51
|
Bonnefont-Rousselot D, Collin F, Jore D, Gardès-Albert M. Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro. J Pineal Res 2011; 50:328-35. [PMID: 21244479 DOI: 10.1111/j.1600-079x.2010.00847.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin (N-acetyl-5-hydroxytryptamine) is a pineal hormone widely known for its antioxidant properties, both in vivo and by direct capture of free radicals in vitro. Although some metabolites and oxidation products of melatonin have been identified, the molecular mechanism by which melatonin exerts its antioxidant properties has not been totally unravelled. This study investigated the reaction mechanism of oxidation of melatonin by radio-induced reactive oxygen species, generated by gamma radiolysis of water for aqueous solutions of melatonin (from 20 to 200 μm), in the presence or absence of molecular oxygen. The hydroxyl radical was found to be the unique species able to initiate the oxidation process, leading to three main products, e.g. N(1)-acetyl-N(2)-formyl-5-methoxykynurenin (AFMK), N(1)-acetyl-5-methoxykynurenin (AMK) and hydroxymelatonin (HO-MLT). The generation of AFMK and HO-MLT strongly depended on the presence of molecular oxygen in solution: AFMK was the major product in aerated solutions (84%), whereas HO-MLT was favoured in the absence of oxygen (86%). Concentrations of AMK remained quite low, and AMK was proposed to result from a chemical hydrolysis of AFMK in solution. A K-value of 1.1 × 10(-4) was calculated for this equilibrium. Both hydrogen peroxide and superoxide dismutase had no effect on the radio-induced oxidation of melatonin, in good accordance for the second case with the poor reactivity of the superoxide anion towards melatonin. Finally, a reaction mechanism was proposed for the oxidation of melatonin in vitro.
Collapse
Affiliation(s)
- Dominique Bonnefont-Rousselot
- EA 4466, Département de Biologie Expérimentale, Métabolique et Clinique, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France.
| | | | | | | |
Collapse
|
52
|
Liver pathology in Malawian children with fatal encephalopathy. Hum Pathol 2011; 42:1230-9. [PMID: 21396681 DOI: 10.1016/j.humpath.2010.11.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/17/2010] [Accepted: 11/19/2010] [Indexed: 01/22/2023]
Abstract
A common clinical presentation of Plasmodium falciparum is parasitemia, complicated by an encephalopathy for which other explanations cannot be found, termed cerebral malaria-an important cause of death in young children in endemic areas. Our objective was to study hepatic histopathology in Malawian children with fatal encephalopathy, with and without P falciparum parasitemia, to assess the contributions of severe malaria. We report autopsy results from a series of 87 Malawian children who died between 1996 and 2008. Among 75 cases with P falciparum parasitemia, 51 had intracerebral sequestered parasites, whereas 24 without sequestered parasites had other causes of death revealed by autopsy including 4 patients with clinicopathologic findings which may represent Reye syndrome. Hepatic histology in parasitemic cases revealed very limited sequestration of parasites in hepatic sinusoids, even in cases with extensive sequestration elsewhere, but increased numbers of hemozoin-laden Kupffer cells were invariably present with a strong association with histologic evidence of cerebral malaria by quantitative analysis. Of 12 patients who were consistently aparasitemic during their fatal illness, 5 had clinicopathologic findings which may represent Reye syndrome. Hepatic sequestration of parasitized erythrocytes is not a feature of fatal malaria in Malawian children, and there is no structural damage in the liver. Reye syndrome may be an important cause of fatal encephalopathy in children in Malawi with and without peripheral parasitemia and warrants close scrutiny of aspirin use in malaria-endemic areas.
Collapse
|
53
|
Wu UI, Mai FD, Sheu JN, Chen LY, Liu YT, Huang HC, Chang HM. Melatonin inhibits microglial activation, reduces pro-inflammatory cytokine levels, and rescues hippocampal neurons of adult rats with acute Klebsiella pneumoniae meningitis. J Pineal Res 2011; 50:159-70. [PMID: 21062353 DOI: 10.1111/j.1600-079x.2010.00825.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Acute bacterial meningitis caused by Klebsiella pneumoniae (K. pneumoniae) is a major health threat with a high mortality rate and severe neuro-cognitive sequelae. The intense pro-inflammatory cytokine released from calcium-mediated microglial activation plays an important role in eliciting neuronal damage in the hippocampal region. Considering melatonin possesses anti-inflammatory and immuno-modulatory properties, the present study determined whether melatonin can effectively decrease inflammatory responses and prevent hippocampal damage in animals subjected to K. pneumoniae. Adult rats inoculated with K. pneumoniae received a melatonin injection immediately thereafter at doses of 5, 25, 50, or 100 mg/kg. Following 24 h of survival, all experimental animals were processed for time-of-flight secondary ion mass spectrometry (for detecting glial calcium intensity), isolectin-B4 histochemistry (reliable marker for microglial activation), pro-inflammatory cytokine measurement as well as cytochrome oxidase and in situ dUTP end-labeling (representing neuronal bio-energetic status and apoptotic changes, respectively). Results indicate that in K. pneumoniae-infected rats, numerous calcium-enriched microglia, enhanced pro-inflammatory cytokine, and various apoptotic neurons with low bio-energetic activity were detected in hippocampus. Following melatonin administration, however, all parameters including glial calcium intensity, microglial activation, pro-inflammatory cytokine levels, and number of apoptotic neurons were successfully decreased with maximal change observed at a melatonin dose of 100 mg/kg. Enzymatic data corresponded well with above findings in which all surviving neurons displayed high bio-energetic activity. As effectively reducing glia-mediated inflammatory response is neuro-protective to hippocampal neurons, the present study supports the clinical use of melatonin as a potential therapeutic agent to counteract K. pneumoniae meningitis-induced neuro-cognitive damage.
