51
|
Zhong S, Liu M, Wang Z, Huang Q, Hou S, Xu YC, Ge Z, Song Z, Huang J, Qiu X, Shi Y, Xiao J, Liu P, Guo YL, Dong J, Dresselhaus T, Gu H, Qu LJ. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science 2019; 364:364/6443/eaau9564. [PMID: 31147494 DOI: 10.1126/science.aau9564] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/14/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
Abstract
Reproductive isolation is a prerequisite for speciation. Failure of communication between female tissues of the pistil and paternal pollen tubes imposes hybridization barriers in flowering plants. Arabidopsis thaliana LURE1 (AtLURE1) peptides and their male receptor PRK6 aid attraction of the growing pollen tube to the ovule. Here, we report that the knockout of the entire AtLURE1 gene family did not affect fertility, indicating that AtLURE1-PRK6-mediated signaling is not required for successful fertilization within one Arabidopsis species. AtLURE1s instead function as pollen tube emergence accelerators that favor conspecific pollen over pollen from other species and thus promote reproductive isolation. We also identified maternal peptides XIUQIU1 to -4, which attract pollen tubes regardless of species. Cooperation between ovule attraction and pollen tube growth acceleration favors conspecific fertilization and promotes reproductive isolation.
Collapse
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.,The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| | - Meiling Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zhijuan Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingpei Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Saiying Hou
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zengxiang Ge
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zihan Song
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jiaying Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xinyu Qiu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yihao Shi
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Junyu Xiao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.,The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China. .,The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| |
Collapse
|
52
|
Cryptic ecological and geographic diversification in coral-associated nudibranchs. Mol Phylogenet Evol 2019; 144:106698. [PMID: 31812568 DOI: 10.1016/j.ympev.2019.106698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/03/2019] [Accepted: 11/30/2019] [Indexed: 12/18/2022]
Abstract
Coral reefs are among the most biologically diverse ecosystems of the world, yet little is known about the processes creating and maintaining their diversity. Ecologically, corallivory in nudibranchs resembles phytophagy in insects- a process that for decades has served as a model for ecological speciation via host shifting. This study uses extensive field collections, DNA sequencing, and phylogenetic analyses to reconstruct the evolutionary history of coral-associated nudibranchs and assess the relative roles that host shifting and geography may have played in their diversification. We find that the number of species is three times higher than the number previously known to science, with evidence for both allopatric and ecological divergence through host shifting and host specialization. Results contribute to growing support for the importance of ecological diversification in marine environments and provide evidence for new species in the genus Tenellia.
Collapse
|
53
|
López-Villalobos A, Eckert CG. The contribution of hybridization to range-wide population genetic structure in a Pacific coastal dune plant. AMERICAN JOURNAL OF BOTANY 2019; 106:1575-1588. [PMID: 31808143 DOI: 10.1002/ajb2.1396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Interspecific hybridization can cause genetic structure across species ranges if the mating system and degree of sympatry/parapatry with close relatives varies geographically. The coastal dune endemic Camissoniopsis cheiranthifolia (Onagraceae) exhibits genetic subdivisions across its range, some of which are associated with shifts in mating system from outcrossing to selfing, while others are not. For instance, strong differentiation between large-flowered, self-incompatible (LF-SI) and large-flowered, self-compatible (LF-SC) populations occurs without much reduction in outcrossing or obvious barriers to gene flow. We hypothesized that LF-SI diverged from LF-SC via hybridization with the predominantly inland SI sister species C. bistorta. METHODS We analyzed spatial proximity using 1460 herbarium records and genetic variation at 12 microsatellites assayed for 805 and 404 individuals from 32 C. cheiranthifolia and 18 C. bistorta populations, respectively. We also assayed nine chloroplast microsatellites for 124 and 111 individuals from 27 and 19 populations, respectively. RESULTS Closer parapatry was associated with unexpectedly high genetic continuity between LF-SI C. cheiranthifolia and C. bistorta. LF-SI genotypes clustered with C. bistorta exclusive of other C. cheiranthifolia genotypes. Similarly, pairwise FST among SI C. cheiranthifolia and C. bistorta, adjusted for geographic proximity, was not higher between heterospecific than conspecific populations. CONCLUSIONS The lack of genetic differentiation between LF-SI C. cheiranthifolia and C. bistorta populations, even those located away from the zone of parapatry, suggests that, instead of hybridizing with C. bistorta, LF-SI C. cheiranthifolia is rather an ecotype of C. bistorta that has adapted to coastal dune habitat independent of other lineages in C. cheiranthifolia proper.
Collapse
|
54
|
Kooyers NJ, Colicchio JM, Greenlee AB, Patterson E, Handloser NT, Blackman BK. Lagging Adaptation to Climate Supersedes Local Adaptation to Herbivory in an Annual Monkeyflower. Am Nat 2019; 194:541-557. [DOI: 10.1086/702312] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
55
|
Paudel BR, Burd M, Shrestha M, Dyer AG, Li QJ. Reproductive isolation in alpine gingers: How do coexisting Roscoea (R. purpurea and R. tumjensis) conserve species integrity? Evolution 2019; 72:1840-1850. [PMID: 29992542 DOI: 10.1111/evo.13546] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
Multiple barriers may contribute to reproductive isolation between closely related species. Understanding the relative strength of these barriers can illuminate the ecological factors that currently maintain species integrity and how these factors originally promoted speciation. Two Himalayan alpine gingers, Roscoea purpurea and R. tumjensis, occur sympatrically in central Nepal and have such similar morphology that it is not clear whether or how they maintain a distinct identity. Our quantitative measurements of the components of reproductive isolation show that they are, in fact, completely isolated by a combination of phenological displacement of flowering, earlier for R. tumjensis and later for R. purpurea, and complete fidelity of visitation by different pollinator species, bumblebees for R. tumjensis and a long-tongued fly for R. purpurea. Furthermore, the nectar of R. tumjensis flowers is available to the shorter tongued bumblebees while R. purpurea nectar is less accessible, requiring deep probing from long-tongued flies. Although flowering phenology is a strong current barrier that seemingly obviates any need for pollinator discrimination, this current pattern need not reflect selective forces occurring at the initial divergence of R. tumjensis. There has been considerable pollinator switching during the radiation of the Himalayan Roscoea, and the association of flowering time with type of pollinator in these sympatric species may have originated among the earliest or latest flowering individuals or populations of an ancestor to exploit either bumblebee activity early in the breeding season or long-tongued fly abundance later in the season. These two sympatric Roscoea species add to accumulating evidence of the primacy of prezygotic pollination traits in speciation among angiosperms even in the absence of postzygotic incompatibility.
Collapse
Affiliation(s)
- Babu Ram Paudel
- Current Address: Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, 650091, Yunnan, China.,Department of Botany, Prithvi Narayan Campus, Tribhuvan University, Pokhara, Nepal
| | - Martin Burd
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Mani Shrestha
- Faculty of information Technology, Monash University, Melbourne, VIC, 3800, Australia.,School of Media and Communications, RMIT University, Melbourne, VIC, 3001, Australia
| | - Adrian G Dyer
- School of Media and Communications, RMIT University, Melbourne, VIC, 3001, Australia.,Department of Physiology, Monash University, Melbourne, 3800, Australia
| | - Qing-Jun Li
- Current Address: Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, 650091, Yunnan, China
| |
Collapse
|
56
|
Mantel SJ, Sweigart AL. Divergence in drought-response traits between sympatric species of Mimulus. Ecol Evol 2019; 9:10291-10304. [PMID: 31632643 PMCID: PMC6787937 DOI: 10.1002/ece3.5549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022] Open
Abstract
Differential adaptation to local environmental conditions is thought to be an important driver of speciation. Plants, whose sedentary lifestyle necessitates fine-tuned adaptation to edaphic conditions such as water availability, are often distributed based on these conditions. Populations occupying water-limited habitats may employ a variety of strategies, involving numerous phenotypes, to prevent and withstand desiccation. In sympatry, two closely related Mimulus species-M. guttatus and M. nasutus-occupy distinct microhabitats that differ in seasonal water availability. In a common garden experiment, we characterized natural variation within and between sympatric M. guttatus and M. nasutus in the ability to successfully set seed under well-watered and drought conditions. We also measured key phenotypes for drought adaptation, including developmental timing, plant size, flower size, and stomatal density. Consistent with their microhabitat associations in nature, M. nasutus set seed much more successfully than M. guttatus under water-limited conditions. This divergence in reproductive output under drought was due to differences in mortality after the onset of flowering, with M. nasutus surviving at a much higher rate than M. guttatus. Higher seed set in M. nasutus was mediated, at least in part, by a plastic increase in the rate of late-stage development (i.e., fruit maturation), consistent with the ability of this species to inhabit more ephemeral habitats in the field. Our results suggest adaptation to water availability may be an important factor in species maintenance of these Mimulus taxa in sympatry.
