51
|
Histone-like Nucleoid-Structuring Protein (H-NS) Paralogue StpA Activates the Type I-E CRISPR-Cas System against Natural Transformation in Escherichia coli. Appl Environ Microbiol 2020; 86:AEM.00731-20. [PMID: 32385085 DOI: 10.1128/aem.00731-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Working mechanisms of CRISPR-Cas systems have been intensively studied. However, far less is known about how they are regulated. The histone-like nucleoid-structuring protein H-NS binds the promoter of cas genes (P cas ) and suppresses the type I-E CRISPR-Cas system in Escherichia coli Although the H-NS paralogue StpA also binds P cas , its role in regulating the CRISPR-Cas system remains unidentified. Our previous work established that E. coli is able to take up double-stranded DNA during natural transformation. Here, we investigated the function of StpA in regulating the type I-E CRISPR-Cas system against natural transformation of E. coli We first documented that although the activated type I-E CRISPR-Cas system, due to hns deletion, interfered with CRISPR-Cas-targeted plasmid transfer, stpA inactivation restored the level of natural transformation. Second, we showed that inactivating stpA reduced the transcriptional activity of P cas Third, by comparing transcriptional activities of the intact P cas and the P cas with a disrupted H-NS binding site in the hns and hns stpA null deletion mutants, we demonstrated that StpA activated transcription of cas genes by binding to the same site as H-NS in P cas Fourth, by expressing StpA with an arabinose-inducible promoter, we confirmed that StpA expressed at a low level stimulated the activity of P cas Finally, by quantifying the level of mature CRISPR RNA (crRNA), we demonstrated that StpA was able to promote the amount of crRNA. Taken together, our work establishes that StpA serves as a transcriptional activator in regulating the type I-E CRISPR-Cas system against natural transformation of E. coli IMPORTANCE StpA is normally considered a molecular backup of the nucleoid-structuring protein H-NS, which was reported as a transcriptional repressor of the type I-E CRISPR-Cas system in Escherichia coli However, the role of StpA in regulating the type I-E CRISPR-Cas system remains elusive. Our previous work uncovered a new route for double-stranded DNA (dsDNA) entry during natural transformation of E. coli In this study, we show that StpA plays a role opposite to that of its paralogue H-NS in regulating the type I-E CRISPR-Cas system against natural transformation of E. coli Our work not only expands our knowledge on CRISPR-Cas-mediated adaptive immunity against extracellular nucleic acids but also sheds new light on understanding the complex regulation mechanism of the CRISPR-Cas system. Moreover, the finding that paralogues StpA and H-NS share a DNA binding site but play opposite roles in transcriptional regulation indicates that higher-order compaction of bacterial chromatin by histone-like proteins could switch prokaryotic transcriptional modes.
Collapse
|
52
|
Ithurbide S, Coste G, Lisboa J, Eugénie N, Bentchikou E, Bouthier de la Tour C, Liger D, Confalonieri F, Sommer S, Quevillon-Cheruel S, Servant P. Natural Transformation in Deinococcus radiodurans: A Genetic Analysis Reveals the Major Roles of DprA, DdrB, RecA, RecF, and RecO Proteins. Front Microbiol 2020; 11:1253. [PMID: 32625182 PMCID: PMC7314969 DOI: 10.3389/fmicb.2020.01253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/18/2020] [Indexed: 11/14/2022] Open
Abstract
Horizontal gene transfer is a major driver of bacterial evolution and adaptation to environmental stresses, occurring notably via transformation of naturally competent organisms. The Deinococcus radiodurans bacterium, characterized by its extreme radioresistance, is also naturally competent. Here, we investigated the role of D. radiodurans players involved in different steps of natural transformation. First, we identified the factors (PilQ, PilD, type IV pilins, PilB, PilT, ComEC-ComEA, and ComF) involved in DNA uptake and DNA translocation across the external and cytoplasmic membranes and showed that the DNA-uptake machinery is similar to that described in the Gram negative bacterium Vibrio cholerae. Then, we studied the involvement of recombination and DNA repair proteins, RecA, RecF, RecO, DprA, and DdrB into the DNA processing steps of D. radiodurans transformation by plasmid and genomic DNA. The transformation frequency of the cells devoid of DprA, a highly conserved protein among competent species, strongly decreased but was not completely abolished whereas it was completely abolished in ΔdprA ΔrecF, ΔdprA ΔrecO, and ΔdprA ΔddrB double mutants. We propose that RecF and RecO, belonging to the recombination mediator complex, and DdrB, a specific deinococcal DNA binding protein, can replace a function played by DprA, or alternatively, act at a different step of recombination with DprA. We also demonstrated that a ΔdprA mutant is as resistant as wild type to various doses of γ-irradiation, suggesting that DprA, and potentially transformation, do not play a major role in D. radiodurans radioresistance.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Geneviève Coste
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Johnny Lisboa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Nicolas Eugénie
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Esma Bentchikou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Claire Bouthier de la Tour
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Dominique Liger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Suzanne Sommer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sophie Quevillon-Cheruel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
53
|
Bárdy P, Füzik T, Hrebík D, Pantůček R, Thomas Beatty J, Plevka P. Structure and mechanism of DNA delivery of a gene transfer agent. Nat Commun 2020; 11:3034. [PMID: 32541663 PMCID: PMC7296036 DOI: 10.1038/s41467-020-16669-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/17/2020] [Indexed: 11/09/2022] Open
Abstract
Alphaproteobacteria, which are the most abundant microorganisms of temperate oceans, produce phage-like particles called gene transfer agents (GTAs) that mediate lateral gene exchange. However, the mechanism by which GTAs deliver DNA into cells is unknown. Here we present the structure of the GTA of Rhodobacter capsulatus (RcGTA) and describe the conformational changes required for its DNA ejection. The structure of RcGTA resembles that of a tailed phage, but it has an oblate head shortened in the direction of the tail axis, which limits its packaging capacity to less than 4,500 base pairs of linear double-stranded DNA. The tail channel of RcGTA contains a trimer of proteins that possess features of both tape measure proteins of long-tailed phages from the family Siphoviridae and tail needle proteins of short-tailed phages from the family Podoviridae. The opening of a constriction within the RcGTA baseplate enables the ejection of DNA into bacterial periplasm.
Collapse
Affiliation(s)
- Pavol Bárdy
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
54
|
Hughes-Games A, Roberts AP, Davis SA, Hill DJ. Identification of integrative and conjugative elements in pathogenic and commensal Neisseriaceae species via genomic distributions of DNA uptake sequence dialects. Microb Genom 2020; 6:e000372. [PMID: 32375974 PMCID: PMC7371117 DOI: 10.1099/mgen.0.000372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023] Open
Abstract
Mobile genetic elements (MGEs) are key factors responsible for dissemination of virulence determinants and antimicrobial-resistance genes amongst pathogenic bacteria. Conjugative MGEs are notable for their high gene loads donated per transfer event, broad host ranges and phylogenetic ubiquity amongst prokaryotes, with the subclass of chromosomally inserted integrative and conjugative elements (ICEs) being particularly abundant. The focus on a small number of model systems has biased the study of ICEs towards those conferring readily selectable phenotypes to host cells, whereas the identification and characterization of integrated cryptic elements remains challenging. Even though antimicrobial resistance and horizontally acquired virulence genes are major factors aggravating neisserial infection, conjugative MGEs of Neisseria gonorrhoeae and Neisseria meningitidis remain poorly characterized. Using a phenotype-independent approach based on atypical distributions of DNA uptake sequences (DUSs) in MGEs relative to the chromosomal background, we have identified two groups of chromosomally integrated conjugative elements in Neisseria: one found almost exclusively in pathogenic species possibly deriving from the genus Kingella, the other belonging to a group of Neisseria mucosa-like commensals. The former element appears to enable transfer of traditionally gonococcal-specific loci such as the virulence-associated toxin-antitoxin system fitAB to N. meningitidis chromosomes, whilst the circular form of the latter possesses a unique attachment site (attP) sequence seemingly adapted to exploit DUS motifs as chromosomal integration sites. In addition to validating the use of DUS distributions in Neisseriaceae MGE identification, the >170 identified ICE sequences provide a valuable resource for future studies of ICE evolution and host adaptation.
Collapse
Affiliation(s)
- Alex Hughes-Games
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol, UK
| | - Adam P. Roberts
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sean A. Davis
- School of Chemistry, University of Bristol, Bristol, UK
| | - Darryl J. Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
55
|
Choi J, Baek J, Kweon D, Ko KS, Yoon H. Rapid determination of carbapenem resistance by low-cost colorimetric methods: Propidium Iodide and alamar blue staining. J Microbiol 2020; 58:415-421. [PMID: 32221821 DOI: 10.1007/s12275-020-9549-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 01/03/2023]
Abstract
Carbapenems are a class of β-lactam antibiotics with a broad antimicrobial activity spectrum. Owing to their sturdy structures resistant to most β-lactamases, they have been regarded as one of the last-resort antibiotics for combating multidrugresistant bacterial infections. However, the emergence of carbapenem resistance increases predominantly in nosocomial pathogens. To prevent spread of carbapenem resistance in early stages, it is imperative to develop rapid diagnostic tests that will substantially reduce the time and cost in determining carbapenem resistance. Thus, we devised a staining-based diagnostic method applicable to three different Gram-negative pathogens of Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae, all with the high potential to develop carbapenem resistance. Regardless of the resistance mechanisms presented by bacterial species and strains, double staining with propidium iodide (PI) and alamar blue (AB) identified resistant bacteria with an average sensitivity of 95.35%, 7 h after imipenem treatments in 343 clinical isolates. Among the three species tested, A. baumannii showed the highest diagnostic sensitivity of 98.46%. The PI and ABmediated staining method could be a promising diagnostic method with high-throughput efficacy and low cost.
