51
|
Xiong LB, Liu HH, Song XW, Meng XG, Liu XZ, Ji YQ, Wang FQ, Wei DZ. Improving the biotransformation of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by deleting embC associated with the assembly of cell envelope in Mycobacterium neoaurum. J Biotechnol 2020; 323:341-346. [DOI: 10.1016/j.jbiotec.2020.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/06/2020] [Accepted: 09/20/2020] [Indexed: 10/23/2022]
|
52
|
Hanafusa K, Hotta T, Iwabuchi K. Glycolipids: Linchpins in the Organization and Function of Membrane Microdomains. Front Cell Dev Biol 2020; 8:589799. [PMID: 33195253 PMCID: PMC7658261 DOI: 10.3389/fcell.2020.589799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Membrane microdomains, also called lipid rafts, are areas on membrane enriched in glycolipids, sphingolipids, and cholesterol. Although membrane microdomains are thought to play key roles in many cellular functions, their structures, properties, and biological functions remain obscure. Cellular membranes contain several types of glycoproteins, glycolipids, and other lipids, including cholesterol, glycerophospholipids, and sphingomyelin. Depending on their physicochemical properties, especially the characteristics of their glycolipids, various microdomains form on these cell membranes, providing structural or functional contextures thought to be essential for biological activities. For example, the plasma membranes of human neutrophils are enriched in lactosylceramide (LacCer) and phosphatidylglucoside (PtdGlc), each of which forms different membrane microdomains with different surrounding molecules and is involved in different functions of neutrophils. Specifically, LacCer forms Lyn-coupled lipid microdomains, which mediate neutrophil chemotaxis, phagocytosis, and superoxide generation, whereas PtdGlc-enriched microdomains mediate neutrophil differentiation and spontaneous apoptosis. However, the mechanisms by which these glycolipids form different nano/meso microdomains and mediate their specialized functions remain incompletely understood. This review describes current understanding of the roles of glycolipids and sphingolipids in their enriched contextures on cellular membranes, including their mechanisms of facilitation and regulation of intracellular signaling. This review also introduces new concepts about the roles of glycolipid and sphingolipid-dependent contextures in immunological functions.
Collapse
Affiliation(s)
- Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Japan
| |
Collapse
|
53
|
Interleukin-26 activates macrophages and facilitates killing of Mycobacterium tuberculosis. Sci Rep 2020; 10:17178. [PMID: 33057074 PMCID: PMC7558018 DOI: 10.1038/s41598-020-73989-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis-causing Mycobacterium tuberculosis (Mtb) is transmitted via airborne droplets followed by a primary infection of macrophages and dendritic cells. During the activation of host defence mechanisms also neutrophils and T helper 1 (TH1) and TH17 cells are recruited to the site of infection. The TH17 cell-derived interleukin (IL)-17 in turn induces the cathelicidin LL37 which shows direct antimycobacterial effects. Here, we investigated the role of IL-26, a TH1- and TH17-associated cytokine that exhibits antimicrobial activity. We found that both IL-26 mRNA and protein are strongly increased in tuberculous lymph nodes. Furthermore, IL-26 is able to directly kill Mtb and decrease the infection rate in macrophages. Binding of IL-26 to lipoarabinomannan might be one important mechanism in extracellular killing of Mtb. Macrophages and dendritic cells respond to IL-26 with secretion of tumor necrosis factor (TNF)-α and chemokines such as CCL20, CXCL2 and CXCL8. In dendritic cells but not in macrophages cytokine induction by IL-26 is partly mediated via Toll like receptor (TLR) 2. Taken together, IL-26 strengthens the defense against Mtb in two ways: firstly, directly due to its antimycobacterial properties and secondly indirectly by activating innate immune mechanisms.
Collapse
|
54
|
Deshpande D, Grieshober M, Wondany F, Gerbl F, Noschka R, Michaelis J, Stenger S. Super-Resolution Microscopy Reveals a Direct Interaction of Intracellular Mycobacterium tuberculosis with the Antimicrobial Peptide LL-37. Int J Mol Sci 2020; 21:ijms21186741. [PMID: 32937921 PMCID: PMC7555347 DOI: 10.3390/ijms21186741] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
The antimicrobial peptide LL-37 inhibits the growth of the major human pathogen Mycobacterium tuberculosis (Mtb), but the mechanism of the peptide–pathogen interaction inside human macrophages remains unclear. Super-resolution imaging techniques provide a novel opportunity to visualize these interactions on a molecular level. Here, we adapt the super-resolution technique of stimulated emission depletion (STED) microscopy to study the uptake, intracellular localization and interaction of LL-37 with macrophages and virulent Mtb. We demonstrate that LL-37 is internalized by both uninfected and Mtb infected primary human macrophages. The peptide localizes in the membrane of early endosomes and lysosomes, the compartment in which mycobacteria reside. Functionally, LL-37 disrupts the cell wall of intra- and extracellular Mtb, resulting in the killing of the pathogen. In conclusion, we introduce STED microscopy as an innovative and informative tool for studying host–pathogen–peptide interactions, clearly extending the possibilities of conventional confocal microscopy.
Collapse
Affiliation(s)
- Dhruva Deshpande
- Institute of Biophysics, Ulm University, 89081 Ulm, Germany; (D.D.); (F.W.)
| | - Mark Grieshober
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (M.G.); (F.G.); (R.N.)
| | - Fanny Wondany
- Institute of Biophysics, Ulm University, 89081 Ulm, Germany; (D.D.); (F.W.)
| | - Fabian Gerbl
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (M.G.); (F.G.); (R.N.)
| | - Reiner Noschka
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (M.G.); (F.G.); (R.N.)
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, 89081 Ulm, Germany; (D.D.); (F.W.)
- Correspondence: (J.M.); (S.S.)
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (M.G.); (F.G.); (R.N.)
- Correspondence: (J.M.); (S.S.)
| |
Collapse
|
55
|
Li Z, Zheng C, Terreni M, Tanzi L, Sollogoub M, Zhang Y. Novel Vaccine Candidates against Tuberculosis. Curr Med Chem 2020; 27:5095-5118. [PMID: 30474525 DOI: 10.2174/0929867326666181126112124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
Ranking above AIDS, Tuberculosis (TB) is the ninth leading cause of death affecting and
killing many individuals every year. Drugs’ efficacy is limited by a series of problems such as Multi-
Drug Resistance (MDR) and Extensively-Drug Resistance (XDR). Meanwhile, the only licensed vaccine
BCG (Bacillus Calmette-Guérin) existing for over 90 years is not effective enough. Consequently,
it is essential to develop novel vaccines for TB prevention and immunotherapy. This paper
provides an overall review of the TB prevalence, immune system response against TB and recent
progress of TB vaccine research and development. Several vaccines in clinical trials are described as
well as LAM-based candidates.
Collapse
Affiliation(s)
- Zhihao Li
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Changping Zheng
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Lisa Tanzi
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Matthieu Sollogoub
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Yongmin Zhang
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
56
|
Dadhich R, Kapoor S. Various Facets of Pathogenic Lipids in Infectious Diseases: Exploring Virulent Lipid-Host Interactome and Their Druggability. J Membr Biol 2020; 253:399-423. [PMID: 32833058 PMCID: PMC7443855 DOI: 10.1007/s00232-020-00135-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Lipids form an integral, structural, and functional part of all life forms. They play a significant role in various cellular processes such as membrane fusion, fission, endocytosis, protein trafficking, and protein functions. Interestingly, recent studies have revealed their more impactful and critical involvement in infectious diseases, starting with the manipulation of the host membrane to facilitate pathogenic entry. Thereafter, pathogens recruit specific host lipids for the maintenance of favorable intracellular niche to augment their survival and proliferation. In this review, we showcase the lipid-mediated host pathogen interplay in context of life-threatening viral and bacterial diseases including the recent SARS-CoV-2 infection. We evaluate the emergent lipid-centric approaches adopted by these pathogens, while delineating the alterations in the composition and organization of the cell membrane within the host, as well as the pathogen. Lastly, crucial nexus points in their interaction landscape for therapeutic interventions are identified. Lipids act as critical determinants of bacterial and viral pathogenesis by altering the host cell membrane structure and functions.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
57
|
Belcher Dufrisne M, Jorge CD, Timóteo CG, Petrou VI, Ashraf KU, Banerjee S, Clarke OB, Santos H, Mancia F. Structural and Functional Characterization of Phosphatidylinositol-Phosphate Biosynthesis in Mycobacteria. J Mol Biol 2020; 432:5137-5151. [PMID: 32389689 PMCID: PMC7483940 DOI: 10.1016/j.jmb.2020.04.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/05/2023]
Abstract
In mycobacteria, phosphatidylinositol (PI) acts as a common lipid anchor for key components of the cell wall, including the glycolipids phosphatidylinositol mannoside, lipomannan, and lipoarabinomannan. Glycolipids in Mycobacterium tuberculosis, the causative agent of tuberculosis, are important virulence factors that modulate the host immune response. The identity-defining step in PI biosynthesis in prokaryotes, unique to mycobacteria and few other bacterial species, is the reaction between cytidine diphosphate-diacylglycerol and inositol-phosphate to yield phosphatidylinositol-phosphate, the immediate precursor to PI. This reaction is catalyzed by the cytidine diphosphate-alcohol phosphotransferase phosphatidylinositol-phosphate synthase (PIPS), an essential enzyme for mycobacterial viability. Here we present structures of PIPS from Mycobacterium kansasii with and without evidence of donor and acceptor substrate binding obtained using a crystal engineering approach. PIPS from Mycobacterium kansasii is 86% identical to the ortholog from M. tuberculosis and catalytically active. Functional experiments guided by our structural results allowed us to further characterize the molecular determinants of substrate specificity and catalysis in a new mycobacterial species. This work provides a framework to strengthen our understanding of phosphatidylinositol-phosphate biosynthesis in the context of mycobacterial pathogens.
