51
|
Khan MUA, Al-Thebaiti MA, Hashmi MU, Aftab S, Abd Razak SI, Abu Hassan S, Abdul Kadir MR, Amin R. Synthesis of Silver-Coated Bioactive Nanocomposite Scaffolds Based on Grafted Beta-Glucan/Hydroxyapatite via Freeze-Drying Method: Anti-Microbial and Biocompatibility Evaluation for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E971. [PMID: 32098139 PMCID: PMC7078890 DOI: 10.3390/ma13040971] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/15/2023]
Abstract
Advancement and development in bone tissue engineering, particularly that of composite scaffolds, are of great importance for bone tissue engineering. We have synthesized polymeric matrix using biopolymer (β-glucan), acrylic acid, and nano-hydroxyapatite through free radical polymerization method. Bioactive nanocomposite scaffolds (BNSs) were fabricated using the freeze-drying method and Ag was coated by the dip-coating method. The scaffolds have been characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction analysis (XRD) to investigate their functional groups, surface morphology, and phase analysis, respectively. The pore size and porosity of all BNS samples were found to be dependent on silver concentration. Mechanical testing of all BNS samples have substantial compressive strength in dry form that is closer to cancellous bone. The samples of BNS showed substantial antibacterial effect against DH5 alpha E. coli. The biological studies conducted using the MC3T3-E1 cell line via neutral red dye assay on the scaffolds have found to be biocompatible and non-cytotoxic. These bioactive scaffolds can bring numerous applications for bone tissue repairs and regenerations.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University (SJTU), 1954 Huashan Road, Shanghai 200030, China;
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia;
| | - Mesfer A. Al-Thebaiti
- Department of Biology, University of Hafr Al Batin, Hafar Al-batin 39524, Saudi Arabia;
| | - Muhammad Uzair Hashmi
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan;
| | - Saira Aftab
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan;
| | - Saiful Izwan Abd Razak
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University (SJTU), 1954 Huashan Road, Shanghai 200030, China;
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia Skudai, Skudai 81310, Malaysia;
| | - Shukur Abu Hassan
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia Skudai, Skudai 81310, Malaysia;
| | - Mohammed Rafiq Abdul Kadir
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia;
| | - Rashid Amin
- Department of Biology, University of Hafr Al Batin, Hafar Al-batin 39524, Saudi Arabia;
| |
Collapse
|
52
|
Yang X, Xiong X, Zhou W, Feng G, Zhang Y, Dai H, Zhou J. Effects of human urine-derived stem cells on the cementogenic differentiation of indirectly-cocultured periodontal ligament stem cells. Am J Transl Res 2020; 12:361-378. [PMID: 32194889 PMCID: PMC7061822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Human periodontal ligament stem cells (PDLSCs) have been widely applied as seed cells and cell sheets in periodontal tissue regeneration. Despite significant progress in PDLSCs application, it is a major challenge to promote cell proliferation and multiple differentiations of PDLSCs because cell numbers at the initial obtaining are limited. The goal of study was to determine the paracrine effects of human urine-derived stem cells (USCs) on cell proliferation and osteogenic differentiation of PDLSCs when USCs were indirectly-co-cultured with PDLSCs. After indirectly-co-cultured with USCs at different ratios (PDLSC/USC, 1/0.5, 1/1 and 1/2), number of PDLSCs among the three co-cultured groups visibly increased from day 5 to a similar extent, and the expression of osteogenic and cementogenic genes and proteins in the osteogenic medium significantly increased with an increasing proportion of USCs compared to USC-free control group. In addition, osteogenic matrix PDLSC sheets at a PDLSC/USC ratio of 1/2 contained denser collagen layers and exhibited increased osteogenic and cementogenic protein expression. In vivo transplantation showed that PDLSC sheets noncontact cocultured at a PDLSC/USC ratio of 1/2 formed more new and dense structures and expressed higher levels of osteogenic and cementogenic proteins. In conclusion, the present results demonstrate that USCs promote the proliferation and osteogenic and cementogenic differentiation of PDLSCs in a ratio-dependent manner through noncontact coculture and further accelerate the regeneration of new structures by osteogenic matrix PDLSC sheets in vivo. These results suggest their use as a new strategy for application in clinical periodontal tissue repair.
Collapse
Affiliation(s)
- Xiao Yang
- Stomatological Hospital of Chongqing Medical UniversityChongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing, China
| | - Xue Xiong
- Stomatological Hospital of Chongqing Medical UniversityChongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing, China
| | - Wenwen Zhou
- Stomatological Hospital of Chongqing Medical UniversityChongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing, China
| | - Gang Feng
- Stomatological Hospital of Chongqing Medical UniversityChongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing, China
| | - Yuanyuan Zhang
- The Institute for Regenerative Medicine, School of Medicine, Wake Forest UniversityWinston-Salem, North Carolina, USA
| | - Hongwei Dai
- Stomatological Hospital of Chongqing Medical UniversityChongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing, China
| | - Jianping Zhou
- Stomatological Hospital of Chongqing Medical UniversityChongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing, China
| |
Collapse
|
53
|
Shaikh MS, Ullah R, Lone MA, Matabdin H, Khan F, Zafar MS. Periodontal regeneration: a bibliometric analysis of the most influential studies. Regen Med 2020; 14:1121-1136. [PMID: 31957597 DOI: 10.2217/rme-2019-0019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: The aim of the present study is to identify the most influential research articles and their main characteristics in the specialty of periodontal regeneration. Materials & methods: The Web of Science database advance search was performed in the subject category of 'Dentistry, Oral surgery and medicine' from January 2004 to October 2018 to retrieve citations data. Results: The majority of the articles were published in journals dedicated to the specialty of periodontology. Among the top-cited articles most emphasized study types were randomized control trials (n = 25) and reviews (n = 20). Conclusion: The present bibliometric analysis provides comprehensive information regarding the contributions made in the advancement of regenerative periodontal research. The authors from developed countries and affiliated with interdisciplinary/multicenter institutions have predominantly contributed.
Collapse
Affiliation(s)
- Muhammad S Shaikh
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University Karachi, Pakistan
| | - Rizwan Ullah
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University Karachi, Pakistan
| | - Mohid A Lone
- Department of Oral Pathology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University Karachi, Pakistan
| | - Hesham Matabdin
- Department of Periodontics, Eastman Dental Institute, University College London, London, UK
| | - Fahad Khan
- Faculty of Healthcare & Medical Sciences, Anglia Ruskin University Cambridge, UK
| | - Muhammad S Zafar
- Department of Restorative Dentistry, Taibah University, Madina Munawwarra, Saudi Arabia.,Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
54
|
Arabaci T, Albayrak M. Titanium-prepared platelet-rich fibrin provides advantages on periodontal healing: A randomized split-mouth clinical study. J Periodontol 2019; 89:255-264. [PMID: 29543995 DOI: 10.1002/jper.17-0294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND The aim of this study to evaluate the contributions of titanium-prepared platelet-rich fibrin (T-PRF) combined with open flap debridement (OFD) on biological markers in gingival crevicular fluid (GCF)and periodontal outcomes. METHODS Twenty-nine participants with chronic periodontitis were treated either with autologous T-PRF+OFD or OFD alone. GCF growth factor levels and relative receptor activator nuclear factor kappa-B/osteoprotegerin (RANKL/OPG) ratio at baseline and 2, 4, and 6 weeks postoperatively were analyzed, and clinical parameters such as probing depth (PD), relative attachment level (RAL) and gingival margin level (GML) at baseline and 9 months after surgery were compared. RESULTS The mean PD reduction, RAL gain, and GML change were significantly greater in the OFD+T-PRF sites than in the OFD sites (P = 0.033, P = 0.029, and P = 0.026, respectively). Both groups demonstrated increased growth factor levels at week 2 compared with baseline, followed by reductions at weeks 4 and 6. GCF growth factor levels in the test group were seen at higher concentrations with respect to control group until 6 weeks post-surgery. During this 6-week period, relative RANKL/OPG ratio was found significantly lower in the OFD+T-PRF group compared to the OFD group(P < 0.05). CONCLUSIONS Using T-PRF membrane combined with OFD provided significantly higher concentrations of growth factors and lower RANKL/OPG ratio in GCF for approximately 4 to 6 weeks, and improved periodontal healing compared to conventional flap sites.
Collapse
Affiliation(s)
- Taner Arabaci
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Mevlut Albayrak
- Medical Laboratory Department, Health Services Vocational Training School, Ataturk University, Erzurum, Turkey
| |
Collapse
|
55
|
Abstract
Bone augmentation is an extremely common procedure in implant dentistry today because of significant advancements with reactive biomaterials, a better understanding of the mechanism of action that is found with growth factors contained in platelets, and improvements in surgical techniques. The expectation is for the surgeon to place the dental implant in the position that best serves the requirements of the prosthetic restorations. With the increasing demands that patients have for ideal prosthetic results, surgeons are expected to predictably augment both hard and soft tissues to provide the anticipated esthetic and functional outcomes. Bone grafting can be performed before, during, and after the implant placement; however, these augmentation procedures come with increased cost, the risk of complications such as infection or failure, and lengthening of the total treatment time. In addition, a plethora of grafting materials are available commercially, where they are often inadequately studied, or there is minimal information regarding their predictability or long-term success, or ability to support dental implants. It is clear that although the surgical field has seen major progress since early implant surgical techniques in the 1980s, major challenges still exist with hard tissue augmentation procedures. This review will discuss these challenges that are increased and often specific to bone graft healing, and which are becoming more common as implant site development often requires bone augmentation to improve volume or contour deficiencies. The risk factors that patients may present with that will affect outcomes with bone augmentation procedures are identified, and recommendations for the prevention of complications or managing complications once they have occurred are provided.