Collapse
Affiliation(s)
- Jiyoon Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jiwon Baek
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Daehyuk Kweon
- Department of Genetic Engineering and Center for Human Interface Nano Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, 16419, Republic of Korea.,Asia-Pacific Research Foundation for Infectious Diseases, Seoul, 06367, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea. .,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
56
|
Carvalho G, Fouchet D, Danesh G, Godeux AS, Laaberki MH, Pontier D, Charpentier X, Venner S. Bacterial Transformation Buffers Environmental Fluctuations through the Reversible Integration of Mobile Genetic Elements. mBio 2020; 11:mBio.02443-19. [PMID: 32127449 PMCID: PMC7064763 DOI: 10.1128/mbio.02443-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Horizontal gene transfer (HGT) promotes the spread of genes within bacterial communities. Among the HGT mechanisms, natural transformation stands out as being encoded by the bacterial core genome. Natural transformation is often viewed as a way to acquire new genes and to generate genetic mixing within bacterial populations. Another recently proposed function is the curing of bacterial genomes of their infectious parasitic mobile genetic elements (MGEs). Here, we propose that these seemingly opposing theoretical points of view can be unified. Although costly for bacterial cells, MGEs can carry functions that are at points in time beneficial to bacteria under stressful conditions (e.g., antibiotic resistance genes). Using computational modeling, we show that, in stochastic environments, an intermediate transformation rate maximizes bacterial fitness by allowing the reversible integration of MGEs carrying resistance genes, although these MGEs are costly for host cell replication. Based on this dual function (MGE acquisition and removal), transformation would be a key mechanism for stabilizing the bacterial genome in the long term, and this would explain its striking conservation.IMPORTANCE Natural transformation is the acquisition, controlled by bacteria, of extracellular DNA and is one of the most common mechanisms of horizontal gene transfer, promoting the spread of resistance genes. However, its evolutionary function remains elusive, and two main roles have been proposed: (i) the new gene acquisition and genetic mixing within bacterial populations and (ii) the removal of infectious parasitic mobile genetic elements (MGEs). While the first one promotes genetic diversification, the other one promotes the removal of foreign DNA and thus genome stability, making these two functions apparently antagonistic. Using a computational model, we show that intermediate transformation rates, commonly observed in bacteria, allow the acquisition then removal of MGEs. The transient acquisition of costly MGEs with resistance genes maximizes bacterial fitness in environments with stochastic stress exposure. Thus, transformation would ensure both a strong dynamic of the bacterial genome in the short term and its long-term stabilization.
Collapse
Affiliation(s)
- Gabriel Carvalho
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - David Fouchet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Gonché Danesh
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Anne-Sophie Godeux
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, Villeurbanne, France
- CNRS UMR5308, École Normale Supérieure de Lyon, University of Lyon, Villeurbanne, France
| | - Maria-Halima Laaberki
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, Villeurbanne, France
- Université de Lyon, VetAgro Sup, Marcy-l'Étoile, France
- CNRS UMR5308, École Normale Supérieure de Lyon, University of Lyon, Villeurbanne, France
| | - Dominique Pontier
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Xavier Charpentier
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, Villeurbanne, France
- CNRS UMR5308, École Normale Supérieure de Lyon, University of Lyon, Villeurbanne, France
| | - Samuel Venner
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| |
Collapse
|
57
|
Makinde OM, Ayeni KI, Sulyok M, Krska R, Adeleke RA, Ezekiel CN. Microbiological safety of ready‐to‐eat foods in low‐ and middle‐income countries: A comprehensive 10‐year (2009 to 2018) review. Compr Rev Food Sci Food Saf 2020; 19:703-732. [DOI: 10.1111/1541-4337.12533] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/01/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Michael Sulyok
- Department of Agrobiotechnology (IFA–Tulln)Institute of Bioanalytics and Agro‐Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU) Tulln Austria
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA–Tulln)Institute of Bioanalytics and Agro‐Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU) Tulln Austria
- Institute for Global Food Security, School of Biological SciencesQueen's University Belfast Belfast United Kingdom
| | - Rasheed A. Adeleke
- Department of MicrobiologyNorth‐West University Potchefstroom South Africa
| | - Chibundu N. Ezekiel
- Department of MicrobiologyBabcock University Ilishan Remo Nigeria
- Department of Agrobiotechnology (IFA–Tulln)Institute of Bioanalytics and Agro‐Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU) Tulln Austria
| |
Collapse
|
58
|
Abstract
Conjugation, transformation, and transduction constitute the three classical mechanisms involved in horizontal gene transfer (HGT) among prokaryotes. In addition, alternative HGT mechanisms exist in groups of organisms. Among them, the use of DNA-containing membrane vesicles as shuttle elements for HGT has been described for a number of microorganisms, including both thermophiles and mesophiles. Here we describe the methods followed to detect, purify, and analyze these vesicles.
Collapse
Affiliation(s)
- Alba Blesa
- Centro de BiologÚa Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Department of Biotechnology, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - José Berenguer
- Centro de BiologÚa Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| |
Collapse
|
59
|
Native Plasmid-Encoded Mercury Resistance Genes Are Functional and Demonstrate Natural Transformation in Environmental Bacterial Isolates. mSystems 2019; 4:4/6/e00588-19. [PMID: 31848306 PMCID: PMC6918032 DOI: 10.1128/msystems.00588-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid-mediated horizontal gene transfer (HGT) is a major driver of genetic diversity in bacteria. We experimentally validated the function of a putative mercury resistance operon present on an abundant 8-kbp native plasmid found in groundwater samples without detectable levels of mercury. Phylogenetic analyses of the plasmid-encoded mercury reductases from the studied groundwater site show them to be distinct from those reported in proximal metal-contaminated sites. We synthesized the entire native plasmid and demonstrated that the plasmid was sufficient to confer functional mercury resistance in Escherichia coli Given the possibility that natural transformation is a prevalent HGT mechanism in the low-cell-density environments of groundwaters, we also assayed bacterial strains from this environment for competence. We used the native plasmid-encoded metal resistance to design a screen and identified 17 strains positive for natural transformation. We selected 2 of the positive strains along with a model bacterium to fully confirm HGT via natural transformation. From an ecological perspective, the role of the native plasmid population in providing advantageous traits combined with the microbiome's capacity to take up environmental DNA enables rapid adaptation to environmental stresses.IMPORTANCE Horizontal transfer of mobile genetic elements via natural transformation has been poorly understood in environmental microbes. Here, we confirm the functionality of a native plasmid-encoded mercury resistance operon in a model microbe and then query for the dissemination of this resistance trait via natural transformation into environmental bacterial isolates. We identified 17 strains including Gram-positive and Gram-negative bacteria to be naturally competent. These strains were able to successfully take up the plasmid DNA and obtain a clear growth advantage in the presence of mercury. Our study provides important insights into gene dissemination via natural transformation enabling rapid adaptation to dynamic stresses in groundwater environments.
Collapse
|
60
|
Orazi G, O'Toole GA. "It Takes a Village": Mechanisms Underlying Antimicrobial Recalcitrance of Polymicrobial Biofilms. J Bacteriol 2019; 202:e00530-19. [PMID: 31548277 PMCID: PMC6932244 DOI: 10.1128/jb.00530-19] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic infections are frequently caused by polymicrobial biofilms. Importantly, these infections are often difficult to treat effectively in part due to the recalcitrance of biofilms to antimicrobial therapy. Emerging evidence suggests that polymicrobial interactions can lead to dramatic and unexpected changes in the ability of antibiotics to eradicate biofilms and often result in decreased antimicrobial efficacy in vitro In this review, we discuss the influence of polymicrobial interactions on the antibiotic susceptibility of biofilms, and we highlight the studies that first documented the shifted antimicrobial susceptibilities of mixed-species cultures. Recent studies have identified several mechanisms underlying the recalcitrance of polymicrobial biofilm communities, including interspecies exchange of antibiotic resistance genes, β-lactamase-mediated inactivation of antibiotics, changes in gene expression induced by metabolites and quorum sensing signals, inhibition of the electron transport chain, and changes in properties of the cell membrane. In addition to elucidating multiple mechanisms that contribute to the altered drug susceptibility of polymicrobial biofilms, these studies have uncovered novel ways in which polymicrobial interactions can impact microbial physiology. The diversity of findings discussed highlights the importance of continuing to investigate the efficacy of antibiotics against biofilm communities composed of different combinations of microbial species. Together, the data presented here illustrate the importance of studying microbes as part of mixed-species communities rather than in isolation. In light of our greater understanding of how interspecies interactions alter the efficacy of antimicrobial agents, we propose that the methods for measuring the drug susceptibility of polymicrobial infections should be revisited.
Collapse
Affiliation(s)
- Giulia Orazi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
61
|
Abstract
Transformation is a widespread mechanism of horizontal gene transfer in bacteria. DNA uptake to the periplasmic compartment requires a DNA-uptake pilus and the DNA-binding protein ComEA. In the gram-negative bacteria, DNA is first pulled toward the outer membrane by retraction of the pilus and then taken up by binding to periplasmic ComEA, acting as a Brownian ratchet to prevent backward diffusion. A similar mechanism probably operates in the gram-positive bacteria as well, but these systems have been less well characterized. Transport, defined as movement of a single strand of transforming DNA to the cytosol, requires the channel protein ComEC. Although less is understood about this process, it may be driven by proton symport. In this review we also describe various phenomena that are coordinated with the expression of competence for transformation, such as fratricide, the kin-discriminatory killing of neighboring cells, and competence-mediated growth arrest.
Collapse
Affiliation(s)
- David Dubnau
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA;
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
62
|
Vos M, Buckling A, Kuijper B. Sexual Selection in Bacteria? Trends Microbiol 2019; 27:972-981. [PMID: 31493990 DOI: 10.1016/j.tim.2019.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 01/05/2023]
Abstract
A main mechanism of lateral gene transfer in bacteria is transformation, where cells take up free DNA from the environment which subsequently can be recombined into the genome. Bacteria are also known to actively release DNA into the environment through secretion or lysis, which could aid uptake via transformation. Various evolutionary benefits of DNA uptake and DNA release have been proposed but these have all been framed in the context of natural selection. Here, we interpret bacterial DNA uptake and release in the context of sexual selection theory, which has been central to our understanding of the bewildering diversity of traits associated with sexual reproduction in the eukaryote world but has never been applied to prokaryotes. Specifically, we explore potential scenarios where bacteria releasing DNA into the environment could compete for successful uptake by other cells, or where bacteria could selectively take up DNA to enhance their fitness. We conclude that there is potential for sexual selection to act in bacteria, and that this might in part explain the considerable diversity in transformation-related behaviours.