Collapse
Affiliation(s)
- Un-In Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
54
|
Gazarini ML, Beraldo FH, Almeida FM, Bootman M, Da Silva AM, Garcia CRS. Melatonin triggers PKA activation in the rodent malaria parasite Plasmodium chabaudi. J Pineal Res 2011; 50:64-70. [PMID: 20964707 DOI: 10.1111/j.1600-079x.2010.00810.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calcium (Ca(2+) ) is a critical regulator of many aspects of the Plasmodium reproductive cycle. In particular, intra-erythrocyte Plasmodium parasites respond to circulating levels of the melatonin in a process mediated partly by intracellular Ca(2+) . Melatonin promotes the development and synchronicity of parasites, thereby enhancing their spread and worsening the clinical implications. The signalling mechanisms underlying the effects of melatonin are not fully established, although both Ca(2+) and cyclic AMP (cAMP) have been implicated. Furthermore, it is not clear whether different strains of Plasmodium use the same, or divergent, signals to control their development. The aim of this study was to explore the signalling mechanisms engaged by melatonin in P. chabaudi, a virulent rodent parasite. Using parasites at the throphozoite stage acutely isolated from mice erythrocytes, we demonstrate that melatonin triggers cAMP production and protein kinase A (PKA) activation. Interestingly, the stimulation of cAMP/PKA signalling by melatonin was dependent on elevation of Ca(2+) within the parasite, because buffering Ca(2+) changes using the chelator BAPTA prevented cAMP production in response to melatonin. Incubation with melatonin evoked robust Ca(2+) signals within the parasite, as did the application of a membrane-permeant analogue of cAMP. Our data suggest that P. chabaudi engages both Ca(2+) and cAMP signalling systems when stimulated by melatonin. Furthermore, there is positive feedback between these messengers, because Ca(2+) evokes cAMP elevation and vice versa. Melatonin more than doubled the observed extent of parasitemia, and the increase in cAMP concentration and PKA activation was essential for this effect. These data support the possibility to use melatonin antagonists or derivates in therapeutic approach.
Collapse
Affiliation(s)
- Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brasil
| | | | | | | | | | | |
Collapse
|
55
|
Bienvenu AL, Gonzalez-Rey E, Picot S. Apoptosis induced by parasitic diseases. Parasit Vectors 2010; 3:106. [PMID: 21083888 PMCID: PMC2995786 DOI: 10.1186/1756-3305-3-106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/17/2010] [Indexed: 12/14/2022] Open
Abstract
Fatalities caused by parasitic infections often occur as a result of tissue injury that results from a form of host-cell death known as apoptosis. However, instead of being pathogenic, parasite-induced apoptosis may facilitate host survival. Consequently, it is of utmost importance to decipher and understand the process and the role of apoptosis induced or controlled by parasites in humans. Despite this, few studies provide definitive knowledge of parasite-induced host-cell apoptosis. Here, the focus is on a consideration of host-cell apoptosis as either a pathogenic feature or as a factor enabling parasite survival and development. Cell death by apoptotic-like mechanisms could be described as a ride to death with a return ticket, as initiation of the pathway may be reversed, with the potential that it could be manipulated for therapeutic purposes. The management of host-cell apoptosis could thus be an adjunctive factor for parasitic disease treatment. Evidence that the apoptotic process could be reversed by anti-apoptotic drugs has recently been obtained, leading to the possibility of host-cell rescue after injury. An important issue will be to predict the beneficial or deleterious effects of controlling human cell death by apoptotic-like mechanisms during parasitic diseases.