Collapse
|
57
|
Spriggs EL, Schlutius C, Eaton DA, Park B, Sweeney PW, Edwards EJ, Donoghue MJ. Differences in flowering time maintain species boundaries in a continental radiation of Viburnum. AMERICAN JOURNAL OF BOTANY 2019; 106:833-849. [PMID: 31124135 DOI: 10.1002/ajb2.1292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
PREMISE We take an integrative approach in assessing how introgression and Pleistocene climate fluctuations have shaped the diversification of the core Lentago clade of Viburnum, a group of five interfertile species with broad areas of sympatry. We specifically tested whether flowering time plays a role in maintaining species isolation. METHODS RAD-seq data for 103 individuals were used to infer the species relationships and the genetic structure within each species. Flowering times were compared among species on the basis of historical flowering dates documented by herbarium specimens. RESULTS Within each species, we found a strong relationship between flowering date and latitude, such that southern populations flower earlier than northern ones. In areas of sympatry, the species flower in sequence rather than simultaneously, with flowering dates offset by ≥9 d for all species pairs. In two cases it appears that the offset in flowering times is an incidental consequence of adaptation to differing climates, but in the recently diverged sister species V. prunifolium and V. rufidulum, we find evidence that reinforcement led to reproductive character displacement. Long-term trends suggest that the two northern-most species are flowering earlier in response to recent climate change. CONCLUSIONS We argue that speciation in the Lentago clade has primarily occurred through ecological divergence of allopatric populations, but differences in flowering time were essential to maintain separation of incipient species when they came into secondary contact. This combination of factors may underlie diversification in many other plant clades.
Collapse
Affiliation(s)
- Elizabeth L Spriggs
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
| | - Caroline Schlutius
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
| | - Deren A Eaton
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, 10027, USA
| | - Brian Park
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
| | - Patrick W Sweeney
- Division of Botany, Peabody Museum of Natural History, Yale University, P.O. Box 208118, New Haven, Connecticut, 06520, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
- Division of Botany, Peabody Museum of Natural History, Yale University, P.O. Box 208118, New Haven, Connecticut, 06520, USA
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
- Division of Botany, Peabody Museum of Natural History, Yale University, P.O. Box 208118, New Haven, Connecticut, 06520, USA
| |
Collapse
|
58
|
Richards TJ, Ortiz‐Barrientos D, McGuigan K. Natural selection drives leaf divergence in experimental populations of Senecio lautus under natural conditions. Ecol Evol 2019; 9:6959-6967. [PMID: 31380026 PMCID: PMC6662321 DOI: 10.1002/ece3.5263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 11/11/2022] Open
Abstract
Leaf morphology is highly variable both within and between plant species. This study employs a combination of common garden and reciprocal transplant experiments to determine whether differences in leaf shape between Senecio lautus ecotypes has evolved as an adaptive response to divergent ecological conditions.We created a synthetic population of hybrid genotypes to segregate morphological variation between three ecotypes and performed reciprocal transplants where this hybrid population was transplanted into the three adjacent native environments. We measured nine leaf morphology traits across the experimental and natural populations at these sites.We found significant divergence in multivariate leaf morphology toward the native character in each environment, suggesting environmental conditions at each site exert selective pressure that results in a phenotypic shift toward the local phenotype of the wild populations.These associations suggest that differences in leaf morphology between S. lautus ecotypes have arisen as a result of divergent selection on leaf shape or associated traits that confer an adaptive advantage in each environment, which has led to the formation of morphologically distinct ecotypes.
Collapse
Affiliation(s)
- Thomas J. Richards
- School of Biological Sciences St LuciaUniversity of QueenslandSt LuciaQueenslandAustralia
- Department of Plant BiologySwedish University of Agricultural SciencesLinnean Center for Plant BiologyUppsalaSweden
| | | | - Katrina McGuigan
- School of Biological Sciences St LuciaUniversity of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
59
|
Hirao AS, Shimono Y, Narita K, Wada N, Kudo G. Ecotypic divergences of the alpine herb Potentilla matsumurae adapted to fellfield-snowbed habitats across a series of mountain sky islands. AMERICAN JOURNAL OF BOTANY 2019; 106:772-787. [PMID: 31124143 DOI: 10.1002/ajb2.1290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Divergent selection due to environmental heterogeneity can lead to local adaptation. However, the ecological and evolutionary processes of local adaptation that occurs across multiple regions are often unknown. Our previous studies reported on the ecotypic divergence within a local area of variation of Potentilla matsumurae, an alpine herb adapted to the fellfield-snowbed environment. Here we investigated large-scale geographic patterns of ecotypic differentiation in this species to infer local adaptation and selective forces across multiple regions. METHODS We compiled information on the overall distributions of fellfield and snowbed habitats on the mountains in Japan across the distribution of the species. Next, we conducted common garden experiments to test the adaptive divergence of the fellfield-snowbed plants derived from multiple regions. Finally, we evaluated phylogeographic structures based on cpDNA and allozyme variations and inferred the evolutionary history of ecotype differentiation. RESULTS The mosaic distribution of the fellfield-snowbed ecotypes across isolated mountaintops constitutes indirect evidence for habitat-specific natural selection. The significant difference in survivorship between the ecotypes observed in a controlled snow environment provides more substantial evidence of local selection. Phylogeographic structures support the hypothesis that ecotypic divergence events from fellfield to snowbed populations occurred independently in at least two distinct regions. CONCLUSIONS Ecotypic divergence of P. matsumurae has occurred across a series of mountain sky islands. Local selection in snowy environments is a driving force that maintains the divergent ecotypes across multiple mountain regions and can contribute to the diversification of plants in heavy-snow regions.
Collapse
Affiliation(s)
- Akira S Hirao
- Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Ueda, 386-2204, Japan
| | - Yoshiko Shimono
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Narita
- Faculty of Education and Human Studies, Akita University, Akita, 010-8502, Japan
| | - Naoya Wada
- Center for Far Eastern Studies, University of Toyama, Toyama, 930-8555, Japan
| | - Gaku Kudo
- Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
60
|
Volis S, Zhang YH, Deng T, Dorman M, Blecher M, Abbott RJ. Divergence and reproductive isolation between two closely related allopatric Iris species. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Sergei Volis
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yong-Hong Zhang
- Life Science Department, Yunnan Normal University, Kunming, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Michael Dorman
- Geography Department, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Blecher
- En Gedi Nature Reserve, Israel Nature and Parks Authority, Dead Sea, Israel
| | - Richard J Abbott
- School of Biology, Harold Mitchell Building, University of St Andrews, St Andrews, Fife, UK
| |
Collapse
|
61
|
Sobel JM, Stankowski S, Streisfeld MA. Variation in ecophysiological traits might contribute to ecogeographic isolation and divergence between parapatric ecotypes of
Mimulus aurantiacus. J Evol Biol 2019; 32:604-618. [DOI: 10.1111/jeb.13442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- James M. Sobel
- Department of Biological Sciences Binghamton University (SUNY) Binghamton New York
| | - Sean Stankowski
- Institute of Ecology and Evolution University of Oregon Eugene Oregon
| | | |
Collapse
|
62
|
Lowry DB, Popovic D, Brennan DJ, Holeski LM. Mechanisms of a locally adaptive shift in allocation among growth, reproduction, and herbivore resistance in
Mimulus guttatus
*. Evolution 2019; 73:1168-1181. [DOI: 10.1111/evo.13699] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/21/2019] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Affiliation(s)
- David B. Lowry
- Department of Plant BiologyMichigan State University East Lansing Michigan 48824
- Program in Ecology, Evolutionary Biology, and BehaviorMichigan State University East Lansing Michigan 48824
- Plant Resilience Institute,Michigan State University East Lansing Michigan 48824
| | - Damian Popovic
- Department of Plant BiologyMichigan State University East Lansing Michigan 48824
- Program in Ecology, Evolutionary Biology, and BehaviorMichigan State University East Lansing Michigan 48824
| | - Darlene J. Brennan
- Department of Plant BiologyMichigan State University East Lansing Michigan 48824
| | - Liza M. Holeski
- Department of Biological SciencesNorthern Arizona University Flagstaff Arizona 86011
| |
Collapse
|
63
|
Parallel colonization of subalpine habitats in the central European mountains by Primula elatior. Sci Rep 2019; 9:3294. [PMID: 30824749 PMCID: PMC6397301 DOI: 10.1038/s41598-019-39669-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
The island-like distribution of subalpine habitats across mountain ranges can trigger the parallel evolution of locally adapted ecotypes. Such naturally replicated scenarios allow testing hypotheses on how elevational differentiation structures genetic diversity within species. Nevertheless, the parallel colonization of subalpine habitats across different mountain ranges has only rarely been documented with molecular data. We chose Primula elatior (Primulaceae), naturally spanning entire elevation range in multiple mountain regions of central Europe, to test for the origin of its scattered subalpine populations. Nuclear microsatellite variation revealed three genetic groups corresponding with the distinct study regions. We found that genetic differentiation between foothill and subalpine populations within each region was relatively low, suggesting that the colonization of subalpine habitats occurred independently within each mountain range. Furthermore, the strongest differentiation was usually found between the subalpine populations suggesting that mountain ridges may act as migration barriers that can reduce gene flow more strongly than elevational differences between foothill and subalpine populations. Finally, we found that subalpine colonization did not result in a loss of genetic diversity relative to foothill populations in agreement with the high migration rates that we document here between the subalpine and the foothill populations. In summary, our study shows subalpine Primula elatior populations are genetically diverse and distinct results of parallel colonization events from multiple foothill gene pools.