Collapse
Affiliation(s)
- Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Carla D Jorge
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República-EAN, 2780-157 Oeiras, Portugal
| | - Cristina G Timóteo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República-EAN, 2780-157 Oeiras, Portugal
| | - Vasileios I Petrou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Khuram U Ashraf
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Surajit Banerjee
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República-EAN, 2780-157 Oeiras, Portugal
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
58
|
Palčeková Z, Gilleron M, Angala SK, Belardinelli JM, McNeil M, Bermudez LE, Jackson M. Polysaccharide Succinylation Enhances the Intracellular Survival of Mycobacterium abscessus. ACS Infect Dis 2020; 6:2235-2248. [PMID: 32657565 PMCID: PMC7875180 DOI: 10.1021/acsinfecdis.0c00361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipoarabinomannan (LAM) and its biosynthetic precursors, phosphatidylinositol mannosides (PIMs) and lipomannan (LM) play important roles in the interactions of Mycobacterium tuberculosis with phagocytic cells and the modulation of the host immune response, but nothing is currently known of the impact of these cell envelope glycoconjugates on the physiology and pathogenicity of nontuberculous mycobacteria. We here report on the structures of Mycobacterium abscessus PIM, LM, and LAM. Intriguingly, these structures differ from those reported previously in other mycobacterial species in several respects, including the presence of a methyl substituent on one of the mannosyl residues of PIMs as well as the PIM anchor of LM and LAM, the size and branching pattern of the mannan backbone of LM and LAM, and the modification of the arabinan domain of LAM with both succinyl and acetyl substituents. Investigations into the biological significance of some of these structural oddities point to the important role of polysaccharide succinylation on the ability of M. abscessus to enter and survive inside human macrophages and epithelial cells and validate for the first time cell envelope polysaccharides as important modulators of the virulence of this emerging pathogen.
Collapse
Affiliation(s)
- Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Shiva kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Juan Manuel Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Michael McNeil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| |
Collapse
|
59
|
Angala SK, Li W, Boot CM, Jackson M, McNeil MR. Secondary Extended Mannan Side Chains and Attachment of the Arabinan in Mycobacterial Lipoarabinomannan. Commun Chem 2020; 3:101. [PMID: 34295997 PMCID: PMC8294699 DOI: 10.1038/s42004-020-00356-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/16/2020] [Indexed: 01/12/2023] Open
Abstract
Mycobacterial lipoarabinomannan (LAM) in an essential cell envelope lipopolysaccharide anchored both to the plasma and outer membranes. To understand critical biological questions such as the biosynthesis, spatial organization of LAM within the cell envelope, structural remodeling during growth, and display or lack of display of LAM-based antigenicity all requires a basic understanding of the primary structure of the mannan, arabinan and how they are attached to each other. Herein, using enzymatic digestions and high-resolution mass spectrometry, we show that the arabinan component of LAM is attached at the non-reducing end of the mannan rather than to internal regions. Further, we show the presence of secondary extended mannan side chains attached to the internal mannan region. Such findings lead to a significant revision of the structure of LAM and lead to guidance of biosynthetic studies and to hypotheses of the role of LAM both in the periplasm and outside the cell as a fundamental part of the dynamic mycobacterial cell envelope.
Collapse
Affiliation(s)
- Shiva K. Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523 USA
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523 USA
| | - Claudia M. Boot
- Central Instrument Facility, Department of Chemistry, Colorado State University, Fort Collins, CO 80523 USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523 USA
| | - Michael R. McNeil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
60
|
Foppiano Palacios C, Saleeb PG. Challenges in the diagnosis of tuberculous meningitis. J Clin Tuberc Other Mycobact Dis 2020; 20:100164. [PMID: 32462082 PMCID: PMC7240715 DOI: 10.1016/j.jctube.2020.100164] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) continues to pose a significant public health problem. Tuberculous meningitis (TBM) is the most severe form of extra-pulmonary TB. TBM carries a high mortality rate, including for those receiving treatment for TB. Diagnosis of TBM is difficult for clinicians as it can clinically present similarly to other forms of meningitis. The difficulty in diagnosis often leads to a delay in treatment and subsequent mortality. Those who survive are left with long-term sequelae leading to lifelong disability. The microbiologic diagnosis of TBM requires the isolation of Mycobacterium tuberculosis from the cerebrospinal fluid (CSF) of an infected patient. The diagnosis of tuberculous meningitis continues to be challenging for clinicians. Unfortunately, many cases of TBM cannot be confirmed based on clinical and imaging findings as the clinical findings are nonspecific, while laboratory techniques are largely insensitive or slow. Until recently, the lack of accessible and timely tests has contributed to a delay in diagnosis and subsequent morbidity and mortality for many patients, particularly those in resourcelimited settings. The availability of Xpert Ultra and point-of-care lipoarabinomannan (LAM) testing could represent a new era of prompt diagnosis and early treatment of tuberculous meningitis. However, clinicians must be cautious when ruling out TBM with Xpert Ultra due to its low negative predictive value. Due to the limitations of current diagnostics, clinicians should utilize a combination of diagnostic modalities in order to prevent morbidity in patients with TBM.
Collapse
Affiliation(s)
- Carlo Foppiano Palacios
- Departments of Internal Medicine and Pediatrics, University of Maryland Medical Center, 22 S Greene St, Baltimore, MD 21201, United States
| | - Paul G. Saleeb
- Institute of Human Virology, University of Maryland School of Medicine, 725 W Lombard St, Baltimore, MD 21201, United States
| |
Collapse
|
61
|
Tan YZ, Rodrigues J, Keener JE, Zheng RB, Brunton R, Kloss B, Giacometti SI, Rosário AL, Zhang L, Niederweis M, Clarke OB, Lowary TL, Marty MT, Archer M, Potter CS, Carragher B, Mancia F. Cryo-EM structure of arabinosyltransferase EmbB from Mycobacterium smegmatis. Nat Commun 2020; 11:3396. [PMID: 32636380 PMCID: PMC7341804 DOI: 10.1038/s41467-020-17202-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/18/2020] [Indexed: 01/21/2023] Open
Abstract
Arabinosyltransferase B (EmbB) belongs to a family of membrane-bound glycosyltransferases that build the lipidated polysaccharides of the mycobacterial cell envelope, and are targets of anti-tuberculosis drug ethambutol. We present the 3.3 Å resolution single-particle cryo-electron microscopy structure of Mycobacterium smegmatis EmbB, providing insights on substrate binding and reaction mechanism. Mutations that confer ethambutol resistance map mostly around the putative active site, suggesting this to be the location of drug binding.
Collapse
Affiliation(s)
- Yong Zi Tan
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027, USA
| | - José Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - James E Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Ruixiang Blake Zheng
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Richard Brunton
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Brian Kloss
- Center on Membrane Protein Production and Analysis, New York Structural Biology Center, New York, NY, 10027, USA
| | - Sabrina I Giacometti
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Ana L Rosário
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128, Nangang, Taipei, 11529, Taiwan
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Margarida Archer
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027, USA
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027, USA.
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
62
|
Abstract
TB is the leading cause of death from a single infectious agent globally, followed by HIV. Furthermore, TB represents the leading cause of death among people with HIV. HIV is known to cause severe defects in T cell immunity, rendering HIV/TB-coinfected individuals more susceptible to TB disease progression and complicating accurate TB disease diagnosis. Here, we demonstrate that HIV infection is additionally associated with severely compromised antibody responses, particularly in individuals with active TB. Moreover, despite the influence of HIV infection, antibody profiles still allow accurate classification of individuals with active versus latent TB. These findings reveal novel immunologic challenges associated with HIV/TB coinfection and additionally provide a basis with which to leverage the key antibody features identified to potentially combat TB globally via next-generation therapeutic or diagnostic design. Tuberculosis (TB) represents the largest cause of death in human immunodeficiency virus (HIV)-infected individuals in part due to HIV-related CD4+ T cell loss, rendering patients immunocompromised and susceptible to a loss of Mycobacterium tuberculosis control. However, in light of increasing data pointing to a role for humoral immunity in controlling M. tuberculosis infection, here, we aimed to define whether HIV infection also alters the humoral immune response in subjects with active and latent TB. We show that in the setting of active TB, HIV-positive individuals have significantly lower IgG responses to LAM and Ag85 than HIV-negative individuals. Furthermore, significant isotype/subclass-specific differences were frequently observed, with active TB, HIV-positive individuals demonstrating compromised antigen-specific IgM titers. HIV-infected individuals with active TB also exhibited a significant loss of influenza hemagglutinin- and tetanus toxoid-specific antibody titers at the isotype/subclass level, a symptom of broad humoral immune dysfunction likely precipitated by HIV infection. Finally, we illustrated that despite the influence of HIV infection, differences in M. tuberculosis-specific antibody profiles persist between latent and active TB disease. Taken together, these findings reveal significant HIV-associated disruptions of the humoral immune response in HIV/TB-coinfected individuals. IMPORTANCE TB is the leading cause of death from a single infectious agent globally, followed by HIV. Furthermore, TB represents the leading cause of death among people with HIV. HIV is known to cause severe defects in T cell immunity, rendering HIV/TB-coinfected individuals more susceptible to TB disease progression and complicating accurate TB disease diagnosis. Here, we demonstrate that HIV infection is additionally associated with severely compromised antibody responses, particularly in individuals with active TB. Moreover, despite the influence of HIV infection, antibody profiles still allow accurate classification of individuals with active versus latent TB. These findings reveal novel immunologic challenges associated with HIV/TB coinfection and additionally provide a basis with which to leverage the key antibody features identified to potentially combat TB globally via next-generation therapeutic or diagnostic design.
Collapse
|
63
|
Zhang L, Zhao Y, Gao Y, Wu L, Gao R, Zhang Q, Wang Y, Wu C, Wu F, Gurcha SS, Veerapen N, Batt SM, Zhao W, Qin L, Yang X, Wang M, Zhu Y, Zhang B, Bi L, Zhang X, Yang H, Guddat LW, Xu W, Wang Q, Li J, Besra GS, Rao Z. Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol. Science 2020; 368:1211-1219. [PMID: 32327601 DOI: 10.1126/science.aba9102] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/06/2020] [Accepted: 04/14/2020] [Indexed: 11/02/2022]
Abstract
The arabinosyltransferases EmbA, EmbB, and EmbC are involved in Mycobacterium tuberculosis cell wall synthesis and are recognized as targets for the anti-tuberculosis drug ethambutol. In this study, we determined cryo-electron microscopy and x-ray crystal structures of mycobacterial EmbA-EmbB and EmbC-EmbC complexes in the presence of their glycosyl donor and acceptor substrates and with ethambutol. These structures show how the donor and acceptor substrates bind in the active site and how ethambutol inhibits arabinosyltransferases by binding to the same site as both substrates in EmbB and EmbC. Most drug-resistant mutations are located near the ethambutol binding site. Collectively, our work provides a structural basis for understanding the biochemical function and inhibition of arabinosyltransferases and the development of new anti-tuberculosis agents.