Collapse
Affiliation(s)
- Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.
| | - Angus Buckling
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Bram Kuijper
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| |
Collapse
|
63
|
Abstract
Natural transformation is a major mechanism of horizontal gene transfer. Although the genes required for natural transformation are nearly ubiquitous in bacteria, it is commonly reported that some isolates of transformable species fail to transform. In Legionella pneumophila, we show that the inability of multiple clinical isolates to transform is caused by a conjugative element that shuts down expression of genes required for transformation. Diverse conjugative elements in the Legionella genus have adopted the same inhibition strategy. We propose that inhibition of natural transformation by episomal and integrated conjugative elements can explain the lack of transformability of isolates and also the apparent lack of natural transformation in some species. Natural transformation (i.e., the uptake of DNA and its stable integration in the chromosome) is a major mechanism of horizontal gene transfer in bacteria. Although the vast majority of bacterial genomes carry the genes involved in natural transformation, close relatives of naturally transformable species often appear not competent for natural transformation. In addition, unexplained extensive variations in the natural transformation phenotype have been reported in several species. Here, we addressed this phenomenon by conducting a genome-wide association study (GWAS) on a panel of isolates of the opportunistic pathogen Legionella pneumophila. GWAS revealed that the absence of the transformation phenotype is associated with the conjugative plasmid pLPL. The plasmid inhibits transformation by simultaneously silencing the genes required for DNA uptake and recombination. We identified a small RNA (sRNA), RocRp, as the sole plasmid-encoded factor responsible for the silencing of natural transformation. RocRp is homologous to the highly conserved and chromosome-encoded sRNA RocR which controls the transient expression of the DNA uptake system. Assisted by the ProQ/FinO-domain RNA chaperone RocC, RocRp acts as a substitute of RocR, ensuring that the bacterial host of the conjugative plasmid does not become naturally transformable. Distinct homologs of this plasmid-encoded sRNA are found in diverse conjugative elements in other Legionella species. Their low to high prevalence may result in the lack of transformability of some isolates up to the apparent absence of natural transformation in the species. Generally, our work suggests that conjugative elements obscure the widespread occurrence of natural transformability in bacteria.
Collapse
|
64
|
Lichev A, Angelov A, Cucurull I, Liebl W. Amino acids as nutritional factors and (p)ppGpp as an alarmone of the stringent response regulate natural transformation in Micrococcus luteus. Sci Rep 2019; 9:11030. [PMID: 31363120 PMCID: PMC6667448 DOI: 10.1038/s41598-019-47423-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/15/2019] [Indexed: 11/10/2022] Open
Abstract
Natural competence for genetic transformation refers to the natural ability of various bacteria to take up exogenous DNA from their surroundings and to incorporate internalized genetic information into their genomes. By promoting bacterial diversification and adaptability, this process represents a major driving force in bacterial evolution. Micrococcus luteus was one of the first organisms used to study natural transformation in bacteria. Since then, however, only very little information about this phenomenon has been reported in M. luteus or in any member of the Actinobacteria phylum (low-GC Gram-positive bacteria). Previous work in our group indicated major differences between the transformation apparatus of M. luteus and the transformation machinery described for various Gram-negative and Gram-positive model bacteria belonging to the phyla Proteobacteria and Firmicutes (high-GC Gram-positive bacteria). This prompted us to initiate a study concerning the regulation mechanism of competence development in M. luteus. In this report, we identify amino acids as a nutritional factor that influences competence in a concentration-dependent manner. By using a transcriptional reporter strain for one of the late competence genes, we demonstrate how increasing concentrations of both amino acids mixtures and single amino acids supplemented to the growth medium affect transformability on transcriptional and post-transcriptional level. Furthermore, we revisit previously generated auxotrophic mutants to show that the transformation machinery is turned down during a state of extreme hunger for amino acids presumably as a part of a general response to auxotrophy. Finally, by generating and analysing knockout mutants for two predicted stringent response enzymes, we provide evidence for the involvement of the alarmone (p)ppGpp as a putative mediator of the effects on transformation development caused by amino acids. As a member of the Actinobacteria phylum, M. luteus could serve as a model for other representatives of the phylum, including a number of important human pathogens.
Collapse
Affiliation(s)
- Antoni Lichev
- Chair of Microbiology, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Angel Angelov
- Chair of Microbiology, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Inigo Cucurull
- Chair of Microbiology, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Freising-Weihenstephan, Germany.
| |
Collapse
|
65
|
Jaskólska M, Stutzmann S, Stoudmann C, Blokesch M. QstR-dependent regulation of natural competence and type VI secretion in Vibrio cholerae. Nucleic Acids Res 2019; 46:10619-10634. [PMID: 30102403 PMCID: PMC6237807 DOI: 10.1093/nar/gky717] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022] Open
Abstract
During growth on chitinous surfaces in its natural aquatic environment Vibrio cholerae develops natural competence for transformation and kills neighboring non-immune bacteria using a type VI secretion system (T6SS). Activation of these two phenotypes requires the chitin-induced regulator TfoX, but also integrates signals from quorum sensing via the intermediate regulator QstR, which belongs to the LuxR-type family of regulators. Here, we define the QstR regulon using RNA sequencing. Moreover, by mapping QstR binding sites using chromatin immunoprecipitation coupled with deep sequencing we demonstrate that QstR is a transcription factor that binds upstream of the up- and down-regulated genes. Like other LuxR-type family transcriptional regulators we show that QstR function is dependent on dimerization. However, in contrast to the well-studied LuxR-type biofilm regulator VpsT of V. cholerae, which requires the second messenger c-di-GMP, we show that QstR dimerization and function is c-di-GMP independent. Surprisingly, although ComEA, which is a periplasmic DNA-binding protein essential for transformation, is produced in a QstR-dependent manner, QstR-binding was not detected upstream of comEA suggesting the existence of a further regulatory pathway. Overall, these results provide detailed insights into the function of a key regulator of natural competence and type VI secretion in V. cholerae.
Collapse
Affiliation(s)
- Milena Jaskólska
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Candice Stoudmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
66
|
Structure and Properties of a Natural Competence-Associated Pilin Suggest a Unique Pilus Tip-Associated DNA Receptor. mBio 2019; 10:mBio.00614-19. [PMID: 31186316 PMCID: PMC6561018 DOI: 10.1128/mbio.00614-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Natural competence is the term used to describe the uptake of "naked" extracellular DNA by bacteria; it plays a significant role in horizontal genetic exchange. It is associated with type IV pili, and specialized competence pili mediate DNA uptake. Here, we show that the crystal structure of a competence-associated protein from Thermus thermophilus, ComZ, consists of a type II secretion pseudopilin-like domain, with a large β-solenoid domain inserted into the β-sheet of the pilin-like fold. ComZ binds with high affinity to another competence-associated pilin, PilA2, which lies adjacent to the comZ gene in the genome. The crystal structure of PilA2 revealed a similar type II secretion pseudopilin-like fold, with a small subdomain; docking simulations predicted that PilA2 binds between the pseudopilin-like and β-solenoid domains of ComZ. Electrophoretic shift analysis and DNase protection studies were used to show that ComZ alone and the ComZ/PilA2 complex are able to bind DNA. Protection against reductive dimethylation was used in combination with mass spectrometry and site-directed mutagenesis to identify two lysine residues in ComZ which are involved in DNA binding. They are located between the two domains in ComZ, on the opposite side from the predicted PilA2 binding site. These results suggest a model in which PilA2 assists ComZ in forming the competence pilus tip and DNA binds to the side of the fiber. The results demonstrate how a type IV pilin can be adapted to a specific function by domain insertion and provide the first structural insights into a tip-located competence pilin.IMPORTANCE Thermus thermophilus is a thermophilic bacterium which is capable of natural transformation, the uptake of external DNA with high efficiency. DNA uptake is thought to be mediated by a competence-associated pilus, which binds the DNA substrate and mediates its transfer across the outer membrane and periplasm. Here, we describe the structural and functional analysis of two pilins which are known to be essential for DNA uptake, ComZ and PilA2. ComZ adopts an unusual structure, incorporating a large β-solenoid domain into the pilin structural framework. We argue on structural grounds that this structure cannot readily be accommodated into the competence pilus fiber unless it is at the tip. We also show that ComZ binds DNA and identify two lysine residues which appear to be important for DNA binding. These results suggest a model in which ComZ and PilA2 form a tip-associated DNA receptor which mediates DNA uptake.
Collapse
|
67
|
Dai K, Yang Z, Chang YF, He L, Cao S, Zhao Q, Huang X, Wu R, Huang Y, Yan Q, Han X, Ma X, Wen X, Wen Y. Construction of targeted and integrative promoter-reporter plasmids pDK-K and pDK-G to measure gene expression activity in Haemophilus parasuis. Microb Pathog 2019; 134:103565. [PMID: 31158493 DOI: 10.1016/j.micpath.2019.103565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/10/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
Haemophilus parasuis (H. parasuis) is rather difficult to manipulate genetically due to the diversity of restriction-modification systems and other mechanisms harbored by various isolates. This prevents exogenous plasmids from replicating in this species and hinders research efforts focused on transcriptional regulators in this bacterium. In this study, we generated a convenient promoter reporter system based on gene knock-in method using natural transformation in H. parasuis. Gene knock-in has proven useful as a powerful tool facilitating identification and studying the transcription activities of regulators under a variety of conditions that favor gene transcription or expression from an incorporated promoter. The vectors, pDK-K and pDK-G, carrying promoterless reporter lacZ gene and two homologous sequences flanking a knock-in site, may have some advantages over the extensively used plasmid-bearing reporter system in other bacteria in stability and ease of genetic manipulation in H. parasuis. The knock-in site was positioned at a site occupied by flanking genes that were both hypothetical and had the same transcription orientation, thus the expression of the reversely cloned promoter-lacZ fusion wouldn't be affected by the upstream promoter on the chromosome. The expression activity of lacZ gene under the transcriptional activation of a 300 bp promoter-proximal segment of cyaA, crp or comA genes in H. parasuis was separately validated using X-gal and o-nitrophenyl-β-d-galactoside(ONPG) as substrates. The derivatives harboring promoter-lacZ fusion segments showed significantly higher β-galactosidase activity levels than the promoterlessones both in TSB++ broth and on TSA++ plate as screened either by X-gal method or the standard Miller method. We also used pDK vector to further certify that the cyaA promoter is inducible and whose transcriptional levels were in correlation with the growth kinetics of the bacteria in TSB++. With this system, gene knock-in method based on natural transformation in H. parasuis proved to be useful in identifying transcriptional regulation of a certain promoter.
