51
|
Monroy AA, Stappler E, Schuster A, Sulyok M, Schmoll M. A CRE1- regulated cluster is responsible for light dependent production of dihydrotrichotetronin in Trichoderma reesei. PLoS One 2017; 12:e0182530. [PMID: 28809958 PMCID: PMC5557485 DOI: 10.1371/journal.pone.0182530] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/19/2017] [Indexed: 02/08/2023] Open
Abstract
Changing light conditions, caused by the rotation of earth resulting in day and night or growth on the surface or within a substrate, result in considerably altered physiological processes in fungi. For the biotechnological workhorse Trichoderma reesei, regulation of glycoside hydrolase gene expression, especially cellulase expression was shown to be a target of light dependent gene regulation. Analysis of regulatory targets of the carbon catabolite repressor CRE1 under cellulase inducing conditions revealed a secondary metabolite cluster to be differentially regulated in light and darkness and by photoreceptors. We found that this cluster is involved in production of trichodimerol and that the two polyketide synthases of the cluster are essential for biosynthesis of dihydrotrichotetronine (syn. bislongiquinolide or bisorbibutenolide). Additionally, an indirect influence on production of the peptaibol antibiotic paracelsin was observed. The two polyketide synthetase genes as well as the monooxygenase gene of the cluster were found to be connected at the level of transcription in a positive feedback cycle in darkness, but negative feedback in light, indicating a cellular sensing and response mechanism for the products of these enzymes. The transcription factor TR_102497/YPR2 residing within the cluster regulates the cluster genes in a light dependent manner. Additionally, an interrelationship of this cluster with regulation of cellulase gene expression was detected. Hence the regulatory connection between primary and secondary metabolism appears more widespread than previously assumed, indicating a sophisticated distribution of resources either to degradation of substrate (feed) or to antagonism of competitors (fight), which is influenced by light.
Collapse
Affiliation(s)
- Alberto Alonso Monroy
- AIT - Austrian Institute of Technology GmbH, Center for Health & Bioresources, Tulln, Austria
| | - Eva Stappler
- AIT - Austrian Institute of Technology GmbH, Center for Health & Bioresources, Tulln, Austria
| | - Andre Schuster
- TU Wien, Institute of Chemical Engineering, Research Area Molecular Biotechnology, Vienna, Austria
| | - Michael Sulyok
- University of Natural Resources and Life Sciences Vienna, Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Tulln, Austria
| | - Monika Schmoll
- AIT - Austrian Institute of Technology GmbH, Center for Health & Bioresources, Tulln, Austria
| |
Collapse
|
52
|
Islam KT, Bond JP, Fakhoury AM. FvSNF1, the sucrose non-fermenting protein kinase gene of Fusarium virguliforme, is required for cell-wall-degrading enzymes expression and sudden death syndrome development in soybean. Curr Genet 2017; 63:723-738. [PMID: 28132080 DOI: 10.1007/s00294-017-0676-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
Abstract
Fusarium virguliforme is a soil-borne pathogenic fungus that causes sudden death syndrome (SDS) in soybean. Its pathogenicity is believed to require the activity of cell-wall-degrading enzymes (CWDEs). The sucrose non-fermenting protein kinase 1 gene (SNF1) is a key component of the glucose de-repression pathway in yeast, and a regulator of gene expression for CWDEs in some plant pathogenic fungi. To elucidate the functional role of the SNF1 homolog in F. virguliforme, FvSNF1 was disrupted using a split-marker strategy. Disruption of FvSNF1 in F. virguliforme abolishes galactose utilization and causes poor growth on xylose, arabinose and sucrose. However, the resulting Fvsnf1 mutant grew similar to wild-type and ectopic transformants on glucose, fructose, maltose, or pectin as the main source of carbon. The Fvsnf1 mutant displayed no expression of the gene-encoding galactose oxidase (GAO), a secretory enzyme that catalyzes oxidation of D-galactose. It also exhibited a significant reduction in the expression of several CWDE-coding genes in contrast to the wild-type strain. Greenhouse pathogenicity assays revealed that the Fvsnf1 mutant was severely impaired in its ability to cause SDS on challenged soybean plants. Microscopy and microtome studies on infected roots showed that the Fvsnf1 mutant was defective in colonizing vascular tissue of infected plants. Cross and longitudinal sections of infected roots stained with fluorescein-labeled wheat germ agglutinin and Congo red showed that the Fvsnf1 mutant failed to colonize the xylem vessels and phloem tissue at later stages of infection. Quantification of the fungal biomass in inoculated roots further confirmed a reduced colonization of roots by the Fvsnf1 mutant when compared to the wild type. These findings suggest that FvSNF1 regulates the expression of CWDEs in F. virguliforme, thus affecting the virulence of the fungus on soybean.
Collapse
Affiliation(s)
- Kazi T Islam
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, 62901, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jason P Bond
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Ahmad M Fakhoury
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
53
|
Borin GP, Sanchez CC, de Santana ES, Zanini GK, Dos Santos RAC, de Oliveira Pontes A, de Souza AT, Dal'Mas RMMTS, Riaño-Pachón DM, Goldman GH, Oliveira JVDC. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genomics 2017; 18:501. [PMID: 28666414 PMCID: PMC5493111 DOI: 10.1186/s12864-017-3857-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/09/2017] [Indexed: 12/12/2022] Open
Abstract
Background Second generation (2G) ethanol is produced by breaking down lignocellulosic biomass into fermentable sugars. In Brazil, sugarcane bagasse has been proposed as the lignocellulosic residue for this biofuel production. The enzymatic cocktails for the degradation of biomass-derived polysaccharides are mostly produced by fungi, such as Aspergillus niger and Trichoderma reesei. However, it is not yet fully understood how these microorganisms degrade plant biomass. In order to identify transcriptomic changes during steam-exploded bagasse (SEB) breakdown, we conducted a RNA-seq comparative transcriptome profiling of both fungi growing on SEB as carbon source. Results Particular attention was focused on CAZymes, sugar transporters, transcription factors (TFs) and other proteins related to lignocellulose degradation. Although genes coding for the main enzymes involved in biomass deconstruction were expressed by both fungal strains since the beginning of the growth in SEB, significant differences were found in their expression profiles. The expression of these enzymes is mainly regulated at the transcription level, and A. niger and T. reesei also showed differences in TFs content and in their expression. Several sugar transporters that were induced in both fungal strains could be new players on biomass degradation besides their role in sugar uptake. Interestingly, our findings revealed that in both strains several genes that code for proteins of unknown function and pro-oxidant, antioxidant, and detoxification enzymes were induced during growth in SEB as carbon source, but their specific roles on lignocellulose degradation remain to be elucidated. Conclusions This is the first report of a time-course experiment monitoring the degradation of pretreated bagasse by two important fungi using the RNA-seq technology. It was possible to identify a set of genes that might be applied in several biotechnology fields. The data suggest that these two microorganisms employ different strategies for biomass breakdown. This knowledge can be exploited for the rational design of enzymatic cocktails and 2G ethanol production improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3857-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Camila Cristina Sanchez
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Eliane Silva de Santana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Guilherme Keppe Zanini
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Renato Augusto Corrêa Dos Santos
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Angélica de Oliveira Pontes
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Aline Tieppo de Souza
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Roberta Maria Menegaldo Tavares Soares Dal'Mas
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Diego Mauricio Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil.,Current address: Laboratório de Biologia de Sistemas Regulatórios, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748 - Butantã - São Paulo - SP, São Paulo, CEP 05508-000, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café S/N, Ribeirão Preto, CEP, São Paulo, 14040-903, Brazil
| | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil.
| |
Collapse
|
54
|
Itoh E, Odakura R, Oinuma KI, Shimizu M, Masuo S, Takaya N. Sirtuin E is a fungal global transcriptional regulator that determines the transition from the primary growth to the stationary phase. J Biol Chem 2017; 292:11043-11054. [PMID: 28465348 PMCID: PMC5491787 DOI: 10.1074/jbc.m116.753772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/20/2017] [Indexed: 11/06/2022] Open
Abstract
In response to limited nutrients, fungal cells exit the primary growth phase, enter the stationary phase, and cease proliferation. Although fundamental to microbial physiology in many environments, the regulation of this transition is poorly understood but likely involves many transcriptional regulators. These may include the sirtuins, which deacetylate acetyllysine residues of histones and epigenetically regulate global transcription. Therefore, we investigated the role of a nuclear sirtuin, sirtuin E (SirE), from the ascomycete fungus Aspergillus nidulans An A. nidulans strain with a disrupted sirE gene (SirEΔ) accumulated more acetylated histone H3 during the stationary growth phase when sirE was expressed at increased levels in the wild type. SirEΔ exhibited decreased mycelial autolysis, conidiophore development, sterigmatocystin biosynthesis, and production of extracellular hydrolases. Moreover, the transcription of the genes involved in these processes was also decreased, indicating that SirE is a histone deacetylase that up-regulates these activities in the stationary growth phase. Transcriptome analyses indicated that SirE repressed primary carbon and nitrogen metabolism and cell-wall synthesis. Chromatin immunoprecipitation demonstrated that SirE deacetylates acetylated Lys-9 residues in histone H3 at the gene promoters of α-1,3-glucan synthase (agsB), glycolytic phosphofructokinase (pfkA), and glyceraldehyde 3-phosphate (gpdA), indicating that SirE represses the expression of these primary metabolic genes. In summary, these results indicate that SirE facilitates the metabolic transition from the primary growth phase to the stationary phase. Because the observed gene expression profiles in stationary phase matched those resulting from carbon starvation, SirE appears to control this metabolic transition via a mechanism associated with the starvation response.