Collapse
Affiliation(s)
- Anne-Lise Bienvenu
- Malaria Research Unit, University Lyon 1, 8 avenue Rockefeller, 69373 Lyon cedex 08, France.
| | | | | |
Collapse
|
56
|
Kücükakin B, Klein M, Lykkesfeldt J, Reiter RJ, Rosenberg J, Gögenur I. No effect of melatonin on oxidative stress after laparoscopic cholecystectomy: a randomized placebo-controlled trial. Acta Anaesthesiol Scand 2010; 54:1121-7. [PMID: 20887414 DOI: 10.1111/j.1399-6576.2010.02294.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Melatonin, an endogenous circadian regulator, also has antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the antioxidative effect of melatonin in patients undergoing laparoscopic cholecystectomy. METHODS Patients were randomized to receive 10 mg melatonin or placebo during surgery. Blood samples for analysis of malondialdehyde (MDA), ascorbic acid (AA), total ascorbic acid (TAA) dehydroascorbic acid (DHA) and C-reactive protein (CRP) were collected pre-operatively and at 5 min, 6 h and 24 h after operation. RESULTS Twenty patients received melatonin and 21 patients received placebo during surgery. No significant differences were observed between the groups in the oxidative stress variables MDA, TAA, AA and DHA or in the inflammatory variable CRP (repeated-measures ANOVA, P>0.05 for all variables). CONCLUSIONS Administration of 10 mg melatonin did not reduce variables of oxidative stress in patients undergoing elective laparoscopic cholecystectomy.
Collapse
Affiliation(s)
- B Kücükakin
- Department of Surgical Gastroenterology, University of Copenhagen, Herlev Hospital, Herlev, Denmark.
| | | | | | | | | | | |
Collapse
|
57
|
Pal C, Bindu S, Dey S, Alam A, Goyal M, Iqbal MS, Maity P, Adhikari SS, Bandyopadhyay U. Gallic acid prevents nonsteroidal anti-inflammatory drug-induced gastropathy in rat by blocking oxidative stress and apoptosis. Free Radic Biol Med 2010; 49:258-67. [PMID: 20406680 DOI: 10.1016/j.freeradbiomed.2010.04.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/31/2010] [Accepted: 04/13/2010] [Indexed: 12/21/2022]
Abstract
Nonsteroidal anti-inflammatory drug (NSAID)-induced oxidative stress plays a critical role in gastric mucosal cell apoptosis and gastropathy. NSAIDs induce the generation of hydroxyl radical ((*)OH) through the release of free iron, which plays an important role in developing gastropathy. Thus, molecules having both iron-chelating and antiapoptotic properties will be beneficial in preventing NSAID-induced gastropathy. Gallic acid (GA), a polyphenolic natural product, has the capacity to chelate free iron. Here, we report that GA significantly prevents, as well as heals, NSAID-induced gastropathy. In vivo, GA blocks NSAID-mediated mitochondrial oxidative stress by preventing mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. In vitro, GA scavenges free radicals and blocks (*)OH-mediated oxidative damage. GA also attenuates gastric mucosal cell apoptosis in vivo as well as in vitro in cultured gastric mucosal cells as evident from the TUNEL assay. GA prevents NSAID-induced activation of caspase-9, a marker for the mitochondrial pathway of apoptosis, and restores NSAID-mediated collapse of the mitochondrial transmembrane potential and dehydrogenase activity. Thus, the inhibition of mitochondrial oxidative stress by GA is associated with the inhibition of NSAID-induced mitochondrial dysfunction and activation of apoptosis in gastric mucosal cells, which are responsible for gastric injury or gastropathy.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Liu QB, Liu LL, Lu YM, Tao RR, Huang JY, Shioda N, Moriguchi S, Fukunaga K, Han F, Lou YJ. The induction of reactive oxygen species and loss of mitochondrial Omi/HtrA2 is associated with S-nitrosoglutathione-induced apoptosis in human endothelial cells. Toxicol Appl Pharmacol 2010; 244:374-84. [PMID: 20153346 DOI: 10.1016/j.taap.2010.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/19/2010] [Accepted: 02/03/2010] [Indexed: 11/26/2022]
Abstract
The pathophysiological relevance of S-nitrosoglutathione (GSNO)-induced endothelial cell injury remains unclear. The main objective of this study was to elucidate the molecular mechanisms of GSNO-induced oxidative stress in endothelial cells. Morphological evaluation through DAPI staining and propidium iodide (PI) flow cytometry was used to detect apoptosis. In cultured EA.hy926 endothelial cells, exposure to GSNO led to a time- and dose-dependent apoptotic cascade. When intracellular reactive oxygen species (ROS) production was measured in GSNO-treated cells with the fluorescent probes 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate, we observed elevated ROS levels and a concomitant loss in mitochondrial membrane potential, indicating that GSNO-induced death signaling is mediated through a ROS-mitochondrial pathway. Importantly, we found that peroxynitrite formation and Omi/HtrA2 release from mitochondria were involved in this phenomenon, whereas changes of death-receptor dependent signaling were not detected in the same context. The inhibition of NADPH oxidase activation and Omi/HtrA2 by a pharmacological approach provided significant protection against caspase-3 activation and GSNO-induced cell death, confirming that GSNO triggers the death cascade in endothelial cells in a mitochondria-dependent manner. Taken together, our results indicate that ROS overproduction and loss of mitochondrial Omi/HtrA2 play a pivotal role in reactive nitrogen species-induced cell death, and the modulation of these pathways can be of significant therapeutic benefit.