Collapse
Affiliation(s)
- Ke Dai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, NY, USA
| | - Lvqin He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
68
|
Plasmid Characteristics Modulate the Propensity of Gene Exchange in Bacterial Vesicles. J Bacteriol 2019; 201:JB.00430-18. [PMID: 30670543 DOI: 10.1128/jb.00430-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/26/2018] [Indexed: 12/28/2022] Open
Abstract
Horizontal gene transfer is responsible for the exchange of many types of genetic elements, including plasmids. Properties of the exchanged genetic element are known to influence the efficiency of transfer via the mechanisms of conjugation, transduction, and transformation. Recently, an alternative general pathway of horizontal gene transfer has been identified, namely, gene exchange by extracellular vesicles. Although extracellular vesicles have been shown to facilitate the exchange of several types of plasmids, the influence of plasmid characteristics on genetic exchange within vesicles is unclear. Here, a set of different plasmids was constructed to systematically test the impact of plasmid properties, specifically, plasmid copy number, size, and origin of replication, on gene transfer in vesicles. The influence of each property on the production, packaging, and uptake of vesicles containing bacterial plasmids was quantified, revealing how plasmid properties modulate vesicle-mediated horizontal gene transfer. The loading of plasmids into vesicles correlates with the plasmid copy number and is influenced by characteristics that help set the number of plasmids within a cell, including size and origin of replication. Plasmid origin also has a separate impact on both vesicle loading and uptake, demonstrating that the origin of replication is a major determinant of the propensity of specific plasmids to transfer within extracellular vesicles.IMPORTANCE Extracellular vesicle formation and exchange are common within bacterial populations. Vesicles package multiple types of biomolecules, including genetic material. The exchange of extracellular vesicles containing genetic material facilitates interspecies DNA transfer and may be a promiscuous mechanism of horizontal gene transfer. Unlike other mechanisms of horizontal gene transfer, it is unclear whether characteristics of the exchanged DNA impact the likelihood of transfer in vesicles. Here, we systematically examine the influence of plasmid copy number, size, and origin of replication on the loading of DNA into vesicles and the uptake of DNA containing vesicles by recipient cells. These results reveal how each plasmid characteristic impacts gene transfer in vesicles and contribute to a greater understanding of the importance of vesicle-mediated gene exchange in the landscape of horizontal gene transfer.
Collapse
|
69
|
Tan A, Li WS, Verderosa AD, Blakeway LV, D Mubaiwa T, Totsika M, Seib KL. Moraxella catarrhalis NucM is an entry nuclease involved in extracellular DNA and RNA degradation, cell competence and biofilm scaffolding. Sci Rep 2019; 9:2579. [PMID: 30796312 PMCID: PMC6384898 DOI: 10.1038/s41598-019-39374-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/18/2019] [Indexed: 11/10/2022] Open
Abstract
Moraxella catarrhalis is a host-adapted bacterial pathogen that causes otitis media and exacerbations of chronic obstructive pulmonary disease. This study characterises the conserved M. catarrhalis extracellular nuclease, a member of the ββα metal finger family of nucleases, that we have named NucM. NucM shares conserved sequence motifs from the ββα nuclease family, including the DRGH catalytic core and Mg2+ co-ordination site, but otherwise shares little primary sequence identity with other family members, such as the Serratia Nuc and pneumococcal EndA nucleases. NucM is secreted from the cell and digests linear and circular nucleic acid. However, it appears that a proportion of NucM is also associated with the cell membrane and acts as an entry nuclease, facilitating transformation of M. catarrhalis cells. This is the first example of a ββα nuclease in a Gram negative bacteria that acts as an entry nuclease. In addition to its role in competence, NucM affects cell aggregation and biofilm formation by M. catarrhalis, with ΔnucM mutants having increased biofilm biomass. NucM is likely to increase the ability of cells to survive and persist in vivo, increasing the virulence of M. catarrhalis and potentially affecting the behaviour of other pathogens that co-colonise the otorhinolaryngological niche.
Collapse
Affiliation(s)
- Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Wing-Sze Li
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Anthony D Verderosa
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4006, Australia
| | - Luke V Blakeway
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Tsitsi D Mubaiwa
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4006, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia.
| |
Collapse
|
70
|
Abstract
Microbial populations exchange genetic material through a process called homologous recombination. Although this process has been studied in particular organisms, we lack an understanding of its differential impact over the genome and across microbes with different life-styles. We used a common analytical framework to assess this process in a representative set of microorganisms. Our results uncovered important trends. First, microbes with different lifestyles are differentially impacted, with endosymbionts and obligate pathogens being those less prone to undergo this process. Second, certain genetic elements such as restriction-modification systems seem to be associated with higher rates of recombination. Most importantly, recombined genomes show the footprints of natural selection in which recombined regions preferentially contain genes that can be related to specific ecological adaptations. Taken together, our results clarify the relative contributions of factors modulating homologous recombination and show evidence for a clear a role of this process in shaping microbial genomes and driving ecological adaptations. Homologous recombination (HR) enables the exchange of genetic material between and within species. Recent studies suggest that this process plays a major role in the microevolution of microbial genomes, contributing to core genome homogenization and to the maintenance of cohesive population structures. However, we still have a very poor understanding of the possible adaptive roles of intraspecific HR and of the factors that determine its differential impact across clades and lifestyles. Here we used a unified methodological framework to assess HR in 338 complete genomes from 54 phylogenetically diverse and representative prokaryotic species, encompassing different lifestyles and a broad phylogenetic distribution. Our results indicate that lifestyle and presence of restriction-modification (RM) machineries are among the main factors shaping HR patterns, with symbionts and intracellular pathogens having the lowest HR levels. Similarly, the size of exchanged genomic fragments correlated with the presence of RM and competence machineries. Finally, genes exchanged by HR showed functional enrichments which could be related to adaptations to different environments and ecological strategies. Taken together, our results clarify the factors underlying HR impact and suggest important adaptive roles of genes exchanged through this mechanism. Our results also revealed that the extent of genetic exchange correlated with lifestyle and some genomic features. Moreover, the genes in exchanged regions were enriched for functions that reflected specific adaptations, supporting identification of HR as one of the main evolutionary mechanisms shaping prokaryotic core genomes.
Collapse
|
71
|
Hasegawa H, Suzuki E, Maeda S. Horizontal Plasmid Transfer by Transformation in Escherichia coli: Environmental Factors and Possible Mechanisms. Front Microbiol 2018; 9:2365. [PMID: 30337917 PMCID: PMC6180151 DOI: 10.3389/fmicb.2018.02365] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Transformation is one mode of horizontal gene transfer (HGT) in bacteria, wherein extracellular naked DNA is taken up by cells that have developed genetic competence. Sensitivity to DNase, which degrades naked DNA, is the key to distinguishing transformation from the DNase-resistant HGT mechanisms. In general, Escherichia coli is not believed to be naturally transformable; it develops high competence only under artificial conditions, including exposure to high Ca2+ concentrations. However, E. coli can reportedly express modest competence under certain conditions that are feasible in natural environments outside laboratory. In addition, recent data suggest that environmental factors influence multiple routes of transformation. In this mini review, we (1) summarize our studies on transformation-based HGT using E. coli experimental systems and (2) discuss the possible occurrence of transformation via multiple mechanisms in the environment and its possible impact on the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
| | | | - Sumio Maeda
- Graduate School of Humanities and Sciences, Nara Women’s University, Nara, Japan
| |
Collapse
|
72
|
Alfsnes K, Frye SA, Eriksson J, Eldholm V, Brynildsrud OB, Bohlin J, Harrison OB, Hood DW, Maiden MCJ, Tønjum T, Ambur OH. A genomic view of experimental intraspecies and interspecies transformation of a rifampicin-resistance allele into Neisseria meningitidis. Microb Genom 2018; 4. [PMID: 30251949 PMCID: PMC6321871 DOI: 10.1099/mgen.0.000222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The spread of antibiotic resistance within and between different bacterial populations is a major health problem on a global scale. The identification of genetic transformation in genomic data from Neisseria meningitidis, the meningococcus (Mc), and other bacteria is problematic, since similar or even identical alleles may be involved. A particular challenge in naturally transformable bacteria generally is to distinguish between common ancestry and true recombined sites in sampled genome sequences. Furthermore, the identification of recombination following experimental transformation of homologous alleles requires identifiable differences between donor and recipient, which in itself influences the propensity for homologous recombination (HR). This study identifies the distribution of HR events following intraspecies and interspecies Mc transformations of rpoB alleles encoding rifampicin resistance by whole-genome DNA sequencing and single nucleotide variant analysis. The HR events analysed were confined to the genomic region surrounding the single nucleotide genetic marker used for selection. An exponential length distribution of these recombined events was found, ranging from a few nucleotides to about 72 kb stretches. The lengths of imported sequences were on average found to be longer following experimental transformation of the recipient with genomic DNA from an intraspecies versus an interspecies donor (P<0.001). The recombination events were generally observed to be mosaic, with donor sequences interspersed with recipient sequence. Here, we present four models to explain these observations, by fragmentation of the transformed DNA, by interruptions of the recombination mechanism, by secondary recombination of endogenous self-DNA, or by repair/replication mechanisms.