Collapse
Affiliation(s)
- Eriko Itoh
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Rika Odakura
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Ken-Ichi Oinuma
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Motoyuki Shimizu
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Shunsuke Masuo
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Naoki Takaya
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
55
|
Stappler E, Dattenböck C, Tisch D, Schmoll M. Analysis of Light- and Carbon-Specific Transcriptomes Implicates a Class of G-Protein-Coupled Receptors in Cellulose Sensing. mSphere 2017; 2:e00089-17. [PMID: 28497120 PMCID: PMC5425790 DOI: 10.1128/msphere.00089-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/14/2017] [Indexed: 01/16/2023] Open
Abstract
In fungi, most metabolic processes are subject to regulation by light. Trichoderma reesei is adapted to degradation of plant cell walls and regulates production of the required enzymes in a manner dependent on the nutrient source and the light status. Here we investigated the interrelated relevance of two regulation levels of the transcriptome of T. reesei: light regulation and carbon source-dependent control. We show that the carbon source (cellulose, lactose, sophorose, glucose, or glycerol) is the major source of variation, with light having a modulating effect on transcript regulation. A total of 907 genes were regulated under cellulase-inducing conditions in light, and 947 genes were regulated in darkness, with 530 genes overlapping (1,324 in total). Only 218 of the 1,324 induction-specific genes were independent of light and not regulated by the BLR1, BLR2, and ENV1 photoreceptors. Analysis of the genomic distribution of genes regulated by light upon growth on cellulose revealed considerable overlap of light-regulated clusters with induction-specific clusters and carbohydrate-active enzyme (CAZyme) clusters. Further, we found evidence for the operation of a sensing mechanism for solid cellulosic substrates, with regulation of genes such as swo1, cip1, and cip2 or of genes encoding hydrophobins which is related to the cyclic AMP (cAMP)-dependent regulatory output of ENV1. We identified class XIII G-protein-coupled receptors (GPCRs) CSG1 and CSG2 in T. reesei as putative cellulose/glucose-sensing GPCRs. Our data indicate that the cellulase regulation pathway is bipartite, comprising a section corresponding to transcriptional regulation and one corresponding to posttranscriptional regulation, with the two connected by the function of CSG1. IMPORTANCE In fungi, most metabolic processes are subject to regulation by light. For Trichoderma reesei, light-dependent regulation of cellulase gene expression is specifically shown. Therefore, we intended to unravel the relationship between regulation of enzymes by the carbon source and regulation of enzymes by light. Our two-dimensional analysis included inducing and repressing carbon sources which we used to compare light-specific regulation to dark-specific regulation and to rule out effects specific for a single carbon source. We found close connections with respect to gene regulation as well as significant differences in dealing with carbon in the environment in light and darkness. Moreover, our analyses showed an intricate regulation mechanism for substrate degradation potentially involving surface sensing and provide a basis for knowledge-based screening for strain improvement.
Collapse
Affiliation(s)
- Eva Stappler
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Christoph Dattenböck
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Doris Tisch
- TU Wien, Insitute of Chemical Engineering, Research Area Molecular Biotechnology, Vienna, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
56
|
The low affinity glucose transporter HxtB is also involved in glucose signalling and metabolism in Aspergillus nidulans. Sci Rep 2017; 7:45073. [PMID: 28361917 PMCID: PMC5374493 DOI: 10.1038/srep45073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
One of the drawbacks during second-generation biofuel production from plant lignocellulosic biomass is the accumulation of glucose, the preferred carbon source of microorganisms, which causes the repression of hydrolytic enzyme secretion by industrially relevant filamentous fungi. Glucose sensing, subsequent transport and cellular signalling pathways have been barely elucidated in these organisms. This study therefore characterized the transcriptional response of the filamentous fungus Aspergillus nidulans to the presence of high and low glucose concentrations under continuous chemostat cultivation with the aim to identify novel factors involved in glucose sensing and signalling. Several transcription factor- and transporter-encoding genes were identified as being differentially regulated, including the previously characterized glucose and xylose transporter HxtB. HxtB was confirmed to be a low affinity glucose transporter, localizing to the plasma membrane under low- and high-glucose conditions. Furthermore, HxtB was shown to be involved in conidiation-related processes and may play a role in downstream glucose signalling. A gene predicted to encode the protein kinase PskA was also identified as being important for glucose metabolism. This study identified several proteins with predicted roles in glucose metabolic processes and provides a foundation for further investigation into the response of biotechnologically important filamentous fungi to glucose.
Collapse
|
57
|
Benocci T, Aguilar-Pontes MV, Zhou M, Seiboth B, de Vries RP. Regulators of plant biomass degradation in ascomycetous fungi. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:152. [PMID: 28616076 PMCID: PMC5468973 DOI: 10.1186/s13068-017-0841-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/05/2023]
Abstract
Fungi play a major role in the global carbon cycle because of their ability to utilize plant biomass (polysaccharides, proteins, and lignin) as carbon source. Due to the complexity and heterogenic composition of plant biomass, fungi need to produce a broad range of degrading enzymes, matching the composition of (part of) the prevalent substrate. This process is dependent on a network of regulators that not only control the extracellular enzymes that degrade the biomass, but also the metabolic pathways needed to metabolize the resulting monomers. This review will summarize the current knowledge on regulation of plant biomass utilization in fungi and compare the differences between fungal species, focusing in particular on the presence or absence of the regulators involved in this process.
Collapse
Affiliation(s)
- Tiziano Benocci
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, 1060 Vienna, Austria
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
58
|
Utilisation of Jatropha press cake as substrate in biomass and lipase production from Aspergillus niger 65I6 and Rhizomucor miehei CBS 360.62. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
59
|
Bi F, Ment D, Luria N, Meng X, Prusky D. Mutation of AREA affects growth, sporulation, nitrogen regulation, and pathogenicity in Colletotrichum gloeosporioides. Fungal Genet Biol 2016; 99:29-39. [PMID: 28027951 DOI: 10.1016/j.fgb.2016.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/09/2016] [Accepted: 12/16/2016] [Indexed: 01/09/2023]
Abstract
The GATA transcription factor AreA is a global nitrogen regulator that restricts the utilization of complex and poor nitrogen sources in the presence of good nitrogen sources in microorganisms. In this study, we report the biological function of an AreA homolog (the CgareA gene) in the fruit postharvest pathogen Colletotrichum gloeosporioides. Targeted gene deletion mutants of areA exhibited significant reductions in vegetative growth, increases in conidia production, and slight decreases in conidial germination rates. Quantitative RT-PCR (qRT-PCR) analysis revealed that the expression of AreA was highly induced under nitrogen-limiting conditions. Moreover, compared to wild-type and complemented strains, nitrogen metabolism-related genes were misregulated in ΔareA mutant strains. Pathogenicity assays indicated that the virulence of ΔareA mutant strains were affected by the nitrogen content, but not the carbon content, of fruit hosts. Taken together, our results indicate that CgareA plays a critical role in fungal development, conidia production, regulation of nitrogen metabolism and virulence in Colletotrichum gloeosporioides.
Collapse
Affiliation(s)
- Fangcheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou 510640, China; Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou 510640, China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Dana Ment
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Neta Luria
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Xiangchun Meng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou 510640, China; Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou 510640, China.
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
60
|
Ismaiel AA. Production of the immunosuppressant cyclosporin A by a new soil isolate, Aspergillus fumigatus, in submerged culture. Appl Microbiol Biotechnol 2016; 101:3305-3317. [PMID: 27995310 DOI: 10.1007/s00253-016-8052-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/30/2016] [Accepted: 12/04/2016] [Indexed: 12/21/2022]
Abstract
Cyclosporin A (CyA) has received meticulous attention owing to its immunosuppressive and biological activities. In this study, a soil isolate, capable of producing CyA, was named Zag1 strain and identified as Aspergillus fumigatus based on macroscopic and microscopic characteristics, 18S rDNA sequence, and phylogenetic characteristic analysis. To maximize the production of CyA, the fungal culture was grown under various fermentation conditions including selection of the cultivation medium, agitation rate, fermentation time, incubation temperature, pH value, inoculum nature, and medium volume. A simple medium (pH 5.0) containing 5% maltose as a carbon source and 2% potassium nitrate as a nitrogen source favored the highest CyA production when the fermentation process was maintained at 120 rpm for 9 days and at 30 °C using 3% standard inoculum of 5-day-old. The final CyA titer under these conditions was intensified to 2.23-3.31-fold, as compared with the amount obtained with seven types of basal media. A. fumigatus Zag1 appears to possess a good biotechnological potential for CyA production under favorable culture conditions.