Collapse
Affiliation(s)
- Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Gao
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Lijie Wu
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruogu Gao
- University of Chinese Academy of Sciences, Beijing 100101, China.,National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Qi Zhang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yinan Wang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Chengyao Wu
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fangyu Wu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Sudagar S Gurcha
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Natacha Veerapen
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarah M Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Ling Qin
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Manfu Wang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Zhu
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lijun Bi
- National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Xian'en Zhang
- National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Quan Wang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300353, China.,Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.,National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| |
Collapse
|
64
|
Meneguello JE, Arita GS, Silva JVDO, Ghiraldi-Lopes LD, Caleffi-Ferracioli KR, Siqueira VLD, Scodro RBDL, Pilau EJ, Campanerut-Sá PAZ, Cardoso RF. Insight about cell wall remodulation triggered by rifampicin in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2020; 120:101903. [PMID: 32090864 DOI: 10.1016/j.tube.2020.101903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/27/2019] [Accepted: 01/12/2020] [Indexed: 11/27/2022]
Abstract
Rifampicin plays an important role during the treatment of tuberculosis, which makes it to be recommended throughout the regimen. The molecular target for rifampicin activity and resistance is the bacterial RNA polymerase coded by rpoB. However, it has been observed that Mycobacterium tuberculosis could use different metabolic pathways contributing to drug activity/resistance. In this sense, Proteomics analysis has been a key aspect towards the understanding of the dynamic genome expression triggered by drugs and other M. tuberculosis hostile stimuli. Herein, we aimed to report the changes in the M. tuberculosis protein profile triggered by rifampicin. The M. tuberculosis H37Rv strain was submitted to 12, 24 and 48 h of rifampicin challenge, at the minimal inhibitory concentration (0.03 μg mL-1), and proteins were extracted. The protein identification was carried out by liquid chromatography coupled to mass spectrometry (LC-MS). Four proteins, Ino1 (Rv0046c), FabD (Rv2243), EsxK (Rv1197) and PPE60 (Rv3478) were statistically underexpressed over 48 h of rifampicin exposure, indicating that in addition to the known activity of rifampin in transcriptional machinery in M. tuberculosis, processes related to disturbance in cell wall synthesis and lipid metabolism in the bacillus are also triggered by rifampicin contributing to bacillus death.
Collapse
Affiliation(s)
- Jean Eduardo Meneguello
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - Gláucia Sayuri Arita
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - João Vitor de Oliveira Silva
- Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Luciana Dias Ghiraldi-Lopes
- Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Katiany Rizzieri Caleffi-Ferracioli
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - Vera Lucia Dias Siqueira
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - Regiane Bertin de Lima Scodro
- Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Eduardo Jorge Pilau
- Postgraduate Program in Chemistry, Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | - Paula Aline Zannetti Campanerut-Sá
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil; Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil.
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil; Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
65
|
Ausmus AP, Hogue M, Snyder JL, Rundell SR, Bednarz KM, Banahene N, Swarts BM. Ferrier Carbocyclization-Mediated Synthesis of Enantiopure Azido Inositol Analogues. J Org Chem 2020; 85:3182-3191. [DOI: 10.1021/acs.joc.9b03064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alex P. Ausmus
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Maxwell Hogue
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Justin L. Snyder
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Sarah R. Rundell
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Krestina M. Bednarz
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| |
Collapse
|
66
|
Zhou KL, Li X, Zhang XL, Pan Q. Mycobacterial mannose-capped lipoarabinomannan: a modulator bridging innate and adaptive immunity. Emerg Microbes Infect 2019; 8:1168-1177. [PMID: 31379262 PMCID: PMC6713153 DOI: 10.1080/22221751.2019.1649097] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mannose-capped lipoarabinomannan (ManLAM) is a high molecular mass amphipathic lipoglycan identified in pathogenic Mycobacterium tuberculosis (M. tb) and M. bovis Bacillus Calmette-Guérin (BCG). ManLAM, serves as both an immunogen and a modulator of the host immune system, and its critical role in mycobacterial survival during infection has been well-characterized. ManLAM can be recognized by various types of receptors on both innate and adaptive immune cells, including macrophages, dendritic cells (DCs), neutrophils, natural killer T (NKT) cells, T cells and B cells. MamLAM has been shown to affect phagocytosis, cytokine production, antigen presentation, T cell activation and polarization, as well as antibody production. Exploring the mechanisms underlying the roles of ManLAM during mycobacterial infection will aid in improving tuberculosis (TB) prevention, diagnosis and treatment interventions. In this review, we highlight the interaction between ManLAM and receptors, intracellular signalling pathways triggered by ManLAM and its roles in both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Kai-Liang Zhou
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China.,b The eighth hospital of Wuhan , Wuhan , People's Republic of China
| | - Xin Li
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| | - Xiao-Lian Zhang
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| | - Qin Pan
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| |
Collapse
|
67
|
Tanno D, Yokoyama R, Kawamura K, Kitai Y, Yuan X, Ishii K, De Jesus M, Yamamoto H, Sato K, Miyasaka T, Shimura H, Shibata N, Adachi Y, Ohno N, Yamasaki S, Kawakami K. Dectin-2-mediated signaling triggered by the cell wall polysaccharides of Cryptococcus neoformans. Microbiol Immunol 2019; 63:500-512. [PMID: 31544981 DOI: 10.1111/1348-0421.12746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 09/15/2019] [Indexed: 12/16/2022]
Abstract
Cryptococcus neoformans is rich in polysaccharides of the cell wall and capsule. Dectin-2 recognizes high-mannose polysaccharides and plays a central role in the immune response to fungal pathogens. Previously, we demonstrated Dectin-2 was involved in the activation of dendritic cells upon stimulation with C. neoformans, suggesting the existence of a ligand recognized by Dectin-2. In the present study, we examined the cell wall structures of C. neoformans contributing to the Dectin-2-mediated activation of immune cells. In a NFAT-GFP reporter assay of the reported cells expressing Dectin-2, the lysates, but not the whole yeast cells, of an acapsular strain of C. neoformans (Cap67) delivered Dectin-2-mediated signaling. This activity was detected in the supernatant of β-glucanase-treated Cap67 and more strongly in the semi-purified polysaccharides of this supernatant using ConA-affinity chromatography (ConA-bound fraction), in which a large amount of saccharides, but not protein, were detected. Treatment of this supernatant with periodic acid and the addition of excessive mannose, but not glucose or galactose, strongly inhibited this activity. The ConA-bound fraction of the β-glucanase-treated Cap67 supernatant was bound to Dectin-2-Fc fusion protein in a dose-dependent manner and strongly induced the production of interleukin-12p40 and tumour necrosis factor-α by dendritic cells; this was abrogated under the Dectin-2-deficient condition. Finally, 98 kDa mannoprotein (MP98) derived from C. neoformans showed activation of the reporter cells expressing Dectin-2. These results suggested that a ligand with mannose moieties may exist in the cell walls and play a critical role in the activation of dendritic cells during infection with C. neoformans.
Collapse
Affiliation(s)
- Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Clinical Laboratory, Fukushima Medical University, Fukushima, Japan
| | - Rin Yokoyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kotone Kawamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Xiaoliang Yuan
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Respiratory Medicine, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Magdia De Jesus
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Center for Transdisciplinary Research, Institute for Research Promotion, Niigata University, Niigata, Japan
| | - Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hiroki Shimura
- Department of Clinical Laboratory, Fukushima Medical University, Fukushima, Japan
| | - Nobuyuki Shibata
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
68
|
Dulberger CL, Rubin EJ, Boutte CC. The mycobacterial cell envelope - a moving target. Nat Rev Microbiol 2019; 18:47-59. [PMID: 31728063 DOI: 10.1038/s41579-019-0273-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 01/12/2023]
Abstract
Mycobacterium tuberculosis, the leading cause of death due to infection, has a dynamic and immunomodulatory cell envelope. The cell envelope structurally and functionally varies across the length of the cell and during the infection process. This variability allows the bacterium to manipulate the human immune system, tolerate antibiotic treatment and adapt to the variable host environment. Much of what we know about the mycobacterial cell envelope has been gleaned from model actinobacterial species, or model conditions such as growth in vitro, in macrophages and in the mouse. In this Review, we combine data from different experimental systems to build a model of the dynamics of the mycobacterial cell envelope across space and time. We describe the regulatory pathways that control metabolism of the cell wall and surface lipids in M. tuberculosis during growth and stasis, and speculate about how this regulation might affect antibiotic susceptibility and interactions with the immune system.
Collapse
Affiliation(s)
- Charles L Dulberger
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Cara C Boutte
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
69
|
Bannantine JP, Wadhwa A, Stabel JR, Eda S. Characterization of Ethanol Extracted Cell Wall Components of Mycobacterium avium Subsp. paratuberculosis. Vet Sci 2019; 6:vetsci6040088. [PMID: 31683552 PMCID: PMC6958465 DOI: 10.3390/vetsci6040088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/02/2022] Open
Abstract
Antigens extracted using ethanol (EtOH) and incorporated in the EtOH vortex ELISA (EVELISA) test have previously shown high specificity and sensitivity for detecting Mycobacterium avium subspecies paratuberculosis (Map) and M. bovis infections in cattle. The objective of this study is to define the components present in the EtOH extract. We show that this extract is composed of lipid, carbohydrate, and proteins on the surface of the bacilli, and that EtOH removes the outer layer structure of Map which comprise these elements. To identify proteins, polyclonal antibodies to the EtOH prep were produced and used to screen a Map genomic expression library. Seven overlapping clones were identified with a single open reading frame, MAP_0585, common to all. MAP_0585, which encodes a hypothetical protein, was recombinantly produced and used to demonstrate strong reactivity in sera from hyperimmunized rabbits, but this protein is not strongly immunogenic in cattle with Johne’s disease. A panel of monoclonal antibodies was used to determine the presence of additional proteins in the EtOH extract. These antibodies demonstrated that a well-known antigen, termed MPB83, is present in M. bovis EtOH extracts and a fatty acid desaturase (MAP_2698c) is present in Map EtOH extracts, while lipoarabinomannan was common to both. The lipid and carbohydrate components of the extract were analyzed using thin layer chromatography and lectin binding, respectively. Lectin biding and protease treatment of the EtOH extract suggest the antigenic component is carbohydrate and not protein. These results give further insight into this important antigen prep for detecting mycobacterial diseases of cattle.
