51
|
Comprehensive Application of Time-of-flight Secondary Ion Mass Spectrometry (TOF-SIMS) for Ionic Imaging and Bio-energetic Analysis of Club Drug-induced Cognitive Deficiency. Sci Rep 2015; 5:18420. [PMID: 26674573 PMCID: PMC4682059 DOI: 10.1038/srep18420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/17/2015] [Indexed: 12/15/2022] Open
Abstract
Excessive exposure to club drug (GHB) would cause cognitive dysfunction in which impaired hippocampal Ca2+-mediated neuroplasticity may correlate with this deficiency. However, the potential changes of in vivo Ca2+ together with molecular machinery engaged in GHB-induced cognitive dysfunction has never been reported. This study aims to determine these changes in bio-energetic level through ionic imaging, spectrometric, biochemical, morphological, as well as behavioral approaches. Adolescent rats subjected to GHB were processed for TOF-SIMS, immunohistochemistry, biochemical assay, together with Morris water maze to detect the ionic, molecular, neurochemical, and behavioral changes of GHB-induced cognitive dysfunction, respectively. Extent of oxidative stress and bio-energetics were assessed by levels of lipid peroxidation, Na+/K+ ATPase, cytochrome oxidase, and [14C]-2-deoxyglucose activity. Results indicated that in GHB intoxicated rats, decreased Ca2+ imaging and reduced NMDAR1, nNOS, and p-CREB reactivities were detected in hippocampus. Depressed Ca2+-mediated signaling corresponded well with intense oxidative stress, diminished Na+/K+ ATPase, reduced COX, and decreased 2-DG activity, which all contributes to the development of cognitive deficiency. As impaired Ca2+-mediated signaling and oxidative stress significantly contribute to GHB-induced cognitive dysfunction, delivering agent(s) that improves hippocampal bio-energetics may thus serve as a promising strategy to counteract the club drug-induced cognitive dysfunction emerging in our society nowadays.
Collapse
|
52
|
Zhao L, An R, Yang Y, Yang X, Liu H, Yue L, Li X, Lin Y, Reiter RJ, Qu Y. Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling. J Pineal Res 2015; 59:230-9. [PMID: 26094939 DOI: 10.1111/jpi.12254] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/05/2015] [Indexed: 12/19/2022]
Abstract
Sepsis is a systemic inflammatory response to infection that causes severe neurological complications. Previous studies have suggested that melatonin is protective during sepsis. Additionally, silent information regulator 1 (SIRT1) was reported to be beneficial in sepsis. However, the role of SIRT1 signaling in the protective effect of melatonin against septic encephalopathy remains unclear. This study aimed to investigate the role of SIRT1 in the protective effect of melatonin. EX527, a SIRT1 inhibitor, was used to reveal the role of SIRT1 in melatonin's action. Cecal ligation and puncture or sham operation was performed in male C57BL/6J mice. Melatonin was administrated intraperitoneally (30 mg/kg). The survival rate of mice was recorded for the 7-day period following the sham or CLP operation. The blood-brain barrier (BBB) integrity, brain water content, levels of inflammatory cytokines (TNF-α, IL-1β, and HMGB1), and the level of oxidative stress (superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA)) and apoptosis were assessed. The expression of SIRT1, Ac-FoxO1, Ac-p53, Ac-NF-κB, Bcl-2, and Bax was detected by Western blot. The results suggested that melatonin improved survival rate, attenuated brain edema and neuronal apoptosis, and preserved BBB integrity. Melatonin decreased the production of TNF-α, IL-1β, and HMGB1. Melatonin increased the activity of SOD and CAT and decreased the MDA production. Additionally, melatonin upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of Ac-FoxO1, Ac-p53, Ac-NF-κB, and Bax. However, the protective effects of melatonin were abolished by EX527. In conclusion, our results demonstrate that melatonin attenuates sepsis-induced brain injury via SIRT1 signaling activation.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rui An
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiangmin Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Liang Yue
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xia Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Lin
- Department of Scientific Research, The Fourth Military Medical University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
53
|
Alzoubi KH, Mayyas FA, Khabour OF, Bani Salama FM, Alhashimi FH, Mhaidat NM. Chronic Melatonin Treatment Prevents Memory Impairment Induced by Chronic Sleep Deprivation. Mol Neurobiol 2015; 53:3439-3447. [DOI: 10.1007/s12035-015-9286-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/03/2015] [Indexed: 01/04/2023]
|
54
|
Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin and brain inflammaging. Prog Neurobiol 2015; 127-128:46-63. [DOI: 10.1016/j.pneurobio.2015.02.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/27/2014] [Accepted: 02/05/2015] [Indexed: 02/07/2023]
|
55
|
Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ. Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 2015; 146-148:28-41. [PMID: 25824609 DOI: 10.1016/j.mad.2015.03.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022]
Abstract
Aging is an inevitable and multifactorial biological process. Free radicals have been implicated in aging processes; it is hypothesized that they cause cumulative oxidative damage to crucial macromolecules and are responsible for failure of multiple physiological mechanisms. However, recent investigations have also suggested that free radicals can act as modulators of several signaling pathways such as those related to sirtuins. Caloric restriction is a non-genetic manipulation that extends lifespan of several species and improves healthspan; the belief that many of these benefits are due to the induction of sirtuins has led to the search for sirtuin activators, especially sirtuin 1, the most studied. Resveratrol, a polyphenol found in red grapes, was first known for its antioxidant and antifungal properties, and subsequently has been reported several biological effects, including the activation of sirtuins. Endogenously-produced melatonin, a powerful free radical scavenger, declines with age and its loss contributes to degenerative conditions of aging. Recently, it was reported that melatonin also activates sirtuins, in addition to other functions, such as regulator of circadian rhythms or anti-inflammatory properties. The fact that melatonin and resveratrol are present in various foods, exhibiting possible synergistic effects, suggests the use of dietary ingredients to promote health and longevity.