Collapse
Affiliation(s)
- Ahmed A Ismaiel
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
61
|
Prasanna HN, Ramanjaneyulu G, Rajasekhar Reddy B. Optimization of cellulase production by Penicillium sp. 3 Biotech 2016; 6:162. [PMID: 28330234 PMCID: PMC4978645 DOI: 10.1007/s13205-016-0483-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/01/2016] [Indexed: 12/01/2022] Open
Abstract
The production of cellulolytic enzymes (β-exoglucanase, β-endoglucanase and β-glucosidase) by Penicillium sp. on three different media in liquid shake culture conditions was compared. The organism exhibited relatively highest activity of endoglucanase among three enzymes measured at 7-day interval during the course of its growth on Czapek-Dox medium supplemented with 0.5 % (w/v) cellulose. Cellulose at 0.5 %, lactose at 0.5 %, sawdust at 0.5 %, yeast extract at 0.2 % as a nitrogen source, pH 5.0 and 30 °C temperature were found to be optimal for growth and cellulase production by Penicillium sp. Yields of Fpase, CMCase and β-glucosidase, attained on optimized medium with Penicillium sp. were 8.7, 25 and 9.52 U/ml, respectively with increment of 9.2, 5.9 and 43.8-folds over titers of the respective enzyme on unoptimised medium. Cellulase of the fungal culture with the ratio of β-glucosidase to Fpase greater than one will hold potential for biotechnological applications.
Collapse
Affiliation(s)
- H N Prasanna
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, India
| | - G Ramanjaneyulu
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, India
| | - B Rajasekhar Reddy
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, India.
| |
Collapse
|
62
|
The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans. Curr Genet 2016; 63:647-667. [DOI: 10.1007/s00294-016-0666-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
|
63
|
An Evolutionarily Conserved Transcriptional Activator-Repressor Module Controls Expression of Genes for D-Galacturonic Acid Utilization in Aspergillus niger. Genetics 2016; 205:169-183. [PMID: 28049705 DOI: 10.1534/genetics.116.194050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/05/2016] [Indexed: 01/26/2023] Open
Abstract
The expression of genes encoding extracellular polymer-degrading enzymes and the metabolic pathways required for carbon utilization in fungi are tightly controlled. The control is mediated by transcription factors that are activated by the presence of specific inducers, which are often monomers or monomeric derivatives of the polymers. A D-galacturonic acid-specific transcription factor named GaaR was recently identified and shown to be an activator for the expression of genes involved in galacturonic acid utilization in Botrytis cinerea and Aspergillus niger Using a forward genetic screen, we isolated A. niger mutants that constitutively express GaaR-controlled genes. Reasoning that mutations in the gaaR gene would lead to a constitutively activated transcription factor, the gaaR gene in 11 of the constitutive mutants was sequenced, but no mutations in gaaR were found. Full genome sequencing of five constitutive mutants revealed allelic mutations in one particular gene encoding a previously uncharacterized protein (NRRL3_08194). The protein encoded by NRRL3_08194 shows homology to the repressor of the quinate utilization pathway identified previously in Neurospora crassa (qa-1S) and Aspergillus nidulans (QutR). Deletion of NRRL3_08194 in combination with RNA-seq analysis showed that the NRRL3_08194 deletion mutant constitutively expresses genes involved in galacturonic acid utilization. Interestingly, NRRL3_08194 is located next to gaaR (NRRL3_08195) in the genome. The homology to the quinate repressor, the chromosomal clustering, and the constitutive phenotype of the isolated mutants suggest that NRRL3_08194 is likely to encode a repressor, which we name GaaX. The GaaR-GaaX module and its chromosomal organization is conserved among ascomycetes filamentous fungi, resembling the quinate utilization activator-repressor module in amino acid sequence and chromosomal organization.
Collapse
|
64
|
Alam MA, Kamlangdee N, Kelly JM. The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans. Curr Genet 2016:10.1007/s00294-016-0643-x. [PMID: 27589970 DOI: 10.1007/s00294-016-0643-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022]
Abstract
Ubiquitination/deubiquitination pathways are now recognized as key components of gene regulatory mechanisms in eukaryotes. The major transcriptional repressor for carbon catabolite repression in Aspergillus nidulans is CreA, and mutational analysis led to the suggestion that a regulatory ubiquitination/deubiquitination pathway is involved. A key unanswered question is if and how this pathway, comprising CreB (deubiquitinating enzyme) and HulA (ubiquitin ligase) and other proteins, is involved in the regulatory mechanism. Previously, missense alleles of creA and creB were analysed for genetic interactions, and here we extended this to complete loss-of-function alleles of creA and creB, and compared morphological and biochemical phenotypes, which confirmed genetic interaction between the genes. We investigated whether CreA, or a protein in a complex with it, is a direct target of the CreB deubiquitination enzyme, using co-purifications of CreA and CreB, first using strains that overexpress the proteins and then using strains that express the proteins from their native promoters. The Phos-tag system was used to show that CreA is a phosphorylated protein, but no ubiquitination was detected using anti-ubiquitin antibodies and Western analysis. These findings were confirmed using mass spectrometry, which confirmed that CreA was differentially phosphorylated but not ubiquitinated. Thus, CreA is not a direct target of CreB, and nor are proteins that form part of a stable complex with CreA a target of CreB. These results open up new questions regarding the molecular mechanism of CreA repressing activity, and how the ubiquitination pathway involving CreB interacts with this regulatory network.
Collapse
Affiliation(s)
- Md Ashiqul Alam
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia
| | - Niyom Kamlangdee
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia
- Walailak University, 222 Thaiburi Thasala, Nakhonsithamrat, Nakhon Si Thammarat, 80160, Thailand
| | - Joan M Kelly
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
65
|
Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, Liu X, Dong B, Chen G, Snyder JH, Lin F, Lu J. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. THE NEW PHYTOLOGIST 2016; 211:1035-51. [PMID: 27041000 DOI: 10.1111/nph.13948] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/24/2016] [Indexed: 05/21/2023]
Abstract
The Cys2 -His2 (C2H2) zinc finger protein family is the second-largest family of transcription factors (TFs) in Magnaporthe oryzae, the causal fungus responsible for the destructive rice blast disease. However, little is known about the roles of most C2H2 TFs in the development and pathogenicity of M. oryzae. The roles of 47 C2H2 genes in development and pathogenicity were investigated by gene deletion in M. oryzae. The TF-dependent genes in mycelia or appressoria were analyzed with RNA sequencing and quantitative PCR (qPCR). Forty-four C2H2 genes are involved in growth (20 genes), conidiation (28 genes), appressorium formation (four genes) and pathogenicity (22 genes) in M. oryzae. Of these, MGG_14931, named as VRF1, is required for pathogenicity, specifically controlling appressorium maturation by affecting the expression of genes related to appressorial structure and function, including melanin biosynthesis, chitin catabolism, lipid metabolism, proteolysis, transmembrane transport, and response to oxidative stress; MGG_01776, named as VRF2, is required for plant penetration and invasive growth; conidiation-related gene CON7 is required for conidial differentiation; and MoCREA, encoding a carbon catabolite repression protein, is a novel repressor of lipid catabolism when glucose obtainable in M. oryzae. This study provides many insights into the regulation of growth, asexual development, appressorium formation, and pathogenicity by C2H2 TFs in M. oryzae.