Collapse
Affiliation(s)
| | - Stephan A Frye
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Jens Eriksson
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Vegard Eldholm
- 3Department of Molecular Biology, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ola Brønstad Brynildsrud
- 4Department of Methodology Research and Analysis, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon Bohlin
- 4Department of Methodology Research and Analysis, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Odile B Harrison
- 5The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Derek W Hood
- 6Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Martin C J Maiden
- 5The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Tone Tønjum
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,7Department of Microbiology, University of Oslo, Oslo, Norway
| | - Ole Herman Ambur
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,8OsloMet - Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
73
|
Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol 2018; 65:34-44. [PMID: 30248271 DOI: 10.1139/cjm-2018-0275] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A global medical crisis is unfolding as antibiotics lose effectiveness against a growing number of bacterial pathogens. Horizontal gene transfer (HGT) contributes significantly to the rapid spread of resistance, yet the transmission dynamics of genes that confer antibiotic resistance are poorly understood. Multiple mechanisms of HGT liberate genes from normal vertical inheritance. Conjugation by plasmids, transduction by bacteriophages, and natural transformation by extracellular DNA each allow genetic material to jump between strains and species. Thus, HGT adds an important dimension to infectious disease whereby an antibiotic resistance gene (ARG) can be the agent of an outbreak by transferring resistance to multiple unrelated pathogens. Here, we review the small number of cases where HGT has been detected in clinical environments. We discuss differences and synergies between the spread of plasmid-borne and chromosomal ARGs, with a special consideration of the difficulties of detecting transduction and transformation by routine genetic diagnostics. We highlight how 11 of the top 12 priority antibiotic-resistant pathogens are known or predicted to be naturally transformable, raising the possibility that this mechanism of HGT makes significant contributions to the spread of ARGs. HGT drives the evolution of untreatable "superbugs" by concentrating ARGs together in the same cell, thus HGT must be included in strategies to prevent the emergence of resistant organisms in hospitals and other clinical settings.
Collapse
Affiliation(s)
| | - Andrew D S Cameron
- a Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada.,b Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
74
|
Kandel PP, Chen H, De La Fuente L. A Short Protocol for Gene Knockout and Complementation in Xylella fastidiosa Shows that One of the Type IV Pilin Paralogs (PD1926) Is Needed for Twitching while Another (PD1924) Affects Pilus Number and Location. Appl Environ Microbiol 2018; 84:e01167-18. [PMID: 29980551 PMCID: PMC6121978 DOI: 10.1128/aem.01167-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022] Open
Abstract
Twitching motility is one of the major virulence factors of the plant-pathogenic bacterium Xylella fastidiosa, and it is mediated by type IV pili (TFP) that are present at one of the cell poles. Genome analysis of X. fastidiosa showed the presence of at least four paralogs of the gene pilA, which encodes the TFP major pilin subunit. However, whether all of these paralogs have a functional role in TFP structure and function is unknown. Here, using a short and reliable protocol based on overlap extension PCR and natural transformation, deletion mutants of two pilA paralogs (pilA1 PD1924 and pilA2 PD1926) were generated in two X. fastidiosa subsp. fastidiosa strains, WM1-1 and TemeculaL, followed by assessment of twitching motility and biofilm formation. Deletion of pilA2 caused loss of twitching motility, whereas deletion of pilA1 did not influence twitching motility but caused hyperpiliation and extended distribution of TFP along the sides of the cell. Loss of twitching motility due to pilA2 deletion was restored when a wild-type copy of the pilA2 gene was added at a neutral site in the genome of mutants in both wild-type backgrounds. This study demonstrates that PCR templates generated by overlap extension PCR can be successfully used to rapidly generate gene knockouts and perform genetic complementation in X. fastidiosa, and that twitching motility in X. fastidiosa is controlled by regulating the transcription of the major pilin subunit, pilA2IMPORTANCE The bacterial plant pathogen Xylella fastidiosa causes incurable diseases in multiple hosts, including grape, citrus, and blueberry. Historically restricted to the Americas, it was recently found to cause epidemics in olives in Italy and to infect other hosts in Europe and Asia. In this study, we report a short protocol to create deletion and complemented mutants using fusion PCR and natural transformation. We also determined the distinct function of two pilin paralogs, the main structural component of TFP involved in twitching motility, which allows this bacterium to move inside the xylem vessels against the flow. One of the paralogs is needed for twitching movement, whereas the other does not have an effect on motility but influences the number and position of TFP. Since twitching motility is fundamental for the virulence of this xylem-limited bacterium, this study contributes to the understanding of the regulation of virulence by this pathogen.
Collapse
Affiliation(s)
- Prem P Kandel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Hongyu Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
75
|
Fluorescence-Based Detection of Natural Transformation in Drug-Resistant Acinetobacter baumannii. J Bacteriol 2018; 200:JB.00181-18. [PMID: 30012729 PMCID: PMC6148472 DOI: 10.1128/jb.00181-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/27/2018] [Indexed: 01/05/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial agent with a high propensity for developing resistance to antibiotics. This ability relies on horizontal gene transfer mechanisms occurring in the Acinetobacter genus, including natural transformation. To study natural transformation in bacteria, the most prevalent method uses selection for the acquisition of an antibiotic resistance marker in a target chromosomal locus by the recipient cell. Most clinical isolates of A. baumannii are resistant to multiple antibiotics, limiting the use of such selection-based methods. Here, we report the development of a phenotypic and selection-free method based on flow cytometry to detect transformation events in multidrug-resistant (MDR) clinical A. baumannii isolates. To this end, we engineered a translational fusion between the abundant and conserved A. baumannii nucleoprotein (HU) and the superfolder green fluorescent protein (sfGFP). The new method was benchmarked against the conventional antibiotic selection-based method. Using this new method, we investigated several parameters affecting transformation efficiencies and identified conditions of transformability one hundred times higher than those previously reported. Using optimized transformation conditions, we probed natural transformation in a set of MDR clinical and nonclinical animal A. baumannii isolates. Regardless of their origin, the majority of the isolates displayed natural transformability, indicative of a conserved trait in the species. Overall, this new method and optimized protocol will greatly facilitate the study of natural transformation in the opportunistic pathogen A. baumannii IMPORTANCE Antibiotic resistance is a pressing global health concern with the rise of multiple and panresistant pathogens. The rapid and unfailing resistance to multiple antibiotics of the nosocomial agent Acinetobacter baumannii, notably to carbapenems, prompt to understand the mechanisms behind acquisition of new antibiotic resistance genes. Natural transformation, one of the horizontal gene transfer mechanisms in bacteria, was only recently described in A. baumannii and could explain its ability to acquire resistance genes. We developed a reliable method to probe and study natural transformation mechanism in A. baumannii More broadly, this new method based on flow cytometry will allow experimental detection and quantification of horizontal gene transfer events in multidrug-resistant A. baumannii.
Collapse
|
76
|
Nero TM, Dalia TN, Wang JY, Kysela DT, Bochman ML, Dalia AB. ComM is a hexameric helicase that promotes branch migration during natural transformation in diverse Gram-negative species. Nucleic Acids Res 2018; 46:6099-6111. [PMID: 29722872 PMCID: PMC6158740 DOI: 10.1093/nar/gky343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022] Open
Abstract
Acquisition of foreign DNA by natural transformation is an important mechanism of adaptation and evolution in diverse microbial species. Here, we characterize the mechanism of ComM, a broadly conserved AAA+ protein previously implicated in homologous recombination of transforming DNA (tDNA) in naturally competent Gram-negative bacterial species. In vivo, we found that ComM was required for efficient comigration of linked genetic markers in Vibrio cholerae and Acinetobacter baylyi, which is consistent with a role in branch migration. Also, ComM was particularly important for integration of tDNA with increased sequence heterology, suggesting that its activity promotes the acquisition of novel DNA sequences. In vitro, we showed that purified ComM binds ssDNA, oligomerizes into a hexameric ring, and has bidirectional helicase and branch migration activity. Based on these data, we propose a model for tDNA integration during natural transformation. This study provides mechanistic insight into the enigmatic steps involved in tDNA integration and uncovers the function of a protein required for this conserved mechanism of horizontal gene transfer.
Collapse
Affiliation(s)
- Thomas M Nero
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - David T Kysela
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
77
|
Mulder J, Wels M, Kuipers OP, Kleerebezem M, Bron PA. Induction of Natural Competence in Genetically-modified Lactococcus lactis. Bio Protoc 2018; 8:e2922. [PMID: 34395748 DOI: 10.21769/bioprotoc.2922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 11/02/2022] Open
Abstract
Natural competence can be activated in Lactoccocus lactis subsp lactis and cremoris upon overexpression of ComX, a master regulator of bacterial competence. Herein, we demonstrate a method to activate bacterial competence by regulating the expression of the comX gene by using a nisin-inducible promoter in an L. lactis strain harboring either a chromosomal or plasmid-encoded copy of nisRK. Addition of moderate concentrations of the inducer nisin resulted in concomitant moderate levels of ComX, which led to an optimal transformation rate (1.0 x 10-6 transformants/total cell number/g plasmid DNA). Here, a detailed description of the optimized protocol for competence induction is presented.
Collapse
Affiliation(s)
- Joyce Mulder
- NIZO B.V., Ede, The Netherlands.,Molecular Genetics, University of Groningen, Groningen, The Netherlands.,BE-Basic Foundation, Delft, The Netherlands
| | | | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Groningen, The Netherlands.,BE-Basic Foundation, Delft, The Netherlands
| | - Michiel Kleerebezem
- BE-Basic Foundation, Delft, The Netherlands.,Host-Microbe Interactomics Group, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Peter A Bron
- NIZO B.V., Ede, The Netherlands.,BE-Basic Foundation, Delft, The Netherlands
| |
Collapse
|
78
|
Freed E, Fenster J, Smolinski SL, Walker J, Henard CA, Gill R, Eckert CA. Building a genome engineering toolbox in nonmodel prokaryotic microbes. Biotechnol Bioeng 2018; 115:2120-2138. [PMID: 29750332 DOI: 10.1002/bit.26727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/02/2018] [Accepted: 03/10/2018] [Indexed: 12/26/2022]
Abstract
The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g., sunlight, CO2 , and nonfood biomass) into biofuels and bioproducts at sufficient titers and costs. For model microbes, such as Escherichia coli, advances in DNA reading and writing technologies are driving the adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks, such as photosynthesis, autotrophic growth, and cellulose degradation, have very few, if any, genetic tools for metabolic engineering. Therefore, it is important to develop "design rules" for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and the available genetic tools to expand our ability to genetically engineer nonmodel systems.