Collapse
|
64
|
Richards TJ. Digest: Adaptation and isolation: Testing genetic and environmental barriers to hybridization in Silene. Evolution 2019; 73:412-413. [PMID: 30592035 DOI: 10.1111/evo.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/19/2018] [Indexed: 12/01/2022]
Abstract
Species differences are maintained by the cumulative effect of factors that reduce gene flow between divergent lineages. In this issue, Karrenberg et al. quantify multiple genetic and environmental barriers to gene exchange between two closely related plant species and find that adaptation to divergent environments has the greatest effect on reproductive isolation.
Collapse
Affiliation(s)
- Thomas J Richards
- Department of Plant Biology, SLU Department of Plant Biology, Swedish University of Agricultural Science, 75007, Uppsala, Sweden
| |
Collapse
|
65
|
Rubin MJ, Schmid KM, Friedman J. Assortative mating by flowering time and its effect on correlated traits in variable environments. Ecol Evol 2019; 9:471-481. [PMID: 30680129 PMCID: PMC6342113 DOI: 10.1002/ece3.4765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 11/10/2022] Open
Abstract
Reproductive timing is a key life-history trait that impacts the pool of available mates, the environment experienced during flowering, and the expression of other traits through genetic covariation. Selection on phenology, and its consequences on other life-history traits, has considerable implications in the context of ongoing climate change and shifting growing seasons. To test this, we grew field-collected seed from the wildflower Mimulus guttatus in a greenhouse to assess the standing genetic variation for flowering time and covariation with other traits. We then created full-sib families through phenological assortative mating and grew offspring in three photoperiod treatments representing seasonal variation in daylength. We find substantial quantitative genetic variation for the onset of flowering time, which covaried with vegetative traits. The assortatively-mated offspring varied in their critical photoperiod by over two hours, so that families differed in their probability of flowering across treatments Allocation to flowering and vegetative growth changed across the daylength treatments, with consistent direction and magnitude of covariation among flowering time and other traits. Our results suggest that future studies of flowering time evolution should consider the joint evolution of correlated traits and shifting seasonal selection to understand how environmental variation influences life histories.
Collapse
|
66
|
Jacquemyn H, Waud M, Brys R. Mycorrhizal divergence and selection against immigrant seeds in forest and dune populations of the partially mycoheterotrophic Pyrola rotundifolia. Mol Ecol 2018; 27:5228-5237. [PMID: 30427084 DOI: 10.1111/mec.14940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 11/29/2022]
Abstract
Plant populations occupying different habitats may diverge from each other over time and gradually accumulate genetic and morphological differences, ultimately resulting in ecotype or even species formation. In plant species that critically rely on mycorrhizal fungi, differences in mycorrhizal communities can contribute to ecological isolation by reducing or even inhibiting germination of immigrant seeds. In this study, we investigated whether the mycorrhizal communities available in the soil and associating with the roots of seedlings and adult plants of the partially mycoheterotrophic Pyrola rotundifolia differed between populations growing in sand dunes and forests. In addition, reciprocal germination experiments were performed to test whether native seeds showed higher germination than immigrant seeds. Our results showed that the mycorrhizal communities differed significantly between forest and dune populations, and that within populations seedlings and adults also associated with different mycorrhizal communities. In both forest and dune populations, mycorrhizal communities were dominated by members of the Thelephoraceae, but dune populations showed a higher incidence of members of the Inocybaceae, whereas forest populations showed a high abundance of members of the Russulaceae. Reciprocal germination experiments showed that native seeds showed a higher germination success than immigrant seeds and this effect was most pronounced in dune populations. Overall, these results demonstrate that plants of P. rotundifolia growing in dune and forest habitats associate with different mycorrhizal communities and that reduced germination of non-native seeds may contribute to reproductive isolation. We conclude that selection against immigrants may constitute an important reproductive barrier at early stages of the speciation process.
Collapse
Affiliation(s)
- Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Michael Waud
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Rein Brys
- Research Institute for Forest and Nature, Geraardsbergen, Belgium
| |
Collapse
|
67
|
Gould BA, Chen Y, Lowry DB. Gene regulatory divergence between locally adapted ecotypes in their native habitats. Mol Ecol 2018; 27:4174-4188. [PMID: 30168223 DOI: 10.1111/mec.14852] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 01/04/2023]
Abstract
Local adaptation is a key driver of ecological specialization and the formation of new species. Despite its importance, the evolution of gene regulatory divergence among locally adapted populations is poorly understood, especially how that divergence manifests in nature. Here, we evaluate gene expression divergence and allele-specific gene expression responses for locally adapted coastal perennial and inland annual accessions of the yellow monkeyflower, Mimulus guttatus, in a field reciprocal transplant experiment. Overall, 6765 (73%) of surveyed genes were differentially expressed between coastal and inland habitats, while 7213 (77%) were differentially expressed between the coastal perennial and inland annual accessions. Cis-regulatory variation was pervasive, affecting 79% (5532) of differentially expressed genes. We detected trans effects for 52% (3611) of differentially expressed genes. Expression plasticity of alleles across habitats (G × E interactions) appears to be relatively common (affecting 18% of transcripts) and could minimize fitness trade-offs at loci that contribute to local adaptation. We also found evidence that at least one chromosomal inversion may act as supergene by holding together haplotypes of differentially expressed genes, but this pattern depends on habitat context. Our results highlight multiple key patterns regarding the relationship between gene expression and the evolution of locally adapted populations.
Collapse
Affiliation(s)
- Billie A Gould
- Department of Plant Biology, Michigan State University, East Lansing, Michigan.,Myriad Women's Health, South San Francisco, California
| | - Yani Chen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan.,Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan.,Plant Resilience Institute, Michigan State University, East Lansing, Michigan
| |
Collapse
|
68
|
Cahenzli F, Bonetti C, Erhardt A. Divergent strategies in pre- and postzygotic reproductive isolation between two closely related Dianthus species. Evolution 2018; 72:1851-1862. [PMID: 30003537 DOI: 10.1111/evo.13556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
Quantifying the relative contribution of multiple isolation barriers to gene flow between recently diverged species is essential for understanding speciation processes. In parapatric populations, local adaptation is thought to be a major contributor to the evolution of reproductive isolation. However, extrinsic postzygotic barriers assessed in reciprocal transplant experiments are often neglected in empirical assessments of multiple isolation barriers. We analyzed multiple isolation barriers between two closely related species of the plant genus Dianthus, a genus characterized by the most rapid species diversification in plants reported so far. Although D. carthusianorum L. and D. sylvestris Wulf. can easily be hybridized in crossing experiments, natural hybrids are rare. We found that in parapatry, pollinator-mediated prezygotic reproductive isolation barriers are important for both D. carthusianorum (0.761) and D. sylvestris (0.468). In contrast to D. carthusianorum, high hybrid viability in D. sylvestris (-0.491) was counteracted by strong extrinsic postzygotic isolation (0.900). Our study highlights the importance of including reciprocal transplant experiments for documenting extrinsic postzygotic isolation and demonstrates clearly divergent strategies and hence asymmetric pre- and postzygotic reproductive isolation between closely related species. It also suggests that pollinator-mediated and ecological isolation could have interacted in synergistic ways, further stimulating rapid speciation in Dianthus.