Collapse
Affiliation(s)
- Qi-Bing Liu
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Chun-Guang W, Jun-Qing Y, Bei-Zhong L, Dan-Ting J, Chong W, Liang Z, Dan Z, Yan W. Anti-tumor activity of emodin against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Eur J Pharmacol 2010; 627:33-41. [DOI: 10.1016/j.ejphar.2009.10.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 09/23/2009] [Accepted: 10/14/2009] [Indexed: 12/26/2022]
|
60
|
Abstract
Treatment of mitochondrial disorders (MIDs) is a challenge since there is only symptomatic therapy available and since only few randomized and controlled studies have been carried out, which demonstrate an effect of some of the symptomatic or supportive measures available. Symptomatic treatment of MIDs is based on mainstay drugs, blood transfusions, hemodialysis, invasive measures, surgery, dietary measures, and physiotherapy. Drug treatment may be classified as specific (treatment of epilepsy, headache, dementia, dystonia, extrapyramidal symptoms, Parkinson syndrome, stroke-like episodes, or non-neurological manifestations), non-specific (antioxidants, electron donors/acceptors, alternative energy sources, cofactors), or restrictive (avoidance of drugs known to be toxic for mitochondrial functions). Drugs which more frequently than in the general population cause side effects in MID patients include steroids, propofol, statins, fibrates, neuroleptics, and anti-retroviral agents. Invasive measures include implantation of a pacemaker, biventricular pacemaker, or implantable cardioverter defibrillator, or stent therapy. Dietary measures can be offered for diabetes, hyperlipidemia, or epilepsy (ketogenic diet, anaplerotic diet). Treatment should be individualized because of the peculiarities of mitochondrial genetics. Despite limited possibilities, symptomatic treatment should be offered to MID patients, since it can have a significant impact on the course and outcome.
Collapse
|
61
|
Srinivasan V, Spence DW, Moscovitch A, Pandi-Perumal SR, Trakht I, Brown GM, Cardinali DP. Malaria: therapeutic implications of melatonin. J Pineal Res 2010; 48:1-8. [PMID: 20025640 DOI: 10.1111/j.1600-079x.2009.00728.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Malaria, which infects more than 300 million people annually, is a serious disease. Epidemiological surveys indicate that of those who are affected, malaria will claim the lives of more than one million individuals, mostly children. There is evidence that the synchronous maturation of Plasmodium falciparum, the parasite that causes a severe form of malaria in humans and Plasmodium chabaudi, responsible for rodent malaria, could be linked to circadian changes in melatonin concentration. In vitro melatonin stimulates the growth and development of P. falciparum through the activation of specific melatonin receptors coupled to phospholipase-C activation and the concomitant increase of intracellular Ca2+. The Ca2+ signaling pathway is important to stimulate parasite transition from the trophozoite to the schizont stage, the final stage of intraerythrocytic cycle, thus promoting the rise of parasitemia. Either pinealectomy or the administration of the melatonin receptor blocking agent luzindole desynchronizes the parasitic cell cycle. Therefore, the use of melatonin antagonists could be a novel therapeutic approach for controlling the disease. On the other hand, the complexity of melatonin's action in malaria is underscored by the demonstration that treatment with high doses of melatonin is actually beneficial for inhibiting apoptosis and liver damage resulting from the oxidative stress in malaria. The possibility that the coordinated administration of melatonin antagonists (to impair the melatonin signal that synchronizes P. falciparum) and of melatonin in doses high enough to decrease oxidative damage could be a novel approach in malaria treatment is discussed.
Collapse
|
62
|
Hibaoui Y, Roulet E, Ruegg UT. Melatonin prevents oxidative stress-mediated mitochondrial permeability transition and death in skeletal muscle cells. J Pineal Res 2009; 47:238-52. [PMID: 19664004 DOI: 10.1111/j.1600-079x.2009.00707.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxidative stress-induced mitochondrial dysfunction plays a crucial role in the pathogenesis of a wide range of diseases including muscle disorders. In this study, we demonstrate that melatonin readily rescued mitochondria from oxidative stress-induced dysfunction and effectively prevented subsequent apoptosis of primary muscle cultures prepared from C57BL/6J mice. In particular, melatonin (10(-4)-10(-6) m) fully prevented myotube death induced by tert-butylhydroperoxide (t-BHP; 10 microm-24 hr) as assessed by acid phosphatase, caspase-3 activities and cellular morphological changes. Using fluorescence imaging, we showed that the mitochondrial protection provided by melatonin was associated with an inhibition of t-BHP-induced reactive oxygen species generation. In line with this observation, melatonin prevented t-BHP-induced mitochondrial depolarization and mitochondrial permeability transition pore (PTP) opening. This was associated with a highly reduced environment as reflected by an increased glutathione content and an increased ability to maintain mitochondrial pyridine nucleotides and glutathione in a reduced state. Using isolated mitochondria, in a similar manner as cyclosporin A, melatonin (10(-8)-10(-6) m) desensitized the PTP to Ca(2+) and prevented t-BHP-induced mitochondrial swelling, pyridine nucleotide and glutathione oxidation. In conclusion, our findings suggest that inhibition of the PTP essentially contributes to the protective effect of melatonin against oxidative stress in myotubes.