Collapse
Affiliation(s)
- Emily Freed
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| | - Jacob Fenster
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO.,Chemical and Biological Engineering, University of Colorado, Boulder, CO
| | | | - Julie Walker
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| | - Calvin A Henard
- National Renewable Energy Laboratory, National Bioenergy Center, Golden, CO
| | - Ryan Gill
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO.,Chemical and Biological Engineering, University of Colorado, Boulder, CO
| | - Carrie A Eckert
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| |
Collapse
|
79
|
The Protease ClpXP and the PAS Domain Protein DivL Regulate CtrA and Gene Transfer Agent Production in Rhodobacter capsulatus. Appl Environ Microbiol 2018; 84:AEM.00275-18. [PMID: 29625982 DOI: 10.1128/aem.00275-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/29/2018] [Indexed: 01/01/2023] Open
Abstract
Several members of the Rhodobacterales (Alphaproteobacteria) produce a conserved horizontal gene transfer vector, called the gene transfer agent (GTA), that appears to have evolved from a bacteriophage. The model system used to study GTA biology is the Rhodobacter capsulatus GTA (RcGTA), a small, tailed bacteriophage-like particle produced by a subset of the cells in a culture. The response regulator CtrA is conserved in the Alphaproteobacteria and is an essential regulator of RcGTA production: it controls the production and maturation of the RcGTA particle and RcGTA release from cells. CtrA also controls the natural transformation-like system required for cells to receive RcGTA-donated DNA. Here, we report that dysregulation of the CckA-ChpT-CtrA phosphorelay either by the loss of the PAS domain protein DivL or by substitution of the autophosphorylation residue of the hybrid histidine kinase CckA decreased CtrA phosphorylation and greatly increased RcGTA protein production in R. capsulatus We show that the loss of the ClpXP protease or the three C-terminal residues of CtrA results in increased CtrA levels in R. capsulatus and identify ClpX(P) to be essential for the maturation of RcGTA particles. Furthermore, we show that CtrA phosphorylation is important for head spike production. Our results provide novel insight into the regulation of CtrA and GTAs in the RhodobacteralesIMPORTANCE Members of the Rhodobacterales are abundant in ocean and freshwater environments. The conserved GTA produced by many Rhodobacterales may have an important role in horizontal gene transfer (HGT) in aquatic environments and provide a significant contribution to their adaptation. GTA production is controlled by bacterial regulatory systems, including the conserved CckA-ChpT-CtrA phosphorelay; however, several questions about GTA regulation remain. Our identification that a short DivL homologue and ClpXP regulate CtrA in R. capsulatus extends the model of CtrA regulation from Caulobacter crescentus to a member of the Rhodobacterales We found that the magnitude of RcGTA production greatly depends on DivL and CckA kinase activity, adding yet another layer of regulatory complexity to RcGTA. RcGTA is known to undergo CckA-dependent maturation, and we extend the understanding of this process by showing that the ClpX chaperone is required for formation of tailed, DNA-containing particles.
Collapse
|
80
|
Dai K, He L, Chang YF, Cao S, Zhao Q, Huang X, Wu R, Huang Y, Yan Q, Han X, Ma X, Wen X, Wen Y. Basic Characterization of Natural Transformation in a Highly Transformable Haemophilus parasuis Strain SC1401. Front Cell Infect Microbiol 2018; 8:32. [PMID: 29473023 PMCID: PMC5809987 DOI: 10.3389/fcimb.2018.00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/25/2018] [Indexed: 11/13/2022] Open
Abstract
Haemophilus parasuis causes Glässer's disease and pneumonia, incurring serious economic losses in the porcine industry. In this study, natural competence was investigated in H. parasuis. We found competence genes in H. parasuis homologous to ones in Haemophilus influenzae and a high consensus battery of Sxy-dependent cyclic AMP (cAMP) receptor protein (CRP-S) regulons using bioinformatics. High rates of natural competence were found from the onset of stationary-phase growth condition to mid-stationary phase (OD600 from 0.29 to 1.735); this rapidly dropped off as cells reached mid-stationary phase (OD600 from 1.735 to 1.625). As a whole, bacteria cultured in liquid media were observed to have lower competence levels than those grown on solid media plates. We also revealed that natural transformation in this species is stable after 200 passages and is largely dependent on DNA concentration. Transformation competition experiments showed that heterogeneous DNA cannot outcompete intraspecific natural transformation, suggesting an endogenous uptake sequence or other molecular markers may be important in differentiating heterogeneous DNA. We performed qRT-PCR targeting multiple putative competence genes in an effort to compare bacteria pre-cultured in TSB++ vs. TSA++ and SC1401 vs. SH0165 to determine expression profiles of the homologs of competence-genes in H. influenzae. Taken together, this study is the first to investigate natural transformation in H. parasuis based on a highly naturally transformable strain SC1401.
Collapse
Affiliation(s)
- Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lvqin He
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
81
|
Dai K, Wen X, Chang YF, Cao S, Zhao Q, Huang X, Wu R, Huang Y, Yan Q, Han X, Ma X, Wen Y. A streptomycin resistance marker in H. parasuis based on site-directed mutations in rpsL gene to perform unmarked in-frame mutations and to verify natural transformation. PeerJ 2018; 6:e4253. [PMID: 29340249 PMCID: PMC5767333 DOI: 10.7717/peerj.4253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Haemophilus parasuis is a member of the family Pasteurellaceae and a major causative agent of Glässer’s disease. This bacterium is normally a benign swine commensal but may become a deadly pathogen upon penetration into multiple tissues, contributing to severe lesions in swine. We have established a successive natural transformation-based markerless mutation system in this species. However, the two-step mutation system requires screening of natural competent cells, and cannot delete genes which regulate natural competence per se. In this study, we successfully obtained streptomycin-resistant derivatives from H. parasuis wild type strain SC1401 by using ethyl methane sulfonate (EMS, CH3SO2OC2H5). Upon sequencing and site-directed mutations, we uncovered that the EMS-induced point mutation in rpsL at codon 43rd (AAA → AGA; K43R) or at 88th (AAA → AGA; K88R) confers a much higher streptomycin resistance than clinical isolates. We have applied the streptomycin resistance marker as a positive selection marker to perform homologous recombination through conjugation and successfully generated a double unmarked in-frame targeted mutant 1401D88△tfox△arcA. Combined with a natural transformation-based knockout system and this genetic technique, multiple deletion mutants or attenuated strains of H. parasuis can be easily constructed. Moreover, the mutant genetic marker rpsL and streptomycin resistant phenotypes can serve as an effective tool to select naturally competent strains, and to verify natural transformation quantitatively.
Collapse
Affiliation(s)
- Ke Dai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
82
|
Abstract
While most molecular biologists are familiar with the artificial transformation of bacteria in the context of laboratory cloning experiments, natural competence for transformation refers to a specific physiological state in which prokaryotes are able to take up genetic material from their surroundings. Occasionally, such absorbed DNA is recombined into the organism's own genome, resulting in natural transformation (Figure 1). As a consequence, natural competence for transformation is considered a primary mode of horizontal gene transfer (HGT) in prokaryotes, together with conjugation (direct cell to cell transfer of DNA via a specialized conjugal pilus) and phage transduction (DNA transfer mediated by viruses). HGT plays a major role in bacterial evolution, and past research has demonstrated that HGT, including natural competence for transformation, contributes to the emergence of pathogens and the spread of virulence factors. Indeed, Frederick Griffith discovered natural competence for transformation in 1928 while he was investigating the exchange of pathogenic traits in pneumococci. Due to the increase in the abundance and spread of multidrug-resistant microbes, research on HGT is even more important today than ever before.
Collapse
|
83
|
Ambur OH, Engelstädter J, Johnsen PJ, Miller EL, Rozen DE. Steady at the wheel: conservative sex and the benefits of bacterial transformation. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0528. [PMID: 27619692 PMCID: PMC5031613 DOI: 10.1098/rstb.2015.0528] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2016] [Indexed: 12/25/2022] Open
Abstract
Many bacteria are highly sexual, but the reasons for their promiscuity remain obscure. Did bacterial sex evolve to maximize diversity and facilitate adaptation in a changing world, or does it instead help to retain the bacterial functions that work right now? In other words, is bacterial sex innovative or conservative? Our aim in this review is to integrate experimental, bioinformatic and theoretical studies to critically evaluate these alternatives, with a main focus on natural genetic transformation, the bacterial equivalent of eukaryotic sexual reproduction. First, we provide a general overview of several hypotheses that have been put forward to explain the evolution of transformation. Next, we synthesize a large body of evidence highlighting the numerous passive and active barriers to transformation that have evolved to protect bacteria from foreign DNA, thereby increasing the likelihood that transformation takes place among clonemates. Our critical review of the existing literature provides support for the view that bacterial transformation is maintained as a means of genomic conservation that provides direct benefits to both individual bacterial cells and to transformable bacterial populations. We examine the generality of this view across bacteria and contrast this explanation with the different evolutionary roles proposed to maintain sex in eukaryotes. This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Ole Herman Ambur
- Department of Life Sciences and Health, Oslo and Akershus University College of Applied Sciences, 1478 Oslo, Norway
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pål J Johnsen
- Faculty of Health Sciences, Department of Pharmacy, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Eric L Miller
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Daniel E Rozen
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
84
|
Westbye AB, O'Neill Z, Schellenberg-Beaver T, Beatty JT. The Rhodobacter capsulatus gene transfer agent is induced by nutrient depletion and the RNAP omega subunit. Microbiology (Reading) 2017; 163:1355-1363. [DOI: 10.1099/mic.0.000519] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alexander B. Westbye
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
- Present address: Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje (Texel), Netherlands
| | - Zoe O'Neill
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Tegan Schellenberg-Beaver
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
85
|
Tran F, Boedicker JQ. Genetic cargo and bacterial species set the rate of vesicle-mediated horizontal gene transfer. Sci Rep 2017; 7:8813. [PMID: 28821711 PMCID: PMC5562762 DOI: 10.1038/s41598-017-07447-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
Most bacteria release extracellular vesicles (EVs). Recent studies have found these vesicles are capable of gene delivery, however the consequences of vesicle-mediated transfer on the patterns and rates of gene flow within microbial communities remains unclear. Previous studies have not determined the impact of both the genetic cargo and the donor and recipient species on the rate of vesicle-mediated gene exchange. This report examines the potential for EVs as a mechanism of gene transfer within heterogeneous microbial populations. EVs were harvested from three species of Gram-negative microbes carrying different plasmids. The dynamics of gene transfer into recipient species was measured. This study demonstrates that vesicles enable gene exchange between five species of Gram-negative bacteria, and that the identity of the genetic cargo, donor strain, and recipient strain all influence gene transfer rates. Each species released and acquired vesicles containing genetic material to a variable degree, and the transfer rate did not correlate with the relatedness of the donor and recipient species. The results suggest that EVs may be a general mechanism to exchange non-specialized genetic cargo between bacterial species.