Collapse
Affiliation(s)
- John P Bannantine
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA 50010, USA.
| | - Ashutosh Wadhwa
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA.
| | - Judith R Stabel
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA 50010, USA.
| | - Shigetoshi Eda
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
70
|
Zheng F, Du YM, Lin XS, Zhou LQ, Bai Y, Yu XB, Voglmeir J, Liu L. N-Glycosylation Plays an Essential and Species-Specific Role in Anti-Infection Function of Milk Proteins Using Listeria monocytogenes as Model Pathogen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10774-10781. [PMID: 31479258 DOI: 10.1021/acs.jafc.9b03154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The released milk N-glycome has been found to possess antipathogenic activity. Natively, they are covalently linked onto proteins. Whether the conjugated N-glycans still have antipathogenic properties and how the glycosylation influences the antipathogenic activity of proteins remain unclear. Herein, we compared the quantitative differences of milk protein N-glycosylation and the antilisterial differences of native milk proteins, released N-glycan pools, and deglycosylated proteins between human and bovine milk. N-glycosylation exhibited to be quantitatively species-specific. The entire growth inhibitory activity and the majority of the antiadhesive activity against Listeria monocytogenes of milk whey proteins, although not as high as the released N-glycans, are attributed to N-glycosylation. Moreover, all N-glycan-bearing samples from human milk showed better growth inhibitory activities than those from bovine milk. Generally, N-glycosylation significantly contributes to the antilisterial function of milk proteins and to the functional differences between species. This gives novel insights into the role of these glycoconjugates in nature.
Collapse
Affiliation(s)
| | - Ya M Du
- School of Food Science and Engineering , Qilu University of Technology (Shandong Academy of Science) , Jinan 250353 , China
| | | | | | | | | | | | | |
Collapse
|
71
|
Eagen WJ, Baumoel LR, Osman SH, Rahlwes KC, Morita YS. Deletion of PimE mannosyltransferase results in increased copper sensitivity in Mycobacterium smegmatis. FEMS Microbiol Lett 2019; 365:4830098. [PMID: 29390083 DOI: 10.1093/femsle/fny025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022] Open
Abstract
The unique cell envelope structure of Mycobacterium tuberculosis is fundamental to its pathogenesis. Phosphatidylinositol (PI)-anchored glycolipids, such as phosphatidylinositol mannosides (PIMs), lipomannan and lipoarabinomannan, are essential components of the cell envelope widely conserved among mycobacteria, but their roles in the cell envelope integrity are not fully understood. We previously identified PimE in Mycobacterium smegmatis, a nonpathogenic model organism, as a mannosyltransferase that catalyzes the fifth mannose transfer for the biosynthesis of hexamannosyl PIMs. Our analyses, reported here, further demonstrate that the growth of the pimE deletion mutant (ΔpimE) is defective in the presence of copper. We first found that the small colony phenotype of ΔpimE on a solid Middlebrook 7H10 agar surface was alleviated when grown on M63 agar. Comparative analysis of the two media led us to identify copper in Middlebrook 7H10 as the cause of growth retardation seen in ΔpimE. We further demonstrated that ΔpimE is sensitized to several antibiotics, but the increased sensitivities were independent of the presence of copper. We conclude that the deletion of the pimE gene does not cause growth defects under optimal growth conditions, but makes the cell envelope vulnerable to toxic compounds such as copper and antibiotics.
Collapse
Affiliation(s)
- William J Eagen
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Lisa R Baumoel
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Sarah H Osman
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
72
|
Lee CC, Tung CY, Wu CC, Lin TL. AVIAN INNATE IMMUNITY WITH AN EMPHASIS ON CHICKEN MELANOMA DIFFERENTIATION-ASSOCIATED GENE 5 (MDA5). ACTA ACUST UNITED AC 2019. [DOI: 10.1142/s1682648519300016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Avian species have immune system to fight invading pathogens. The immune system comprises innate and adaptive immunity. Innate immunity relies on pattern recognition receptors to sense particular molecules present in pathogens, i.e. pathogen-associated molecular patterns (PAMPs), or danger signals in the environment, i.e. danger-associated molecular patterns (DAMPs). Cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs) are the sensors recognizing cytoplasmic PAMP and/or DAMP. Among common avian species, chickens do not have RIG-I whereas ducks and finches do. Therefore, the other RLR member, melanoma differentiation-associated gene 5 (MDA5), is believed to play an important role to recognize intracellular pathogens in chickens. Chicken MDA5 has been identified and its function determined. Chicken MDA5 maintains the same domain architecture compared with MDA5 analogs in other animal species. The expression of chicken MDA5 was upregulated when a synthetic double-stranded RNA (dsRNA), polyriboinosinic:polyribocytidylic acids (poly(I:C)), was transfected into chicken cells, whereas that did not change when cells were incubated with poly(I:C). The enhanced expression of chicken MDA5 in chicken cells upregulated the expression of chicken interferon-[Formula: see text] (IFN-[Formula: see text]). The infection of dsRNA infectious bursal disease virus (IBDV) in non-immune cells triggered the activation of chicken MDA5 signaling pathway, leading to the production of IFN-[Formula: see text] and subsequent response of IFN-stimulated genes. Furthermore, in immune cells like macrophages, chicken MDA5 participated in sensing the infection of IBDV by activating downstream antiviral genes and molecules and modulating adaptive immunity.On the contrary, one of cytoplasmic NLR member, NLR family pyrin domain containing 3 (NLRP3), was cloned and functionally characterized in chicken cells. Chicken NLRP3 conserved the same domain architecture compared with NLRP3 analogs in other animal species. Chicken NLRP3 was highly expressed in kidney, bursa of Fabricius and spleen. The production of mature chicken interleukin 1 [Formula: see text] (IL-1[Formula: see text] in chicken macrophages was stimulated by lipopolysaccharide (LPS) treatment followed by short ATP exposure.In summary, chicken MDA5 was a cytoplasmic dsRNA sensor that mediated the production of type I IFN upon ligand engagement, whereas NLRP3 sensed danger signals, such as ATP, in the cytoplasm and cleaved pro-IL-1[Formula: see text] to produce mature IL-1[Formula: see text]. Chicken MDA5 was not only involved in the activation of innate immune responses in non-immune and immune cells, but it also participated in modulating adaptive immunity in immune cells. Chicken NLRP3 participated in the production of mature chicken IL-1[Formula: see text] upon ligand engagement.
Collapse
Affiliation(s)
- Chih-Chun Lee
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chun-Yu Tung
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Ching Ching Wu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan 10617, R. O. C
| | - Tsang Long Lin
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
73
|
Mahapa A, Samanta GC, Maiti K, Chatterji D, Jayaraman N. Mannopyranoside Glycolipids Inhibit Mycobacterial and Biofilm Growth and Potentiate Isoniazid Inhibition Activities in M. smegmatis. Chembiochem 2019; 20:1966-1976. [PMID: 30951240 DOI: 10.1002/cbic.201900040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/04/2019] [Indexed: 12/17/2022]
Abstract
Lipomannan and lipoarabinomannan are integral components of the mycobacterial cell wall. Earlier studies demonstrated that synthetic arabinan and arabinomannan glycolipids acted as inhibitors of mycobacterial growth, in addition to exhibiting inhibitory activities of mycobacterial biofilm. Herein, it is demonstrated that synthetic mannan glycolipids are better inhibitors of mycobacterial growth, whereas lipoarabinomannan has a higher inhibition efficiency to biofilm. Syntheses of mannan glycolipids with a graded number of mannan moieties and an arabinomannan glycolipid are conducted by chemical methods and subsequent mycobacterial growth and biofilm inhibition studies are conducted on Mycobacterium smegmatis. Growth inhibition of (73±3) % is observed with a mannose trisaccharide containing a glycolipid, whereas this glycolipid did not promote biofilm inhibition activity better than that of arabinomannan glycolipid. The antibiotic supplementation activities of glycolipids on growth and biofilm inhibitions are evaluated. Increases in growth and biofilm inhibitions are observed if the antibiotic is supplemented with glycolipids, which leads to a significant reduction of inhibition concentrations of the antibiotic.
Collapse
Affiliation(s)
- Avisek Mahapa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| | - Gopal Ch Samanta
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Krishnagopal Maiti
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| | | |
Collapse
|
74
|
Wang L, Guo Z. An extensive review of studies on mycobacterium cell wall polysaccharide-related oligosaccharides – part I: Synthetic studies on arabinofuranosyl oligosaccharides. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1630839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
75
|
Liu K, Wang L, Guo Z. An extensive review of studies on mycobacterium cell wall polysaccharide-related oligosaccharides – part III: synthetic studies and biological applications of arabinofuranosyl oligosaccharides and their analogs, derivatives and conjugates. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1630841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji′nan, Shandong, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji′nan, Shandong, China
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
76
|
Squeglia F, Moreira M, Ruggiero A, Berisio R. The Cell Wall Hydrolytic NlpC/P60 Endopeptidases in Mycobacterial Cytokinesis: A Structural Perspective. Cells 2019; 8:cells8060609. [PMID: 31216697 PMCID: PMC6628586 DOI: 10.3390/cells8060609] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
In preparation for division, bacteria replicate their DNA and segregate the newly formed chromosomes. A division septum then assembles between the chromosomes, and the mother cell splits into two identical daughters due to septum degradation. A major constituent of bacterial septa and of the whole cell wall is peptidoglycan (PGN), an essential cell wall polymer, formed by glycan chains of β−(1-4)-linked-N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc), cross-linked by short peptide stems. Depending on the amino acid located at the third position of the peptide stem, PGN is classified as either Lys-type or meso-diaminopimelic acid (DAP)-type. Hydrolytic enzymes play a crucial role in the degradation of bacterial septa to split the cell wall material shared by adjacent daughter cells to promote their separation. In mycobacteria, a key PGN hydrolase, belonging to the NlpC/P60 endopeptidase family and denoted as RipA, is responsible for the degradation of septa, as the deletion of the gene encoding for this enzyme generates abnormal bacteria with multiple septa. This review provides an update of structural and functional data highlighting the central role of RipA in mycobacterial cytokinesis and the fine regulation of its catalytic activity, which involves multiple molecular partners.