Collapse
Affiliation(s)
- Fabian Cahenzli
- Forschungsinstitut für biologischen Landbau (FiBL), Department of crop Sciences, Ackerstrasse 113, CH-5070, Frick, Switzerland
| | - Christophe Bonetti
- Department of Environmental Sciences, Section Conservation Biology (NLU), University of Basel, St. Johanns-Vorstadt 10, CH-4056, Basel, Switzerland
| | - Andreas Erhardt
- Department of Environmental Sciences, Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| |
Collapse
|
69
|
Pantoja PO, Paine CET, Vallejo-Marín M. Natural selection and outbreeding depression suggest adaptive differentiation in the invasive range of a clonal plant. Proc Biol Sci 2018; 285:20181091. [PMID: 30051824 PMCID: PMC6053932 DOI: 10.1098/rspb.2018.1091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/14/2018] [Indexed: 11/12/2022] Open
Abstract
Analyses of phenotypic selection and demography in field populations are powerful ways to establishing the potential role of natural selection in shaping evolution during biological invasions. Here we use experimental F2 crosses between native and introduced populations of Mimulus guttatus to estimate the pattern of natural selection in part of its introduced range, and to seek evidence of outbreeding depression of colonists. The F2s combined the genome of an introduced population with the genome of either native or introduced populations. We found that the introduced × introduced cross had the fastest population growth rate owing to increased winter survival, clonality and seed production. Our analysis also revealed that selection through sexual fitness favoured large floral displays, large vegetative and flower size, lateral spread and early flowering. Our results indicate a source-of-origin effect, consistent with outbreeding depression exposed by mating between introduced and native populations. Our findings suggest that well-established non-native populations may pay a high fitness cost during subsequent bouts of admixture with native populations, and reveal that processes such as local adaptation in the invasive range can mediate the fitness consequences of admixture.
Collapse
Affiliation(s)
- Pauline O Pantoja
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - C E Timothy Paine
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Mario Vallejo-Marín
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
70
|
Tao Z, Ren Z, Bernhardt P, Liang H, Li H, Zhao Y, Wang H, Li D. Does reproductive isolation reflect the segregation of color forms in Spiranthes sinensis (Pers.) Ames complex (Orchidaceae) in the Chinese Himalayas? Ecol Evol 2018; 8:5455-5469. [PMID: 29938065 PMCID: PMC6010815 DOI: 10.1002/ece3.4067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 01/16/2023] Open
Abstract
Isolation between species, or taxa sharing a common lineage, depends primarily on the relative strengths of various reproductive barriers. Previous studies on reproductive isolation between orchids emphasized mechanical and ethological barriers in flowers of species showing food and/or sexual mimicry. In this study, we investigated and quantified a series of prepollination and postpollination barriers between pink and white forms of Spiranthes sinensis sl, a nectar-secreting complex. We generated ML trees based on trnS-G and matK to explore phylogenetic relationships in this species complex. Spiranthes sinensis sl segregated from some other congeners, but the white form constituted a distinct clade in relation to the pink form. The white form secreted 2-Phenylethanol as it is a single-scent compound and was pollinated almost exclusively by native, large-bodied Apis cerana and Bombus species (Apidae). Apis cerana showed a high floral constancy to this form. The scentless, pink form was pollinated primarily by smaller bees in the genera Ceratina (Apidae), and members of the family Halictidae, with infrequent visits by A. cerana and Bombus species. Fruit set and the production of large embryos following interform pollination treatments were significantly lower compared to intraform pollination results for the white form. Our results suggested that pollinator isolation, based on color and scent cues, may result in greater floral constancy in white populations when both forms are sympatric as two different, guilds of pollinators forage selectively preventing or reducing prospective gene flow. Postpollination barriers appear weaker than prepollination barriers but they also play a role in interform isolation, especially in the white form. Our findings suggest that floral color forms in S. sinensis do not represent an unbalanced polymorphism. Interpretations of the evolutionary status of these forms are discussed.
Collapse
Affiliation(s)
- Zhi‐Bin Tao
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Kunming College of Life SciencesUniversity of Chinese Academy of SciencesKunmingChina
| | - Zong‐Xin Ren
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | | | - Huan Liang
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Kunming College of Life SciencesUniversity of Chinese Academy of SciencesKunmingChina
| | - Hai‐Dong Li
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Yan‐Hui Zhao
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Hong Wang
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - De‐Zhu Li
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| |
Collapse
|
71
|
Zimmer C, Riesch R, Jourdan J, Bierbach D, Arias-Rodriguez L, Plath M. Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies ( Poecilia mexicana). Genes (Basel) 2018; 9:E232. [PMID: 29724050 PMCID: PMC5977172 DOI: 10.3390/genes9050232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022] Open
Abstract
Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI). Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage) suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel) pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system.
Collapse
Affiliation(s)
- Claudia Zimmer
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, China.
- Department of Ecology and Evolution, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Rüdiger Riesch
- Centre for Ecology, Evolution and Behaviour, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, D-63571 Gelnhausen, Germany.
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany.
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 86150 Villahermosa, Tabasco, Mexico.
| | - Martin Plath
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
72
|
Rossington N, Yost J, Ritter M. Water Availability Influences Species Distributions on Serpentine Soils. ACTA ACUST UNITED AC 2018. [DOI: 10.3120/0024-9637-65.2.68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Natalie Rossington
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106
| | | | | |
Collapse
|
73
|
Walter GM, Aguirre JD, Blows MW, Ortiz-Barrientos D. Evolution of Genetic Variance during Adaptive Radiation. Am Nat 2018; 191:E108-E128. [PMID: 29570402 DOI: 10.1086/696123] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genetic correlations between traits can concentrate genetic variance into fewer phenotypic dimensions that can bias evolutionary trajectories along the axis of greatest genetic variance and away from optimal phenotypes, constraining the rate of evolution. If genetic correlations limit adaptation, rapid adaptive divergence between multiple contrasting environments may be difficult. However, if natural selection increases the frequency of rare alleles after colonization of new environments, an increase in genetic variance in the direction of selection can accelerate adaptive divergence. Here, we explored adaptive divergence of an Australian native wildflower by examining the alignment between divergence in phenotype mean and divergence in genetic variance among four contrasting ecotypes. We found divergence in mean multivariate phenotype along two major axes represented by different combinations of plant architecture and leaf traits. Ecotypes also showed divergence in the level of genetic variance in individual traits and the multivariate distribution of genetic variance among traits. Divergence in multivariate phenotypic mean aligned with divergence in genetic variance, with much of the divergence in phenotype among ecotypes associated with changes in trait combinations containing substantial levels of genetic variance. Overall, our results suggest that natural selection can alter the distribution of genetic variance underlying phenotypic traits, increasing the amount of genetic variance in the direction of natural selection and potentially facilitating rapid adaptive divergence during an adaptive radiation.
Collapse
|
74
|
López-Villalobos A, Eckert CG. Consequences of multiple mating-system shifts for population and range-wide genetic structure in a coastal dune plant. Mol Ecol 2018; 27:675-693. [PMID: 29319906 DOI: 10.1111/mec.14484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 12/24/2022]
Abstract
Evolutionary transitions from outcrossing to selfing can strongly affect the genetic diversity and structure of species at multiple spatial scales. We investigated the genetic consequences of mating-system shifts in the North American, Pacific coast dune endemic plant Camissoniopsis cheiranthifolia (Onagraceae) by assaying variation at 13 nuclear (n) and six chloroplast (cp) microsatellite (SSR) loci for 38 populations across the species range. As predicted from the expected reduction in effective population size (Ne ) caused by selfing, small-flowered, predominantly selfing (SF) populations had much lower nSSR diversity (but not cpSSR) than large-flowered, predominantly outcrossing (LF) populations. The reduction in nSSR diversity was greater than expected from the effects of selfing on Ne alone, but could not be accounted for by indirect effects of selfing on population density. Although selfing should reduce gene flow, SF populations were not more genetically differentiated than LF populations. We detected five clusters of nSSR genotypes and three groups of cpSSR haplotypes across the species range consisting of parapatric groups of populations that usually (but not always) differed in mating system, suggesting that selfing may often initiate ecogeographic isolation. However, lineage-wide genetic variation was not lower for selfing clusters, failing to support the hypothesis that selection for reproductive assurance spurred the evolution of selfing in this species. Within three populations where LF and SF plants coexist, we detected genetic differentiation among diverged floral phenotypes suggesting that reproductive isolation (probably postzygotic) may help maintain the striking mating-system differentiation observed across the range of this species.