Collapse
Affiliation(s)
- Huijuan Cao
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Pengyun Huang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Lilin Zhang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yongkai Shi
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Dandan Sun
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuxin Yan
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Bo Dong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, China
| | - Guoqing Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang Province, 31006, China
| | - John Hugh Snyder
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan Province, 450001, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jianping Lu
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| |
Collapse
|
66
|
Mukherjee S, Chandrababunaidu MM, Panda A, Khowala S, Tripathy S. Tricking Arthrinium malaysianum into Producing Industrially Important Enzymes Under 2-Deoxy D-Glucose Treatment. Front Microbiol 2016; 7:596. [PMID: 27242677 PMCID: PMC4865484 DOI: 10.3389/fmicb.2016.00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/11/2016] [Indexed: 01/24/2023] Open
Abstract
This study catalogs production of industrially important enzymes and changes in transcript expression caused by 2-deoxy D-glucose (2-DG) treatment in Arthrinium malaysianum cultures. Carbon Catabolite Repression (CCR) induced by 2-DG in this species is cAMP independent unlike many other organisms. Higher levels of secreted endoglucanase (EG), β-glucosidase (BGL), β-xylosidase (BXL), and filter paper activity assay (FPase) enzymes under 2-DG treatment can be exploited for commercial purposes. An integrated RNA sequencing and quantitative proteomic analysis was performed to investigate the cellular response to 2-DG in A. malaysianum. Analysis of RNASeq data under 2-DG treated and control condition reveals that 56% of the unigenes do not have any known similarity to proteins in non-redundant database. Gene Ontology IDs were assigned to 36% of the transcripts (13260) and about 5207 (14%) were mapped to Kyoto Encyclopedia of Genes and Genomes pathway (KEGG). About 1711 genes encoding 2691 transcripts were differentially expressed in treated vs. control samples. Out of the 2691 differentially expressed transcripts, only 582 have any known function. The most up regulated genes belonged to Pentose Phosphate Pathways and carbohydrate degradation class as expected. In addition, genes involved in protein folding, binding, catalytic activity, DNA repair, and secondary metabolites were up-regulated under 2-DG treatment. Whereas genes encoding glycosylation pathways, growth, nutrient reservoir activity was repressed. Gene ontology analysis of the differentially expressed genes indicates metabolic process (35%) is the pre-dominant class followed by carbohydrate degradation (11%), protein folding, and trafficking (6.2%) and transport (5.3%) classes. Unlike other organisms, conventional unfolded protein response (UPR) was not activated in either control or treated conditions. Major enzymes secreted by A. malaysianum are those degrading plant polysaccharides, the most dominant ones being β-glucosidase, as demonstrated by the 2D gel analysis. A set of 7 differentially expressed mRNAs were validated by qPCR. Transmission electron microscopy analyses demonstrated that the 2-DG treated cell walls of hyphae showed significant differences in the cell-wall thickness. Overall 2-DG treatment in A. malaysianum induced secretion of large amount of commercially viable enzymes compared to other known species.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Drug Development Diagnostic and Biotechnology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Mathu Malar Chandrababunaidu
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Arijit Panda
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Suman Khowala
- Drug Development Diagnostic and Biotechnology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Sucheta Tripathy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| |
Collapse
|
67
|
Diverse Regulation of the CreA Carbon Catabolite Repressor in Aspergillus nidulans. Genetics 2016; 203:335-52. [PMID: 27017621 DOI: 10.1534/genetics.116.187872] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/15/2016] [Indexed: 12/31/2022] Open
Abstract
Carbon catabolite repression (CCR) is a process that selects the energetically most favorable carbon source in an environment. CCR represses the use of less favorable carbon sources when a better source is available. Glucose is the preferential carbon source for most microorganisms because it is rapidly metabolized, generating quick energy for growth. In the filamentous fungus Aspergillus nidulans, CCR is mediated by the transcription factor CreA, a C2H2 finger domain DNA-binding protein. The aim of this work was to investigate the regulation of CreA and characterize its functionally distinct protein domains. CreA depends in part on de novo protein synthesis and is regulated in part by ubiquitination. CreC, the scaffold protein in the CreB-CreC deubiquitination (DUB) complex, is essential for CreA function and stability. Deletion of select protein domains in CreA resulted in persistent nuclear localization and target gene repression. A region in CreA conserved between Aspergillus spp. and Trichoderma reesei was identified as essential for growth on various carbon, nitrogen, and lipid sources. In addition, a role of CreA in amino acid transport and nitrogen assimilation was observed. Taken together, these results indicate previously unidentified functions of this important transcription factor. These novel functions serve as a basis for additional research in fungal carbon metabolism with the potential aim to improve fungal industrial applications.
Collapse
|
68
|
McCotter SW, Horianopoulos LC, Kronstad JW. Regulation of the fungal secretome. Curr Genet 2016; 62:533-45. [DOI: 10.1007/s00294-016-0578-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 02/07/2023]
|
69
|
The Renaissance of Neurospora crassa: How a Classical Model System is Used for Applied Research. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
70
|
Izawa H, Kamata S, Kuwano M. Increase in the Activity of α-amylase Produced by Aspergillus oryzae in Dried Unripe Apple Pulp Culture on Addition of NaNO 3 and MgSO 4. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hiromi Izawa
- Department of Nutrition, Aomori University of Health and Welfare 58-1 Mase
| | - Sayoko Kamata
- Department of Nutrition, Aomori University of Health and Welfare 58-1 Mase
| | - Miho Kuwano
- Department of Nutrition, Aomori University of Health and Welfare 58-1 Mase
| |
Collapse
|
71
|
Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int J Biol Macromol 2016; 82:1041-54. [DOI: 10.1016/j.ijbiomac.2015.10.086] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/07/2023]
|
72
|
The interaction of induction and repression mechanisms in the regulation of galacturonic acid-induced genes in Aspergillus niger. Fungal Genet Biol 2015; 82:32-42. [DOI: 10.1016/j.fgb.2015.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023]
|
73
|
Optimization of Fermentation Medium for Extracellular Lipase Production from Aspergillus niger Using Response Surface Methodology. BIOMED RESEARCH INTERNATIONAL 2015; 2015:497462. [PMID: 26366414 PMCID: PMC4558457 DOI: 10.1155/2015/497462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 11/27/2022]
Abstract
Lipase produced by Aspergillus niger is widely used in various industries. In this study, extracellular lipase production from an industrial producing strain of A. niger was improved by medium optimization. The secondary carbon source, nitrogen source, and lipid were found to be the three most influential factors for lipase production by single-factor experiments. According to the statistical approach, the optimum values of three most influential parameters were determined: 10.5 g/L corn starch, 35.4 g/L soybean meal, and 10.9 g/L soybean oil. Using this optimum medium, the best lipase activity was obtained at 2,171 U/mL, which was 16.4% higher than using the initial medium. All these results confirmed the validity of the model. Furthermore, results of the Box-Behnken Design and quadratic models analysis indicated that the carbon to nitrogen (C/N) ratio significantly influenced the enzyme production, which also suggested that more attention should be paid to the C/N ratio for the optimization of enzyme production.
Collapse
|
74
|
Cupertino FB, Virgilio S, Freitas FZ, Candido TDS, Bertolini MC. Regulation of glycogen metabolism by the CRE-1, RCO-1 and RCM-1 proteins in Neurospora crassa. The role of CRE-1 as the central transcriptional regulator. Fungal Genet Biol 2015; 77:82-94. [PMID: 25889113 DOI: 10.1016/j.fgb.2015.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/17/2022]
Abstract
The transcription factor CreA/Mig1/CRE-1 is a repressor protein that regulates the use of alternative carbon sources via a mechanism known as Carbon Catabolite Repression (CCR). In Saccharomyces cerevisiae, Mig1 recruits the complex Ssn6-Tup1, the Neurospora crassa RCM-1 and RCO-1 orthologous proteins, respectively, to bind to promoters of glucose-repressible genes. We have been studying the regulation of glycogen metabolism in N. crassa and the identification of the RCO-1 corepressor as a regulator led us to investigate the regulatory role of CRE-1 in this process. Glycogen content is misregulated in the rco-1(KO), rcm-1(RIP) and cre-1(KO) strains, and the glycogen synthase phosphorylation is decreased in all strains, showing that CRE-1, RCO-1 and RCM-1 proteins are involved in glycogen accumulation and in the regulation of GSN activity by phosphorylation. We also confirmed the regulatory role of CRE-1 in CCR and its nuclear localization under repressing condition in N. crassa. The expression of all glycogenic genes is misregulated in the cre-1(KO) strain, suggesting that CRE-1 also controls glycogen metabolism by regulating gene expression. The existence of a high number of the Aspergillus nidulans CreA motif (5'-SYGGRG-3') in the glycogenic gene promoters led us to analyze the binding of CRE-1 to some DNA motifs both in vitro by DNA gel shift and in vivo by ChIP-qPCR analysis. CRE-1 bound in vivo to all motifs analyzed demonstrating that it down-regulates glycogen metabolism by controlling gene expression and GSN phosphorylation.
Collapse
Affiliation(s)
- Fernanda Barbosa Cupertino
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-060 Araraquara, SP, Brazil
| | - Stela Virgilio
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-060 Araraquara, SP, Brazil
| | - Fernanda Zanolli Freitas
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-060 Araraquara, SP, Brazil
| | - Thiago de Souza Candido
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-060 Araraquara, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-060 Araraquara, SP, Brazil.
| |
Collapse
|
75
|
Improved endoxylanase production and colony morphology of Aspergillus niger DSM 26641 by γ-ray induced mutagenesis. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
76
|
van Munster JM, Daly P, Delmas S, Pullan ST, Blythe MJ, Malla S, Kokolski M, Noltorp ECM, Wennberg K, Fetherston R, Beniston R, Yu X, Dupree P, Archer DB. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Genet Biol 2014; 72:34-47. [PMID: 24792495 PMCID: PMC4217149 DOI: 10.1016/j.fgb.2014.04.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/21/2014] [Accepted: 04/18/2014] [Indexed: 11/06/2022]
Abstract
Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6h of exposure to wheat straw was very different from the response at 24h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24h of exposure to wheat straw, were also induced after 6h exposure. Importantly, over a third of the genes induced after 6h of exposure to wheat straw were also induced during 6h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes.