Collapse
Affiliation(s)
- Youssef Hibaoui
- Laboratory of Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, Quai Ernest-Ansermet, Geneva, Switzerland
| | | | | |
Collapse
|
63
|
Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 2009; 44:175-200. [PMID: 19635037 DOI: 10.1080/10409230903044914] [Citation(s) in RCA: 372] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of melatonin and its derivatives as antioxidants has stimulated a very large number of studies which have, virtually uniformly, documented the ability of these molecules to detoxify harmful reactants and reduce molecular damage. These observations have clear clinical implications given that numerous age-related diseases in humans have an important free radical component. Moreover, a major theory to explain the processes of aging invokes radicals and their derivatives as causative agents. These conditions, coupled with the loss of melatonin as organisms age, suggest that some diseases and some aspects of aging may be aggravated by the diminished melatonin levels in advanced age. Another corollary of this is that the administration of melatonin, which has an uncommonly low toxicity profile, could theoretically defer the progression of some diseases and possibly forestall signs of aging. Certainly, research in the next decade will help to define the role of melatonin in age-related diseases and in determining successful aging. While increasing life span will not necessarily be a goal of these investigative efforts, improving health and the quality of life in the aged should be an aim of this research.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | |
Collapse
|
64
|
Bushell WC, Theise ND. Toward a Unified Field of Study: Longevity, Regeneration, and Protection of Health through Meditation and Related Practices. Ann N Y Acad Sci 2009; 1172:5-19. [DOI: 10.1111/j.1749-6632.2009.04959.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
65
|
Bagnaresi P, Alves E, Borges da Silva H, Epiphanio S, Mota MM, Garcia CR. Unlike the synchronous Plasmodium falciparum and P. chabaudi infection, the P. berghei and P. yoelii asynchronous infections are not affected by melatonin. Int J Gen Med 2009; 2:47-55. [PMID: 20360886 PMCID: PMC2840578 DOI: 10.2147/ijgm.s3699] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have previously reported that Plasmodium chabaudi and P.
falciparum sense the hormone melatonin and this could be responsible for
the synchrony of malaria infection. In P. chabaudi and P.
falciparum, melatonin induces calcium release from internal stores, and
this response is abolished by U73122, a phospholipase C inhibitor, and luzindole, a
melatonin-receptor competitive antagonist. Here we show that, in
vitro, melatonin is not able to modulate cell cycle, nor to elicit an
elevation in intracellular calcium concentration of the intraerythrocytic forms of
P. berghei or P. yoelii, two rodent parasites
that show an asynchrononous development in vivo. Interestingly,
melatonin and its receptor do not seem to play a role during hepatic infection by
P. berghei sporozoites either. These data strengthen the
hypothesis that host-derived melatonin does not synchronize malaria infection caused
by P. berghei and P. yoelii. Moreover, these data
explain why infections by these parasites are asynchronous, contrary to what is
observed in P. falciparum and P. chabaudi
infections.
Collapse
Affiliation(s)
- Piero Bagnaresi
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
66
|
Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril 2009; 92:328-43. [DOI: 10.1016/j.fertnstert.2008.05.016] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 10/21/2022]
|
67
|
In vitro ultramorphological assessment of apoptosis induced by zerumbone on (HeLa). J Biomed Biotechnol 2009. [PMID: 19343171 DOI: 10.1155/2009/769568.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Zerumbone (ZER), a potential anticancer compound, isolated from the fresh rhizomes of Zingiber zerumbet. In this investigation, the cytotoxic properties of ZER were evaluated, on cancer cells of human cervix (HeLa), breast and ovary, and normal cells of Chinese Hamster ovary, using MTT assay. Apoptogenic effects of ZER on HeLa were studied using fluorescence microscopy (AO/PI double staining), scanning and transmission electron microscopy (SEM and TEM), and colorimetric assay of the apoptosis promoter enzyme, caspase-3. The results of MTT assay showed that ZER has less effect on normal cells compared to cancer cells. The lowest IC(50) of ZER was observed on HeLa cells. Cytological observations showed nuclear and chromatin condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, holes, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by double staining of AO/PI, SEM and TEM. Statistical analysis (two-tailed t-test) of differential counting of 200 cells under fluorescence microscope revealed significant difference in apoptotic cells populations between treated and untreated HeLa cells. In addition, ZER has increased the cellular level of caspase-3 on the treated HeLa cells. It could be concluded that ZER was able to produce distinctive morphological features of cell death that corresponds to apoptosis.