Collapse
Affiliation(s)
- Peter K Moy
- Department of Oral & Maxillofacial Surgery, UCLA, School of Dentistry, Los Angeles, California, USA
| | - Tara Aghaloo
- Department of Oral & Maxillofacial Surgery, UCLA, School of Dentistry, Los Angeles, California, USA
| |
Collapse
|
56
|
Park CH. Biomaterial-Based Approaches for Regeneration of Periodontal Ligament and Cementum Using 3D Platforms. Int J Mol Sci 2019; 20:E4364. [PMID: 31491973 PMCID: PMC6770383 DOI: 10.3390/ijms20184364] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Currently, various tissue engineering strategies have been developed for multiple tissue regeneration and integrative structure formations as well as single tissue formation in musculoskeletal complexes. In particular, the regeneration of periodontal tissues or tooth-supportive structures is still challenging to spatiotemporally compartmentalize PCL (poly-ε-caprolactone)-cementum constructs with micron-scaled interfaces, integrative tissue (or cementum) formations with optimal dimensions along the tooth-root surfaces, and specific orientations of engineered periodontal ligaments (PDLs). Here, we discuss current advanced approaches to spatiotemporally control PDL orientations with specific angulations and to regenerate cementum layers on the tooth-root surfaces with Sharpey's fiber anchorages for state-of-the-art periodontal tissue engineering.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea.
- Institute for Biomaterials Research and Development, Kyungpook National University, Daegu 41940, Korea.
| |
Collapse
|
57
|
Issa DR, Abdel-Ghaffar KA, Al-Shahat MA, Hassan AAA, Iacono VJ, Gamal AY. Guided tissue regeneration of intrabony defects with perforated barrier membranes, simvastatin, and EDTA root surface modification: A clinical and biochemical study. J Periodontal Res 2019; 55:85-95. [PMID: 31448832 DOI: 10.1111/jre.12692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 07/08/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Perforated barrier membranes (PBM) were suggested to enhance periodontal regeneration by allowing positive charity of wanted elements from the gingival tissue side. The present study was designed to evaluate clinically and biochemically the use of PBM combined with simvastatin (SMV) gel with and without an associated EDTA gel root surface etching as a suggested option that could improve SMV availability and clinical outcomes of PBM. METHODS Forty patients having moderate-to-severe chronic periodontitis with 40 intrabony defects were randomly divided into four treatment groups (10 sites each). Patients in group 1 received 1.2% SMV gel and covering the defect with occlusive membrane (OM). Patients in group 2 received 1.2% SMV gel and covering the defect with PBM. Group 3 received 24% EDTA root surface etching, 1.2% SMV gel, and defect coverage with OM (eOM). Patients in group 4 were treated as in group 3 but the defect was covered with PBM (ePBM). Clinical parameters were recorded at baseline before surgical procedures and were reassessed at 6 and 9 months after therapy. The mean concentration of SMV in gingival crevicular fluid (GCF) was estimated by reverse-phase high-performance liquid chromatography at days 1, 7, 14, 21, and 30. RESULTS At 6- and 9-month observation periods, groups 3 and 4 showed a statistically significant improvement in PD reduction and CAL gain compared with groups 1 and 2. Group 4 showed a statistically significant more defect fill compared with groups 1, 2, and 3 (P ≤ .05). Group 2 showed statistically significant higher defect fill compared with group 1 and group 3 (P < .05). Bone density was significantly increased with no significant difference between the four groups at 6- and 9-month observation periods. SMV-GCF concentration in group 4 showed the highest mean concentration with no significant difference than that of group 3. CONCLUSION The use of perforated barrier membranes in association with SMV enhances the clinical hard tissue parameters compared with occlusive ones in treating intrabony periodontal defects. Moreover, EDTA root surface treatment could enhance SMV availability in the defect area.
Collapse
Affiliation(s)
- Dalia Rasheed Issa
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Khaled A Abdel-Ghaffar
- Department of Periodontology, Faculty of Dental Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed A Al-Shahat
- Department of Periodontology, Faculty of Dental Medicine, Delta University for science and technology, Cairo, Egypt
| | - Ahmed Abdel Aziz Hassan
- Department of Periodontology, Faculty of Dental Medicine, Ain Shams University, Cairo, Egypt
| | - Vincent J Iacono
- School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ahmed Y Gamal
- Department of Periodontology, Faculty of Oral and Dental Medicine, Nahda University, Benisweif, Egypt
| |
Collapse
|
58
|
Biodegradable Polymer Films with a Natural Antibacterial Extract as Novel Periodontal Barrier Membranes. Int J Biomater 2019; 2019:7932470. [PMID: 31485230 PMCID: PMC6710769 DOI: 10.1155/2019/7932470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Biodegradable composite membranes containing propolis were produced from PCL/PLLA blends using a simple and low-cost solvent casting method, and subsequently their physicochemical, mechanical, and antibacterial properties were characterized. SEM analysis revealed that the addition of propolis has created honeycomb-like structures on the film surfaces. The flexibility of the films increased in the presence of propolis, which may provide ease of use during application. Propolis disrupted the organized structure of both polymers at the molecular level and caused decreases in the melting points. The films with propolis showed faster degradation in physiological conditions due to this molecular disruption. Moreover, the PLLA/PCL/propolis composite films exhibited remarkable antibacterial activities against S. aureus. Collectively, the data suggest that the produced films might be used as an alternative to exiting barrier membranes in guided tissue regeneration.
Collapse
|
59
|
Goker F, Larsson L, Del Fabbro M, Asa'ad F. Gene Delivery Therapeutics in the Treatment of Periodontitis and Peri-Implantitis: A State of the Art Review. Int J Mol Sci 2019; 20:ijms20143551. [PMID: 31330797 PMCID: PMC6679027 DOI: 10.3390/ijms20143551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Periodontal disease is a chronic inflammatory condition that affects supporting tissues around teeth, resulting in periodontal tissue breakdown. If left untreated, periodontal disease could have serious consequences; this condition is in fact considered as the primary cause of tooth loss. Being highly prevalent among adults, periodontal disease treatment is receiving increased attention from researchers and clinicians. When this condition occurs around dental implants, the disease is termed peri-implantitis. Periodontal regeneration aims at restoring the destroyed attachment apparatus, in order to improve tooth stability and thus reduce disease progression and subsequent periodontal tissue breakdown. Although many biomaterials have been developed to promote periodontal regeneration, they still have their own set of disadvantages. As a result, regenerative medicine has been employed in the periodontal field, not only to overcome the drawbacks of the conventional biomaterials but also to ensure more predictable regenerative outcomes with minimal complications. Regenerative medicine is considered a part of the research field called tissue engineering/regenerative medicine (TE/RM), a translational field combining cell therapy, biomaterial, biomedical engineering and genetics all with the aim to replace and restore tissues or organs to their normal function using in vitro models for in vivo regeneration. In a tissue, cells are responding to different micro-environmental cues and signaling molecules, these biological factors influence cell differentiation, migration and cell responses. A central part of TE/RM therapy is introducing drugs, genetic materials or proteins to induce specific cellular responses in the cells at the site of tissue repair in order to enhance and improve tissue regeneration. In this review, we present the state of art of gene therapy in the applications of periodontal tissue and peri-implant regeneration. PURPOSE We aim herein to review the currently available methods for gene therapy, which include the utilization of viral/non-viral vectors and how they might serve as therapeutic potentials in regenerative medicine for periodontal and peri-implant tissues.
Collapse
Affiliation(s)
- Funda Goker
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milano, Italy
| | - Lena Larsson
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milano, Italy
- IRCCS Orthopedic Institute Galeazzi, 20161 Milano, Italy
| | - Farah Asa'ad
- Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
| |
Collapse
|
60
|
Seciu AM, Craciunescu O, Stanciuc AM, Zarnescu O. Tailored Biomaterials for Therapeutic Strategies Applied in Periodontal Tissue Engineering. Stem Cells Dev 2019; 28:963-973. [PMID: 31020906 DOI: 10.1089/scd.2019.0016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several therapeutic strategies are currently in development for severe periodontitis and other associated chronic inflammatory diseases. Guided tissue regeneration of the periodontium is based on surgical implantation of natural or synthetic polymers conditioned as membranes, injectable biomaterials (hydrogels), or three-dimensional (3D) matrices. Combinations of biomaterials with bioactive factors represent the next generation of regenerative strategy. Cell delivery strategy based on scaffold-cell constructs showed potential in periodontitis treatment. Bioengineering of periodontal tissues using cell sheets and genetically modified stem cells is currently proposed to complete existing (pre)clinical procedures for periodontal regeneration. 3D structures can be built using computer-assisted manufacturing technologies to improve the implant architecture effect on new tissue formation. The aim of this review was to summarize the advantages and drawbacks of biomimetic composite matrices used as biomaterials for periodontal tissue engineering. Their conditioning as two-dimensional or 3D scaffolds using conventional or emerging technologies was also discussed. Further biotechnologies are required for developing novel products tailored to stimulate periodontal regeneration. Additional preclinical studies will be useful to closely investigate the mechanisms and identify specific markers involved in cell-implant interactions, envisaging further clinical tests. Future therapeutic protocols will be developed based on these novel procedures and techniques.
Collapse
Affiliation(s)
- Ana-Maria Seciu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Oana Craciunescu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Ana-Maria Stanciuc
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Otilia Zarnescu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
61
|
Carmagnola D, Pellegrini G, Dellavia C, Rimondini L, Varoni E. Tissue engineering in periodontology: Biological mediators for periodontal regeneration. Int J Artif Organs 2019; 42:241-257. [DOI: 10.1177/0391398819828558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Teeth and the periodontal tissues represent a highly specialized functional system. When periodontal disease occurs, the periodontal complex, composed by alveolar bone, root cementum, periodontal ligament, and gingiva, can be lost. Periodontal regenerative medicine aims at recovering damaged periodontal tissues and their functions by different means, including the interaction of bioactive molecules, cells, and scaffolds. The application of growth factors, in particular, into periodontal defects has shown encouraging effects, driving the wound healing toward the full, multi-tissue periodontal regeneration, in a precise temporal and spatial order. The aim of the present comprehensive review is to update the state of the art concerning tissue engineering in periodontology, focusing on biological mediators and gene therapy.
Collapse
Affiliation(s)
- Daniela Carmagnola
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Gaia Pellegrini
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Claudia Dellavia
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Lia Rimondini
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “Amedeo Avogadro,” Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases, CAAD, Università del Piemonte Orientale “Amedeo Avogadro,” Novara, Italy
| | - Elena Varoni
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
62
|
Cho YD, Kim KH, Ryoo HM, Lee YM, Ku Y, Seol YJ. Recent Advances of Useful Cell Sources in the Periodontal Regeneration. Curr Stem Cell Res Ther 2019; 14:3-8. [DOI: 10.2174/1574888x13666180816113456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022]
Abstract
Background:
Periodontitis is an inflammatory disease that can result in destruction of the
tooth attachment apparatus. Therefore, periodontal tissue regeneration is currently an important focus of
research in the field. Approaches using stem cells and reprogrammed cells, such as induced pluripotent
stem cells (iPSCs) or trans-differentiated cells, represent the cutting edge in periodontal regeneration,
and have led to many trials for their clinical application.