Collapse
Affiliation(s)
- Jolanda M van Munster
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Paul Daly
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Stéphane Delmas
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Steven T Pullan
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Martin J Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Sunir Malla
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Matthew Kokolski
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Emelie C M Noltorp
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Kristin Wennberg
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Richard Fetherston
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Richard Beniston
- Biological Mass Spectrometry Facility biOMICS, University of Sheffield, Brook Hill Road, Sheffield S3 7HF, UK.
| | - Xiaolan Yu
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - David B Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
77
|
Mäkelä MR, Donofrio N, de Vries RP. Plant biomass degradation by fungi. Fungal Genet Biol 2014; 72:2-9. [PMID: 25192611 DOI: 10.1016/j.fgb.2014.08.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 12/27/2022]
Abstract
Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Nicole Donofrio
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
78
|
Zeng XQ, Chen GQ, Liu XH, Dong B, Shi HB, Lu JP, Lin F. Crosstalk between SNF1 pathway and the peroxisome-mediated lipid metabolism in Magnaporthe oryzae. PLoS One 2014; 9:e103124. [PMID: 25090011 PMCID: PMC4121083 DOI: 10.1371/journal.pone.0103124] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/25/2014] [Indexed: 01/28/2023] Open
Abstract
The SNF1/AMPK pathway has a central role in response to nutrient stress in yeast and mammals. Previous studies on SNF1 function in phytopathogenic fungi mostly focused on the catalytic subunit Snf1 and its contribution to the derepression of cell wall degrading enzymes (CWDEs). However, the MoSnf1 in Magnaporthe oryzae was reported not to be involved in CWDEs regulation. The mechanism how MoSnf1 functions as a virulence determinant remains unclear. In this report, we demonstrate that MoSnf1 retains the ability to respond to nutrient-free environment via its participation in peroxisomal maintenance and lipid metabolism. Observation of GFP-tagged peroxisomal targeting signal-1 (PTS1) revealed that the peroxisomes of ΔMosnf1 were enlarged in mycelia and tended to be degraded before conidial germination, leading to the sharp decline of peroxisomal amount during appressorial development, which might impart the mutant great retard in lipid droplets mobilization and degradation. Consequently, ΔMosnf1 exhibited inability to maintain normal appressorial cell wall porosity and turgor pressure, which are key players in epidermal infection process. Exogenous glucose could partially restore the appressorial function and virulence of ΔMosnf1. Toward a further understanding of SNF1 pathway, the β-subunit MoSip2, γ-subunit MoSnf4, and two putative Snf1-activating kinases, MoSak1 and MoTos3, were additionally identified and characterized. Here we show the null mutants ΔMosip2 and ΔMosnf4 performed multiple disorders as ΔMosnf1 did, suggesting the complex integrity is essential for M. oryzae SNF1 kinase function. And the upstream kinases, MoSak1 and MoTos3, play unequal roles in SNF1 activation with a clear preference to MoSak1 over MoTos3. Meanwhile, the mutant lacking both of them exhibited a severe phenotype comparable to ΔMosnf1, uncovering a cooperative relationship between MoSak1 and MoTos3. Taken together, our data indicate that the SNF1 pathway is required for fungal development and facilitates pathogenicity by its contribution to peroxisomal maintenance and lipid metabolism in M. oryzae.
Collapse
Affiliation(s)
- Xiao-Qing Zeng
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Guo-Qing Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiao-Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Bo Dong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Huan-Bin Shi
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Institute of CNTC, Zhengzhou, China
- * E-mail:
| |
Collapse
|
79
|
Kowalczyk JE, Benoit I, de Vries RP. Regulation of plant biomass utilization in Aspergillus. ADVANCES IN APPLIED MICROBIOLOGY 2014; 88:31-56. [PMID: 24767425 DOI: 10.1016/b978-0-12-800260-5.00002-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability of fungi to survive in every known biotope, both natural and man-made, relies in part on their ability to use a wide range of carbon sources. Fungi degrade polymeric carbon sources present in the environment (polysaccharides, proteins, and lignins) to use the monomeric components as nutrients. However, the available carbon sources vary strongly in nature, both between biotopes and in time. The degradation of polymeric carbon sources is mediated through the production of a broad range of enzymes, the production of which is tightly controlled by a network of regulators and linked to the activation of catabolic pathways to convert the released monomers. This review summarizes the knowledge of Aspergillus regulators involved in plant biomass utilization.
Collapse
Affiliation(s)
| | - Isabelle Benoit
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | | |
Collapse
|
80
|
Wattanachaisaereekul S, Tachaleat A, Punya J, Haritakun R, Boonlarppradab C, Cheevadhanarak S. Assessing medium constituents for optimal heterologous production of anhydromevalonolactone in recombinant Aspergillus oryzae. AMB Express 2014; 4:52. [PMID: 25006541 PMCID: PMC4077012 DOI: 10.1186/s13568-014-0052-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/30/2014] [Indexed: 11/22/2022] Open
Abstract
Anhydromevalonolactone (AMVL) is a bioactive natural product that arises from a molecular biology technique using Aspergillus oryzae as a heterologous host. AMVL has been used as a precursor for the synthesis of insect pest control reagents and has numerous applications in the biotechnological and medical industries. In this study, the Plackett-Burman Design and the Central Composite Design, which offer efficient and feasible approaches, were complemented to screen significant parameters and identify the optimal values for maximum AMVL production. The results suggested that sucrose, NaNO3, yeast extract and K2HPO4 were the key factors affecting AMVL production in a complex medium, whereas the major components required for a defined medium were NaNO3, K2HPO4, KH2PO4 and trace elements. These factors were subsequently optimized using the response surface methodology. Under optimal conditions, a maximum AMVL production of 250 mg/L in the complex medium and 200 mg/L in the defined medium was achieved, which represents an increase of approximately 3-4-fold compared to the commonly used malt extract medium.
Collapse
|
81
|
Schoberle TJ, Nguyen-Coleman CK, Herold J, Yang A, Weirauch M, Hughes TR, McMurray JS, May GS. A novel C2H2 transcription factor that regulates gliA expression interdependently with GliZ in Aspergillus fumigatus. PLoS Genet 2014; 10:e1004336. [PMID: 24784729 PMCID: PMC4006717 DOI: 10.1371/journal.pgen.1004336] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/13/2014] [Indexed: 12/30/2022] Open
Abstract
Secondary metabolites are produced by numerous organisms and can either be beneficial, benign, or harmful to humans. Genes involved in the synthesis and transport of these secondary metabolites are frequently found in gene clusters, which are often coordinately regulated, being almost exclusively dependent on transcription factors that are located within the clusters themselves. Gliotoxin, which is produced by a variety of Aspergillus species, Trichoderma species, and Penicillium species, exhibits immunosuppressive properties and has therefore been the subject of research for many laboratories. There have been a few proteins shown to regulate the gliotoxin cluster, most notably GliZ, a Zn2Cys6 binuclear finger transcription factor that lies within the cluster, and LaeA, a putative methyltransferase that globally regulates secondary metabolism clusters within numerous fungal species. Using a high-copy inducer screen in A. fumigatus, our lab has identified a novel C2H2 transcription factor, which plays an important role in regulating the gliotoxin biosynthetic cluster. This transcription factor, named GipA, induces gliotoxin production when present in extra copies. Furthermore, loss of gipA reduces gliotoxin production significantly. Through protein binding microarray and mutagenesis, we have identified a DNA binding site recognized by GipA that is in extremely close proximity to a potential GliZ DNA binding site in the 5' untranslated region of gliA, which encodes an efflux pump within the gliotoxin cluster. Not surprisingly, GliZ and GipA appear to work in an interdependent fashion to positively control gliA expression.
Collapse
Affiliation(s)
- Taylor J. Schoberle
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - C. Kim Nguyen-Coleman
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jennifer Herold
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Microbiology and Molecular Genetics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ally Yang
- Banting and Best Department of Medical Research, Donnelly Centre, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Matt Weirauch
- Banting and Best Department of Medical Research, Donnelly Centre, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy R. Hughes
- Banting and Best Department of Medical Research, Donnelly Centre, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John S. McMurray
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gregory S. May
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Microbiology and Molecular Genetics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
82
|
Tran VT, Braus-Stromeyer SA, Kusch H, Reusche M, Kaever A, Kühn A, Valerius O, Landesfeind M, Aßhauer K, Tech M, Hoff K, Pena-Centeno T, Stanke M, Lipka V, Braus GH. Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots. THE NEW PHYTOLOGIST 2014; 202:565-581. [PMID: 24433459 DOI: 10.1111/nph.12671] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/03/2013] [Indexed: 05/05/2023]
Abstract
Six transcription regulatory genes of the Verticillium plant pathogen, which reprogrammed nonadherent budding yeasts for adhesion, were isolated by a genetic screen to identify control elements for early plant infection. Verticillium transcription activator of adhesion Vta2 is highly conserved in filamentous fungi but not present in yeasts. The Magnaporthe grisea ortholog conidiation regulator Con7 controls the formation of appressoria which are absent in Verticillium species. Vta2 was analyzed by using genetics, cell biology, transcriptomics, secretome proteomics and plant pathogenicity assays. Nuclear Vta2 activates the expression of the adhesin-encoding yeast flocculin genes FLO1 and FLO11. Vta2 is required for fungal growth of Verticillium where it is a positive regulator of conidiation. Vta2 is mandatory for accurate timing and suppression of microsclerotia as resting structures. Vta2 controls expression of 270 transcripts, including 10 putative genes for adhesins and 57 for secreted proteins. Vta2 controls the level of 125 secreted proteins, including putative adhesins or effector molecules and a secreted catalase-peroxidase. Vta2 is a major regulator of fungal pathogenesis, and controls host-plant root infection and H2 O2 detoxification. Verticillium impaired in Vta2 is unable to colonize plants and induce disease symptoms. Vta2 represents an interesting target for controlling the growth and development of these vascular pathogens.