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Miguel Moreira
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Rita Berisio
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| |
Collapse
|
77
|
Analogues of Human Granulysin as Antimycobacterial Agents. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
78
|
Sawettanai N, Leelayuwapan H, Karoonuthaisiri N, Ruchirawat S, Boonyarattanakalin S. Synthetic Lipomannan Glycan Microarray Reveals the Importance of α(1,2) Mannose Branching in DC-SIGN Binding. J Org Chem 2019; 84:7606-7617. [PMID: 31099561 DOI: 10.1021/acs.joc.8b02944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipomannan (LM), a glycophospholipid found on the cell surface of mycobacteria, involves the virulence and survival in host cells. However, there is little to no information on how exactly mannan alignment, including the number of mannose units and the branched motif of LM, affects protein engagement during host-pathogen interactions. In this study, we synthesized the exact substructures of the LM glycans that consist of an α(1,6) mannan core, with and without the complete α(1,2) mannose branching, and comparatively studied their protein-carbohydrate interactions. The synthetic LM glycans were equipped with a thiol linker for immobilizations on the surfaces of microarrays. As per our findings, the presence of the branching α(1,2) mannose on the LM glycans increases their binding toward the dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin receptor. An increase in the number of mannose units on the glycans also increases the binding with the mannose receptor. Thus, the set of synthetic glycans can serve as a useful tool to study the biological activities of LM and can provide a better understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Nithinan Sawettanai
- Program in Chemical Biology, Chulabhorn Graduate Institute , Chulabhorn Royal Academy , Bangkok 10210 , Thailand
| | - Harin Leelayuwapan
- Program in Chemical Biology, Chulabhorn Graduate Institute , Chulabhorn Royal Academy , Bangkok 10210 , Thailand
| | - Nitsara Karoonuthaisiri
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC) , National Science and Technology Development Agency (NSTDA) , Pathum Thani 12120 , Thailand
| | - Somsak Ruchirawat
- Program in Chemical Biology, Chulabhorn Graduate Institute , Chulabhorn Royal Academy , Bangkok 10210 , Thailand.,Laboratory of Medicinal Chemistry , Chulabhorn Research Institute, and Centre of Excellence on Environmental Health and Toxicology , Bangkok 10210 , Thailand
| | - Siwarutt Boonyarattanakalin
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology , Thammasat University , Pathum Thani 12121 , Thailand
| |
Collapse
|
79
|
Hünnefeld M, Persicke M, Kalinowski J, Frunzke J. The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in Corynebacterium glutamicum. Front Microbiol 2019; 10:1039. [PMID: 31164873 PMCID: PMC6536590 DOI: 10.3389/fmicb.2019.01039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/25/2019] [Indexed: 12/03/2022] Open
Abstract
It is the enormous adaptive capacity of microorganisms, which is key to their competitive success in nature, but also challenges antibiotic treatment of human diseases. To deal with a diverse set of stresses, bacteria are able to reprogram gene expression using a wide variety of transcription factors. Here, we focused on the MarR-type regulator MalR conserved in the Corynebacterineae, including the prominent pathogens Corynebacterium diphtheriae and Mycobacterium tuberculosis. In several corynebacterial species, the malR gene forms an operon with a gene encoding a universal stress protein (uspA). Chromatin affinity purification and sequencing (ChAP-Seq) analysis revealed that MalR binds more than 60 target promoters in the C. glutamicum genome as well as in the large cryptic prophage CGP3. Overproduction of MalR caused severe growth defects and an elongated cell morphology. ChAP-Seq data combined with a global transcriptome analysis of the malR overexpression strain emphasized a central role of MalR in cell envelope remodeling in response to environmental stresses. For example, prominent MalR targets are involved in peptidoglycan biosynthesis and synthesis of branched-chain fatty acids. Phenotypic microarrays suggested an altered sensitivity of a ΔmalR mutant toward several β-lactam antibiotics. Furthermore, we revealed MalR as a repressor of several prophage genes, suggesting that MalR may be involved in the control of stress-responsive induction of the large CGP3 element. In conclusion, our results emphasize MalR as a regulator involved in stress-responsive remodeling of the cell envelope of C. glutamicum and suggest a link between cell envelope stress and the control of phage gene expression.
Collapse
Affiliation(s)
- Max Hünnefeld
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Marcus Persicke
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
80
|
Kermani AA, Roy R, Gopalasingam C, Kocurek KI, Patel TR, Alderwick LJ, Besra GS, Fütterer K. Crystal structure of the TreS:Pep2 complex, initiating α-glucan synthesis in the GlgE pathway of mycobacteria. J Biol Chem 2019; 294:7348-7359. [PMID: 30877199 PMCID: PMC6509496 DOI: 10.1074/jbc.ra118.004297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 03/13/2019] [Indexed: 11/15/2022] Open
Abstract
A growing body of evidence implicates the mycobacterial capsule, the outermost layer of the mycobacterial cell envelope, in modulation of the host immune response and virulence of mycobacteria. Mycobacteria synthesize the dominant capsule component, α(1→4)-linked glucan, via three interconnected and potentially redundant metabolic pathways. Here, we report the crystal structure of the Mycobacterium smegmatis TreS:Pep2 complex, containing trehalose synthase (TreS) and maltokinase (Pep2), which converts trehalose to maltose 1-phosphate as part of the TreS:Pep2-GlgE pathway. The structure, at 3.6 Å resolution, revealed that a diamond-shaped TreS tetramer forms the core of the complex and that pairs of Pep2 monomers bind to opposite apices of the tetramer in a 4 + 4 configuration. However, for the M. smegmatis orthologues, results from isothermal titration calorimetry and analytical ultracentrifugation experiments indicated that the prevalent stoichiometry in solution is 4 TreS + 2 Pep2 protomers. The observed discrepancy between the crystallized complex and the behavior in the solution state may be explained by the relatively weak affinity of Pep2 for TreS (Kd 3.5 μm at mildly acidic pH) and crystal packing favoring the 4 + 4 complex. Proximity of the ATP-binding site in Pep2 to the complex interface provides a rational basis for rate enhancement of Pep2 upon binding to TreS, but the complex structure appears to rule out substrate channeling between the active sites of TreS and Pep2. Our findings provide a structural model for the trehalose synthase:maltokinase complex in M. smegmatis that offers critical insights into capsule assembly.
Collapse
Affiliation(s)
- Ali A Kermani
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rana Roy
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Chai Gopalasingam
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Klaudia I Kocurek
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Trushar R Patel
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Luke J Alderwick
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gurdyal S Besra
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Klaus Fütterer
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
81
|
Tran T, Bonham AJ, Chan ED, Honda JR. A paucity of knowledge regarding nontuberculous mycobacterial lipids compared to the tubercle bacillus. Tuberculosis (Edinb) 2019; 115:96-107. [PMID: 30948183 DOI: 10.1016/j.tube.2019.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
All mycobacteria, including nontuberculous mycobacteria (NTM), synthesize an array of lipids including phosphatidylinositol mannosides (PIM), lipomannan (LM), and lipoarabinomannan (LAM). While absent from Mycobacterium tuberculosis (M. tb), glycopeptidolipids (GPL) are critical to the biology of NTM. M. tb and some NTM also synthesize trehalose-containing glycolipids and phenolic glycolipids (PGL), key membrane constituents with essential roles in metabolism. While lipids facilitate immune evasion, they also induce host immunity against tuberculosis. However, much less is known about the significance of NTM-derived PIM, LM, LAM, GPL, trehalose-containing glycolipids, and PGL as virulence factors, warranting further investigation. While culling the scientific literature on NTM lipids, it's evident that such studies were relatively few in number with the overwhelming majority of prior work dedicated to understanding lipids from the saprophyte Mycobacterium smegmatis. The identification and functional analysis of immune reactive NTM-derived lipids remain challenging, but such work is likely to yield a greater understanding of the pathogenesis of NTM lung disease. In this review, we juxtapose the vast literature of what is currently known regarding M. tb lipids to the lesser number of studies for comparable NTM lipids. But because GPL is the most widely recognized NTM lipid, we highlight its role in disease pathogenesis.
Collapse
Affiliation(s)
- Tru Tran
- Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO, 80217-3364, USA.
| | - Andrew J Bonham
- Department of Chemistry, Metropolitan State University of Denver, Campus Box 52, P.O. Box 173362, Denver, CO, 80217-3362, USA.
| | - Edward D Chan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, USA; Academic Affairs, National Jewish Health, 1400 Jackson St. Neustadt D509, Denver, CO, 80206, USA.
| | - Jennifer R Honda
- Department of Biomedical Research and the Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
82
|
Sarmiento ME, Alvarez N, Chin KL, Bigi F, Tirado Y, García MA, Anis FZ, Norazmi MN, Acosta A. Tuberculosis vaccine candidates based on mycobacterial cell envelope components. Tuberculosis (Edinb) 2019; 115:26-41. [PMID: 30948174 DOI: 10.1016/j.tube.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Even after decades searching for a new and more effective vaccine against tuberculosis, the scientific community is still pursuing this goal due to the complexity of its causative agent, Mycobacterium tuberculosis (Mtb). Mtb is a microorganism with a robust variety of survival mechanisms that allow it to remain in the host for years. The structure and nature of the Mtb envelope play a leading role in its resistance and survival. Mtb has a perfect machinery that allows it to modulate the immune response in its favor and to adapt to the host's environmental conditions in order to remain alive until the moment to reactivate its normal growing state. Mtb cell envelope protein, carbohydrate and lipid components have been the subject of interest for developing new vaccines because most of them are responsible for the pathogenicity and virulence of the bacteria. Many indirect evidences, mainly derived from the use of monoclonal antibodies, support the potential protective role of Mtb envelope components. Subunit and DNA vaccines, lipid extracts, liposomes and membrane vesicle formulations are some examples of technologies used, with encouraging results, to evaluate the potential of these antigens in the protective response against Mtb.
Collapse
Affiliation(s)
- M E Sarmiento
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - N Alvarez
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA
| | - K L Chin
- Department of Biomedical Sciences and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Sabah, Malaysia
| | - F Bigi
- Institute of Biotechnology, INTA, Buenos Aires, Argentina
| | - Y Tirado
- Finlay Institute of Vaccines, La Habana, Cuba
| | - M A García
- Finlay Institute of Vaccines, La Habana, Cuba
| | - F Z Anis
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - M N Norazmi
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| | - A Acosta
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
83
|
Rahlwes KC, Puffal J, Morita YS. Purification and Analysis of Mycobacterial Phosphatidylinositol Mannosides, Lipomannan, and Lipoarabinomannan. Methods Mol Biol 2019; 1954:59-75. [PMID: 30864124 DOI: 10.1007/978-1-4939-9154-9_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mycobacteria and related bacteria in the Actinobacteria phylum are unusual in that they produce phosphatidylinositol (PI) as a major phospholipid species. PI can be further modified by glycan polymers, leading to the synthesis of PI mannosides (PIMs), lipomannan (LM), and lipoarabinomannan (LAM). Small lipids such as PI and PIMs are extracted with a mixture of chloroform, methanol, and water and analyzed by thin layer chromatography. For larger glycolipids, such as LM and LAM, more hydrophilic solvent is needed for the extraction, and SDS-PAGE is better suited for the analysis. For LM, further structural characterization can be performed by MALDI-TOF mass spectrometry. Precise quantification of PIMs, LM, and LAM can be performed by quantification of glycan staining using analytical software. The metabolic radiolabeling protocol is also described.