Objectives and Results:
In this review, we consider all available stem cell sources, methods to obtain
the cells, their capability to differentiate into the desired cells, and the extent of their utilization in
periodontal regeneration. In addition, we introduce the new concepts of using iPSCs and transdifferentiated
cells for periodontal regeneration. Finally, we discuss the promise of tissue engineering
for improving cell therapy outcomes for periodontal regeneration.
Conclusions:
Despite their limitations, iPSCs and trans-differentiated cells may be promising cell
sources for periodontal tissue regeneration. Further collaborative investigation is required for the effective
and safe application of these cells in combination with tissue engineering elements, like scaffolds
and biosignals.
Collapse
Affiliation(s)
- Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Kyoung-Hwa Kim
- Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Young Ku
- Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Yang-Jo Seol
- Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| |
Collapse
|
63
|
Zheng Y, Li X, Huang Y, Jia L, Li W. Time series clustering of mRNA and lncRNA expression during osteogenic differentiation of periodontal ligament stem cells. PeerJ 2018; 6:e5214. [PMID: 30038865 PMCID: PMC6052852 DOI: 10.7717/peerj.5214] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are regulatory molecules that participate in biological processes such as stem cell differentiation. Periodontal ligament stem cells (PDLSCs) exhibit great potential for the regeneration of periodontal tissue and the formation of new bone. However, although several lncRNAs have been found to be involved in the osteogenic differentiation of PDLSCs, the temporal transcriptomic landscapes of mRNAs and lncRNAs need to be mapped to obtain a complete picture of osteoblast differentiation. In this study, we aimed to characterize the time-course expression patterns of lncRNAs during the osteogenic differentiation of PDLSCs and to identify the lncRNAs that are related to osteoblastic differentiation. Methods We cultured PDLSCs in an osteogenic medium for 3, 7, or 14 days. We then used RNA sequencing (RNA-seq) to analyze the expression of the coding and non-coding transcripts in the PDLSCs during osteogenic differentiation. We also utilized short time-series expression miner (STEM) to describe the temporal patterns of the mRNAs and lncRNAs. We then performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses to assess the biological relevance of genes in each profile, and used quantitative real-time PCR (qRT-PCR) to validate the differentially expressed mRNAs and lncRNAs that were associated with osteoblast differentiation. Lastly, we performed a knock down of two lncRNAs, MEG8, and MIR22HG, and evaluated the expression of osteogenic markers. Results When PDLSCs were differentiated to osteoblasts, mRNAs associated with bone remodeling, cell differentiation, and cell apoptosis were upregulated while genes associated with cell proliferation were downregulated. lncRNAs showed stage-specific expression, and more than 200 lncRNAs were differentially expressed between the undifferentiated and osteogenically differentiated PDLSCs. Using STEM, we identified 25 temporal gene expression profiles, among which 14 mRNA and eight lncRNA profiles were statistically significant. We found that genes in pattern 12 were associated with osteoblast differentiation. The expression patterns of osteogenic mRNAs (COL6A1, VCAN, RRBP1, and CREB3L1) and lncRNAs (MEG8 and MIR22HG) were consistent between the qRT-PCR and RNA-seq results. Moreover, the knockdown of MEG8 and MIR22HG significantly decreased the expression of osteogenic markers (runt-related transcription factor 2 and osteocalcin). Discussion During the osteogenic differentiation of PDLSCs, both mRNAs and lncRNAs showed stage-specific expression. lncRNAs MEG8 and MIR22HG showed a high correlation with osteoblastogenesis. Our results can be used to gain a more comprehensive understanding of the molecular events regulating osteoblast differentiation and the identification of functional lncRNAs in PDLSCs.
Collapse
Affiliation(s)
- Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaobei Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
64
|
Struillou X, Fruchet A, Rakic M, Badran Z, Rethore G, Sourice S, Fellah BH, LE Guehennec L, Gauthier O, Weiss P, Soueidan A. Evaluation of a hydrogel membrane on bone regeneration in furcation periodontal defects in dogs. Dent Mater J 2018; 37:825-834. [PMID: 29925730 DOI: 10.4012/dmj.2017-238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the study was to evaluate bone regeneration using a canine model with surgically created periodontal defects filled for 12 weeks using a stratified biomaterial consisting in a biphasic calcium phosphate (BCP) covered with a crosslinking hydrogel acting as polymer membrane of silated hydroxypropyl methylcellulose (Si-HPMC) as the tested new concept. Bilateral, critical-sized, defects were surgically created at the mandibular premolar teeth of six adult beagle dogs. The defects were randomly allocated and: (i) left empty for spontaneous healing or filled with: (ii) BCP and a collagen membrane; (iii) BCP and hydrogel Si-HPMC membrane. At 12 weeks, the experimental conditions resulted in significantly enhanced bone regeneration in the test BCP/Si-HPMC group. Within the limits of this study, we suggest that the hydrogel Si-HPMC may act as an occlusive barrier to protect bone area from soft connective tissue invasion and then effectively contribute to enhance bone regeneration.
Collapse
Affiliation(s)
- Xavier Struillou
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Department of Periodontology, Faculty of Dental Surgery, University of Nantes.,Nantes University Hospital, UIC Odontology
| | - Aurélien Fruchet
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Nantes University Hospital, UIC Odontology
| | - Mia Rakic
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Institute for Biological Research "Sinisa Stankovic", University of Belgrade
| | - Zahi Badran
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Department of Periodontology, Faculty of Dental Surgery, University of Nantes.,Faculty of Dentistry, Mcgill University
| | - Gildas Rethore
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Nantes University Hospital, UIC Odontology
| | - Sophie Sourice
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes
| | | | - Laurent LE Guehennec
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Nantes University Hospital, UIC Odontology
| | - Olivier Gauthier
- ONIRIS, College of Veterinary Medicine, Department of Small Animal Surgery
| | - Pierre Weiss
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Nantes University Hospital, UIC Odontology
| | - Assem Soueidan
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Department of Periodontology, Faculty of Dental Surgery, University of Nantes.,Nantes University Hospital, UIC Odontology
| |
Collapse
|
65
|
Sahar-Helft S, Chackartchi T, Polak D, Findler M. Dental treatment in the era of new anti-thrombotic agents. Int Dent J 2018; 68:131-137. [DOI: 10.1111/idj.12322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
66
|
Salamanca E, Pan YH, Tsai AI, Lin PY, Lin CK, Huang HM, Teng NC, Wang PD, Chang WJ. Enhancement of Osteoblastic-Like Cell Activity by Glow Discharge Plasma Surface Modified Hydroxyapatite/β-Tricalcium Phosphate Bone Substitute. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1347. [PMID: 29168776 PMCID: PMC5744282 DOI: 10.3390/ma10121347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/11/2017] [Accepted: 11/21/2017] [Indexed: 11/17/2022]
Abstract
Glow discharge plasma (GDP) treatments of biomaterials, such as hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) composites, produce surfaces with fewer contaminants and may facilitate cell attachment and enhance bone regeneration. Thus, in this study we used argon glow discharge plasma (Ar-GDP) treatments to modify HA/β-TCP particle surfaces and investigated the physical and chemical properties of the resulting particles (HA/β-TCP + Ar-GDP). The HA/β-TCP particles were treated with GDP for 15 min in argon gas at room temperature under the following conditions: power: 80 W; frequency: 13.56 MHz; pressure: 100 mTorr. Scanning electron microscope (SEM) observations showed similar rough surfaces of HA/β-TCP + Ar-GDP HA/β-TCP particles, and energy dispersive spectrometry analyses showed that HA/β-TCP surfaces had more contaminants than HA/β-TCP + Ar-GDP surfaces. Ca/P mole ratios in HA/β-TCP and HA/β-TCP + Ar-GDP were 1.34 and 1.58, respectively. Both biomaterials presented maximal intensities of X-ray diffraction patterns at 27° with 600 a.u. At 25° and 40°, HA/β-TCP + Ar-GDP and HA/β-TCP particles had peaks of 200 a.u., which are similar to XRD intensities of human bone. In subsequent comparisons, MG-63 cell viability and differentiation into osteoblast-like cells were assessed on HA/β-TCP and HA/β-TCP + Ar-GDP surfaces, and Ar-GDP treatments led to improved cell growth and alkaline phosphatase activities. The present data indicate that GDP surface treatment modified HA/β-TCP surfaces by eliminating contaminants, and the resulting graft material enhanced bone regeneration.
Collapse
Affiliation(s)
- Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Hwa Pan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei 105, Taiwan.
- Graduate Institute of Dental & Craniofacial Science, Chang Gung University, Taoyuan 333, Taiwan.
- School of Dentistry, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Aileen I Tsai
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei 105, Taiwan.
| | - Pei-Ying Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Ching-Kai Lin
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei 105, Taiwan.
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Dental Department, Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Peter D Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Dental Department, Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Dental Department, Taipei Medical University, Shuang-Ho Hospital, Taipei 235, Taiwan.
| |
Collapse
|
67
|
Engineered scaffolds and cell-based therapy for periodontal regeneration. J Appl Biomater Funct Mater 2017; 15:e303-e312. [PMID: 29131300 DOI: 10.5301/jabfm.5000389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The main objective of regenerative periodontal therapy is to completely restore the periodontal tissues lost. This review summarizes the most recent evidence in support of scaffold- and cell-based tissue engineering, which are expected to play a relevant role in next-generation periodontal regenerative therapy. METHODS A literature search (PubMed database) was performed to analyze more recently updated articles regarding periodontal regeneration, scaffolds and cell-based technologies. RESULTS Evidence supports the importance of scaffold physical cues to promote periodontal regeneration, including scaffold multicompartmentalization and micropatterning. The in situ delivery of biological mediators and/or cell populations, both stem cells and already differentiated cells, has shown promising in vivo efficacy. CONCLUSIONS Porous scaffolds are pivotal for clot stabilization, wound compartmentalization, cell homing and cell nutrients delivery. Given the revolutionary introduction of rapid prototyping technique and cell-based therapies, the fabrication of custom-made scaffolds is not far from being achieved.