Collapse
Affiliation(s)
- Van-Tuan Tran
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
- Department of Microbiology, Faculty of Biology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Susanna A Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Harald Kusch
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Michael Reusche
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Alexander Kaever
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Anika Kühn
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Manuel Landesfeind
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Kathrin Aßhauer
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Maike Tech
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Katharina Hoff
- Institute for Mathematics and Computer Science, Ernst-Moritz-Arndt-University Greifswald, Walther-Rathenau-Straße 47, D-17487, Greifswald, Germany
| | - Tonatiuh Pena-Centeno
- Institute for Mathematics and Computer Science, Ernst-Moritz-Arndt-University Greifswald, Walther-Rathenau-Straße 47, D-17487, Greifswald, Germany
| | - Mario Stanke
- Institute for Mathematics and Computer Science, Ernst-Moritz-Arndt-University Greifswald, Walther-Rathenau-Straße 47, D-17487, Greifswald, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| |
Collapse
|
83
|
Colabardini AC, Ries LNA, Brown NA, dos Reis TF, Savoldi M, Goldman MHS, Menino JF, Rodrigues F, Goldman GH. Functional characterization of a xylose transporter in Aspergillus nidulans. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:46. [PMID: 24690493 PMCID: PMC4021826 DOI: 10.1186/1754-6834-7-46] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/13/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND The production of bioethanol from lignocellulosic feedstocks will only become economically feasible when the majority of cellulosic and hemicellulosic biopolymers can be efficiently converted into bioethanol. The main component of cellulose is glucose, whereas hemicelluloses mainly consist of pentose sugars such as D-xylose and L-arabinose. The genomes of filamentous fungi such as A. nidulans encode a multiplicity of sugar transporters with broad affinities for hexose and pentose sugars. Saccharomyces cerevisiae, which has a long history of use in industrial fermentation processes, is not able to efficiently transport or metabolize pentose sugars (e.g. xylose). Subsequently, the aim of this study was to identify xylose-transporters from A. nidulans, as potential candidates for introduction into S. cerevisiae in order to improve xylose utilization. RESULTS In this study, we identified the A. nidulans xtrD (xylose transporter) gene, which encodes a Major Facilitator Superfamily (MFS) transporter, and which was specifically induced at the transcriptional level by xylose in a XlnR-dependent manner, while being partially repressed by glucose in a CreA-dependent manner. We evaluated the ability of xtrD to functionally complement the S. cerevisiae EBY.VW4000 strain which is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae, XtrD was targeted to the plasma membrane and its expression was able to restore growth on xylose, glucose, galactose, and mannose as single carbon sources, indicating that this transporter accepts multiple sugars as a substrate. XtrD has a high affinity for xylose, and may be a high affinity xylose transporter. We were able to select a S. cerevisiae mutant strain that had increased xylose transport when expressing the xtrD gene. CONCLUSIONS This study characterized the regulation and substrate specificity of an A. nidulans transporter that represents a good candidate for further directed mutagenesis. Investigation into the area of sugar transport in fungi presents a crucial step for improving the S. cerevisiae xylose metabolism. Moreover, we have demonstrated that the introduction of adaptive mutations beyond the introduced xylose utilization genes is able to improve S. cerevisiae xylose metabolism.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Laure Nicolas Annick Ries
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Neil Andrew Brown
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Marcela Savoldi
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Maria Helena S Goldman
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - João Filipe Menino
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal and Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Fernando Rodrigues
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal and Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903 Ribeirão Preto, São Paulo, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol – CTBE, Caixa Postal 6170 13083-970, Campinas, São Paulo, Brazil
| |
Collapse
|
84
|
Gómez-Mendoza DP, Junqueira M, do Vale LHF, Domont GB, Ferreira Filho EX, Sousa MVD, Ricart CAO. Secretomic survey of Trichoderma harzianum grown on plant biomass substrates. J Proteome Res 2014; 13:1810-22. [PMID: 24593137 DOI: 10.1021/pr400971e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The present work aims at characterizing T. harzianum secretome when the fungus is grown in synthetic medium supplemented with one of the four substrates: glucose, cellulose, xylan, and sugarcane bagasse (SB). The characterization was done by enzymatic assays and proteomic analysis using 2-DE/MALDI-TOF and gel-free shotgun LC-MS/MS. The results showed that SB induced the highest cellulolytic and xylanolytic activities when compared with the other substrates, while remarkable differences in terms of number and distribution of protein spots in 2-DE gels were also observed among the samples. Additionally, treatment of the secretomes with PNGase F revealed that most spot trails in 2-DE gels corresponded to N-glycosylated proteoforms. The LC-MS/MS analysis of the samples identified 626 different protein groups, including carbohydrate-active enzymes and accessory, noncatalytic, and cell-wall-associated proteins. Although the SB-induced secretome displayed the highest cellulolytic and xylanolytic activities, it did not correspond to a higher proteome complexity because CM-cellulose-induced secretome was significantly more diverse. Among the identified proteins, 73% were exclusive to one condition, while only 5% were present in all samples. Therefore, this study disclosed the variation of T. harzianum secretome in response to different substrates and revealed the diversity of the fungus enzymatic toolbox.
Collapse
Affiliation(s)
- Diana Paola Gómez-Mendoza
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia , Asa Norte, Brasília, 70910-900 DF, Brazil
| | | | | | | | | | | | | |
Collapse
|
85
|
[Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: classical cases and new models]. Rev Iberoam Micol 2014; 32:1-12. [PMID: 24607657 DOI: 10.1016/j.riam.2013.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 09/25/2013] [Accepted: 10/23/2013] [Indexed: 11/21/2022] Open
Abstract
Cellulose is the most abundant renewable carbon source on earth. However, this polymer structure comprises a physical and chemical barrier for carbon access, which has limited its exploitation. In nature, only a few percentage of microorganisms may degrade this polymer by cellulase expression. Filamentous fungi are one of the most active and efficient groups among these microorganisms. This review describes similarities and differences between cellulase activity mechanisms and regulatory mechanisms controlling gene expression for 3 of the most studied cellulolytic filamentous fungi models: Trichoderma reesei, Aspergillus niger and Aspergillus nidulans, and the recently described model Neurospora crassa. Unlike gene expression mechanisms, it was found that enzymatic activity mechanisms are similar for all the studied models. Understanding the distinctive elements of each system is essential for the development of strategies for the improvement of cellulase production, either by providing the optimum environment (fermentation conditions) or increasing gene expression in these microorganisms by genetic engineering.
Collapse
|
86
|
Zhang T, Peng Y, Yu Q, Wang J, Tang K. Characterization of the 5' flanking region of lipase gene from Penicillium expansum and its application in molecular breeding. Biotechnol Appl Biochem 2014; 61:493-500. [PMID: 24502561 DOI: 10.1002/bab.1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/03/2014] [Indexed: 11/09/2022]
Abstract
A major challenge for further promotion of lipase productivity in Penicillium expansum PE-12 is to find a suitable promoter that can function efficiently in this industrial strain. In this study, the 5' flanking region of P. expansum lipase (Ppel) containing a putative novel promoter sequence was characterized by fusing to β-glucuronidase (GUS) and subsequently introducing into P. expansum. As a result, all the transformants showed blue color quickly after incubation in GUS detection buffer, suggesting a strong promoter activity of this fragment. Glucose repression was identified for the promoter, whereas olive oil acted as a positive regulator. Facilitated by this novel promoter, P. expansum PE-12 was genetically modified, with an improved lipase yield, via a recombinant plasmid with P. expansum lipase gene (PEL) under the control of Ppel promoter and TtrpC terminator. The highest lipase yield among the modified strains could attain 2,100 U/mL, which is more than twofold of the previous industrial strain (900 U/mL). The engineered strain through molecular breeding method as well as this new promoter has great value in lipase industry.