Collapse
Affiliation(s)
| | - C G Eckert
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
75
|
Deschepper P, Brys R, Fortuna MA, Jacquemyn H. Analysis of spatial genetic variation reveals genetic divergence among populations of Primula veris associated to contrasting habitats. Sci Rep 2017; 7:8847. [PMID: 28821787 PMCID: PMC5562905 DOI: 10.1038/s41598-017-09154-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/24/2017] [Indexed: 12/01/2022] Open
Abstract
Genetic divergence by environment is a process whereby selection causes the formation of gene flow barriers between populations adapting to contrasting environments and is often considered to be the onset of speciation. Nevertheless, the extent to which genetic differentiation by environment on small spatial scales can be detected by means of neutral markers is still subject to debate. Previous research on the perennial herb Primula veris has shown that plants from grassland and forest habitats showed pronounced differences in phenology and flower morphology, suggesting limited gene flow between habitats. To test this hypothesis, we sampled 33 populations of P. veris consisting of forest and grassland patches and used clustering techniques and network analyses to identify sets of populations that are more connected to each other than to other sets of populations and estimated the timing of divergence. Our results showed that spatial genetic variation had a significantly modular structure and consisted of four well-defined modules that almost perfectly coincided with habitat features. Genetic divergence was estimated to have occurred about 114 generations ago, coinciding with historic major changes in the landscape. Overall, these results illustrate how populations adapting to different environments become structured genetically within landscapes on small spatial scales.
Collapse
Affiliation(s)
- Pablo Deschepper
- Division of Plant Ecology and Systematics, Biology Department, University of Leuven, Leuven, Belgium.
| | - Rein Brys
- Research Institute for Forest and Nature, Gaverstraat 4, B-9500, Geraardsbergen, Belgium
| | - Miguel A Fortuna
- Department of Evolutionary Biology and Environmental Studies. University of Zurich, Zurich, Switzerland
| | - Hans Jacquemyn
- Division of Plant Ecology and Systematics, Biology Department, University of Leuven, Leuven, Belgium
| |
Collapse
|
76
|
RADseq provides evidence for parallel ecotypic divergence in the autotetraploid Cochlearia officinalis in Northern Norway. Sci Rep 2017; 7:5573. [PMID: 28717144 PMCID: PMC5514025 DOI: 10.1038/s41598-017-05794-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/02/2017] [Indexed: 11/08/2022] Open
Abstract
Speciation encompasses a continuum over time from freely interbreeding populations to reproductively isolated species. Along this process, ecotypes - the result of local adaptation - may be on the road to new species. We investigated whether three autotetraploid Cochlearia officinalis ecotypes, adapted to different habitats (beach, estuary, spring), are genetically differentiated and result from parallel ecotypic divergence in two distinct geographical regions. We obtained genetic data from thousands of single nucleotide polymorphisms (SNPs) from restriction-site associated DNA sequencing (RADseq) and from six microsatellite markers for 12 populations to assess genetic divergence at ecotypic, geographic and population level. The genetic patterns support differentiation among ecotypes as suggested by morphology and ecology. The data fit a scenario where the ancestral beach ecotype has recurrently and polytopically given rise to the estuary and spring ecotypes. Several ecologically-relevant loci with consistent non-random segregating patterns are identified across the recurrent origins, in particular around genes related to salt stress. Despite being ecologically distinct, the Cochlearia ecotypes still represent an early stage in the process of speciation, as reproductive isolation has not (yet) developed. A sequenced annotated genome is needed to specifically target candidate genes underlying local adaptation.
Collapse
|
77
|
Jacquemyn H, Kort HD, Broeck AV, Brys R. Immigrant and extrinsic hybrid seed inviability contribute to reproductive isolation between forest and dune ecotypes of Epipactis helleborine
(Orchidaceae). OIKOS 2017. [DOI: 10.1111/oik.04329] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hans Jacquemyn
- Dept of Biology; Plant Conservation and Population Biology; BE-3001 Leuven Belgium
| | - Hanne De Kort
- Dept of Biology; Plant Conservation and Population Biology; BE-3001 Leuven Belgium
- Station d'Ecologie Théorique et Expérimentale du CNRS, Centre National de la Recherche Scientifique; Moulis France
| | | | - Rein Brys
- Research Inst. for Forest and Nature; Geraardsbergen Belgium
| |
Collapse
|
78
|
Mixing It Up: The Role of Hybridization in Forest Management and Conservation under Climate Change. FORESTS 2017. [DOI: 10.3390/f8070237] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
79
|
Roda F, Walter GM, Nipper R, Ortiz‐Barrientos D. Genomic clustering of adaptive loci during parallel evolution of an Australian wildflower. Mol Ecol 2017; 26:3687-3699. [DOI: 10.1111/mec.14150] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/07/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Federico Roda
- School of Biological Sciences The University of Queensland St. Lucia QLD Australia
- Harvard University Boston MA USA
| | - Greg M. Walter
- School of Biological Sciences The University of Queensland St. Lucia QLD Australia
| | | | | |
Collapse
|
80
|
Martin H, Touzet P, Dufay M, Godé C, Schmitt E, Lahiani E, Delph LF, Van Rossum F. Lineages of Silene nutans developed rapid, strong, asymmetric postzygotic reproductive isolation in allopatry. Evolution 2017; 71:1519-1531. [PMID: 28384386 DOI: 10.1111/evo.13245] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/18/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
Reproductive isolation can rise either as a consequence of genomic divergence in allopatry or as a byproduct of divergent selection in parapatry. To determine whether reproductive isolation in gynodioecious Silene nutans results from allopatric divergence or from ecological adaptation following secondary contact, we investigated the pattern of postzygotic reproductive isolation and hybridization in natural populations using two phylogeographic lineages, western (W1) and eastern (E1). Experimental crosses between the lineages identified strong, asymmetric postzygotic isolation between the W1 and the E1 lineages, independent of geographic overlap. The proportion of ovules fertilized, seeds aborted, and seeds germinated revealed relatively little effect on the fitness of hybrids. In contrast, hybrid mortality was high and asymmetric: while half of the hybrid seedlings with western lineage mothers died, nearly all hybrid seedlings with E1 mothers died. This asymmetric mortality mirrored the proportion of chlorotic seedlings, and is congruent with cytonuclear incompatibility. We found no evidence of hybridization between the lineages in regions of co-occurrence using nuclear and plastid markers. Together, our results are consistent with the hypothesis that strong postzygotic reproductive isolation involving cytonuclear incompatibilities arose in allopatry. We argue that the dynamics of cytonuclear gynodioecy could facilitate the evolution of reproductive isolation.