Collapse
|
68
|
Varoni EM, Vijayakumar S, Canciani E, Cochis A, De Nardo L, Lodi G, Rimondini L, Cerruti M. Chitosan-Based Trilayer Scaffold for Multitissue Periodontal Regeneration. J Dent Res 2017; 97:303-311. [PMID: 29045803 DOI: 10.1177/0022034517736255] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Periodontal regeneration is still a challenge for periodontists and tissue engineers, as it requires the simultaneous restoration of different tissues-namely, cementum, gingiva, bone, and periodontal ligament (PDL). Here, we synthetized a chitosan (CH)-based trilayer porous scaffold to achieve periodontal regeneration driven by multitissue simultaneous healing. We produced 2 porous compartments for bone and gingiva regeneration by cross-linking with genipin either medium molecular weight (MMW) or low molecular weight (LMW) CH and freeze-drying the resulting scaffolds. We synthetized a third compartment for PDL regeneration by CH electrochemical deposition; this allowed us to produce highly oriented microchannels of about 450-µm diameter intended to drive PDL fiber growth toward the dental root. In vitro characterization showed rapid equilibrium water content for MMW-CH and LMW-CH compartments (equilibrium water content after 5 min >85%). The MMW-CH compartment degraded more slowly and provided significantly more resistance to compression (28% ± 1% of weight loss at 4 wk; compression modulus HA = 18 ± 6 kPa) than the LMW-CH compartment (34% ± 1%; 7.7 ± 0.8 kPa) as required to match the physiologic healing rates of bone and gingiva and their mechanical properties. More than 90% of all human primary periodontal cell populations tested on the corresponding compartment survived during cytocompatibility tests, showing active cell metabolism in the alkaline phosphatase and collagen deposition assays. In vivo tests showed high biocompatibility in wild-type mice, tissue ingrowth, and vascularization within the scaffold. Using the periodontal ectopic model in nude mice, we preseeded scaffold compartments with human gingival fibroblasts, osteoblasts, and PDL fibroblasts and found a dense mineralized matrix within the MMW-CH region, with weakly mineralized deposits at the dentin interface. Together, these results support this resorbable trilayer scaffold as a promising candidate for periodontal regeneration.
Collapse
Affiliation(s)
- E M Varoni
- 1 Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy.,2 Department of Materials Engineering, McGill University, Montreal, Canada
| | - S Vijayakumar
- 2 Department of Materials Engineering, McGill University, Montreal, Canada
| | - E Canciani
- 1 Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - A Cochis
- 1 Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy.,3 Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - L De Nardo
- 4 Department of Chemistry, Materials, and Chemical Engineering "G. Natta," Politecnico di Milano, Milano, Italy.,5 INSTM, Consorzio Nazionale di Scienza e Tecnologia dei Materiali, Firenze, Italy
| | - G Lodi
- 1 Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - L Rimondini
- 3 Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - M Cerruti
- 2 Department of Materials Engineering, McGill University, Montreal, Canada
| |
Collapse
|
69
|
Inhibiting PHD2 in bone marrow mesenchymal stem cells via lentiviral vector-mediated RNA interference facilitates the repair of periodontal tissue defects in SD rats. Oncotarget 2017; 8:72676-72699. [PMID: 29069818 PMCID: PMC5641161 DOI: 10.18632/oncotarget.20243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) play an important role in angiogenesis, and they can activate the expression of several downstream angiogenic factors. HIF-1 is a major transcriptor of HIFs, composed of α and β subunits. Prolyl hydroxylase domain-containing protein 2 (PHD2) is the main catabolic enzyme for HIF-1α, and it can accelerate its degradation under normoxic conditions. PHD2 expression in bone marrow mesenchymal stem cells (BMMSCs) of SD rats was down-regulated under normoxic conditions in this study by utilizing lentiviral vector-mediated RNA interference to promote HIF-1α accumulation, thus enhancing the expression of angiogenic factors. A tissue-engineered compound was constructed using the composite collagen membrane of BMMSCs after PHD2 gene silencing to repair periodontal fenestration defects in SD rats. The results of this study indicated that, after PHD2 gene silencing, the osteogenic differentiation of BMMSCs was enhanced in vitro, the resistance of cells to oxidative stress was also validated in vitro, thereby illustrating the promotion of the repair of artificially constructed periodontal tissue defects in rats. The results of this study provide a reference and guidance for future applications of RNA interference in periodontal tissue engineering and serve as a basis for improving the survival of seed cells in recipient tissues.
Collapse
|
70
|
Ern C, Berger T, Frasheri I, Heym R, Hickel R, Folwaczny M. Differentiation of hMSC and hPDLSC induced by PGE2 or BMP-7 in 3D models. Prostaglandins Leukot Essent Fatty Acids 2017; 122:30-37. [PMID: 28735626 DOI: 10.1016/j.plefa.2017.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/06/2017] [Accepted: 06/12/2017] [Indexed: 01/14/2023]
Abstract
Regenerative therapies of pathogenic tissue defects are gaining increasing importance in periodontology. Among others, the osteogenic effect of BMP-7 seems to play a major role in the development of teeth and alveolar bone. Human periodontal ligament stem cells (hPDLSC), as well as human mesenchymal stem cells (hMSC), show the ability to differentiate into various types of tissues. Regarding prostaglandin E2, many studies have confirmed that it is involved in the inflammation associated to periodontitis stimulating osteoclasts, which ultimately leads to resorption of tooth supporting bone. Herein, we aimed to investigate how PGE2 influences regenerative processes. The influence of PGE2 and BMP-7 on the osteogenic differentiation of hMSC and hPDLSC was determined in a 3D cell culture model using qRT-PCR, immunocytochemistry and REM. BMP-7 enhanced the expression of osteogenic markers in hMSC and lowered it in hPDLSC-TERT. BMP-7 had a lower osteogenic effect on hPDLSC-hTERT than on hMSC, while PGE2 decreases the osteogenic differentiation in both cell types, thus, inhibiting anabolic processes. Both cell types presented good proliferation and adhesion onto the scaffolds. The well-developed structural morphology and the support of osteogenic differentiation suggest that the scaffolds are potential candidate materials for bone regeneration. The positivity for Cap in hPDLSC and more in hMSC immunostaining samples indicates the initiation of neocementogenesis as part of periodontal regeneration. In conclusion, BMP7, in particular combined with MSC, seems to have a favourable application also in periodontal regeneration. Our results show that inflammation plays an important role in periodontal regeneration. PGE2 is a key mediator, which stimulates bone resorption also via a mechanism involving the inhibition of osteogenic differentiation of MSC as well as PDLSC. Therefore, regenerative approaches should always be conducted in combination with anti-inflammatory measures oriented to control inflammation.
Collapse
Affiliation(s)
- Christina Ern
- Department of Operative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-Universität München, Germany.
| | - Tamara Berger
- Department of Operative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-Universität München, Germany; Max Planck Institute of Psychiatry, Munich, Germany.
| | - Iris Frasheri
- Department of Operative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-Universität München, Germany.
| | - Richard Heym
- Department of Operative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-Universität München, Germany.
| | - Reinhard Hickel
- Department of Operative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-Universität München, Germany.
| | - Matthias Folwaczny
- Department of Operative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-Universität München, Germany.
| |
Collapse
|
71
|
Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res 2017; 21:9. [PMID: 28593053 PMCID: PMC5460509 DOI: 10.1186/s40824-017-0095-5] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
Periodontal disease is categorized by the destruction of periodontal tissues. Over the years, there have been several clinical techniques and material options that been investigated for periodontal defect repair/regeneration. The development of improved biomaterials for periodontal tissue engineering has significantly improved the available treatment options and their clinical results. Bone replacement graft materials, barrier membranes, various growth factors and combination of these have been used. The available bone tissue replacement materials commonly used include autografts, allografts, xenografts and alloplasts. These graft materials mostly function as osteogenic, osteoinductive and/or osteoconductive scaffolds. Polymers (natural and synthetic) are more widely used as a barrier material in guided tissue regeneration (GTR) and guided bone regeneration (GBR) applications. They work on the principle of epithelial cell exclusion to allow periodontal ligament and alveolar bone cells to repopulate the defect before the normally faster epithelial cells. However, in an attempt to overcome complications related to the epithelial down-growth and/or collapse of the non-rigid barrier membrane and to maintain space, clinicians commonly use a combination of membranes with hard tissue grafts. This article aims to review various available natural tissues and biomaterial based bone replacement graft and membrane options used in periodontal regeneration applications.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, 25 Orde St, Toronto, ON M5T 3H7 Canada
| | - Nader Hamdan
- Department of Dental Clinical Sciences, Faculty of Dentistry, Dalhousie University, 5981 University Avenue, PO Box 15000, Halifax, Nova Scotia B3H 4R2 Canada
| | - Yuichi Ikeda
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-5810 Japan
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, 25 Orde St, Toronto, ON M5T 3H7 Canada
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
| |
Collapse
|
72
|
Hatayama T, Nakada A, Nakamura H, Mariko W, Tsujimoto G, Nakamura T. Regeneration of gingival tissue using in situ tissue engineering with collagen scaffold. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 124:348-354.e1. [PMID: 28690084 DOI: 10.1016/j.oooo.2017.05.471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/25/2017] [Accepted: 05/06/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of the study was to evaluate 2 types of collagen scaffold for gingival regeneration. STUDY DESIGN Two types of collagen scaffolds, CS-pH7.4 and CS-pH3.0, were prepared by processing atelocollagen at pH 7.4 or 3.0, respectively, followed by dehydrothermal treatment. Gingival wounds with sizes of 4 × 6 mm (rectangle) or 6 mm diameter (circle) were made with buccal incisions in beagle dogs. The defective area was surgically covered with the CS-pH7.4, CS-pH3.0, or no scaffold (control). Gingival regeneration was assessed by monitoring the differences in the lengths of the epithelial and submucosal tissues at the wound site and the normal site. Histopathologic assessments were performed by 4 evaluators independently; statistical significance was evaluated by using the Wald test. RESULTS Significantly higher recovery of epithelial and submucosal tissues, which, in turn, resulted in recovery of gum thickness, was observed in gingival wounds treated with the CS-pH7.4 compared with that in the control. CS-pH3.0 treatment also resulted in higher gingival regeneration compared with the control; however, the effects were more pronounced in wounds treated with the CS-pH7.4. CS-pH7.4-treated wounds showed better gingival regeneration compared with the control and CS-pH3.0-treated wounds, even after adjusting for interevaluator differences using a linear mixed model. CONCLUSIONS CS-pH7.4 is a promising scaffold for gingival tissue regeneration.