Collapse
Affiliation(s)
- Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Julia Puffal
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
84
|
Yuan C, Qu ZL, Tang XL, Liu Q, Luo W, Huang C, Pan Q, Zhang XL. Mycobacterium tuberculosis Mannose-Capped Lipoarabinomannan Induces IL-10-Producing B Cells and Hinders CD4 +Th1 Immunity. iScience 2018; 11:13-30. [PMID: 30572206 PMCID: PMC6299163 DOI: 10.1016/j.isci.2018.11.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
The importance of Th1/interferon (IFN)-γ-mediated responses in mycobacterial infection has been well established. However, little is known about B cell-mediated immunity during Mycobacterium tuberculosis (Mtb) infection. Interleukin (IL)-10-producing B cells (B10 cells), a subset of B regulatory cells (Bregs), are implicated in modulating the immune response. Herein, we found that B10 cells were significantly increased in patients with tuberculosis. Furthermore, mannose-capped lipoarabinomannan (ManLAM), a major surface lipoglycan component from Mtb, induced a significant increase in B10 cells, which enriched in CD5+ B1a B cells. ManLAM induced IL-10 production mainly by activating MyD88/PI3K/AKT/Ap-1 and K63-linked ubiquitination of NF-κB essential modulator/nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathways in B cells via Toll-like receptor 2. IL-10 production by ManLAM-treated B cells further inhibited CD4+ Th1 polarization, leading to increased susceptibility to mycobacterial infection compared with ManLAM-treated IL-10−/− B group. Thus, we report a new immunoregulation mechanism in which Mtb ManLAM-induced B10 cells negatively regulate host anti-TB cellular immunity. Mtb mannose-capped lipoarabinomannan (ManLAM) induces IL-10 production in B cells ManLAM-induced B10 cells enrich in CD5+ B1a B cells ManLAM binding with TLR2 triggers MyD88 signaling pathways of B cells ManLAM-induced B10 cells hinder CD4+Th1 immunity during Mtb infection in mice
Collapse
Affiliation(s)
- Chunhui Yuan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China; Department of Laboratory Medicine, Wuhan Children's Hospital, Huazhong University of Science and Technology, Jiangan, Wuhan 430015, China
| | - Zi-Lu Qu
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Xiao-Lei Tang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Qi Liu
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Wei Luo
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Chun Huang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Qin Pan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China.
| |
Collapse
|
85
|
Epitope and affinity determination of recombinant Mycobacterium tuberculosis Ag85B antigen towards anti-Ag85 antibodies using proteolytic affinity-mass spectrometry and biosensor analysis. Anal Bioanal Chem 2018; 411:439-448. [PMID: 30498982 DOI: 10.1007/s00216-018-1466-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023]
Abstract
Tuberculosis (TB) is the first cause of death from infectious diseases worldwide. Only a single anti-TB vaccine is currently available for clinical use, but its efficacy is not achieved with certainty. The aim of this work is to provide a basis for the rational design of a neo-glycoconjugate vaccine against TB. Structural characterization of recombinant antigenic proteins from Mycobacterium tuberculosis (MTB) Ag85B (rAg85B, variants, and semi-synthetic glycoconjugates) was initially carried out. Identification of antibody epitope analyses by proteolytic affinity-mass spectrometry and surface plasmon resonance (SPR) biosensor analyses were performed in order to qualitatively identify and quantitatively characterize interaction structures of the antigens with antibodies from different sources. A commercial monoclonal antibody and polyclonal antibodies from different sources (patients with active TB, vaccinated individuals, and a healthy control) were employed to analyze antigen-antibody interactions. These combined approaches provided the identification of different assembled epitope regions on the recombinant MTB antigens, their affinity binding constants in the interactions with specific antibodies, and revealed the importance of protection from excessive glycosylation. The identified epitope peptides should constitute a suitable basis for the design of new specific target vaccines. Graphical abstract ᅟ.
Collapse
|
86
|
A Novel Sensitive Immunoassay Targeting the 5-Methylthio-d-Xylofuranose-Lipoarabinomannan Epitope Meets the WHO's Performance Target for Tuberculosis Diagnosis. J Clin Microbiol 2018; 56:JCM.01338-18. [PMID: 30257899 PMCID: PMC6258851 DOI: 10.1128/jcm.01338-18] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022] Open
Abstract
The only currently commercialized point-of-care assay for tuberculosis (TB) that measures lipoarabinomannan (LAM) in urine (Alere LF-LAM) has insufficient sensitivity. We evaluated the potential of 100 novel monoclonal antibody pairs targeting a variety of LAM epitopes on a sensitive electrochemiluminescence platform to improve the diagnostic accuracy. The only currently commercialized point-of-care assay for tuberculosis (TB) that measures lipoarabinomannan (LAM) in urine (Alere LF-LAM) has insufficient sensitivity. We evaluated the potential of 100 novel monoclonal antibody pairs targeting a variety of LAM epitopes on a sensitive electrochemiluminescence platform to improve the diagnostic accuracy. In the screening, many antibody pairs showed high reactivity to purified LAM but performed poorly at detecting urinary LAM in clinical samples, suggesting differences in antigen structure and immunoreactivity of the different LAM sources. The 12 best antibody pairs from the screening were tested in a retrospective case-control study with urine samples from 75 adults with presumptive TB. The best antibody pair reached femtomolar analytical sensitivity for LAM detection and an overall clinical sensitivity of 93% (confidence interval [CI], 80% to 97%) and specificity of 97% (CI, 85% to 100%). Importantly, in HIV-negative subjects positive for TB by sputum smear microscopy, the test achieved a sensitivity of 80% (CI, 55% to 93%). This compares to an overall sensitivity of 33% (CI, 20% to 48%) of the Alere LF-LAM and a sensitivity of 13% (CI, 4% to 38%) in HIV-negative subjects in the same sample set. The capture antibody targets a unique 5-methylthio-d-xylofuranose (MTX)-dependent epitope in LAM that is specific to the Mycobacterium tuberculosis complex and shows no cross-reactivity with fast-growing mycobacteria or other bacteria. The present study provides evidence that improved assay methods and reagents lead to increased diagnostic accuracy. The results of this work have informed the development of a sensitive and specific novel LAM point-of-care assay with the aim to meet the WHO's performance target for TB diagnosis.
Collapse
|
87
|
Nakayama H, Nagafuku M, Suzuki A, Iwabuchi K, Inokuchi JI. The regulatory roles of glycosphingolipid-enriched lipid rafts in immune systems. FEBS Lett 2018; 592:3921-3942. [PMID: 30320884 DOI: 10.1002/1873-3468.13275] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/04/2023]
Abstract
Lipid rafts formed by glycosphingolipids (GSLs) on cellular membranes play important roles in innate and adaptive immunity. Lactosylceramide (LacCer) forms lipid rafts on plasma and granular membranes of human neutrophils. These LacCer-enriched lipid rafts bind directly to pathogenic components, such as pathogenic fungi-derived β-glucan and Mycobacteria-derived lipoarabinomannan via carbohydrate-carbohydrate interactions, and mediate innate immune responses to these pathogens. In contrast, a-series and o-series gangliosides form distinct rafts on CD4+ and CD8+ T cell subsets, respectively, contributing to the respective functions of these cells and stimulating adaptive immune responses through T cell receptors. These findings suggest that gangliosides play indispensable roles in T cell selection and activation. This Review introduces the involvement of GSL-enriched lipid rafts in innate and adaptive immunity.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Japan.,Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Masakazu Nagafuku
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akemi Suzuki
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Japan.,Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan.,Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
88
|
Ramirez-Priego P, Martens D, Elamin AA, Soetaert P, Van Roy W, Vos R, Anton B, Bockstaele R, Becker H, Singh M, Bienstman P, Lechuga LM. Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform. ACS Sens 2018; 3:2079-2086. [PMID: 30269480 DOI: 10.1021/acssensors.8b00393] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is the leading global cause of death from a single infectious agent. Registered incidence rates are low, especially in low-resource countries with weak health systems, due to the disadvantages of current diagnostic techniques. A major effort is directed to develop a point-of-care (POC) platform to reduce TB deaths with a prompt and reliable low-cost technique. In the frame of the European POCKET Project, a novel POC platform for the direct and noninvasive detection of TB in human urine was developed. The photonic sensor chip is integrated in a disposable cartridge and is based on a highly sensitive Mach-Zehnder Interferometer (MZI) transducer combined with an on-chip spectral filter. The required elements for the readout are integrated in an instrument prototype, which allows real-time monitoring and data processing. In this work, the novel POC platform has been employed for the direct detection of lipoarabinomannan (LAM), a lipopolysaccharide found in the mycobacterium cell wall. After the optimization of several parameters, a limit of detection of 475 pg/mL (27.14 pM) was achieved using a direct immunoassay in undiluted human urine in less than 15 min. A final validation of the technique was performed using 20 clinical samples from TB patients and healthy donors, allowing the detection of TB in people regardless of HIV coinfection. The results show excellent correlation to those obtained with standard techniques. These promising results demonstrate the high sensitivity, specificity and applicability of our novel POC platform, which could be used during routine check-ups in developing countries.
Collapse
Affiliation(s)
- Patricia Ramirez-Priego
- Nanobiosensors
and Bioanalytical Applications Group, Catalan Institute of Nanoscience
and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daan Martens
- Photonics Research Group, Ghent University/imec, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
| | - Ayssar A. Elamin
- LIONEX Diagnostics and Therapeutics GmbH, Salzdahlumer Str. 196, Building 1A, 38126 Braunschweig, Germany
| | | | | | - Rita Vos
- imec, Kapeldreef 75, 3001 Leuven, Belgium
| | - Birgit Anton
- microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747 Jena, Germany
| | | | - Holger Becker
- microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747 Jena, Germany
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Salzdahlumer Str. 196, Building 1A, 38126 Braunschweig, Germany
| | - Peter Bienstman
- Photonics Research Group, Ghent University/imec, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
| | - Laura M. Lechuga
- Nanobiosensors
and Bioanalytical Applications Group, Catalan Institute of Nanoscience
and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
89
|
Yu H, Zhong Y, Zhang Z, Liu X, Zhang K, Zhang F, Zhang J, Shu J, Ding L, Chen W, Du H, Zhang C, Wang X, Li Z. Characterization of proteins with Siaα2-3/6Gal-linked glycans from bovine milk and role of their glycans against influenza A virus. Food Funct 2018; 9:5198-5208. [PMID: 30178807 DOI: 10.1039/c8fo00950c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2024]
Abstract
The bovine milk proteins have a wide range of functions, but the role of the attached glycans in their biological functions has not been fully understood yet. Here, the glycopatterns of whole bovine milk proteins were analyzed using lectin microarrays. Then, the proteins with Siaα2-3/6Gal-linked glycans were isolated and characterized. The roles of Siaα2-3/6Gal-linked glycans of the isolated proteins were assessed by inhibiting viral activity against influenza A viruses (IAV). In total, there were 69 sialylated proteins to be identified and annotated. The sialylated proteins have the ability to inhibit the attachment of IAV mimics to MDCK cells; however, the role of inhibition was abolished when the sialic acid moieties were destroyed. The results demonstrate that the sialic acid moieties of proteins could serve as competitive substrates to disturb the viral attachment to cell surface receptors. Our findings will help to assess the potential application of sialylated glycoproteins in bovine milk against IAV.