Collapse
Affiliation(s)
- Tian Zhang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
87
|
Hmad IB, Abdeljalil S, Saibi W, Amouri B, Gargouri A. Medium Initial pH and Carbon Source Stimulate Differential Alkaline Cellulase Time Course Production in Stachybotrys microspora. Appl Biochem Biotechnol 2014; 172:2640-9. [DOI: 10.1007/s12010-013-0705-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/25/2013] [Indexed: 01/29/2023]
|
88
|
Benz JP, Chau BH, Zheng D, Bauer S, Glass NL, Somerville CR. A comparative systems analysis of polysaccharide-elicited responses in Neurospora crassa reveals carbon source-specific cellular adaptations. Mol Microbiol 2013; 91:275-99. [PMID: 24224966 DOI: 10.1111/mmi.12459] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
Abstract
Filamentous fungi are powerful producers of hydrolytic enzymes for the deconstruction of plant cell wall polysaccharides. However, the central question of how these sugars are perceived in the context of the complex cell wall matrix remains largely elusive. To address this question in a systematic fashion we performed an extensive comparative systems analysis of how the model filamentous fungus Neurospora crassa responds to the three main cell wall polysaccharides: pectin, hemicellulose and cellulose. We found the pectic response to be largely independent of the cellulolytic one with some overlap to hemicellulose, and in its extent surprisingly high, suggesting advantages for the fungus beyond being a mere carbon source. Our approach furthermore allowed us to identify carbon source-specific adaptations, such as the induction of the unfolded protein response on cellulose, and a commonly induced set of 29 genes likely involved in carbon scouting. Moreover, by hierarchical clustering we generated a coexpression matrix useful for the discovery of new components involved in polysaccharide utilization. This is exemplified by the identification of lat-1, which we demonstrate to encode for the physiologically relevant arabinose transporter in Neurospora. The analyses presented here are an important step towards understanding fungal degradation processes of complex biomass.
Collapse
Affiliation(s)
- J Philipp Benz
- Energy Biosciences Institute, University of California Berkeley, Berkeley, California, USA
| | | | | | | | | | | |
Collapse
|
89
|
Liao X, Fang W, Lin L, Lu HL, Leger RJS. Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization. PLoS One 2013; 8:e78118. [PMID: 24205119 PMCID: PMC3804458 DOI: 10.1371/journal.pone.0078118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 09/17/2013] [Indexed: 01/22/2023] Open
Abstract
As well as killing pest insects, the rhizosphere competent insect-pathogenic fungus Metarhizium robertsii also boosts plant growth by providing nitrogenous nutrients and increasing resistance to plant pathogens. Plant roots secrete abundant nutrients but little is known about their utilization by Metarhizium spp. and the mechanistic basis of Metarhizium-plant associations. We report here that M. robertsii produces an extracellular invertase (MrInv) on plant roots. Deletion of MrInv (ΔMrInv) reduced M. robertsii growth on sucrose and rhizospheric exudates but increased colonization of Panicum virgatum and Arabidopsis thaliana roots. This could be accounted for by a reduction in carbon catabolite repression in ΔMrInv increasing production of plant cell wall-degrading depolymerases. A non-rhizosphere competent scarab beetle specialist Metarhizium majus lacks invertase which suggests that rhizospheric competence may be related to the sugar metabolism of different Metarhizium species.
Collapse
Affiliation(s)
- Xinggang Liao
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Weiguo Fang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangcai Lin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hsiao-Ling Lu
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Raymond J. St. Leger
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
90
|
Workman M, Holt P, Thykaer J. Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations. AMB Express 2013; 3:58. [PMID: 24088397 PMCID: PMC3852309 DOI: 10.1186/2191-0855-3-58] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/30/2013] [Indexed: 12/14/2022] Open
Abstract
Yarrowia lipolytica is an attractive host for sustainable bioprocesses due to its ability to utilize a variety of carbon substrates and convert them to a range of different product types (including lipids, organic acids and polyols) under specific conditions. Despite an increasing number of applications for this yeast, relatively few studies have focused on uptake and metabolism of carbon sources, and the metabolic basis for carbon flow to the different products. The focus of this work was quantification of the cellular performance of Y. lipolytica during growth on glycerol, glucose or a mixture of the two. Carbon substrate uptake rate, growth rate, oxygen utilisation (requirement and uptake rate) and polyol yields were estimated in batch cultivations at 1 litre scale. When glucose was used as the sole carbon and energy source, the growth rate was 0.24 h-1 and biomass and CO2 were the only products. Growth on glycerol proceeded at approximately 0.30 h-1, and the substrate uptake rate was 0.02 mol L-1 h-1 regardless of the starting glycerol concentration (10, 20 or 45 g L-1). Utilisation of glycerol was accompanied by higher oxygen uptake rates compared to glucose growth, indicating import of glycerol occurred initially via phosphorylation of glycerol into glycerol-3-phosphate. Based on these results it could be speculated that once oxygen limitation was reached, additional production of NADH created imbalance in the cofactor pools and the polyol formation observed could be a result of cofactor recycling to restore the balance in metabolism.
Collapse
|
91
|
Glass NL, Schmoll M, Cate JH, Coradetti S. Plant Cell Wall Deconstruction by Ascomycete Fungi. Annu Rev Microbiol 2013; 67:477-98. [DOI: 10.1146/annurev-micro-092611-150044] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Monika Schmoll
- Austrian Institute of Technology GmbH (AIT), Health and Environment, Bioresources, 3430 Tulln, Austria
| | - Jamie H.D. Cate
- Molecular and Cellular Biology Department, and
- Chemistry Department, University of California, Berkeley, California 94720;
| | | |
Collapse
|
92
|
The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse. Fungal Genet Biol 2013; 60:29-45. [PMID: 23892063 DOI: 10.1016/j.fgb.2013.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 12/29/2022]
Abstract
The interest in the conversion of plant biomass to renewable fuels such as bioethanol has led to an increased investigation into the processes regulating biomass saccharification. The filamentous fungus Aspergillus niger is an important microorganism capable of producing a wide variety of plant biomass degrading enzymes. In A. niger the transcriptional activator XlnR and its close homolog, AraR, controls the main (hemi-)cellulolytic system responsible for plant polysaccharide degradation. Sugarcane is used worldwide as a feedstock for sugar and ethanol production, while the lignocellulosic residual bagasse can be used in different industrial applications, including ethanol production. The use of pentose sugars from hemicelluloses represents an opportunity to further increase production efficiencies. In the present study, we describe a global gene expression analysis of A. niger XlnR- and AraR-deficient mutant strains, grown on a D-xylose/L-arabinose monosaccharide mixture and steam-exploded sugarcane bagasse. Different gene sets of CAZy enzymes and sugar transporters were shown to be individually or dually regulated by XlnR and AraR, with XlnR appearing to be the major regulator on complex polysaccharides. Our study contributes to understanding of the complex regulatory mechanisms responsible for plant polysaccharide-degrading gene expression, and opens new possibilities for the engineering of fungi able to produce more efficient enzymatic cocktails to be used in biofuel production.
Collapse
|
93
|
Brown NA, de Gouvea PF, Krohn NG, Savoldi M, Goldman GH. Functional characterisation of the non-essential protein kinases and phosphatases regulating Aspergillus nidulans hydrolytic enzyme production. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:91. [PMID: 23800192 PMCID: PMC3698209 DOI: 10.1186/1754-6834-6-91] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/18/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Despite recent advances in the understanding of lignocellulolytic enzyme regulation, less is known about how different carbon sources are sensed and the signaling cascades that result in the adaptation of cellular metabolism and hydrolase secretion. Therefore, the role played by non-essential protein kinases (NPK) and phosphatases (NPP) in the sensing of carbon and/or energetic status was investigated in the model filamentous fungus Aspergillus nidulans. RESULTS Eleven NPKs and seven NPPs were identified as being involved in cellulase, and in some cases also hemicellulase, production in A. nidulans. The regulation of CreA-mediated carbon catabolite repression (CCR) in the parental strain was determined by fluorescence microscopy, utilising a CreA::GFP fusion protein. The sensing of phosphorylated glucose, via the RAS signalling pathway induced CreA repression, while carbon starvation resulted in derepression. Growth on cellulose represented carbon starvation and derepressing conditions. The involvement of the identified NPKs in the regulation of cellulose-induced responses and CreA derepression was assessed by genome-wide transcriptomics (GEO accession 47810). CreA::GFP localisation and the restoration of endocellulase activity via the introduction of the ∆creA mutation, was assessed in the NPK-deficient backgrounds. The absence of either the schA or snfA kinase dramatically reduced cellulose-induced transcriptional responses, including the expression of hydrolytic enzymes and transporters. The mechanism by which these two NPKs controlled gene transcription was identified, as the NPK-deficient mutants were not able to unlock CreA-mediated carbon catabolite repression under derepressing conditions, such as carbon starvation or growth on cellulose. CONCLUSIONS Collectively, this study identified multiple kinases and phosphatases involved in the sensing of carbon and/or energetic status, while demonstrating the overlapping, synergistic roles of schA and snfA in the regulation of CreA derepression and hydrolytic enzyme production in A. nidulans. The importance of a carbon starvation-induced signal for CreA derepression, permitting transcriptional activator binding, appeared paramount for hydrolase secretion.