Collapse
Affiliation(s)
- Takahide Hatayama
- Laboratory of Organ and Tissue Reconstruction, Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akira Nakada
- Laboratory of Organ and Tissue Reconstruction, Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroki Nakamura
- Laboratory of Organ and Tissue Reconstruction, Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Wakatsuki Mariko
- Laboratory of Organ and Tissue Reconstruction, Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Gentarou Tsujimoto
- Laboratory of Organ and Tissue Reconstruction, Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tatsuo Nakamura
- Department of Regeneration Science and Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
73
|
Arabacı T, Kose O, Albayrak M, Cicek Y, Kizildag A. Advantages of Autologous Platelet-Rich Fibrin Membrane on Gingival Crevicular Fluid Growth Factor Levels and Periodontal Healing: A Randomized Split-Mouth Clinical Study. J Periodontol 2017; 88:771-777. [PMID: 28452623 DOI: 10.1902/jop.2017.160485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND This study evaluates contributions of platelet-rich fibrin (PRF) combined with conventional flap surgery on growth factor levels in gingival crevicular fluid (GCF) and periodontal healing. METHODS Twenty-six patients (52 sites) with chronic periodontitis were treated either with autologous PRF with open flap debridement (OFD+PRF) or OFD alone. Growth factor levels in GCF at baseline and 2, 4, and 6 weeks after surgery were analyzed, and clinical parameters such as probing depth (PD), relative clinical attachment level (rCAL), and gingival margin level (GML) at baseline and 9 months after surgery were measured. RESULTS Mean PD reduction and rCAL gain were significantly greater in OFD+PRF sites than in OFD sites. Mean GML change was -0.38 + 0.10 mm in OFD sites and 0.11 + 0.08 mm in the test group; difference between the two groups was statistically significant (P <0.05). Both groups demonstrated increased expression levels of fibroblast growth factor-2, transforming growth factor-β1, and platelet-derived growth factor-BB at 2 weeks compared with baseline, followed by reductions at 4 and 6 weeks. The OFD+PRF group showed significantly higher growth factor levels compared with the OFD group at 2 and 4 weeks. CONCLUSION PRF membrane combined with OFD provides significantly higher GCF concentrations of angiogenic biomarkers for ≈2 to 4 weeks and better periodontal healing in terms of conventional flap sites.
Collapse
Affiliation(s)
- Taner Arabacı
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Oguz Kose
- Department of Periodontology, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Mevlut Albayrak
- Medical Laboratory Department, Health Services Vocational Training School, Atatürk University
| | - Yasin Cicek
- Department of Periodontology, Faculty of Dentistry, Adıyaman University, Adıyaman, Turkey
| | - Alper Kizildag
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| |
Collapse
|
74
|
Fujioka‐Kobayashi M, Schaller B, Saulacic N, Pippenger BE, Zhang Y, Miron RJ. Absorbable collagen sponges loaded with recombinant bone morphogenetic protein 9 induces greater osteoblast differentiation when compared to bone morphogenetic protein 2. Clin Exp Dent Res 2017; 3:32-40. [PMID: 29744176 PMCID: PMC5839213 DOI: 10.1002/cre2.55] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/27/2016] [Accepted: 12/07/2016] [Indexed: 12/29/2022] Open
Abstract
The use of growth factors for the regeneration of soft and hard tissues has been utilized extensively in dental medicine over the past decade. Recently our group found that recombinant human bone morphogenetic protein 9 (rhBMP9) was more osteopromotive than recombinant human bone morphogenetic protein 2 (rhBMP2) when combined with a deprotenized bovine bone mineral bone grafting material. The aim of the present in vitro study was to evaluate the regenerative potential of an absorbable collagen sponge(ACS) specifically designed for extraction socket healing loaded with rhBMP9 when compared to rhBMP2. The adsorption and release kinetics of rhBMP2 and rhBMP9 were first investigated by enzyme-linked immunosorbent assay quantification. Then, the cellular effects of stromal cell line (ST2) preosteoblasts were investigated utilizing four groups including rhBMP2 and rhBMP9 at both low(10 ng/ml) and high(100 ng/ml) concentrations loaded onto ACS. Cellular attachment(8 hours) and proliferation(1, 3, and 5 days) as well as osteoblast differentiation were investigated by real-time polymerase chain reaction (PCR) at 3 and 14 days, alkaline phosphatase (ALP) activity at 7 days, and alizarin red staining at 14 days. ACS fully adsorbed both rhBMP2 and rhBMP9 that were slowly released up to 10 days. Although neither rhBMP2 nor rhBMP9 had any effects on cell attachment or proliferation, pronounced effects were observed on osteoblast differentiation. ALP activity was increased seven-fold with rhBMP2-high, whereas a marked 10-fold and 20-fold increase was observed with rhBMP9-low and high loaded to ACS, respectively. Furthermore, mRNA levels of collagen1, ALP, bone sialoprotein, and osteocalcin were all significantly higher for rhBMP9 when compared to control or rhBMP2 groups. Alizarin red staining further confirmed that rhBMP9-low and high demonstrated marked increases in mineralization potential when compared to rhBMP2-high. The results demonstrate the marked effect of rhBMP9 on osteoblast differentiation when combined with ACS in comparison to rhBMP2 at doses as much as 10 times lower. Further in vivo studies are necessary to investigate whether the regenerative potential is equally as potent.
Collapse
Affiliation(s)
- Masako Fujioka‐Kobayashi
- Department of Periodontology, College of Dental MedicineNova Southeastern UniversityFloridaUSA
- Department of Cranio‐Maxillofacial Surgery, Bern University HospitalInselspitalSwitzerland
- Department of Oral Surgery, Clinical Dentistry, Institute of Biomedical SciencesTokushima University Graduate SchoolJapan
| | - Benoit Schaller
- Department of Cranio‐Maxillofacial Surgery, Bern University HospitalInselspitalSwitzerland
| | - Nikola Saulacic
- Department of Cranio‐Maxillofacial Surgery, Bern University HospitalInselspitalSwitzerland
| | | | - Yufeng Zhang
- Department of Oral ImplantologyUniversity of WuhanChina
| | - Richard J. Miron
- Department of Periodontology, College of Dental MedicineNova Southeastern UniversityFloridaUSA
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryMichiganUSA
| |
Collapse
|
75
|
Wei Y, Ye Q, Tang Z, Tian G, Zhu Q, Gao H, Wang D, Cao Z. Calcitonin induces collagen synthesis and osteoblastic differentiation in human periodontal ligament fibroblasts. Arch Oral Biol 2017; 74:114-122. [DOI: 10.1016/j.archoralbio.2016.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 10/25/2016] [Accepted: 11/27/2016] [Indexed: 11/25/2022]
|
76
|
Sanui T, Fukuda T, Yamamichi K, Toyoda K, Tanaka U, Yotsumoto K, Taketomi T, Nishimura F. Microarray Analysis of the Effects of Amelogenin on U937 Monocytic Cells. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ajmb.2017.72009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
77
|
Devi R, Dixit J. Clinical Evaluation of Insulin like Growth Factor-I and Vascular Endothelial Growth Factor with Alloplastic Bone Graft Material in the Management of Human Two Wall Intra-Osseous Defects. J Clin Diagn Res 2016; 10:ZC41-ZC46. [PMID: 27790578 DOI: 10.7860/jcdr/2016/21333.8476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/10/2016] [Indexed: 02/01/2023]
Abstract
INTRODUCTION In recent years, emphasis on the use of growth factors for periodontal healing is gaining great momentum. Several growth factors showed promising results in periodontal regeneration. AIM This study was designed to compare the clinical outcomes of 0.8μg recombinant human Vascular Endothelial Growth Factor (rh-VEGF) and 10μg recombinant human Insulin Like Growth Factor-I (rh-IGF-I) with β-Tricalcium Phosphate (β-TCP) and Polylactide-Polyglycolide Acid (PLGA) membrane in two wall intra-osseous defects. MATERIALS AND METHODS A total of 29 intra-osseous defects in 27 subjects were randomly divided into 3 test and 1 control group. Test group I (n=8) received rh-VEGF+ rh-IGF-I, Test group II (n=7) rh-VEGF, Test group III (n=7) rh-IGF-I and control group (n=7) with no growth factor, β-TCP and PLGA membrane was used in all the groups. Baseline soft tissue parameters including Probing Pocket Depth (PPD), Clinical Attachment Level (CAL), and Gingival Recession (GR) at selected sites were recorded at baseline and at 6 months. Intrasurgically, intra-osseous component was calculated as a) Cemento-Enamel Junction to Bone Crest (CEJ to BC), b) Bone Crest to Base of the Defect (BC to BD) at baseline and at re-entry. The mean changes at baseline and after 6 months within each group were compared using Wilcoxon Signed Rank Test. The mean changes for each parameter between groups were compared using Mann-Whitney U test. RESULTS After 6 months, maximum mean PPD reduction occurred in test group I followed by test group II, III and control group. Similar trend was observed in CAL gain. Non-significant GR was present in test group I and control group whereas in test group II and III GR was absent. The use of rh-VEGF+ rhIGF-I exhibited 95.8% osseous fill as compared to 54.8% in test group II, 52.7% in test group III and 41.1 % in the control group. CONCLUSION Within the limitations of this study, it can be concluded that, rh-IGF-I+rh-VEGF treated sites resulted in greater improvement in PPD reduction, CAL gain as well as in osseous fill after 6 months when compared with rh-VEGF, rh-IGF-I and control sites.