Collapse
|
68
|
Maity P, Bindu S, Dey S, Goyal M, Alam A, Pal C, Reiter R, Bandyopadhyay U. Melatonin reduces indomethacin-induced gastric mucosal cell apoptosis by preventing mitochondrial oxidative stress and the activation of mitochondrial pathway of apoptosis. J Pineal Res 2009; 46:314-23. [PMID: 19220725 DOI: 10.1111/j.1600-079x.2009.00663.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Augmentation of gastric mucosal cell apoptosis due to development of oxidative stress is one of the main pathogenic events in the development of nonsteroidal anti-inflammatory drug (NSAID)-induced gastropathy. Identification of a nontoxic, anti-apoptotic molecule is warranted for therapy against NSAID-induced gastropathy. The objective of the present study was to define the mechanism of the anti-apoptotic effect of melatonin, a nontoxic molecule which scavenges reactive oxygen species. Using an array of experimental approaches, we have shown that melatonin prevents the development of mitochondrial oxidative stress and activation of mitochondrial pathway of apoptosis induced by indomethacin (a NSAID) in the gastric mucosa. Melatonin inhibits the important steps of indomethacin-induced activation of mitochondrial pathway of apoptosis such as upregulation of the expression of Bax and Bak, and the downregulation of Bcl-2 and BclxL. Melatonin also prevents indomethacin-induced mitochondrial translocation of Bax and prevents the collapse of mitochondrial membrane potential. Moreover, melatonin reduces indomethacin-mediated activation of caspase-9 and caspase-3 by blocking the release of cytochrome c and finally rescues gastric mucosal cells from indomethacin-induced apoptosis as measured by the TUNEL assay. Histologic studies of gastric mucosa further document that melatonin almost completely protects against gastric damage induced by indomethacin. Thus, melatonin has significant anti-apoptotic effects to protect gastric mucosa from NSAID-induced apoptosis and gastropathy, which makes its use as potential therapy against gastric damage during NSAID treatment.
Collapse
Affiliation(s)
- Pallab Maity
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | | | | | | | |
Collapse
|
69
|
In vitro ultramorphological assessment of apoptosis induced by zerumbone on (HeLa). J Biomed Biotechnol 2009; 2009:769568. [PMID: 19343171 PMCID: PMC2661117 DOI: 10.1155/2009/769568] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/05/2008] [Accepted: 01/07/2009] [Indexed: 12/12/2022] Open
Abstract
Zerumbone (ZER), a potential anticancer compound, isolated from the fresh rhizomes of Zingiber zerumbet. In this investigation, the cytotoxic properties of ZER were evaluated, on cancer cells of human cervix (HeLa), breast and ovary, and normal cells of Chinese Hamster ovary, using MTT assay. Apoptogenic effects of ZER on HeLa were studied using fluorescence microscopy (AO/PI double staining), scanning and transmission electron microscopy (SEM and TEM), and colorimetric assay of the apoptosis promoter enzyme, caspase-3. The results of MTT assay showed that ZER has less effect on normal cells compared to cancer cells. The lowest IC50 of ZER was observed on HeLa cells. Cytological observations showed nuclear and chromatin condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, holes, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by double staining of AO/PI, SEM and TEM. Statistical analysis (two-tailed t-test) of differential counting of 200 cells under fluorescence microscope revealed significant difference in apoptotic cells populations between treated and untreated HeLa cells. In addition, ZER has increased the cellular level of caspase-3 on the treated HeLa cells. It could be concluded that ZER was able to produce distinctive morphological features of cell death that corresponds to apoptosis.
Collapse
|
70
|
López A, García JA, Escames G, Venegas C, Ortiz F, López LC, Acuña-Castroviejo D. Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res 2009; 46:188-98. [PMID: 19054298 DOI: 10.1111/j.1600-079x.2008.00647.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The role of melatonin in improving mitochondrial respiratory chain activity and increasing ATP production in different experimental conditions has been widely reported. To date, however, the mechanism(s) involved are largely unknown. Using high-resolution respirometry, fluorometry and spectrophotometry we studied the effects of melatonin on normal mitochondrial functions. Mitochondria were recovered from mouse liver cells and incubated in vitro with melatonin at concentrations ranging from 1 nm to 1 mm. Melatonin decreased oxygen consumption concomitantly with its concentration, inhibited any increase in oxygen flux in the presence of an excess of ADP, reduced the membrane potential, and consequently inhibited the production of superoxide anion and hydrogen peroxide. At the same time it maintained the efficiency of oxidative phosphorylation and ATP synthesis while increasing the activity of the respiratory complexes (mainly complexes I, III, and IV). The effects of melatonin appeared to be due to its presence within the mitochondria, since kinetic experiments clearly showed its incorporation into these organelles. Our results support the hypothesis that melatonin, together with hormones such as triiodothyronine, participates in the physiological regulation of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Ana López
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
71
|
Dey S, Guha M, Alam A, Goyal M, Bindu S, Pal C, Maity P, Mitra K, Bandyopadhyay U. Malarial infection develops mitochondrial pathology and mitochondrial oxidative stress to promote hepatocyte apoptosis. Free Radic Biol Med 2009; 46:271-81. [PMID: 19015023 DOI: 10.1016/j.freeradbiomed.2008.10.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/23/2008] [Accepted: 10/06/2008] [Indexed: 11/16/2022]
Abstract
Activation of the mitochondrial apoptosis pathway by oxidative stress has been implicated in hepatocyte apoptosis during malaria. Because mitochondria are the source and target of reactive oxygen species (ROS), we have investigated whether hepatocyte apoptosis is linked to mitochondrial pathology and mitochondrial ROS generation during malaria. Malarial infection induces mitochondrial pathology by inhibiting mitochondrial respiration, dehydrogenases, and transmembrane potential and damaging the ultrastructure as evident from transmission electron microscopic studies. Mitochondrial GSH depletion and formation of protein carbonyl indicate that mitochondrial pathology is associated with mitochondrial oxidative stress. Fluorescence imaging of hepatocytes documents intramitochondrial superoxide anion (O(2)(-)) generation during malaria. O(2)(-) inactivates mitochondrial aconitase to release iron from iron-sulfur clusters, which forms the hydroxyl radical ((.)OH) interacting with H(2)O(2) produced concurrently. Malarial infection inactivates mitochondrial aconitase, and carbonylation of aconitase is evident from Western immunoblotting. The release of iron has been documented by fluorescence imaging of hepatocytes using Phen Green SK, and mitochondrial (.)OH generation has been confirmed. During malaria, the depletion of cardiolipin and formation of the mitochondrial permeability transition pore favor cytochrome c release to activate caspase-9. Interestingly, mitochondrial (.)OH generation correlates with the activation of both caspase-9 and caspase-3 with the progress of malarial infection, indicating the critical role of (.)OH.