Collapse
Affiliation(s)
- Frances Tran
- University of Southern California, Department of Biological Sciences, Seaver Science Center (SSC) 212, 920 Bloom Walk, Los Angeles, CA, 90089, USA
| | - James Q Boedicker
- University of Southern California, Department of Biological Sciences, Seaver Science Center (SSC) 212, 920 Bloom Walk, Los Angeles, CA, 90089, USA.
- University of Southern California, Department of Physics and Astronomy, Seaver Science Center (SSC) 212, 920 Bloom Walk, Los Angeles, CA, 90089, USA.
| |
Collapse
|
86
|
Tripathi C, Mishra H, Khurana H, Dwivedi V, Kamra K, Negi RK, Lal R. Complete Genome Analysis of Thermus parvatiensis and Comparative Genomics of Thermus spp. Provide Insights into Genetic Variability and Evolution of Natural Competence as Strategic Survival Attributes. Front Microbiol 2017; 8:1410. [PMID: 28798737 PMCID: PMC5529391 DOI: 10.3389/fmicb.2017.01410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/11/2017] [Indexed: 01/27/2023] Open
Abstract
Thermophilic environments represent an interesting niche. Among thermophiles, the genus Thermus is among the most studied genera. In this study, we have sequenced the genome of Thermus parvatiensis strain RL, a thermophile isolated from Himalayan hot water springs (temperature >96°C) using PacBio RSII SMRT technique. The small genome (2.01 Mbp) comprises a chromosome (1.87 Mbp) and a plasmid (143 Kbp), designated in this study as pTP143. Annotation revealed a high number of repair genes, a squeezed genome but containing highly plastic plasmid with transposases, integrases, mobile elements and hypothetical proteins (44%). We performed a comparative genomic study of the group Thermus with an aim of analysing the phylogenetic relatedness as well as niche specific attributes prevalent among the group. We compared the reference genome RL with 16 Thermus genomes to assess their phylogenetic relationships based on 16S rRNA gene sequences, average nucleotide identity (ANI), conserved marker genes (31 and 400), pan genome and tetranucleotide frequency. The core genome of the analyzed genomes contained 1,177 core genes and many singleton genes were detected in individual genomes, reflecting a conserved core but adaptive pan repertoire. We demonstrated the presence of metagenomic islands (chromosome:5, plasmid:5) by recruiting raw metagenomic data (from the same niche) against the genomic replicons of T. parvatiensis. We also dissected the CRISPR loci wide all genomes and found widespread presence of this system across Thermus genomes. Additionally, we performed a comparative analysis of competence loci wide Thermus genomes and found evidence for recent horizontal acquisition of the locus and continued dispersal among members reflecting that natural competence is a beneficial survival trait among Thermus members and its acquisition depicts unending evolution in order to accomplish optimal fitness.
Collapse
Affiliation(s)
- Charu Tripathi
- Department of Zoology, University of DelhiNew Delhi, India
| | | | - Himani Khurana
- Department of Zoology, University of DelhiNew Delhi, India
| | | | - Komal Kamra
- Ciliate Biology Laboratory, Sri Guru Tegh Bahadar Khalsa College, University of DelhiNew Delhi, India
| | - Ram K Negi
- Department of Zoology, University of DelhiNew Delhi, India
| | - Rup Lal
- Department of Zoology, University of DelhiNew Delhi, India
| |
Collapse
|
87
|
Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 2017; 15:621-629. [PMID: 28690319 DOI: 10.1038/nrmicro.2017.66] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Natural competence enables bacteria to take up exogenous DNA. The evolutionary function of natural competence remains controversial, as imported DNA can act as a source of substrates or can be integrated into the genome. Exogenous homologous DNA can also be used for genome repair. In this Opinion article, we propose that predation of non-related neighbouring bacteria coupled with competence regulation might function as an active strategy for DNA acquisition. Competence-dependent kin-discriminated killing has been observed in the unrelated bacteria Vibrio cholerae and Streptococcus pneumoniae. Importantly, both the regulatory networks and the mode of action of neighbour predation differ between these organisms, with V. cholerae using a type VI secretion system and S. pneumoniae secreting bacteriocins. We argue that the forced release of DNA from killed bacteria and the transfer of non-clonal genetic material have important roles in bacterial evolution.
Collapse
|
88
|
Kandel PP, Almeida RPP, Cobine PA, De La Fuente L. Natural Competence Rates Are Variable Among Xylella fastidiosa Strains and Homologous Recombination Occurs In Vitro Between Subspecies fastidiosa and multiplex. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:589-600. [PMID: 28459171 DOI: 10.1094/mpmi-02-17-0053-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Xylella fastidiosa, an etiological agent of emerging crop diseases around the world, is naturally competent for the uptake of DNA from the environment that is incorporated into its genome by homologous recombination. Homologous recombination between subspecies of X. fastidiosa was inferred by in silico studies and was hypothesized to cause disease emergence. However, no experimental data are available on the degree to which X. fastidiosa strains are capable of competence and whether recombination can be experimentally demonstrated between subspecies. Here, using X. fastidiosa strains from different subspecies, natural competence in 11 of 13 strains was confirmed with plasmids containing antibiotic markers flanked by homologous regions and, in three of five strains, with dead bacterial cells used as source of donor DNA. Recombination frequency differed among strains and was correlated to growth rate and twitching motility. Moreover, intersubspecific recombination occurred readily between strains of subsp. fastidiosa and multiplex, as demonstrated by movement of antibiotic resistance and green fluorescent protein from donor to recipient cells and confirmed by DNA sequencing of the flanking arms of recombinant strains. Results demonstrate that natural competence is widespread among X. fastidiosa strains and could have an impact in pathogen adaptation and disease development.
Collapse
Affiliation(s)
- Prem P Kandel
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - Rodrigo P P Almeida
- 2 Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, U.S.A.; and
| | - Paul A Cobine
- 3 Department of Biological Sciences, Auburn University
| | - Leonardo De La Fuente
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| |
Collapse
|
89
|
Blokesch M. In and out-contribution of natural transformation to the shuffling of large genomic regions. Curr Opin Microbiol 2017; 38:22-29. [PMID: 28458094 DOI: 10.1016/j.mib.2017.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/01/2017] [Accepted: 04/06/2017] [Indexed: 01/28/2023]
Abstract
Naturally competent bacteria can pull free DNA from their surroundings. This incoming DNA can serve various purposes, ranging from acting as a source of nutrients or DNA stretches for repair to the acquisition of novel genetic information. The latter process defines the natural competence for transformation as a mode of horizontal gene transfer (HGT) and led to its discovery almost a century ago. However, although it is widely accepted that natural competence can contribute to the spread of genetic material among prokaryotes, the question remains whether this mode of HGT can foster the transfer of larger DNA regions or only transfers shorter fragments, given that extracellular DNA is often heavily fragmented. Here, I outline examples of competence-mediated movement of large genomic segments. Moreover, I discuss a recent proposition that transformation is used to cure bacteria of selfish mobile genetic elements. Such a transformation-mediated genome maintenance mechanism could indeed be an important and underappreciated function of natural competence.
Collapse
Affiliation(s)
- Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
90
|
Knapp S, Brodal C, Peterson J, Qi F, Kreth J, Merritt J. Natural Competence Is Common among Clinical Isolates of Veillonella parvula and Is Useful for Genetic Manipulation of This Key Member of the Oral Microbiome. Front Cell Infect Microbiol 2017; 7:139. [PMID: 28473967 PMCID: PMC5397411 DOI: 10.3389/fcimb.2017.00139] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022] Open
Abstract
The six Veillonella species found in the human oral cavity are among the most abundant members of the oral flora, occurring in both supra- and subgingival dental plaque as well as on the oral mucosa. Epidemiological data have also implicated these species in the development of the most common oral diseases. Despite their ubiquity, abundance, and ecological significance, surprisingly little is known about Veillonella biology, largely due to the difficulties associated with their genetic manipulation. In an effort to improve genetic analyses of Veillonella species, we isolated a collection of veillonellae from clinical plaque samples and screened for natural competence using a newly developed transformation protocol. Numerous strains of V. parvula were found to exhibit a natural competence ability that was highly influenced by growth medium composition. By exploiting this ability, we were able to utilize cloning-independent allelic exchange mutagenesis to identify the likely source of DNA uptake machinery within a locus homologous to type II secretion systems (T2SS). Interestingly, V. parvula natural competence was found to exhibit a clear hierarchy of preference for different sources of DNA (plasmid < PCR product < genomic DNA), which is unlike most naturally competent species. Genomic comparisons with other members of the Veillonellaceae family suggest that natural competence is likely to be widely distributed within this group. To the best of our knowledge, this study is the first demonstration of natural competence and targeted allelic exchange mutagenesis within the entire Veillonellaceae family and demonstrates a simple and rapid method to study Veillonella genetics.