Collapse
Affiliation(s)
- Renu Devi
- Demonstrator, Department of Periodontics and Oral Implantology, Postgraduate Institute of Dental Sciences , Rohtak, Haryana, India
| | - Jaya Dixit
- Professor and Head of Department, Department of Periodontology, Faculty of Dental Sciences, King George's Medical University , Lucknow, Uttar Pradesh, India
| |
Collapse
|
78
|
A novel flapless approach versus minimally invasive surgery in periodontal regeneration with enamel matrix derivative proteins: a 24-month randomized controlled clinical trial. Clin Oral Investig 2016; 21:327-337. [PMID: 27044318 DOI: 10.1007/s00784-016-1795-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/14/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVES This investigation was designed to compare the effectiveness of enamel matrix derivative (EMD) proteins in combination with flapless or flap procedure in periodontal regeneration of deep intrabony defects. MATERIALS AND METHODS Thirty chronic periodontitis patients who had at least one residual periodontal defect with an intrabony component of ≥3 mm were consecutively enrolled. Defects were randomly assigned to test or control treatments which both consisted of the use of EMD to reach periodontal regeneration. Test sites (n = 15) were treated according to a novel flapless approach, whereas control sites (n = 15) by means of minimally invasive surgery (MIST). Clinical and radiographic parameters were recorded at baseline, 12 and 24 months post-operatively. RESULTS Both therapeutic modalities yielded similar probing depth (PD) reduction and clinical attachment level (CAL) gain at 24 months. In flapless-treated sites, a mean PD reduction of 3.6 ± 1.0 mm and a CAL gain of 3.2 ± 1.1 mm were observed. In the MIST group, they were 3.7 ± 0.6 and 3.6 ± 0.9 mm. The operative chair time was twice as long in the MIST compared to the flapless group, whereas comparable patient-oriented outcomes were observed. CONCLUSION The flapless procedure may be successfully applied in the regenerative treatment of deep intrabony defects reaching clinical outcomes comparable with those of minimally invasive surgical approaches and may present important advantages in terms of reduction of operative chair time. CLINICAL RELEVANCE The use of EMD as an adjunct to non-surgical periodontal treatment may be considered a suitable option to treat defects mainly in the anterior sextants.
Collapse
|
79
|
Puppi D, Migone C, Grassi L, Pirosa A, Maisetta G, Batoni G, Chiellini F. Integrated three-dimensional fiber/hydrogel biphasic scaffolds for periodontal bone tissue engineering. POLYM INT 2016. [DOI: 10.1002/pi.5101] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry; University of Pisa, UdR INSTM Pisa; Pisa Italy
| | - Chiara Migone
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry; University of Pisa, UdR INSTM Pisa; Pisa Italy
| | - Lucia Grassi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry; University of Pisa, UdR INSTM Pisa; Pisa Italy
| | - Alessandro Pirosa
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry; University of Pisa, UdR INSTM Pisa; Pisa Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery; University of Pisa; Pisa Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery; University of Pisa; Pisa Italy
| | - Federica Chiellini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry; University of Pisa, UdR INSTM Pisa; Pisa Italy
| |
Collapse
|
80
|
Zhu Y, Wang J, Wu J, Zhang J, Wan Y, Wu H. Injectable hydrogels embedded with alginate microspheres for controlled delivery of bone morphogenetic protein-2. Biomed Mater 2016; 11:025010. [DOI: 10.1088/1748-6041/11/2/025010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
81
|
Cãlin C, Pãtraşcu I. Growth factors and beta-tricalcium phosphate in the treatment of periodontal intraosseous defects: A systematic review and meta-analysis of randomised controlled trials. Arch Oral Biol 2016; 66:44-54. [PMID: 26897256 DOI: 10.1016/j.archoralbio.2016.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To evaluate the effectiveness at different points in time, of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) coated onto a beta-tricalcium phosphate (β-TCP) carrier compared to β-TCP alone, or to recombinant human growth/differentiation factor-5 (rhGDF-5) adsorbed onto a β-TCP scaffold in intraosseous periodontal defects. DESIGN A digital search for randomised controlled trials (RCTs) was conducted on MEDLINE/PubMed. The quality of reporting and the risk of bias of the included RCTs were assessed using the CONSORT guidelines and the Cochrane risk of bias tool. The difference between the means of the outcomes at baseline and at follow-up for each group was tested using the Student's t-test for paired samples. The difference between the means of the outcome changes at follow-up between groups was analysed using the Student's t-test for two independent samples. Prior to each analysis a test of homogeneity of variances (Ansari-Bradley) was performed. RESULTS From 11 articles assessed for eligibility, 5 RCTs were included in this review. The risk of bias was considered to be low in 2 articles, medium in 1 study and high in 2 studies. CONCLUSIONS In the treatment of periodontal intraosseous defects the application of rhPDGF-BB/β-TCP improved all outcomes when compared to β-TCP at 6 months follow-up. Either rhPDGF-BB/β-TCP or rhGDF-5/β-TCP seemed to provide similar results in terms of probing pocket depth (PPD) reduction and clinical attachment level (CAL) gain. The application of rhGDF-5/β-TCP resulted in a more pronounced reduction in gingival recession (GR) depth at 6 months follow-up compared to rhPDGF-BB/β-TCP.
Collapse
Affiliation(s)
- Claudiu Cãlin
- Department of Dental Prostheses Technology and Dental Materials, Dental Medicine Faculty, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Ion Pãtraşcu
- Department of Dental Prostheses Technology and Dental Materials, Dental Medicine Faculty, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
82
|
Martínez CE, González SA, Palma V, Smith PC. Platelet-Poor and Platelet-Rich Plasma Stimulate Bone Lineage Differentiation in Periodontal Ligament Stem Cells. J Periodontol 2016; 87:e18-26. [DOI: 10.1902/jop.2015.150360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
83
|
Tsumanuma Y, Iwata T, Kinoshita A, Washio K, Yoshida T, Yamada A, Takagi R, Yamato M, Okano T, Izumi Y. Allogeneic Transplantation of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets in Canine Critical-Size Supra-Alveolar Periodontal Defect Model. Biores Open Access 2016; 5:22-36. [PMID: 26862470 PMCID: PMC4744877 DOI: 10.1089/biores.2015.0043] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of β-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest that allogeneic PDL-MSC sheets promoted periodontal tissue regeneration without side effects. Therefore, allogeneic transplantation of PDL-MSC sheets has a potential to become an alternative strategy for periodontal regeneration.
Collapse
Affiliation(s)
- Yuka Tsumanuma
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Takanori Iwata
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | - Atsuhiro Kinoshita
- Department of Educational Media Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Kaoru Washio
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | - Toshiyuki Yoshida
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | - Azusa Yamada
- Department of Behavioral Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Ryo Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| |
Collapse
|
84
|
Keceli HG, Akman AC, Bayram C, Nohutcu RM. Tissue engineering applications and nanobiomaterials in periodontology and implant dentistry. NANOBIOMATERIALS IN DENTISTRY 2016:337-387. [DOI: 10.1016/b978-0-323-42867-5.00013-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
85
|
Zhang Y, Shuang Y, Fu H, Zhou W, Qian L, Dai J, Miron RJ. Characterization of a shorter recombinant polypeptide chain of bone morphogenetic protein 2 on osteoblast behaviour. BMC Oral Health 2015; 15:171. [PMID: 26715589 PMCID: PMC4696268 DOI: 10.1186/s12903-015-0154-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recombinant bone morphogenetic protein two (rhBMP2) has been utilised for a variety of clinical applications in orthopaedic surgery and dental procedures. Despite its widespread use, concerns have been raised regarding its short half-life and transient bioactivity in vivo. Recent investigation aimed at developing rhBMP2 synthesized from a shorter polypeptide chain (108 amino acids) has been undertaken. METHODS The osteopromotive properties of BMP2 were investigated on cell behaviour. Five concentrations of rhBMP2_108 including 10, 50, 100, 200 and 500 ng/ml were compared to a commercially available rhBMP2 (100 ng/ml). Each of the working concentrations of rhBMP2_108 were investigated on MC3T3-E1 osteoblasts for their ability to induce osteoblast recruitment, proliferation and differentiation as assessed by alkaline phosphatase (ALP) staining, alizarin red staining, and real-time PCR for genes encoding ALP, osteocalcin (OCN), collagen-1 (COL-1) and Runx2. RESULTS The results demonstrate that all concentrations of rhBMP2_108 significantly improved cell recruitment and proliferation of osteoblasts at 5 days post seeding. Furthermore, rhBMP2_108 had the most pronounced effects on osteoblast differentiation. It was found that rhBMP2_108 had over a four fold significant increase in ALP activity at seven and 14 days post-seeding and the concentrations ranging from 50 to 200 ng/ml demonstrated the most pronounced effects. Analysis of real-time PCR for genes encoding ALP, OCN, COL-1 and Runx2 further confirmed dose-dependant increases at 14 days post-seeding. Furthermore, alizarin red staining demonstrated a concentration dependant increase in staining at 14 days. CONCLUSION The results from the present study demonstrate that this shorter polypeptide chain of rhBMP2_108 is equally as bioactive as commercially available rhBMP2 for the recruitment of progenitor cells by facilitating their differentiation towards the osteoblast lineage. Future in vivo study are necessary to investigate its bioactivity.
Collapse
Affiliation(s)
- Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China.
- Department of Oral Implantology, School of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Yang Shuang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China.
| | - Hang Fu
- Hangzhou JIuyuan Gene Engineering Co, Ltd;East of No.8 Street, Hangzhou Econ. and Tech. Development Zone, Hangzhou, China Hangzhou China, 310018, China.
| | - Wei Zhou
- Hangzhou JIuyuan Gene Engineering Co, Ltd;East of No.8 Street, Hangzhou Econ. and Tech. Development Zone, Hangzhou, China Hangzhou China, 310018, China.
| | - Li Qian
- Hangzhou JIuyuan Gene Engineering Co, Ltd;East of No.8 Street, Hangzhou Econ. and Tech. Development Zone, Hangzhou, China Hangzhou China, 310018, China.
| | - Jing Dai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China.
| | - Richard J Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China.
- Department of Oral Surgery and Stomatology, University of Bern, Freiburgstrasse 7, Bern, 3010, Switzerland.