Collapse
Affiliation(s)
- Sumanta Dey
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Martín-Renedo J, Mauriz JL, Jorquera F, Ruiz-Andrés O, González P, González-Gallego J. Melatonin induces cell cycle arrest and apoptosis in hepatocarcinoma HepG2 cell line. J Pineal Res 2008; 45:532-40. [PMID: 19012662 DOI: 10.1111/j.1600-079x.2008.00641.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Melatonin reduces proliferation in many different cancer cell lines. However, studies on the oncostatic effects of melatonin in the treatment of hepatocarcinoma are limited. In this study, we examined the effect of melatonin administration on HepG2 human hepatocarcinoma cells, analyzing cell cycle arrest, apoptosis and mitogen-activated protein kinase (MAPK) signalling pathways. Melatonin was dissolved in the cell culture media in 0.2% dimethyl sulfoxide and administered at different concentrations for 2, 4, 6, 8 and 10 days. Melatonin at concentrations 1000-10,000 microM caused a dose- and time-dependent reduction in cell number. Furthermore, melatonin treatment induced apoptosis with increased caspase-3 activity and poly(ADP-ribose) polymerase proteolysis. Proapoptotic effects of melatonin were related to cytosolic cytochrome c release, upregulation of Bax and induction of caspase-9 activity. Melatonin treatment also resulted in increased caspase-8 activity, although no significant change was observed in Fas-L expression. In addition, JNK 1,-2 and -3 and p38, members of the MAPK family, were upregulated by melatonin treatment. Growth inhibition by melatonin altered the percentage or cells in G0-G1 and G2/M phases indicating cell cycle arrest in the G2/M phase. The reduced cell proliferation and alterations of cell cycle were coincident with a significant increase in the expression of p53 and p21 proteins. These novel findings show that melatonin, by inducing cell death and cell cycle arrest, might be useful as adjuvant in hepatocarcinoma therapy.
Collapse
Affiliation(s)
- Javier Martín-Renedo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Institute of Biomedicine, University of León, León, Spain.
| | | | | | | | | | | |
Collapse
|
73
|
Selective activation of melatonin receptors with ramelteon improves liver function and hepatic perfusion after hemorrhagic shock in rat. Crit Care Med 2008; 36:2863-70. [DOI: 10.1097/ccm.0b013e318187b863] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
74
|
Wennicke K, Debierre-Grockiego F, Wichmann D, Brattig NW, Pankuweit S, Maisch B, Schwarz RT, Ruppert V. Glycosylphosphatidylinositol-induced cardiac myocyte death might contribute to the fatal outcome of Plasmodium falciparum malaria. Apoptosis 2008; 13:857-66. [PMID: 18470700 DOI: 10.1007/s10495-008-0217-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Glycosylphosphatidylinositol (GPI) purified from Plasmodium falciparum has been shown to play an important role as a toxin in the pathology of malaria. Previous studies demonstrated cardiac involvement in patients suffering from severe malaria due to P. falciparum. Therefore, we tested the hypothesis that GPI induces apoptosis in cardiomyocytes. METHODS AND RESULTS By using TUNEL and caspase activity assays, we provided evidence for apoptosis induction in cardiomyocytes by P. falciparum GPI after 48 h of incubation. A similar result was obtained in heart cells of mice 48 h after in vivo injection of GPI. Gene expression analyses in GPI-treated cardiomyocytes showed an up-regulation of apoptotic genes (apaf-1, bax) and of a myocardial damage marker bnp (brain natriuretic peptide), while a down-regulation was observed for the anti-apoptotic gene bcl-2 and for the heat shock protein hsp70. In spite of inflammatory cytokine gene up-regulation by GPI, co-culture with peripheral mononuclear cells (PMNCs) did not change the results obtained with cardiomyocytes alone, indicating a direct effect of GPI on cardiac myocytes. Co-culture with non-myocytic cardiac cells (NMCCs) resulted in up-regulation of Hsp70 and Bcl-2 genes in GPI-treated cardiomyocytes but without repercussion on the apoptosis level. A malaria-infected patient, presenting fulminant heart failure showed typical signs of cardiac myocyte apoptosis demonstrating the clinical relevance of toxin induced heart damage for the lethality of malaria. Our studies performed in vitro and in mice suggest that the GPI could be responsible for cardiomyocyte apoptosis that occurred in this patient. CONCLUSION Plasmodium falciparum GPI-induced apoptosis might participate in the lethality of malaria.
