe
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St Paul, MN 55105, USA
| | - Jerry F. Husak
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St Paul, MN 55105, USA
| |
Collapse
|
93
|
Bartheld JL, Gaitán‐Espitia JD, Artacho P, Salgado‐Luarte C, Gianoli E, Nespolo RF. Energy expenditure and body size are targets of natural selection across a wide geographic range, in a terrestrial invertebrate. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- José Luis Bartheld
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Campus Isla Teja Valdivia 5090000 Chile
| | - Juan Diego Gaitán‐Espitia
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Campus Isla Teja Valdivia 5090000 Chile
| | - Paulina Artacho
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Campus Isla Teja Valdivia 5090000 Chile
| | | | - Ernesto Gianoli
- Departamento de Biología Universidad de La Serena Casilla 554 La Serena Chile
- Departamento de Botánica Universidad de Concepción Casilla 160‐C Concepción Chile
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Campus Isla Teja Valdivia 5090000 Chile
- Center of Applied Ecology and Sustainability (CAPES) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago 6513677 Chile
| |
Collapse
|
94
|
Wakasa H, Cádiz A, Echenique-Díaz LM, Iwasaki WM, Kamiyama N, Nishimura Y, Yokoyama H, Tamura K, Kawata M. Developmental stages for the divergence of relative limb length between a twig and a trunk-ground Anolis lizard species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:410-23. [PMID: 26055630 DOI: 10.1002/jez.b.22627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/20/2015] [Indexed: 11/09/2022]
Abstract
The divergent evolution of niche-related traits can facilitate adaptive radiation, yet identification of the genetic or molecular mechanisms underlying such trait changes remains a major challenge in evolutionary biology. Conducting a detailed morphological comparison along growth trajectories is a powerful method for observing the formation of differences in niche-related traits. Here, we focused on hindlimb length of Anolis lizards, differences in which are related to adaptation for use of different microhabitats. We measured the length of hindlimb skeletons in different ecomorphs of anole lizards (A. sagrei, a trunk-ground ecomorph with long hindlimbs, and A. angusticeps, a twig ecomorph with short hindlimbs) from early embryonic stages to adulthood, to determine which hindlimb elements mainly differentiate the species and the timing of the formation of these differences. With respect to the digit, differences between the species mainly occurred during the embryonic stages of interdigit reduction, when the cartilage of the distal phalanges was simultaneously forming. In addition, we compared the relative length of developing autopods in early embryonic stages using whole-mount in situ hybridization before the formation of the cartilaginous bones, and the results showed that the relative growth rate of the Hoxa11-negative distal region in A. sagrei was greater than that in A. angusticeps. Our results show that there are several important developmental stages for hindlimb length differentiation between A. angusticeps and A. sagrei, depending on which hindlimb element is considered. In particular, the species differences were largely due to variations in digit length, which arose at early embryonic stages.
Collapse
Affiliation(s)
- Hajime Wakasa
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Antonio Cádiz
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Faculty of Biology, Havana University, Havana, Cuba
| | | | - Watal M Iwasaki
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Namiko Kamiyama
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuki Nishimura
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hitoshi Yokoyama
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Koji Tamura
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masakado Kawata
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
95
|
Husak JF, Keith AR, Wittry BN. Making Olympic lizards: the effects of specialised exercise training on performance. J Exp Biol 2015; 218:899-906. [DOI: 10.1242/jeb.114975] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Exercise training is well known to affect a suite of physiological and performance traits in mammals, but effects of training in other vertebrate tetrapod groups have been inconsistent. We examined performance and physiological differences among green anole lizards (Anolis carolinensis) that were trained for sprinting or endurance, using an increasingly rigorous training regimen over 8 weeks. Lizards trained for endurance had significantly higher post-training endurance capacity compared with the other treatment groups, but groups did not show post-training differences in sprint speed. Although acclimation to the laboratory environment and training explain some of our results, mechanistic explanations for these results correspond with the observed performance differences. After training, endurance-trained lizards had higher haematocrit and larger fast glycolytic muscle fibres. Despite no detectable change in maximal performance of sprint-trained lizards, we detected that they had significantly larger slow oxidative muscle fibre areas compared with the other treatments. Treatment groups did not differ in the proportion of number of fibre types, nor in the mass of most limb muscles or the heart. Our results offer some caveats for investigators conducting training research on non-model organisms and they reveal that muscle plasticity in response to training may be widespread phylogenetically.