Collapse
Affiliation(s)
- Hélène Martin
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Pascal Touzet
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Mathilde Dufay
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Cécile Godé
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Eric Schmitt
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Emna Lahiani
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Lynda F Delph
- Department of Biology, Indiana University, Bloomington, Indiana, 47405
| | - Fabienne Van Rossum
- Meise Botanic Garden (formerly National Botanic Garden of Belgium), Nieuwelaan 38, BE-1860, Meise, Belgium.,Écologie végétale et Biogéochimie, Université Libre de Bruxelles, CP244, Boulevard du Triomphe, BE-1050, Brussels, Belgium.,Fédération Wallonie-Bruxelles, rue A. Lavallée 1, BE-1080, Brussels, Belgium
| |
Collapse
|
81
|
Kooyers NJ, Blackman BK, Holeski LM. Optimal defense theory explains deviations from latitudinal herbivory defense hypothesis. Ecology 2017; 98:1036-1048. [DOI: 10.1002/ecy.1731] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Nicholas J. Kooyers
- Department of Biology University of Virginia Charlottesville Virginia 22904 USA
- Department of Integrative Biology University of South Florida Tampa Florida 33620 USA
- Department of Plant and Microbial Biology University of California Berkeley California 94720 USA
| | - Benjamin K. Blackman
- Department of Biology University of Virginia Charlottesville Virginia 22904 USA
- Department of Integrative Biology University of South Florida Tampa Florida 33620 USA
| | - Liza M. Holeski
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona 86011 USA
| |
Collapse
|
82
|
Matsuda J, Maeda Y, Nagasawa J, Setoguchi H. Tight species cohesion among sympatric insular wild gingers (Asarum spp. Aristolochiaceae) on continental islands: Highly differentiated floral characteristics versus undifferentiated genotypes. PLoS One 2017; 12:e0173489. [PMID: 28301540 PMCID: PMC5354281 DOI: 10.1371/journal.pone.0173489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 02/21/2017] [Indexed: 11/19/2022] Open
Abstract
The Amami Island group of the Ryukyu Archipelago, Japan, harbors extensive species diversity of Asarum in a small landmass. The fine-scale population genetic structure and diversity of nine insular endemic Asarum species were examined using nuclear DNA microsatellite loci and ITS sequences. High population genetic diversity (HS = 0.45-0.79) was estimated based on the microsatellites, implying outcrossing of Asarum species within populations accompanied by inbreeding. Bayesian clustering analyses revealed that species were divided into three robust genetic clusters and that the species within each cluster had a homogeneous genetic structure, indicating incomplete lineage sorting. This conclusion was supported by an ITS phylogeny. The degree of genetic differentiation among species was very low both within and between clusters (FST = 0.096-0.193, and 0.096-0.266, respectively). Although species can be crossed artificially to produce fertile hybrids, our results indicate that there is very little evidence of hybridization or introgression occurring among species in the wild, even within stands composed of multiple sympatric species. The highly differentiated floral morphology of the studied species is likely to impose reproductive isolation between them and maintain their integrity in the wild. A lack of genetic differentiation between sympatric species suggests that speciation within this group occurred rapidly and recently.
Collapse
Affiliation(s)
- Junshi Matsuda
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | | | - Junichi Nagasawa
- Kyoto Botanical Garden, Shimokamo Hangi-cho, Sakyo-ku, Kyoto, Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
83
|
Greenham K, Lou P, Puzey JR, Kumar G, Arnevik C, Farid H, Willis JH, McClung CR. Geographic Variation of Plant Circadian Clock Function in Natural and Agricultural Settings. J Biol Rhythms 2017; 32:26-34. [PMID: 27920227 DOI: 10.1177/0748730416679307] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The increasing demand for improved agricultural production will require more efficient breeding for traits that maintain yield under heterogeneous environments. The internal circadian oscillator is essential for perceiving and coordinating environmental cues such as day length, temperature, and abiotic stress responses within physiological processes. To investigate the contribution of the circadian clock to local adaptability, we have analyzed circadian period by leaf movement in natural populations of Mimulus guttatus and domesticated cultivars of Glycine max. We detected consistent variation in circadian period along a latitudinal gradient in annual populations of the wild plant and the selectively bred crop, and this provides novel evidence of natural and artificial selection for circadian performance. These findings provide new support that the circadian clock acts as a central regulator of plant adaptability and further highlight the potential of applying circadian clock gene variation to marker-assisted breeding programs in crops.
Collapse
Affiliation(s)
- Kathleen Greenham
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | - Ping Lou
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | - Joshua R Puzey
- Biology Department, College of William and Mary, Williamsburg, Virginia
| | | | | | - Hany Farid
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire
| | - John H Willis
- Biology Department, Duke University, Durham, North Carolina
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
84
|
Ågren J, Oakley CG, Lundemo S, Schemske DW. Adaptive divergence in flowering time among natural populations of
Arabidopsis thaliana
: Estimates of selection and QTL mapping. Evolution 2016; 71:550-564. [DOI: 10.1111/evo.13126] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Jon Ågren
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre Uppsala University Norbyvägen 18 D SE‐752 36 Uppsala Sweden
| | | | - Sverre Lundemo
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre Uppsala University Norbyvägen 18 D SE‐752 36 Uppsala Sweden
- WWF Norway Postboks 6784, St. Olavs Plass 0130 Oslo Norway
| | - Douglas W. Schemske
- Department of Plant Biology and W. K. Kellogg Biological Station Michigan State University East Lansing Michigan 48824
| |
Collapse
|
85
|
Berner D, Ammann M, Spencer E, Rüegg A, Lüscher D, Moser D. Sexual isolation promotes divergence between parapatric lake and stream stickleback. J Evol Biol 2016; 30:401-411. [PMID: 27862535 DOI: 10.1111/jeb.13016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022]
Abstract
Speciation can be initiated by adaptive divergence between populations in ecologically different habitats, but how sexually based reproductive barriers contribute to this process is less well understood. We here test for sexual isolation between ecotypes of threespine stickleback fish residing in adjacent lake and stream habitats in the Lake Constance basin, Central Europe. Mating trials exposing females to pairings of territorial lake and stream males in outdoor mesocosms allowing for natural reproductive behaviour reveal that mating occurs preferentially between partners of the same ecotype. Compared to random mating, this sexual barrier reduces gene flow between the ecotypes by some 36%. This relatively modest strength of sexual isolation is surprising because comparing the males between the two ecotypes shows striking differentiation in traits generally considered relevant to reproductive behaviour (body size, breeding coloration, nest size). Analysing size differences among the individuals in the mating trials further indicates that assortative mating is not related to ecotype differences in body size. Overall, we demonstrate that sexually based reproductive isolation promotes divergence in lake-stream stickleback along with other known reproductive barriers, but we also caution against inferring strong sexual isolation from the observation of strong population divergence in sexually relevant traits.
Collapse
Affiliation(s)
- D Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| | - M Ammann
- Zoological Institute, University of Basel, Basel, Switzerland
| | - E Spencer
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | - A Rüegg
- Zoological Institute, University of Basel, Basel, Switzerland
| | - D Lüscher
- Zoological Institute, University of Basel, Basel, Switzerland
| | - D Moser
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
86
|
Heidel AJ, Kiefer C, Coupland G, Rose LE. Pinpointing genes underlying annual/perennial transitions with comparative genomics. BMC Genomics 2016; 17:921. [PMID: 27846808 PMCID: PMC5111240 DOI: 10.1186/s12864-016-3274-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 11/08/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Transitions between perennial and an annual life history occur often in plant lineages, but the genes that control whether a plant is an annual or perennial are largely unknown. To identify genes that confer differences between annuals and perennials we compared the gene content of four pairs of sister lineages (Arabidopsis thaliana/Arabidopsis lyrata, Arabis montbretiana/Arabis alpina, Arabis verna/Aubrieta parviflora and Draba nemorosa/Draba hispanica) in the Brassicaceae in which each pair contains one annual and one perennial, plus one extra annual species (Capsella rubella). RESULTS After sorting all genes in all nine species into gene families, we identified five families in which well-annotated genes are present in the perennials A. lyrata and A. alpina, but are not present in any of the annual species. For the eleven genes in perennials in these families, an orthologous pseudogene or otherwise highly diverged gene was found in the syntenic region of the annual species in six cases. The five candidate families identified encode: a kinase, an oxidoreductase, a lactoylglutathione lyase, a F-box protein and a zinc finger protein. By comparing the active gene in the perennial to the pseudogene or heavily altered gene in the annual, dN and dS were calculated. The low dN/dS values in one kinase suggest that it became pseudogenized more recently, while the other kinase, F-box, oxidoreductase and zinc-finger became pseudogenized closer to the divergence between the annual-perennial pair. CONCLUSIONS We identified five gene families that may be involved in the life history switch from perennial to annual. Considering the dN and dS data and whether syntenic pseudogenes were found and the potential functions of the genes, the F-box family is considered the most promising candidate for future functional studies to determine if it affects life history.
Collapse
Affiliation(s)
- Andrew J. Heidel
- Institute of Population Genetics, Heinrich-Heine-Universität, Universitätsstraße 1, Düsseldorf, D-40225 Germany
- Faculty of Biology & Pharmacy, Department of Bioinformatics, University of Jena, Ernst Abbe Pl 2, Jena, D-07743 Germany
- Cluster of Excellence on Plant Science, Düsseldorf, 40225 Germany
| | - Christiane Kiefer
- Cluster of Excellence on Plant Science, Düsseldorf, 40225 Germany
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, D-50829 Germany
| | - George Coupland
- Cluster of Excellence on Plant Science, Düsseldorf, 40225 Germany
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, D-50829 Germany
| | - Laura E. Rose
- Institute of Population Genetics, Heinrich-Heine-Universität, Universitätsstraße 1, Düsseldorf, D-40225 Germany
- Cluster of Excellence on Plant Science, Düsseldorf, 40225 Germany
| |
Collapse
|
87
|
Milano ER, Lowry DB, Juenger TE. The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass ( Panicum virgatum). G3 (BETHESDA, MD.) 2016; 6:3561-3570. [PMID: 27613751 PMCID: PMC5100855 DOI: 10.1534/g3.116.032763] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022]
Abstract
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mapping population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.