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, Bern, 3010, Switzerland.
| |
Collapse
|
86
|
An S, Gao Y, Ling J. Characterization of human periodontal ligament cells cultured on three-dimensional biphasic calcium phosphate scaffolds in the presence and absence of L-ascorbic acid, dexamethasone and β-glycerophosphate in vitro. Exp Ther Med 2015; 10:1387-1393. [PMID: 26622495 PMCID: PMC4578067 DOI: 10.3892/etm.2015.2706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 08/03/2015] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to evaluate the effect of porous biphasic calcium phosphate (BCP) scaffolds on the proliferation and osteoblastic differentiation of human periodontal ligament cells (hPDLCs) in the presence and absence of osteogenic inducer (L-ascorbic acid, dexamethasone and β-glycerophosphate). The cell growth within the scaffolds in the absence of osteogenic inducers was studied by cell counting kit-8 (CCK-8) assay and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and osteoblastic differentiation markers of hPDLCs in BCP scaffolds were examined in the presence and absence of osteogenic inducers. The cell number of hPDLCs in the BCP scaffolds was less than that of hPDLCs cultured in microplates (control). SEM images showed that cells successfully adhered to the BCP scaffolds and spread amongst the pores; they also produced abundant extracellular cell matrix. In the presence and absence of osteogenic inducers, the ALP activity of hPDLCs within BCP scaffolds was suppressed in varying degrees at all time-points. In the absence of osteogenic inducers, hPDLCs in BCP scaffolds express significant higher levels of osteopontin (OPN) mRNA than the control, and there were no significant differences for Runx2 and osteocalcin (OCN) mRNA levels compared with those cultured in microplates. In the presence of osteogenic inducers, Runx2 expression levels were significantly higher than those in control. OPN and OCN mRNA levels were downregulated slightly. Three-dimensional porous BCP scaffolds are able to stimulate the osteoblastic differentiation of hPDLCs in the presence and absence of osteogenic inducer and may be capable of supporting hPDLC-mediated bone formation.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yan Gao
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
87
|
Gómez-Florit M, Monjo M, Ramis JM. Quercitrin for periodontal regeneration: effects on human gingival fibroblasts and mesenchymal stem cells. Sci Rep 2015; 5:16593. [PMID: 26558438 PMCID: PMC4642307 DOI: 10.1038/srep16593] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/16/2015] [Indexed: 01/09/2023] Open
Abstract
Periodontal disease (PD) is the result of an infection and chronic inflammation of the gingiva that may lead to its destruction and, in severe cases, alveolar bone and tooth loss. The ultimate goal of periodontal treatment is to achieve periodontal soft and hard tissues regeneration. We previously selected quercitrin, a catechol-containing flavonoid, as a potential agent for periodontal applications. In this study, we tested the ability of quercitrin to alter biomarker production involved in periodontal regeneration on primary human gingival fibroblasts (hGF) and primary human mesenchymal stem cells (hMSC) cultured under basal and inflammatory conditions. To mimic PD inflammatory status, interleukin-1 beta (IL-1β) was used. The expression of different genes related to inflammation and extracellular matrix were evaluated and prostaglandin E2 (PGE2) production was quantified in hGFs; alkaline phosphatase (ALP) activity and calcium content were analysed in hMSCs. Quercitrin decreased the release of the inflammatory mediator PGE2 and partially re-established the impaired collagen metabolism induced by IL-1β treatment in hGFs. Quercitrin also increased ALP activity and mineralization in hMSCs, thus, it increased hMSCs differentiation towards the osteoblastic lineage. These findings suggest quercitrin as a novel bioactive molecule with application to enhance both soft and hard tissue regeneration of the periodontium.
Collapse
Affiliation(s)
- Manuel Gómez-Florit
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS). University of Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria de Palma, 07010 Palma, España
| | - Marta Monjo
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS). University of Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria de Palma, 07010 Palma, España
| | - Joana M Ramis
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS). University of Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria de Palma, 07010 Palma, España
| |
Collapse
|
88
|
Platelet-rich plasma for periodontal regeneration in the treatment of intrabony defects: a meta-analysis on prospective clinical trials. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120:562-74. [DOI: 10.1016/j.oooo.2015.06.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
|
89
|
Active Nanofibrous Membrane Effects on Gingival Cell Inflammatory Response. MATERIALS 2015; 8:7217-7229. [PMID: 28793632 PMCID: PMC5455376 DOI: 10.3390/ma8105376] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/08/2015] [Accepted: 10/20/2015] [Indexed: 11/16/2022]
Abstract
Alpha-melanocyte stimulating hormone (α-MSH) is involved in normal skin wound healing and also has anti-inflammatory properties. The association of α-MSH to polyelectrolyte layers with various supports has been shown to improve these anti-inflammatory properties. This study aimed to evaluate the effects of nanofibrous membrane functionalized with α-MSH linked to polyelectrolyte layers on gingival cell inflammatory response. Human oral epithelial cells (EC) and fibroblasts (FB) were cultured on plastic or electrospun Poly-#-caprolactone (PCL) membranes with α-MSH covalently coupled to Poly-L-glutamic acid (PGA-α-MSH), for 6 to 24 h. Cells were incubated with or without Porphyromonas gingivalis lipopolysaccharide (Pg-LPS). Cell proliferation and migration were determined using AlamarBlue test and scratch assay. Expression of interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and transforming growth factor-beta (TGF-β) was evaluated using RT-qPCR method. Cell cultures on plastic showed that PGA-α-MSH reduced EC and FB migration and decreased IL-6 and TGF-β expression in Pg-LPS stimulated EC. PGA-α-MSH functionalized PCL membranes reduced proliferation of Pg-LPS stimulated EC and FB. A significant decrease of IL-6, TNF-α, and TGF-β expression was also observed in Pg-LPS stimulated EC and FB. This study showed that the functionalization of nanofibrous PCL membranes efficiently amplified the anti-inflammatory effect of PGA-α-MSH on gingival cells.
Collapse
|
90
|
Toyoda K, Fukuda T, Sanui T, Tanaka U, Yamamichi K, Atomura R, Maeda H, Tomokiyo A, Taketomi T, Uchiumi T, Nishimura F. Grp78 Is Critical for Amelogenin-Induced Cell Migration in a Multipotent Clonal Human Periodontal Ligament Cell Line. J Cell Physiol 2015; 231:414-27. [PMID: 26147472 DOI: 10.1002/jcp.25087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 06/30/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Kyosuke Toyoda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Urara Tanaka
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Kensuke Yamamichi
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Ryo Atomura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Hidefumi Maeda
- Department of Endodontology; Kyushu University Hospital; Fukuoka Japan
| | - Atsushi Tomokiyo
- Department of Endodontology; Kyushu University Hospital; Fukuoka Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center; Kurume University School of Medicine; Kurume, Fukuoka Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| |
Collapse
|
91
|
Nardo T, Chiono V, Ciardelli G, Tabrizian M. PolyDOPA Mussel-Inspired Coating as a Means for Hydroxyapatite Entrapment on Polytetrafluoroethylene Surface for Application in Periodontal Diseases. Macromol Biosci 2015; 16:288-98. [DOI: 10.1002/mabi.201500241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/14/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Tiziana Nardo
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino 10129 Torino Italy
- Department of Biomedical Engineering, 740 Penfield - Genome Building, Room 4300; McGillUniversity; Montreal H3A 0G1 Quebec Canada
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino 10129 Torino Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino 10129 Torino Italy
| | - Maryam Tabrizian
- Department of Biomedical Engineering, 740 Penfield - Genome Building, Room 4300; McGillUniversity; Montreal H3A 0G1 Quebec Canada
| |
Collapse
|
92
|
Abstract
Periodontitis is a chronic inflammatory disease which leads to destruction of both the soft and hard tissues of the periodontium. Tissue engineering is a therapeutic approach in regenerative medicine that aims to induce new functional tissue regeneration via the synergistic combination of cells, biomaterials, and/or growth factors. Advances in our understanding of the biology of stem cells, including embryonic stem cells and mesenchymal stem cells, have provided opportunities for periodontal tissue engineering. However, there remain a number of limitations affecting their therapeutic efficiency. Due to the considerable proliferation and differentiation capacities, recently described induced pluripotent stem cells (iPSCs) provide a new way for cell-based therapies for periodontal regeneration. This review outlines the latest status of periodontal tissue engineering and highlights the potential use of iPSCs in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Mi Du
- Shandong provincial key laboratory of oral tissue regeneration, Department of Periodontology, School of Stomatology, Shandong University, No.44-1 West Wenhua Rd., Jinan, 250012 People's Republic of China
| | - Xuejing Duan
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, No.324 Jingwu Rd., Jinan, 250000 People's Republic of China
| | - Pishan Yang
- Shandong provincial key laboratory of oral tissue regeneration, Department of Periodontology, School of Stomatology, Shandong University, No.44-1 West Wenhua Rd., Jinan, 250012 People's Republic of China
| |
Collapse
|
93
|
Chhina S. A 12 Months Clinical and Radiographic Study to Assess the Efficacy of Open Flap Debridement and Subepithelial Connective Tissue Graft in Management of Supracrestal Defects. J Int Oral Health 2015; 7:108-13. [PMID: 26464551 PMCID: PMC4588774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/15/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND An improvement in clinical parameters along with regeneration is the desired outcome of periodontal therapy. The aim of this study was to analyze and contrast the efficaciousness of combined open flap debridement (OFD) and subepithelial connective tissue graft (SECTG) to OFD in the management of periodontal supracrestal defects. MATERIALS AND METHODS Totally, 20 paired sites exhibiting supracrestal defects were subjected to surgical treatment adopting the split mouth design. The defects were divided randomly for treatment with OFD and SECTG (test) or OFD alone (control). The clinical effectiveness of the two arms of treatment was evaluated at 6 months and 12 months post-operatively by assessing clinical and radiographic parameters. The measurements carried out included probing pocket depth (PPD), relative attachment level (RAL), gingival marginal level, radiographic bone level (BL). RESULTS The mean reduction in PPD at 0-12 months was 3.20 ± 0.82 mm and RAL gain of 3.10 ± 1.51 mm was observed, the OFD and SECTG (test) group; corresponding observations for OFD (control) were 2.10 ± 0.63 mm and 1.90 ± 0.57 mm. However, BL changes did not follow the pattern of clinical improvement on the radiographic assessment of either treatment group. Post-operative evaluation was made. Improvement in different clinical parameters was statistically significant (P < 0.01). CONCLUSION Treatment of supracrestal defects with a combination of OFD and SECTG led to significantly better clinical results compared to OFD alone.