Collapse
Affiliation(s)
- Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
More than 100 years have passed since Elie Metchnikoff discovered phagocytes. As molecular biological techniques have been developed and improved, we have gained deeper knowledge about the molecular mechanisms of immunological responses to invasion. The innate immune system is the inborn defense mechanism and the first line of defense against all kinds of pathogenic organisms, including bacteria, fungi, viruses, etc. Innate immunity was originally considered to comprise non-specific reactions. However, we now know that innate immune systems develop molecular mechanisms specific to pathogenic microorganisms. In the 1970s, a neutral glycosphingolipid lactosylceramide (LacCer) was found to bind specifically to several kinds of microorganisms. LacCer is highly expressed in phagocytes and epithelial cells. LacCer forms lipid rafts on human neutrophils and is involved in neutrophil migration, phagocytosis, and superoxide generation. In contrast, mouse neutrophils express relatively little LacCer on their cell surfaces. Thus, it is difficult to observe LacCer-mediated innate immunological reactions in mice. Mycobacterium tuberculosis is a typical pathogen for humans but not mice in general. Interestingly, M. tuberculosis can escape killing by neutrophils through regulation of the LacCer-enriched lipid raft-mediated immunological reactions of these cells. These observations indicate that LacCer-enriched lipid rafts play an essential role in human innate immunity. This review describes LacCer-mediated innate immunity in humans.
Collapse
Affiliation(s)
- Kazuhisa Iwabuchi
- Infection-control Nursing, Juntendo University, Graduate School of Health-Care and Nursing.,Institute for Environmental and Gender Specific Medicine, Juntendo University, Graduate School of Medicine
| |
Collapse
|
91
|
Collins JM, Walker DI, Jones DP, Tukvadze N, Liu KH, Tran VT, Uppal K, Frediani JK, Easley KA, Shenvi N, Khadka M, Ortlund EA, Kempker RR, Blumberg HM, Ziegler TR. High-resolution plasma metabolomics analysis to detect Mycobacterium tuberculosis-associated metabolites that distinguish active pulmonary tuberculosis in humans. PLoS One 2018; 13:e0205398. [PMID: 30308073 PMCID: PMC6181350 DOI: 10.1371/journal.pone.0205398] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/25/2018] [Indexed: 12/01/2022] Open
Abstract
Introduction Pulmonary tuberculosis (TB) is a major worldwide health problem that lacks robust blood-based biomarkers for detection of active disease. High-resolution metabolomics (HRM) is an innovative method to discover low-abundance metabolites as putative blood biomarkers to detect TB disease, including those known to be produced by the causative organism, Mycobacterium tuberculosis (Mtb). Methods We used HRM profiling to measure the plasma metabolome for 17 adults with active pulmonary TB disease and 16 of their household contacts without active TB. We used a suspect screening approach to identify metabolites previously described in cell culture studies of Mtb based on retention time and accurate mass matches. Results The association of relative metabolite abundance in active TB disease subjects compared to their household contacts predicted three Mtb-associated metabolites that were significantly increased in the active TB patients based on accurate mass matches: phosphatidylglycerol (PG) (16:0_18:1), lysophosphatidylinositol (Lyso-PI) (18:0) and acylphosphatidylinositol mannoside (Ac1PIM1) (56:1) (p<0.001 for all). These three metabolites provided excellent classification accuracy for active TB disease (AUC = 0.97). Ion dissociation spectra (tandem MS/MS) supported the identification of PG (16:0_18:1) and Lyso-PI (18:0) in the plasma of patients with active TB disease, though the identity of Ac1PIM1 could not be definitively confirmed. Conclusions Presence of the Mtb-associated lipid metabolites PG (16:0_18:1) and Lyso-PI (18:0) in plasma accurately identified patients with active TB disease. Consistency of in vitro and in vivo data suggests suitability for exploring these in future studies for possible development as TB disease biomarkers.
Collapse
Affiliation(s)
- Jeffrey M. Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| | - Douglas I. Walker
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Nestani Tukvadze
- National Center for Tuberculosis and Lung Disease, Tbilisi, Georgia
| | - Ken H. Liu
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - ViLinh T. Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jennifer K. Frediani
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, United States of America
| | - Kirk A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Neeta Shenvi
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Manoj Khadka
- Emory Integrated Lipidomics Core, Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Eric A. Ortlund
- Emory Integrated Lipidomics Core, Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Russell R. Kempker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Henry M. Blumberg
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Thomas R. Ziegler
- Division of Endocrinology, Metabolism and Lipids and Center for Clinical and Molecular Nutrition, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Section of Endocrinology, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
| |
Collapse
|
92
|
Chaurasiya SK. Tuberculosis: Smart manipulation of a lethal host. Microbiol Immunol 2018; 62:361-379. [PMID: 29687912 DOI: 10.1111/1348-0421.12593] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a global threat to human health. Development of drug resistance and co-infection with HIV has increased the morbidity and mortality caused by TB. Macrophages serve as primary defense against microbial infections, including TB. Upon recognition and uptake of mycobacteria, macrophages initiate a series of events designed to lead to generation of effective immune responses and clearance of infection. However, pathogenic mycobacteria utilize multiple mechanisms for manipulating macrophage responses to protect itself from being killed and to survive within these cells that are designed to kill them. The outcomes of mycobacterial infection are determined by several host- and pathogen-related factors. Significant advancements in understanding mycobacterial pathogenesis have been made in recent years. In this review, some of the important factors/mechanisms regulating mycobacterial survival inside macrophages are discussed.
Collapse
Affiliation(s)
- Shivendra K Chaurasiya
- Host-pathogen Interaction and Signal Transduction Laboratory, Department of Microbiology, School of Biological Sciences, Dr. Hari Singh Gour University, Sagar, MP-470003, India
| |
Collapse
|
93
|
The singular Corynebacterium glutamicum Emb arabinofuranosyltransferase polymerises the α(1 → 5) arabinan backbone in the early stages of cell wall arabinan biosynthesis. ACTA ACUST UNITED AC 2018; 2:38-53. [PMID: 30046665 PMCID: PMC6053596 DOI: 10.1016/j.tcsw.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022]
Abstract
The arabinan-containing polysaccharides, arabinogalactan (AG) and lipoarabinomannan (LAM), are key cell wall components of the Corynebacterineae, which include Corynebacteria, Norcadia and Mycobacteria. Both AG and LAM contain elaborate arabinan domains composed of distinct structural motifs. Mycobacterial EmbA, EmbB and EmbC, collectively known as the Emb proteins, have been identified as arabinosyltransferases (ArafTs), which are targeted by the front-line anti-tubercular drug ethambutol. Previous studies have established that EmbA and EmbB play a role in the synthesis of the characteristic terminal hexa-arabinosuranosyl motif, whilst EmbC is involved exclusively in the biosynthesis of LAM. Herein, we have investigated the role of the singular Emb protein from Corynebacterium glutamicum through the detailed biochemical and chemical analysis of a double ΔaftAΔemb mutant, where the priming Cg-AftA protein, which generates the substrate for Cg-Emb has been deleted. Analysis of its cell wall revealed a complete absence of arabinose resulting in a truncated cell wall containing only a galactan backbone accompanied with complete loss of cell wall bound mycolates. In vitro cell-free assays using C. glutamicumΔaftA, C. glutamicumΔemb, C. glutamicumΔaftAΔemb and C. glutamicumΔaftBΔaftD and two synthetic acceptors, which mimick the arabinofuranose (Araf) “primed” galactan chain, demonstrated that Cg-Emb is able to transfer an Araf residue to the C5 of the Araf positioned on the synthetic acceptor(s). These results indicate that Cg-Emb acts as an α(1 → 5) ArafT and elongates the arabinan core during the early stages of arabinan biosynthesis in C. glutamicum.
Collapse
|
94
|
Paris L, Magni R, Zaidi F, Araujo R, Saini N, Harpole M, Coronel J, Kirwan DE, Steinberg H, Gilman RH, Petricoin EF, Nisini R, Luchini A, Liotta L. Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci Transl Med 2018; 9:9/420/eaal2807. [PMID: 29237757 PMCID: PMC6037412 DOI: 10.1126/scitranslmed.aal2807] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/25/2017] [Accepted: 10/30/2017] [Indexed: 11/12/2022]
Abstract
An accurate urine test for pulmonary tuberculosis (TB), affecting 9.6 million patients worldwide, is critically needed for surveillance and treatment management. Past attempts failed to reliably detect the mycobacterial glycan antigen lipoarabinomannan (LAM), a marker of active TB, in HIV-negative, pulmonary TB–infected patients’ urine (85% of 9.6 million patients). We apply a copper complex dye within a hydrogel nanocage that captures LAM with very high affinity, displacing interfering urine proteins. The technology was applied to study pretreatment urine from 48 Peruvian patients, all negative for HIV, with microbiologically confirmed active pulmonary TB. LAM was quantitatively measured in the urine with a sensitivity of >95%and a specificity of >80% (n = 101) in a concentration range of 14 to 2000 picograms per milliliter, as compared to non-TB, healthy and diseased, age-matched controls (evaluated by receiver operating characteristic analysis; area under the curve, 0.95; 95% confidence interval, 0.9005 to 0.9957). Urinary LAM was elevated in patients with a higher mycobacterial burden (n = 42), a higher proportion of weight loss (n = 37), or cough (n = 50). The technology can be configured in a variety of formats to detect a panel of previously undetectable very-low-abundance TB urinary analytes. Eight of nine patients who were smear-negative and culture-positive for TB tested positive for urinary LAM. This technology has broad implications for pulmonary TB screening, transmission control, and treatment management for HIV-negative patients.