Collapse
Affiliation(s)
- Jerry F. Husak
- Department of Biology, University of St. Thomas, St Paul, MN 55105, USA
| | - Allison R. Keith
- Department of Biology, University of St. Thomas, St Paul, MN 55105, USA
| | - Beth N. Wittry
- Department of Biology, University of St. Thomas, St Paul, MN 55105, USA
| |
Collapse
|
96
|
Cole GL, Endler JA. Variable environmental effects on a multicomponent sexually selected trait. Am Nat 2015; 185:452-68. [PMID: 25811082 DOI: 10.1086/680022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Multicomponent signals are made up of interacting elements that generate a functional signaling unit. The interactions between signal components and their effects on individual fitness are not well understood, and the effect of environment is even less so. It is usually assumed that color patterns appear the same in all light environments and that the effects of each color are additive. Using guppies, Poecilia reticulata, we investigated the effect of water color on the interactions between components of sexually selected male coloration. Through behavioral mate choice trials in four different water colors, we estimated the attractiveness of male color patterns, using multivariate fitness estimates and overall signal contrast. Our results show that females exhibit preferences that favor groups of colors rather than individual colors independently and that each environment favors different color combinations. We found that these effects are consistent with female guppies selecting entire color patterns on the basis of overall visual contrast. This suggests that both individuals and populations inhabiting different light environments will be subject to divergent, multivariate selection. Although the appearance of color patterns changes with light environment, achromatic components change little, suggesting that these could function in species recognition or other aspects of communication that must work across environments. Consequently, we predict different phylogenetic patterns between chromatic and achromatic signals within the same clades.
Collapse
Affiliation(s)
- Gemma L Cole
- Centre for Integrative Ecology, Deakin University, Waurn Ponds 3216, Victoria, Australia
| | | |
Collapse
|
97
|
Marnocha E, Pollinger J, Smith TB. Human-induced morphological shifts in an island lizard. Evol Appl 2015; 4:388-96. [PMID: 25567980 PMCID: PMC3352549 DOI: 10.1111/j.1752-4571.2010.00170.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 08/11/2010] [Indexed: 11/29/2022] Open
Abstract
Understanding the evolutionary consequences of anthropogenic change is an emerging topic in evolutionary biology. While highly sensitive species may go extinct in response to anthropogenic habitat alteration, those with broader environmental tolerances may persist and adapt to the changes. Here, we use morphological data from the brown anole (Anolis sagrei), a lizard species that lives in both natural and human-disturbed habitats, to examine the impact of anthropogenic habitat alteration. We find populations inhabiting disturbed habitats were significantly larger in snout-vent length, hindspan, and mass and provide evidence that the observed divergence in hindspan is driven by human-induced changes in habitat structure. Populations were found to be genetically distinct among islands but are not genetically differentiated between habitat types on islands. Thus, the observed pattern of intra-island morphological differences cannot be explained by separate founding populations. Rather, our results are consistent with morphological differences between habitats having arisen in situ on each island. Results underscore the significant impact anthropogenic change may have on evolutionary trajectories of populations that persist in human-altered habitats.
Collapse
Affiliation(s)
- Erin Marnocha
- Department of Ecology and Evolutionary Biology and Center for Tropical Research, Institute of the Environment, University of California Los Angeles, Los Angeles, CA, USA
| | - John Pollinger
- Department of Ecology and Evolutionary Biology and Center for Tropical Research, Institute of the Environment, University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas B Smith
- Department of Ecology and Evolutionary Biology and Center for Tropical Research, Institute of the Environment, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
98
|
Logan ML, Fernandez SG, Calsbeek R. Abiotic constraints on the activity of tropical lizards. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12379] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael L. Logan
- Department of Biology Dartmouth College 78 College St Hanover New Hampshire03755 USA
| | - Sarah G. Fernandez
- Department of Biology Dartmouth College 78 College St Hanover New Hampshire03755 USA
| | - Ryan Calsbeek
- Department of Biology Dartmouth College 78 College St Hanover New Hampshire03755 USA
| |
Collapse
|
99
|
Des Roches S, Brinkmeyer MS, Harmon LJ, Rosenblum EB. Ecological release and directional change in White Sands lizard trophic ecomorphology. Evol Ecol 2014. [DOI: 10.1007/s10682-014-9740-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
100
|
Cox RM, Calsbeek R. Survival of the fattest? Indices of body condition do not predict viability in the brown anole (
A
nolis sagrei
). Funct Ecol 2014. [DOI: 10.1111/1365-2435.12346] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert M. Cox
- Department of Biology University of Virginia Charlottesville Virginia 22904 USA
| | - Ryan Calsbeek
- Department of Biological Sciences Dartmouth College Hanover New Hampshire 03755 USA
| |
Collapse
|