Collapse
Affiliation(s)
- Shivjot Chhina
- Professor, Department of Periodontics, I.T.S Dental College, Hospital and Research Centre, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
94
|
An S, Huang X, Gao Y, Ling J, Huang Y, Xiao Y. FGF-2 induces the proliferation of human periodontal ligament cells and modulates their osteoblastic phenotype by affecting Runx2 expression in the presence and absence of osteogenic inducers. Int J Mol Med 2015; 36:705-11. [PMID: 26133673 PMCID: PMC4533781 DOI: 10.3892/ijmm.2015.2271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/30/2015] [Indexed: 02/07/2023] Open
Abstract
The exact phenotype of human periodontal ligament cells (hPDLCs) remains a controversial area. Basic fibroblast growth factor (FGF-2) exhibits various functions and its effect on hPDLCs is also controversial. Therefore, the present study examined the effect of FGF-2 on the growth and osteoblastic phenotype of hPDLCs with or without osteogenic inducers (dexamethasone and β-glycerophosphate). FGF-2 was added to defined growth culture medium and osteogenic inductive culture medium. Cell proliferation, osteogenic differentiation and mineralization were measured. The selected differentiation markers, Runx2, collagen type I, α1 (Col1a1), osteocalcin (OCN) and epidermal growth factor receptor (EGFR), were investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Runx2 and OCN protein expression was measured by western blotting. FGF-2 significantly increased the proliferation of hPDLCs, but did not affect alkaline phosphatase activity. RT-qPCR analysis revealed enhanced mRNA expression of Runx2, OCN and EGFR, but suppressed Col1a1 gene expression in the absence of osteogenic inducers, whereas all these gene levels had no clear trend in their presence. The Runx2 protein expression was clearly increased, but the OCN protein level showed no evident trend. The mineralization assay demonstrated that FGF-2 inhibited mineralized matrix deposition with osteogenic inducers. These results suggested that FGF-2 induces the growth of immature hPDLCs, which is a competitive inhibitor of epithelial downgrowth, and suppresses their differentiation into mineralized tissue by affecting Runx2 expression. Therefore, this may lead to the acceleration of periodontal regeneration.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Xiangya Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yan Gao
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
95
|
Salamanca E, Lee WF, Lin CY, Huang HM, Lin CT, Feng SW, Chang WJ. A Novel Porcine Graft for Regeneration of Bone Defects. MATERIALS 2015. [PMCID: PMC5455581 DOI: 10.3390/ma8052523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone regeneration procedures require alternative graft biomaterials to those for autogenous bone. Therefore, we developed a novel porcine graft using particle sizes of 250–500 μm and 500–1000 μm in rabbit calvarial bone defects and compared the graft properties with those of commercial hydroxyapatite (HA)/beta-tricalcium phosphate (β-TCP) over eight weeks. Surgery was performed in 20 adult male New Zealand white rabbits. During a standardized surgical procedure, four calvarial critical-size defects of 5 mm diameter and 3 mm depth were prepared. The defects were filled with HA/β-TCP, 250–500 μm or 500–1000 μm porcine graft, and control defects were not filled. The animals were grouped for sacrifice at 1, 2, 4, and 8 weeks post-surgery. Subsequently, sample blocks were prepared for micro-computed tomography (micro-CT) scanning and histological sectioning. Similar bone formations were observed in all three treatment groups, although the 250–500 μm porcine graft performed slightly better. Rabbit calvarial bone tissue positively responded to porcine grafts and commercial HA/β-TCP, structural analyses showed similar crystallinity and porosity of the porcine and HA/β-TCP grafts, which facilitated bone formation through osteoconduction. These porcine grafts can be considered as graft substitutes, although further development is required for clinical applications.
Collapse
Affiliation(s)
- Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mail:
| | - Chin-Yi Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
| | - Haw-Ming Huang
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mail:
| | - Che-Tong Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
- Dental Department of Taipei Medical University, Shuang-Ho Hospital, Taipei 110, Taiwan
- Author to whom correspondence should be addressed; E-Mail: cweijen1@ tmu.edu.tw; Tel.: +886-2-2736-1661 (ext. 5148); Fax: +886-2-2736-2295
| |
Collapse
|
96
|
Bartold PM, Gronthos S, Ivanovski S, Fisher A, Hutmacher DW. Tissue engineered periodontal products. J Periodontal Res 2015; 51:1-15. [PMID: 25900048 DOI: 10.1111/jre.12275] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 01/25/2023]
Abstract
Attainment of periodontal regeneration is a significant clinical goal in the management of advanced periodontal defects arising from periodontitis. Over the past 30 years numerous techniques and materials have been introduced and evaluated clinically and have included guided tissue regeneration, bone grafting materials, growth and other biological factors and gene therapy. With the exception of gene therapy, all have undergone evaluation in humans. All of the products have shown efficacy in promoting periodontal regeneration in animal models but the results in humans remain variable and equivocal concerning attaining complete biological regeneration of damaged periodontal structures. In the early 2000s, the concept of tissue engineering was proposed as a new paradigm for periodontal regeneration based on molecular and cell biology. At this time, tissue engineering was a new and emerging field. Now, 14 years later we revisit the concept of tissue engineering for the periodontium and assess how far we have come, where we are currently situated and what needs to be done in the future to make this concept a reality. In this review, we cover some of the precursor products, which led to our current position in periodontal tissue engineering. The basic concepts of tissue engineering with special emphasis on periodontal tissue engineering products is discussed including the use of mesenchymal stem cells in bioscaffolds and the emerging field of cell sheet technology. Finally, we look into the future to consider what CAD/CAM technology and nanotechnology will have to offer.
Collapse
Affiliation(s)
- P M Bartold
- Colgate Australian Clinical Dental Research Centre, Dental School, University of Adelaide, Adelaide, SA, Australia
| | - S Gronthos
- School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - S Ivanovski
- Griffith Health Institute, School of Dentistry and Oral Health, Griffith University, Gold Coast, Qld, Australia
| | - A Fisher
- Griffith Health Institute, School of Dentistry and Oral Health, Griffith University, Gold Coast, Qld, Australia
| | - D W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| |
Collapse
|
97
|
Khoshkam V, Chan HL, Lin GH, Mailoa J, Giannobile WV, Wang HL, Oh TJ. Outcomes of regenerative treatment with rhPDGF-BB and rhFGF-2 for periodontal intra-bony defects: a systematic review and meta-analysis. J Clin Periodontol 2015; 42:272-80. [DOI: 10.1111/jcpe.12354] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Vahid Khoshkam
- Department of Periodontics and Oral Medicine; School of Dentistry; University of Michigan; Ann Arbor MI USA
- Currently Advanced Periodontology Program; Herman Ostrow School of Dentistry; University of Southern California; Los Angeles CA USA
| | - Hsun-Liang Chan
- Department of Periodontics and Oral Medicine; School of Dentistry; University of Michigan; Ann Arbor MI USA
| | - Guo-Hao Lin
- Department of Periodontics and Oral Medicine; School of Dentistry; University of Michigan; Ann Arbor MI USA
| | - James Mailoa
- Department of Periodontics and Oral Medicine; School of Dentistry; University of Michigan; Ann Arbor MI USA
| | - William V. Giannobile
- Department of Periodontics and Oral Medicine; School of Dentistry; University of Michigan; Ann Arbor MI USA
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine; School of Dentistry; University of Michigan; Ann Arbor MI USA
| | - Tae-Ju Oh
- Department of Periodontics and Oral Medicine; School of Dentistry; University of Michigan; Ann Arbor MI USA
| |
Collapse
|
98
|
Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, Kang B, Giannobile WV. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater 2015; 31:317-38. [PMID: 25701146 DOI: 10.1016/j.dental.2015.01.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/19/2014] [Accepted: 01/11/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The focus of this review is to summarize recent advances on regenerative technologies (scaffolding matrices, cell/gene therapy and biologic drug delivery) to promote reconstruction of tooth and dental implant-associated bone defects. METHODS An overview of scaffolds developed for application in bone regeneration is presented with an emphasis on identifying the primary criteria required for optimized scaffold design for the purpose of regenerating physiologically functional osseous tissues. Growth factors and other biologics with clinical potential for osteogenesis are examined, with a comprehensive assessment of pre-clinical and clinical studies. Potential novel improvements to current matrix-based delivery platforms for increased control of growth factor spatiotemporal release kinetics are highlighting including recent advancements in stem cell and gene therapy. RESULTS An analysis of existing scaffold materials, their strategic design for tissue regeneration, and use of growth factors for improved bone formation in oral regenerative therapies results in the identification of current limitations and required improvements to continue moving the field of bone tissue engineering forward into the clinical arena. SIGNIFICANCE Development of optimized scaffolding matrices for the predictable regeneration of structurally and physiologically functional osseous tissues is still an elusive goal. The introduction of growth factor biologics and cells has the potential to improve the biomimetic properties and regenerative potential of scaffold-based delivery platforms for next-generation patient-specific treatments with greater clinical outcome predictability.
Collapse
Affiliation(s)
- Sophia P Pilipchuk
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| | - Alexandra B Plonka
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Alberto Monje
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Andrei D Taut
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Alejandro Lanis
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Benjamin Kang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - William V Giannobile
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
99
|
Zhang Y, Miron RJ, Li S, Shi B, Sculean A, Cheng X. Novel MesoPorous BioGlass/silk scaffold containing adPDGF-B and adBMP7 for the repair of periodontal defects in beagle dogs. J Clin Periodontol 2015; 42:262-71. [PMID: 25580515 DOI: 10.1111/jcpe.12364] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral Implantology; School of Stomatology; Wuhan University; Wuhan China
| | - Richard J. Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Periodontology; School of Dental Medicine; University of Bern; Bern Switzerland
| | - Sue Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - Bin Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral Implantology; School of Stomatology; Wuhan University; Wuhan China
| | - Anton Sculean
- Department of Periodontology; School of Dental Medicine; University of Bern; Bern Switzerland
| | - Xiangrong Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
100
|
Tsunori K. Effects of parathyroid hormone dosage and schedule on bone regeneration. J Oral Sci 2015; 57:131-6. [DOI: 10.2334/josnusd.57.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Katsuyoshi Tsunori
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| |
Collapse
|