Collapse
Affiliation(s)
- Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Paula Fagundes de Gouvea
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Nádia Graciele Krohn
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcela Savoldi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Campinas, Brazil
| |
Collapse
|
94
|
Coradetti ST, Xiong Y, Glass NL. Analysis of a conserved cellulase transcriptional regulator reveals inducer-independent production of cellulolytic enzymes in Neurospora crassa. Microbiologyopen 2013; 2:595-609. [PMID: 23766336 PMCID: PMC3948607 DOI: 10.1002/mbo3.94] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022] Open
Abstract
Cellulose is recalcitrant to deconstruction to glucose for use in fermentation strategies for biofuels and chemicals derived from lignocellulose. In Neurospora crassa, the transcriptional regulator, CLR-2, is required for cellulolytic gene expression and cellulose deconstruction. To assess conservation and divergence of cellulase gene regulation between fungi from different ecological niches, we compared clr-2 function with its ortholog (clrB) in the distantly related species, Aspergillus nidulans. Transcriptional profiles induced by exposure to crystalline cellulose were similar in both species. Approximately 50% of the cellulose-responsive genes showed strict dependence on functional clr-2/clrB, with a subset of 28 genes encoding plant biomass degrading enzymes that were conserved between N. crassa and A. nidulans. Importantly, misexpression of clr-2 under noninducing conditions was sufficient to drive cellulase gene expression, secretion, and activity in N. crassa, to a level comparable to wild type exposed to Avicel. However, misexpression of clrB in A. nidulans was not sufficient to drive cellulase gene expression under noninducing conditions, although an increase in cellulase activity was observed under crystalline cellulose conditions. Manipulation of clr-2 orthologs among filamentous fungi may enable regulated cellulosic enzyme production in a wide array of culture conditions and host strains, potentially reducing costs associated with enzyme production for plant cell wall deconstruction. However, this functionality may require additional engineering in some species.
Collapse
Affiliation(s)
- Samuel T Coradetti
- Plant and Microbial Biology Department, The University of California, Berkeley, CA, 94720-3102
| | | | | |
Collapse
|
95
|
Kroll K, Pähtz V, Kniemeyer O. Elucidating the fungal stress response by proteomics. J Proteomics 2013; 97:151-63. [PMID: 23756228 DOI: 10.1016/j.jprot.2013.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/09/2013] [Accepted: 06/01/2013] [Indexed: 10/26/2022]
Abstract
Fungal species need to cope with stress, both in the natural environment and during interaction of human- or plant pathogenic fungi with their host. Many regulatory circuits governing the fungal stress response have already been discovered. However, there are still large gaps in the knowledge concerning the changes of the proteome during adaptation to environmental stress conditions. With the application of proteomic methods, particularly 2D-gel and gel-free, LC/MS-based methods, first insights into the composition and dynamic changes of the fungal stress proteome could be obtained. Here, we review the recent proteome data generated for filamentous fungi and yeasts. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Kristin Kroll
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany
| | - Vera Pähtz
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care Jena, University Hospital (CSCC), 07747 Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care Jena, University Hospital (CSCC), 07747 Jena, Germany.
| |
Collapse
|
96
|
Amore A, Giacobbe S, Faraco V. Regulation of cellulase and hemicellulase gene expression in fungi. Curr Genomics 2013; 14:230-49. [PMID: 24294104 PMCID: PMC3731814 DOI: 10.2174/1389202911314040002] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/22/2022] Open
Abstract
Research on regulation of cellulases and hemicellulases gene expression may be very useful for increasing the production of these enzymes in their native producers. Mechanisms of gene regulation of cellulase and hemicellulase expression in filamentous fungi have been studied, mainly in Aspergillus and Trichoderma. The production of these extracellular enzymes is an energy-consuming process, so the enzymes are produced only under conditions in which the fungus needs to use plant polymers as an energy and carbon source. Moreover, production of many of these enzymes is coordinately regulated, and induced in the presence of the substrate polymers. In addition to induction by mono- and oligo-saccharides, genes encoding hydrolytic enzymes involved in plant cell wall deconstruction in filamentous fungi can be repressed during growth in the presence of easily metabolizable carbon sources, such as glucose. Carbon catabolite repression is an important mechanism to repress the production of plant cell wall degrading enzymes during growth on preferred carbon sources. This manuscript reviews the recent advancements in elucidation of molecular mechanisms responsible for regulation of expression of cellulase and hemicellulase genes in fungi.
Collapse
Affiliation(s)
- Antonella Amore
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
| | - Simona Giacobbe
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
- School of Biotechnological Sciences, University of Naples “Federico II” Italy
| |
Collapse
|
97
|
Culleton H, McKie V, de Vries RP. Physiological and molecular aspects of degradation of plant polysaccharides by fungi: What have we learned fromAspergillus? Biotechnol J 2013; 8:884-94. [DOI: 10.1002/biot.201200382] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/12/2013] [Accepted: 04/03/2013] [Indexed: 11/09/2022]
|
98
|
James ER, van Zyl WH, van Zyl PJ, Görgens JF. Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase. Appl Microbiol Biotechnol 2012; 96:385-94. [DOI: 10.1007/s00253-012-4191-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
99
|
Fernandez J, Wright JD, Hartline D, Quispe CF, Madayiputhiya N, Wilson RA. Principles of carbon catabolite repression in the rice blast fungus: Tps1, Nmr1-3, and a MATE-family pump regulate glucose metabolism during infection. PLoS Genet 2012; 8:e1002673. [PMID: 22570632 PMCID: PMC3342947 DOI: 10.1371/journal.pgen.1002673] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 03/12/2012] [Indexed: 12/14/2022] Open
Abstract
Understanding the genetic pathways that regulate how pathogenic fungi respond to their environment is paramount to developing effective mitigation strategies against disease. Carbon catabolite repression (CCR) is a global regulatory mechanism found in a wide range of microbial organisms that ensures the preferential utilization of glucose over less favourable carbon sources, but little is known about the components of CCR in filamentous fungi. Here we report three new mediators of CCR in the devastating rice blast fungus Magnaporthe oryzae: the sugar sensor Tps1, the Nmr1-3 inhibitor proteins, and the multidrug and toxin extrusion (MATE)-family pump, Mdt1. Using simple plate tests coupled with transcriptional analysis, we show that Tps1, in response to glucose-6-phosphate sensing, triggers CCR via the inactivation of Nmr1-3. In addition, by dissecting the CCR pathway using Agrobacterium tumefaciens-mediated mutagenesis, we also show that Mdt1 is an additional and previously unknown regulator of glucose metabolism. Mdt1 regulates glucose assimilation downstream of Tps1 and is necessary for nutrient utilization, sporulation, and pathogenicity. This is the first functional characterization of a MATE-family protein in filamentous fungi and the first description of a MATE protein in genetic regulation or plant pathogenicity. Perturbing CCR in Δtps1 and MDT1 disruption strains thus results in physiological defects that impact pathogenesis, possibly through the early expression of cell wall-degrading enzymes. Taken together, the importance of discovering three new regulators of carbon metabolism lies in understanding how M. oryzae and other pathogenic fungi respond to nutrient availability and control development during infection.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Janet D. Wright
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - David Hartline
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Cristian F. Quispe
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Nandakumar Madayiputhiya
- Proteomic and Metabolomic Core Facility, Redox Biology Center, Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Richard A. Wilson
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
100
|
Ward E, Kerry BR, Manzanilla-López RH, Mutua G, Devonshire J, Kimenju J, Hirsch PR. The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: implications for nematode biocontrol. PLoS One 2012; 7:e35657. [PMID: 22558192 PMCID: PMC3338732 DOI: 10.1371/journal.pone.0035657] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/22/2012] [Indexed: 12/27/2022] Open
Abstract
The alkaline serine protease VCP1 of the fungus Pochonia chlamydosporia belongs to a family of subtilisin-like enzymes that are involved in infection of nematode and insect hosts. It is involved early in the infection process, removing the outer proteinaceous vitelline membrane of nematode eggs. Little is known about the regulation of this gene, even though an understanding of how nutrients and other factors affect its expression is critical for ensuring its efficacy as a biocontrol agent. This paper provides new information on the regulation of vcp1 expression. Sequence analysis of the upstream regulatory region of this gene in 30 isolates revealed that it was highly conserved and contained sequence motifs characteristic of genes that are subject to carbon, nitrogen and pH-regulation. Expression studies, monitoring enzyme activity and mRNA, confirmed that these factors affect VCP1 production. As expected, glucose reduced VCP1 expression and for a few hours so did ammonium chloride. Surprisingly, however, by 24 h VCP1 levels were increased in the presence of ammonium chloride for most isolates. Ambient pH also regulated VCP1 expression, with most isolates producing more VCP1 under alkaline conditions. There were some differences in the response of one isolate with a distinctive upstream sequence including a variant regulatory-motif profile. Cryo-scanning electron microscopy studies indicated that the presence of nematode eggs stimulates VCP1 production by P. chlamydosporia, but only where the two are in close contact. Overall, the results indicate that readily-metabolisable carbon sources and unfavourable pH in the rhizosphere/egg-mass environment may compromise nematode parasitism by P. chlamydosporia. However, contrary to previous indications using other nematophagous and entomopathogenic fungi, ammonium nitrate (e.g. from fertilizers) may enhance biocontrol potential in some circumstances.
Collapse
Affiliation(s)
- Elaine Ward
- Plant Pathology and Microbiology Department, Rothamsted Research, Harpenden, Herts, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|