Collapse
Affiliation(s)
- Kathrin Wennicke
- Department of Internal Medicine - Cardiology, Philipps-University of Marburg, University Hospital, Baldingerstrasse 1, 35043 Marburg/Lahn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Santello FH, Frare EO, Caetano LC, AlonsoToldo MP, do Prado JC. Melatonin enhances pro-inflammatory cytokine levels and protects against Chagas disease. J Pineal Res 2008; 45:79-85. [PMID: 18284549 DOI: 10.1111/j.1600-079x.2008.00558.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pro-inflammatory and modulatory cytokines have an essential role in host defense against human and murine Trypanosoma cruzi infection. Control of T. cruzi parasitism during the acute phase of infection is considered to be critically dependent on direct macrophage activation by cytokines. Melatonin has been proposed to regulate the immune system by affecting cytokine production in immunocompetent cells, enhancing the production of several T helper (Th)1 cytokines. The aims of this work were to evaluate in rats, the influences of exogenous melatonin treatment on T. cruzi-infected host's immune responses. With this in mind, several immunological parameters were analyzed, including tumor necrosis factor-alpha, gamma-interferon, interleukin-12, nitric oxide (NO) and macrophage count. The melatonin therapy was provided in one of two different treatment regimens, that is, either beginning 7 days prior to infection or concomitant with the infection. Both treatments triggered an up-regulation of the immune response, with the concomitant treatment being more effective; in this case all cytokines studied, with exception of NO, displayed enhanced concentrations and there was a higher number of peritoneal macrophages, which displayed reduced concentrations under melatonin therapy. We conclude that melatonin plays a pivotal role in up-regulating the Th1 immune response thus controlling parasite replication.
Collapse
Affiliation(s)
- Fabricia Helena Santello
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil.
| | | | | | | | | |
Collapse
|
76
|
Ogeturk M, Kus I, Pekmez H, Yekeler H, Sahin S, Sarsilmaz M. Inhibition of carbon tetrachloride–mediated apoptosis and oxidative stress by melatonin in experimental liver fibrosis. Toxicol Ind Health 2008; 24:201-8. [DOI: 10.1177/0748233708093725] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Melatonin, the principal secretory product of the pineal gland, functions as a potent antioxidant and free radical scavenger. Additionally, the antiapoptotic effect of melatonin has been observed both in vivo and in vitro. The aim of this experimental study was to investigate the protective effects of melatonin against carbon tetrachloride (CCl4)–induced apoptosis and oxidative stress in rat liver. Twenty-four male Wistar rats were divided in three equal groups. Group I was used as control. Rats in group II were injected every other day with CCl4 (0.5 mL/kg BW) for a month, whereas rats in group III were treated every other day with the same dose of CCl4 plus melatonin (25 mg/kg BW). At the end of the experiment, all animals were killed by decapitation and the livers were rapidly removed. Some of the liver tissue specimens were used for determination of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels. The remaining tissue specimens were processed for immunohistochemical assessment, and the percentage rates of apoptotic liver cells stained with immunoreactive Bax were determined. Chronic administration of CCl4 significantly increased liver MDA contents, as an end product of lipid peroxidation, and also significantly decreased SOD and GSH-Px activities, emphasizing the generation of increased oxidative stress. Moreover, it caused an evident increase in apoptotic cells. Melatonin treatment significantly reduced MDA levels and elevated SOD and GSH-Px activities in rats received CCl4 plus melatonin. Furthermore, apoptotic changes caused by CCl4 were considerably decreased in these animals. The results of the present study indicate that melatonin treatment substantially prevents CCl4-induced apoptosis and oxidative damage in the liver. Thus, melatonin may serve as a drug for treating many clinical conditions that arise from inappropriate apoptosis.
Collapse
Affiliation(s)
- M Ogeturk
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, Turkey
| | - I Kus
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, Turkey
| | - H Pekmez
- Elazig School of Health Sciences, Firat University, Elazig, Turkey
| | - H Yekeler
- Department of Pathology, Elazig Education and Research Hospital, Elazig, Turkey
| | - S Sahin
- Department of Biochemistry, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - M Sarsilmaz
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|