Collapse
Affiliation(s)
- Luisa Paris
- George Mason University, Manassas, VA 20110, USA
| | - Ruben Magni
- George Mason University, Manassas, VA 20110, USA
| | - Fatima Zaidi
- George Mason University, Manassas, VA 20110, USA
| | - Robyn Araujo
- Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Neal Saini
- George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | | | | | | - Lance Liotta
- George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
95
|
Owens NA, Laurentius LB, Porter MD, Li Q, Wang S, Chatterjee D. Handheld Raman Spectrometer Instrumentation for Quantitative Tuberculosis Biomarker Detection: A Performance Assessment for Point-of-Need Infectious Disease Diagnostics. APPLIED SPECTROSCOPY 2018; 72:1104-1115. [PMID: 29664331 DOI: 10.1177/0003702818770666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Techniques for the detection of disease biomarkers are key components in the protection of human health. While work over the last few decades has redefined the low-level measurement of disease biomarkers, the translation of these capabilities from the formal clinical setting to point-of-need (PON) usage has been much more limited. This paper presents the results of experiments designed to examine the potential utility of a handheld Raman spectrometer as a PON electronic reader for a sandwich immunoassay based on surface-enhanced Raman scattering (SERS). In so doing, the study herein used a recently developed procedure for the SERS detection of phospho-myo-inositol-capped lipoarabinomannan (PILAM) as a means to compare the performance of laboratory-grade and handheld instrumentation and, therefore, gauge the utility of the handheld instrument for PON deployment. Phospho-myo-inositol-capped lipoarabinomannan is a non-pathogenic simulant for mannose-capped lipoarabinomannan (ManLAM), which is an antigenic marker found in serum and other body fluids of individuals infected with tuberculosis (TB). The results of the measurements with the field-portable spectrometer were then compared to those obtained for the same samples when using a much more sensitive benchtop Raman spectrometer. The results, albeit under different operational settings for the two spectrometers (e.g., signal integration time), are promising in that the limit of detection found for PILAM spiked in human serum when using the handheld system (0.18 ng/mL) approached that of the benchtop instrument (0.032 ng/mL). This work also: (1) identified potential adaptations (e.g., optimization of the plasmonically enhanced response for measurement by the handheld unit through a change in the excitation wavelength) to tighten the gap in performance; and (2) briefly examined the next steps and potential processes required to move this immunoassay platform closer to PON utility.
Collapse
Affiliation(s)
- Nicholas A Owens
- 1 Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Lars B Laurentius
- 2 Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Marc D Porter
- 1 Department of Chemistry, University of Utah, Salt Lake City, UT, USA
- 2 Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
- 3 Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Qun Li
- 4 B&W Tek, Inc., Newark, DE, USA
| | | | - Delphi Chatterjee
- 5 Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
96
|
Rinaldi F, Tengattini S, Piubelli L, Bernardini R, Mangione F, Bavaro T, Paone G, Mattei M, Pollegioni L, Filice G, Temporini C, Terreni M. Rational design, preparation and characterization of recombinant Ag85B variants and their glycoconjugates with T-cell antigenic activity against Mycobacterium tuberculosis. RSC Adv 2018; 8:23171-23180. [PMID: 35540174 PMCID: PMC9081591 DOI: 10.1039/c8ra03535k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/14/2018] [Indexed: 11/21/2022] Open
Abstract
Tuberculosis is the deadliest infectious disease in the world. The variable efficacy of the current treatments highlights the need for more effective agents against this disease. In the past few years, we focused on the investigation of antigenic glycoconjugates starting from recombinant Ag85B (rAg85B), a potent protein antigen from Mycobacterium tuberculosis. In this paper, structural modifications were rationally designed in order to obtain a rAg85B variant protein able to maintain its immunogenicity after glycosylation. Lysine residues involved in the main T-epitope sequences (namely, K30 and K282) have been substituted with arginine to prevent their glycosylation by a lysine-specific reactive linker. The effectiveness of the mutation strategy and the detailed structure of resulting neo-glycoconjugates have been studied by intact mass spectrometry, followed by peptide and glycopeptide mapping. The effect of K30R and K282R mutations on the T-cell activity of rAg85B has also been investigated with a preliminary immunological evaluation performed by enzyme-linked immunospotting on the different variant proteins and their glycosylation products. After glycosylation, the two variant proteins with an arginine in position 30 completely retain the original T-cell activity, thus representing adequate antigenic carriers for the development of efficient glycoconjugate vaccines against tuberculosis.
Collapse
Affiliation(s)
- Francesca Rinaldi
- Department of Drug Sciences, University of Pavia Viale Taramelli 12 27100 Pavia Italy +39-0382-422975 +39-0382-987788 ext. 7368
| | - Sara Tengattini
- Department of Drug Sciences, University of Pavia Viale Taramelli 12 27100 Pavia Italy +39-0382-422975 +39-0382-987788 ext. 7368
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria Via Dunant 3 21100 Varese Italy
- The Protein Factory Research Centre, Politecnico of Milan and University of Insubria Via Mancinelli 7 20131 Milan Italy
| | - Roberta Bernardini
- Department of Biology and Animal Technology Station, University of Rome "Tor Vergata" Via Montpellier 1 00133 Rome Italy
| | - Francesca Mangione
- IRCCS San Matteo Hospital Foundation Microbiology and Virology Unit Viale Camillo Golgi 19 27100 Pavia Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia Viale Taramelli 12 27100 Pavia Italy +39-0382-422975 +39-0382-987788 ext. 7368
| | - Gregorino Paone
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Rome Italy
| | - Maurizio Mattei
- Department of Biology and Animal Technology Station, University of Rome "Tor Vergata" Via Montpellier 1 00133 Rome Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria Via Dunant 3 21100 Varese Italy
- The Protein Factory Research Centre, Politecnico of Milan and University of Insubria Via Mancinelli 7 20131 Milan Italy
| | - Gaetano Filice
- Department of Internal Medicine and Therapeutics, University of Pavia and Unit of Infectious Diseases, IRCCS San Matteo Hospital Foundation Viale Camillo Golgi 19 27100 Pavia Italy
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia Viale Taramelli 12 27100 Pavia Italy +39-0382-422975 +39-0382-987788 ext. 7368
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia Viale Taramelli 12 27100 Pavia Italy +39-0382-422975 +39-0382-987788 ext. 7368
| |
Collapse
|
97
|
The association between tuberculosis and diphtheria. Epidemiol Infect 2018; 146:940-945. [PMID: 29665871 DOI: 10.1017/s0950268818000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This research investigates the long-forgotten relationship between diphtheria and tuberculosis. Historical medical reports from the late 19th century are reviewed followed by a statistical regression analysis of the relationship between the two diseases in the early 20th century. Historical medical reports show a consistent association between diphtheria and tuberculosis that can increase the likelihood and severity of either disease in a co-infection. The statistical analysis uses historical weekly public health data on reported cases in five American cities over a period of several years, finding a modest but statistically significant relationship between the two diseases. No current medical theory explains the association between diphtheria and tuberculosis. Alternative explanations are explored with a focus on how the diseases assimilate iron. In a co-infection, the effectiveness of tuberculosis at assimilating extracellular iron may lead to increased production of diphtheria toxin, worsening that disease, which may, in turn, exacerbate tuberculosis. Iron-dependent repressor genes connect both diseases.
Collapse
|
98
|
Walpole GFW, Grinstein S, Westman J. The role of lipids in host-pathogen interactions. IUBMB Life 2018; 70:384-392. [PMID: 29573124 DOI: 10.1002/iub.1737] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 11/07/2022]
Abstract
Innate immunity relies on the effective recognition and elimination of pathogenic microorganisms. This entails sequestration of pathogens into phagosomes that promptly acquire microbicidal and degradative properties. This complex series of events, which involve cytoskeletal reorganization, membrane remodeling and the activation of multiple enzymes, is orchestrated by lipid signaling. To overcome this immune response, intracellular pathogens acquired mechanisms to subvert phosphoinositide-mediated signaling and use host lipids, notably cholesterol, as nutrients. We present brief overviews of the role of phosphoinositides in phagosome formation and maturation as well as of cholesterol handling by host cells, and selected Salmonella, Shigella, Chlamydia and Mycobacterium tuberculosis to exemplify the mechanisms whereby intracellular pathogens co-opt lipid metabolism in host cells. © 2018 IUBMB Life, 70(5):384-392, 2018.
Collapse
Affiliation(s)
- Glenn F W Walpole
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Ontario, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Johannes Westman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
99
|
|
100
|
Awoniyi DO, Baumann R, Chegou NN, Kriel B, Jacobs R, Kidd M, Loxton AG, Kaempfer S, Singh M, Walzl G. Detection of a combination of serum IgG and IgA antibodies against selected mycobacterial targets provides promising diagnostic signatures for active TB. Oncotarget 2018; 8:37525-37537. [PMID: 28415587 PMCID: PMC5514927 DOI: 10.18632/oncotarget.16401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/27/2017] [Indexed: 01/13/2023] Open
Abstract
Immunoglobulin G (IgG) based tests for the diagnosis of active tuberculosis (TB) disease often show a lack of specificity in TB endemic regions, which is mainly due to a high background prevalence of LTBI. Here, we investigated the combined performance of the responses of different Ig classes to selected mycobacterial antigens in primary healthcare clinic attendees with signs and symptoms suggestive of TB. The sensitivity and specificity of IgA, IgG and/or IgM to LAM and 7 mycobacterial protein antigens (ESAT-6, Tpx, PstS1, AlaDH, MPT64, 16kDa and 19kDa) and 2 antigen combinations (TUB, TB-LTBI) in the plasma of 63 individuals who underwent diagnostic work-up for TB after presenting with symptoms and signs compatible with possible active TB were evaluated. Active TB was excluded in 42 individuals of whom 21 has LTBI whereas active TB was confirmed in 21 patients of whom 19 had a follow-up blood draw at the end of 6-month anti-TB treatment. The leading single serodiagnostic markers to differentiate between the presence or absence of active TB were anti-16 kDa IgA, anti-MPT64 IgA with sensitivity and specificity of 90%/90% and 95%/90%, respectively. The combined use of 3 or 4 antibodies further improved this performance to accuracies above 95%. After successful completion of anti-TB treatment at month 6, the levels of 16 kDa IgA and 16 kDa IgM dropped significantly whereas LAM IgG and TB-LTBI IgG increased. These results show the potential of extending investigation of anti-tuberculous IgG responses to include IgM and IgA responses against selected protein and non-protein antigens in differentiating active TB from other respiratory diseases in TB endemic settings.
Collapse
Affiliation(s)
- Dolapo O Awoniyi
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ralf Baumann
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany.,Lionex Diagnostics and Therapeutics, Braunschweig, Germany
| | - Novel N Chegou
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Belinda Kriel
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ruschca Jacobs
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Martin Kidd
- Centre for Statistical Analysis, Stellenbosch University, Stellenbosch, South Africa
| | - Andre G Loxton
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Mahavir Singh
- Lionex Diagnostics and Therapeutics, Braunschweig, Germany
| | - Gerhard Walzl
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|