Collapse
Affiliation(s)
- Elizabeth R Milano
- Department of Integrative Biology, The University of Texas at Austin, Texas 78712
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Thomas E Juenger
- Department of Integrative Biology, The University of Texas at Austin, Texas 78712
| |
Collapse
|
88
|
Gould BA, Chen Y, Lowry DB. Pooled ecotype sequencing reveals candidate genetic mechanisms for adaptive differentiation and reproductive isolation. Mol Ecol 2016; 26:163-177. [DOI: 10.1111/mec.13881] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Billie A. Gould
- Department of Plant Biology; Michigan State University; Plant Biology Laboratories; 612 Wilson Road Room 166 East Lansing MI 48824 USA
| | - Yani Chen
- Department of Plant Biology; Michigan State University; Plant Biology Laboratories; 612 Wilson Road Room 166 East Lansing MI 48824 USA
| | - David B. Lowry
- Department of Plant Biology; Michigan State University; Plant Biology Laboratories; 612 Wilson Road Room 166 East Lansing MI 48824 USA
- Program in Ecology, Evolutionary Biology and Behavior; Michigan State University; Giltner Hall 293 Farm Ln Rm 103 East Lansing MI 48824 USA
| |
Collapse
|
89
|
Bertel C, Hülber K, Frajman B, Schönswetter P. No evidence of intrinsic reproductive isolation between two reciprocally non-monophyletic, ecologically differentiated mountain plants at an early stage of speciation. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9867-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
90
|
Hanson D, Moore JS, Taylor EB, Barrett RDH, Hendry AP. Assessing reproductive isolation using a contact zone between parapatric lake-stream stickleback ecotypes. J Evol Biol 2016; 29:2491-2501. [PMID: 27633750 DOI: 10.1111/jeb.12978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023]
Abstract
Ecological speciation occurs when populations evolve reproductive isolation as a result of divergent natural selection. This isolation can be influenced by many potential reproductive barriers, including selection against hybrids, selection against migrants and assortative mating. How and when these barriers act and interact in nature is understood for relatively few empirical systems. We used a mark-recapture experiment in a contact zone between lake and stream three-spined sticklebacks (Gasterosteus aculeatus, Linnaeus) to evaluate the occurrence of hybrids (allowing inferences about mating isolation), the interannual survival of hybrids (allowing inferences about selection against hybrids) and the shift in lake-like vs. stream-like characteristics (allowing inferences about selection against migrants). Genetic and morphological data suggest the occurrence of hybrids and no selection against hybrids in general, a result contradictory to a number of other studies of sticklebacks. However, we did find selection against more lake-like individuals, suggesting a barrier to gene flow from the lake into the stream. Combined with previous work on this system, our results suggest that multiple (most weakly and often asymmetric) barriers must be combining to yield substantial restrictions on gene flow. This work provides evidence of a reproductive barrier in lake-stream sticklebacks and highlights the value of assessing multiple reproductive barriers in natural contexts.
Collapse
Affiliation(s)
- D Hanson
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| | - J-S Moore
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - E B Taylor
- Department of Zoology and Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada
| | - R D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| | - A P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
91
|
Larcombe MJ, Costa E Silva J, Tilyard P, Gore P, Potts BM. On the persistence of reproductive barriers in Eucalyptus: the bridging of mechanical barriers to zygote formation by F1 hybrids is counteracted by intrinsic post-zygotic incompatibilities. ANNALS OF BOTANY 2016; 118:431-44. [PMID: 27401540 PMCID: PMC4998977 DOI: 10.1093/aob/mcw115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/04/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Many previous studies conclude that pre-zygotic barriers such as mechanical isolation account for most reproductive isolation between pairs of taxa. However, the inheritance and persistence of barriers such as these after the first generation of hybridization is rarely quantified, even though it is a vital consideration in understanding gene flow potential. There is an asymmetrical pre-zygotic mechanical barrier to hybridization between Eucalyptus nitens and Eucalyptus globulus, which completely prevents small-flowered E. nitens pollen from mating with large E. globulus flowers, while the reverse cross is possible. We aimed to determine the relative importance of pre- and post-zygotic barriers in preventing gene flow following secondary contact between E. nitens and E. globulus, including the inheritance of barriers in advanced-generation hybrids. METHODS Experimental crossing was used to produce outcrossed E. nitens, E. globulus and their F1, F2, BCg and BCn hybrids. The strength and inheritance of a suite of pre- and post-zygotic barriers were assessed, including 20-year survival, growth and reproductive capacity. KEY RESULTS The mechanical barrier to hybridization was lost or greatly reduced in the F1 hybrid. In contrast, intrinsic post-zygotic barriers were strong and persistent. Line-cross analysis indicated that the outbreeding depression in the hybrids was best explained by epistatic loss. CONCLUSIONS The removal of strong mechanical barriers between E. nitens and E. globulus allows F1 hybrids to act as a bridge for bi-directional gene flow between these species. However, strong and persistent post-zygotic barriers exist, meaning that wherever F1 hybridization does occur, intrinsic post-zygotic barriers will be responsible for most reproductive isolation in this system. This potential transient nature of mechanical barriers to zygote formation due to additive inheritance in hybrids appears under-appreciated, and highlights the often important role that intrinsic post-mating barriers play in maintaining species boundaries at zones of secondary contact.
Collapse
Affiliation(s)
- Matthew J Larcombe
- Department of Botany, University of Otago, PO Box 56, Dunedin 9011, New Zealand
| | - João Costa E Silva
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Paul Tilyard
- School of Biological Sciences, and ARC Centre for Forest Value, 10 University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Peter Gore
- seedEnergy Pty Ltd, 2 Derwent Avenue, Margate, Tasmania 7054, Australia
| | - Brad M Potts
- School of Biological Sciences, and ARC Centre for Forest Value, 10 University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| |
Collapse
|
92
|
Ferris KG, Barnett LL, Blackman BK, Willis JH. The genetic architecture of local adaptation and reproductive isolation in sympatry within the Mimulus guttatus species complex. Mol Ecol 2016; 26:208-224. [PMID: 27439150 DOI: 10.1111/mec.13763] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/05/2023]
Abstract
The genetic architecture of local adaptation has been of central interest to evolutionary biologists since the modern synthesis. In addition to classic theory on the effect size of adaptive mutations by Fisher, Kimura and Orr, recent theory addresses the genetic architecture of local adaptation in the face of ongoing gene flow. This theory predicts that with substantial gene flow between populations local adaptation should proceed primarily through mutations of large effect or tightly linked clusters of smaller effect loci. In this study, we investigate the genetic architecture of divergence in flowering time, mating system-related traits, and leaf shape between Mimulus laciniatus and a sympatric population of its close relative M. guttatus. These three traits are probably involved in M. laciniatus' adaptation to a dry, exposed granite outcrop environment. Flowering time and mating system differences are also reproductive isolating barriers making them 'magic traits'. Phenotypic hybrids in this population provide evidence of recent gene flow. Using next-generation sequencing, we generate dense SNP markers across the genome and map quantitative trait loci (QTLs) involved in flowering time, flower size and leaf shape. We find that interspecific divergence in all three traits is due to few QTL of large effect including a highly pleiotropic QTL on chromosome 8. This QTL region contains the pleiotropic candidate gene TCP4 and is involved in ecologically important phenotypes in other Mimulus species. Our results are consistent with theory, indicating that local adaptation and reproductive isolation with gene flow should be due to few loci with large and pleiotropic effects.