Collapse
Affiliation(s)
- Steven Knapp
- Department of Restorative Dentistry, Oregon Health and Science UniversityPortland, OR, USA
| | - Clint Brodal
- Department of Pediatric Dentistry, Oregon Health and Science UniversityPortland, OR, USA
| | - John Peterson
- Department of Pediatric Dentistry, Oregon Health and Science UniversityPortland, OR, USA
| | - Fengxia Qi
- Department of Microbiology and Immunology, University of Oklahoma Health Science CenterOklahoma, OK, USA
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science UniversityPortland, OR, USA
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health and Science UniversityPortland, OR, USA.,Department of Molecular Microbiology and Immunology, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|
91
|
Alagarasan G, Aswathy KS, Madhaiyan M. Shoot the Message, Not the Messenger-Combating Pathogenic Virulence in Plants by Inhibiting Quorum Sensing Mediated Signaling Molecules. FRONTIERS IN PLANT SCIENCE 2017; 8:556. [PMID: 28446917 PMCID: PMC5388769 DOI: 10.3389/fpls.2017.00556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Immunity, virulence, biofilm formation, and survival in the host environment are regulated by the versatile nature of density dependent microbial cell signaling, also called quorum sensing (QS). The QS molecules can associate with host plant tissues and, at times, cause a change in its gene expression at the downstream level through inter-kingdom cross talking. Progress in controlling QS through fungicide/bactericide in pathogenic microscopic organisms has lead to a rise of antibiotic resistance pathogens. Here, we review the application of selective quorum quenching (QQ) endophytes to control phytopathogens that are shared by most, if not all, terrestrial plant species as well as aquatic plants. Allowing the plants to posses endophytic colonies through biotization will be an additional and a sustainable encompassing methodology resulting in attenuated virulence rather than killing the pathogens. Furthermore, the introduced endophytes could serve as a potential biofertilizer and bioprotection agent, which in turn increases the PAMP- triggered immunity and hormonal systemic acquired resistance (SAR) in plants through SA-JA-ET signaling systems. This paper discusses major challenges imposed by QS and QQ application in biotechnology.
Collapse
Affiliation(s)
- Ganesh Alagarasan
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi VishwavidyalayaRaipur, India
| | - Kumar S. Aswathy
- Department of Agricultural Microbiology, Tamilnadu Agricultural UniversityCoimbatore, India
| | - Munusamy Madhaiyan
- Biomaterials and Biocatalyst, Temasek Lifesciences Laboratory, National University of SingaporeSingapore, Singapore
| |
Collapse
|
92
|
Advanced acuity in microbial biofilm genesis, development, associated clinical infections and control. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.antinf.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
93
|
ComB proteins expression levels determine Helicobacter pylori competence capacity. Sci Rep 2017; 7:41495. [PMID: 28128333 PMCID: PMC5269756 DOI: 10.1038/srep41495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori chronically colonises half of the world’s human population and is the main cause of ulcers and gastric cancers. Its prevalence and the increase in antibiotic resistance observed recently reflect the high genetic adaptability of this pathogen. Together with high mutation rates and an efficient DNA recombination system, horizontal gene transfer through natural competence makes of H. pylori one of the most genetically diverse bacteria. We show here that transformation capacity is enhanced in strains defective for recN, extending previous work with other homologous recombination genes. However, inactivation of either mutY or polA has no effect on DNA transformation, suggesting that natural competence can be boosted in H. pylori by the persistence of DNA breaks but not by enhanced mutagenesis. The transformation efficiency of the different DNA repair impaired strains correlates with the number of transforming DNA foci formed on the cell surface and with the expression of comB8 and comB10 competence genes. Overexpression of the comB6-B10 operon is sufficient to increase the transformation capacity of a wild type strain, indicating that the ComB complex, present in the bacterial wall and essential for DNA uptake, can be a limiting factor for transformation efficiency.
Collapse
|
94
|
Barman A, Buragohain C, Ray SK. Disruption ofcomAhomolog inRalstonia solanacearumdoes not impair its twitching motility. J Basic Microbiol 2017; 57:218-227. [DOI: 10.1002/jobm.201600562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/17/2016] [Accepted: 12/29/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Anjan Barman
- Department of Molecular Biology and Biotechnology; Tezpur University; Tezpur Assam India
| | - Chandrika Buragohain
- Department of Molecular Biology and Biotechnology; Tezpur University; Tezpur Assam India
| | - Suvendra Kumar Ray
- Department of Molecular Biology and Biotechnology; Tezpur University; Tezpur Assam India
| |
Collapse
|
95
|
No effect of natural transformation on the evolution of resistance to bacteriophages in the Acinetobacter baylyi model system. Sci Rep 2016; 6:37144. [PMID: 27869203 PMCID: PMC5116665 DOI: 10.1038/srep37144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
The adaptive benefits of natural transformation, the active uptake of free DNA molecules from the environment followed by incorporation of this DNA into the genome, may be the improved response to selection resulting from increased genetic variation. Drawing analogies with sexual reproduction, transformation may be particularly beneficial when selection rapidly fluctuates during coevolution with virulent parasites ('the Red Queen Hypothesis'). Here we test this hypothesis by experimentally evolving the naturally transformable and recombinogenic species Acinetobacter baylyi with a cocktail of lytic phages. No increased levels of resistance to phage were found in the wild type compared to a recombination deficient ΔdprA strain after five days of evolution. When exposed to A. baylyi DNA and phage, naturally transformable cells show greater levels of phage resistance. However, increased resistance arose regardless of whether they were exposed to DNA from phage-sensitive or -resistant A. baylyi, suggesting resistance was not the result of transformation, but was related to other benefits of competence. Subsequent evolution in the absence of phages did not show that recombination could alleviate the cost of resistance. Within this study system we found no support for transformation-mediated recombination being an advantage to bacteria exposed to parasitic phages.
Collapse
|
96
|
Silently transformable: the many ways bacteria conceal their built-in capacity of genetic exchange. Curr Genet 2016; 63:451-455. [DOI: 10.1007/s00294-016-0663-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
97
|
Ram Y, Hadany L. Condition-dependent sex: who does it, when and why? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150539. [PMID: 27619702 PMCID: PMC5031623 DOI: 10.1098/rstb.2015.0539] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2016] [Indexed: 01/09/2023] Open
Abstract
We review the phenomenon of condition-dependent sex-where individuals' condition affects the likelihood that they will reproduce sexually rather than asexually. In recent years, condition-dependent sex has been studied both theoretically and empirically. Empirical results in microbes, fungi and plants support the theoretical prediction that negative condition-dependent sex, in which individuals in poor condition are more likely to reproduce sexually, can be evolutionarily advantageous under a wide range of settings. Here, we review the evidence for condition-dependent sex and its potential implications for the long-term survival and adaptability of populations. We conclude by asking why condition-dependent sex is not more commonly observed, and by considering generalizations of condition-dependent sex that might apply even for obligate sexuals.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Yoav Ram
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lilach Hadany
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
98
|
Lopatkin AJ, Sysoeva TA, You L. Dissecting the effects of antibiotics on horizontal gene transfer: Analysis suggests a critical role of selection dynamics. Bioessays 2016; 38:1283-1292. [PMID: 27699821 DOI: 10.1002/bies.201600133] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Horizontal gene transfer (HGT) is a major mechanism responsible for the spread of antibiotic resistance. Conversely, it is often assumed that antibiotics promote HGT. Careful dissection of the literature, however, suggests a lack of conclusive evidence supporting this notion in general. This is largely due to the lack of well-defined quantitative experiments to address this question in an unambiguous manner. In this review, we discuss the extent to which HGT is responsible for the spread of antibiotic resistance and examine what is known about the effect of antibiotics on the HGT dynamics. We focus on conjugation, which is the dominant mode of HGT responsible for spreading antibiotic resistance on the global scale. Our analysis reveals a need to design experiments to quantify HGT in such a way to facilitate rigorous data interpretation. Such measurements are critical for developing novel strategies to combat resistance spread through HGT.
Collapse
Affiliation(s)
| | - Tatyana A Sysoeva
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
99
|
Karuppiah V, Thistlethwaite A, Derrick JP. Structures of type IV pilins from Thermus thermophilus demonstrate similarities with type II secretion system pseudopilins. J Struct Biol 2016; 196:375-384. [PMID: 27612581 PMCID: PMC5131608 DOI: 10.1016/j.jsb.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 11/30/2022]
Abstract
Type IV pilins are proteins which form polymers that extend from the surface of the bacterial cell; they are involved in mediating a wide variety of functions, including adhesion, motility and natural competence. Here we describe the determination of the crystal structures of three type IVa pilins proteins from the thermophile Thermus thermophilus. They form part of a cluster of pilus-like proteins within the genome; our results show that one, Tt1222, is very closely related to the main structural type IV pilin, PilA4. The other two, Tt1218 and Tt1219, also adopt canonical pilin-like folds but, interestingly, are most closely related to the structures of the type II secretion system pseudopilins, EpsI/GspI and XcpW/GspJ. GspI and GspJ have been shown to form a complex with another pseudopilin, GspK, and this heterotrimeric complex is known to play a key role in initiating assembly of a pseudopilus which is thought to drive the secretion process. The structural similarity of Tt1218 and Tt1219 to GspI and GspJ suggests that they might work in a similar way, to deliver functions associated with type IV pili in T. thermophilus, such as natural competence.
Collapse
Affiliation(s)
- Vijaykumar Karuppiah
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Angela Thistlethwaite
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Jeremy P Derrick
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
100
|
Kandel PP, Lopez SM, Almeida RPP, De La Fuente L. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats. Appl Environ Microbiol 2016; 82:5269-77. [PMID: 27316962 PMCID: PMC4988197 DOI: 10.1128/aem.01412-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/13/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. IMPORTANCE Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect vectors. This bacterium causes emerging diseases in various crops worldwide, including recent outbreaks in Europe. The mechanisms by which this bacterium adapts to new hosts is not understood, but it was previously shown that it is naturally competent, meaning that it can take up DNA from the environment and incorporate it into its genome (recombination). In this study, we show that the frequency of recombination is highest when the bacterium is grown under flow conditions in microfluidic chambers modeled after its natural habitats, and recombination was still high when the medium was amended with grapevine sap. Our results suggest that this bacterium is able to recombine when growing inside plants or insects, and this can be a mechanism of adaptation of this pathogen that causes incurable diseases.
Collapse
Affiliation(s)
- Prem P Kandel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Samantha M Lopez
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|