Collapse
Affiliation(s)
- Kathleen G Ferris
- Department of Biology, Duke University, 125 Science Drive, Durham, NC, 27705, USA
| | - Laryssa L Barnett
- Department of Biology, Duke University, 125 Science Drive, Durham, NC, 27705, USA
| | - Benjamin K Blackman
- Department of Biology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA
| | - John H Willis
- Department of Biology, Duke University, 125 Science Drive, Durham, NC, 27705, USA
| |
Collapse
|
93
|
Ostevik KL, Andrew RL, Otto SP, Rieseberg LH. Multiple reproductive barriers separate recently diverged sunflower ecotypes. Evolution 2016; 70:2322-2335. [PMID: 27479368 DOI: 10.1111/evo.13027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/12/2016] [Accepted: 06/27/2016] [Indexed: 01/17/2023]
Abstract
Measuring reproductive barriers between groups of organisms is an effective way to determine the traits and mechanisms that impede gene flow. However, to understand the ecological and evolutionary factors that drive speciation, it is important to distinguish between the barriers that arise early in the speciation process and those that arise after speciation is largely complete. In this article, we comprehensively test for reproductive isolation between recently diverged (<10,000 years bp) dune and nondune ecotypes of the prairie sunflower, Helianthus petiolaris. We find reproductive barriers acting at multiple stages of hybridization, including premating, postmating-prezygotic, and postzygotic barriers, despite the recent divergence. Barriers include extrinsic selection against immigrants and hybrids, a shift in pollinator assemblage, and postpollination assortative mating. Together, these data suggest that multiple barriers can be important for reducing gene flow in the earliest stages of speciation.
Collapse
Affiliation(s)
- Katherine L Ostevik
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Sarah P Otto
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
94
|
Richards TJ, Walter GM, McGuigan K, Ortiz‐Barrientos D. Divergent natural selection drives the evolution of reproductive isolation in an Australian wildflower. Evolution 2016; 70:1993-2003. [DOI: 10.1111/evo.12994] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/20/2016] [Accepted: 05/25/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas J. Richards
- School of Biological Sciences University of Queensland St. Lucia QLD Australia
| | - Greg M. Walter
- School of Biological Sciences University of Queensland St. Lucia QLD Australia
| | - Katrina McGuigan
- School of Biological Sciences University of Queensland St. Lucia QLD Australia
| | | |
Collapse
|
95
|
Walter GM, Wilkinson MJ, James ME, Richards TJ, Aguirre JD, Ortiz‐Barrientos D. Diversification across a heterogeneous landscape. Evolution 2016; 70:1979-92. [DOI: 10.1111/evo.13009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Greg M. Walter
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - Melanie J. Wilkinson
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - Maddie E. James
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - Thomas J. Richards
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - J. David Aguirre
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
- Institute of Natural and Mathematical Sciences Massey University Auckland 0745 New Zealand
| | | |
Collapse
|
96
|
DeMarche ML, Kay KM, Angert AL. The scale of local adaptation in Mimulus guttatus: comparing life history races, ecotypes, and populations. THE NEW PHYTOLOGIST 2016; 211:345-356. [PMID: 27102088 DOI: 10.1111/nph.13971] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Fitness trade-offs between environments are central to the evolution of biodiversity. Although transplant studies often document fitness trade-offs consistent with local adaptation (LA), many have also found an advantage of foreign genotypes (foreign advantage (FA)). Understanding the mechanisms driving the magnitude and distribution of fitness variation requires comparative approaches that test the ecological scales at which these different patterns emerge. We used a common garden transplant experiment to compare the relative fitnesses of native vs foreign genotypes at three nested ecological scales within Mimulus guttatus: annual vs perennial life history races, perennial ecotypes across an elevational range, and populations within perennial elevational ecotypes. We integrated fitness across the life-cycle and decomposed LA vs FA into contributions from different fitness components. We found LA, measured as home-site advantage, between annual and perennial races and a trend towards LA among populations within montane habitats. Conversely, we found strong FA of low-elevation perennials in a montane environment. LA between life history races reflects the fitness advantages of adult survival and vegetative growth in a mesic environment. Within the perennial race, recent climate conditions or nonselective processes, such as dispersal limitation or mutational load, could explain FA of low-elevation perennials in a montane environment.
Collapse
Affiliation(s)
- Megan L DeMarche
- Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Kathleen M Kay
- Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Amy L Angert
- Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
97
|
von Wettberg EJB, Marques E, Murren CJ. Local adaptation or foreign advantage? Effective use of a single-test site common garden to evaluate adaptation across ecological scales. THE NEW PHYTOLOGIST 2016; 211:8-10. [PMID: 27240708 DOI: 10.1111/nph.14029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Eric J B von Wettberg
- Department of Biological Sciences and International Center for Tropical Botany, Florida International University, Miami, FL, 33199, USA
| | - Edward Marques
- Department of Biological Sciences and International Center for Tropical Botany, Florida International University, Miami, FL, 33199, USA
| | - Courtney J Murren
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| |
Collapse
|
98
|
Jacquemyn H, Waud M, Lievens B, Brys R. Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. ANNALS OF BOTANY 2016; 118:105-14. [PMID: 26946528 PMCID: PMC4934391 DOI: 10.1093/aob/mcw015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/11/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS In orchid species that have populations occurring in strongly contrasting habitats, mycorrhizal divergence and other habitat-specific adaptations may lead to the formation of reproductively isolated taxa and ultimately to species formation. However, little is known about the mycorrhizal communities associated with recently diverged sister taxa that occupy different habitats. METHODS In this study, 454 amplicon pyrosequencing was used to investigate mycorrhizal communities associating with Epipactis helleborine in its typical forest habitat and with its presumed sister species E. neerlandica that almost exclusively occurs in coastal dune habitats. Samples of the phylogenetically more distant E. palustris, which co-occurred with E. neerlandica, were also included to investigate the role of habitat-specific conditions on mycorrhizal communities. RESULTS A total of 105 operational taxonomic units (OTUs) of putative orchid mycorrhizal fungi were observed in the three studied species. The majority of these fungi were endophytic fungi of Helotiales and ectomycorrhizal fungi belonging to Thelephoraceae, Sebacinaceae and Inocybaceae. In addition, a large number of other ectomycorrhizal taxa were detected, including Cortinarius, Cenococcum, Tuber, Geopora, Wilcoxina, Meliniomyces, Hebeloma, Tricholoma, Russula and Peziza Mycorrhizal communities differed significantly between the three species, but differences were most pronounced between the forest species (E. helleborine) and the two dune slack species (E. neerlandica and E. palustris). CONCLUSION The results clearly showed that recently diverged orchid species that occupy different habitats were characterized by significantly different mycorrhizal communities and call for more detailed experiments that aim at elucidating the contribution of habitat-specific adaptations in general and mycorrhizal divergence in particular to the process of speciation in orchids.
Collapse
Affiliation(s)
- Hans Jacquemyn
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001 Leuven, Belgium and
| | - Michael Waud
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001 Leuven, Belgium and
| | - Bart Lievens
- KU Leuven, Campus De Nayer, Department of Microbial and Molecular Systems, Laboratory for Process Microbial Ecology and Bioinspirational Management, B-2860 Sint-Katelijne-Waver, Belgium
| | - Rein Brys
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001 Leuven, Belgium and
| |
Collapse
|
99
|
Burns M, Tsurusaki N. Male Reproductive Morphology Across Latitudinal Clines and Under Long-Term Female Sex-Ratio Bias. Integr Comp Biol 2016; 56:715-27. [DOI: 10.1093/icb/icw017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
100
|
Richards TJ, Ortiz-Barrientos D. Immigrant inviability produces a strong barrier to gene flow between parapatric ecotypes of Senecio lautus. Evolution 2016; 70:1239-48. [PMID: 27159252 DOI: 10.1111/evo.12936] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/07/2016] [Accepted: 04/12/2016] [Indexed: 01/16/2023]
Abstract
Speciation proceeds when gene exchange is prevented between populations. Determining the different barriers preventing gene flow can therefore give insights into the factors driving and maintaining species boundaries. These reproductive barriers may result from intrinsic genetic incompatibilities between populations, from extrinsic environmental differences between populations, or a combination of both mechanisms. We investigated the potential barriers to gene exchange between three adjacent ecotypes of an Australian wildflower to determine the strength of individual barriers and the degree of overall isolation between populations. We found almost complete isolation between the three populations mainly due to premating extrinsic barriers. Intrinsic genetic barriers were weak and variable among populations. There were asymmetries in some intrinsic barriers due to the origin of cytoplasm in hybrids. Overall, these results suggest that reproductive isolation between these three populations is almost complete despite the absence of geographic barriers, and that the main drivers of this isolation are ecologically based, consistent with the mechanisms underlying ecological speciation.
Collapse
Affiliation(s)
- Thomas J Richards
- School of Biological Sciences St. Lucia, University of Queensland, QLD, Australia.
| | | |
Collapse
|