Collapse
Affiliation(s)
- Margarita R Ramis
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma, Spain.
| | - Susana Esteban
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma, Spain.
| | - Antonio Miralles
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma, Spain.
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
56
|
Belancio VP, Blask DE, Deininger P, Hill SM, Jazwinski SM. The aging clock and circadian control of metabolism and genome stability. Front Genet 2015; 5:455. [PMID: 25642238 PMCID: PMC4294216 DOI: 10.3389/fgene.2014.00455] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/11/2014] [Indexed: 11/13/2022] Open
Abstract
It is widely accepted that aging is characterized by a gradual decline in the efficiency and accuracy of biological processes, leading to deterioration of physiological functions and development of age-associated diseases. Age-dependent accumulation of genomic instability and development of metabolic syndrome are well-recognized components of the aging phenotype, both of which have been extensively studied. Existing findings strongly support the view that the integrity of the cellular genome and metabolic function can be influenced by light at night (LAN) and associated suppression of circadian melatonin production. While LAN is reported to accelerate aging by promoting age-associated carcinogenesis in several animal models, the specific molecular mechanism(s) of its action are not fully understood. Here, we review literature supporting a connection between LAN-induced central circadian disruption of peripheral circadian rhythms and clock function, LINE-1 retrotransposon-associated genomic instability, metabolic deregulation, and aging. We propose that aging is a progressive decline in the stability, continuity, and synchronization of multi-frequency oscillations in biological processes to a temporally disorganized state. By extension, healthy aging is the ability to maintain the most consistent, stable, and entrainable rhythmicity and coordination of these oscillations, at the molecular, cellular, and systemic levels.
Collapse
Affiliation(s)
- Victoria P Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane University New Orleans, LA, USA ; Tulane Cancer Center, Tulane Center for Aging, and Tulane Center for Circadian Biology New Orleans, LA, USA
| | - David E Blask
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane University New Orleans, LA, USA ; Tulane Cancer Center, Tulane Center for Aging, and Tulane Center for Circadian Biology New Orleans, LA, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Center for Aging, and Tulane Center for Circadian Biology New Orleans, LA, USA ; Department of Epidemiology, Tulane University New Orleans, LA, USA
| | - Steven M Hill
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane University New Orleans, LA, USA ; Tulane Cancer Center, Tulane Center for Aging, and Tulane Center for Circadian Biology New Orleans, LA, USA
| | - S Michal Jazwinski
- Tulane Cancer Center, Tulane Center for Aging, and Tulane Center for Circadian Biology New Orleans, LA, USA ; Department of Medicine, Tulane University New Orleans, LA, USA
| |
Collapse
|
57
|
Hardeland R. Melatonin, noncoding RNAs, messenger RNA stability and epigenetics--evidence, hints, gaps and perspectives. Int J Mol Sci 2014; 15:18221-52. [PMID: 25310649 PMCID: PMC4227213 DOI: 10.3390/ijms151018221] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/21/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Melatonin is a highly pleiotropic regulator molecule, which influences numerous functions in almost every organ and, thus, up- or down-regulates many genes, frequently in a circadian manner. Our understanding of the mechanisms controlling gene expression is actually now expanding to a previously unforeseen extent. In addition to classic actions of transcription factors, gene expression is induced, suppressed or modulated by a number of RNAs and proteins, such as miRNAs, lncRNAs, piRNAs, antisense transcripts, deadenylases, DNA methyltransferases, histone methylation complexes, histone demethylases, histone acetyltransferases and histone deacetylases. Direct or indirect evidence for involvement of melatonin in this network of players has originated in different fields, including studies on central and peripheral circadian oscillators, shift work, cancer, inflammation, oxidative stress, aging, energy expenditure/obesity, diabetes type 2, neuropsychiatric disorders, and neurogenesis. Some of the novel modulators have also been shown to participate in the control of melatonin biosynthesis and melatonin receptor expression. Future work will need to augment the body of evidence on direct epigenetic actions of melatonin and to systematically investigate its role within the network of oscillating epigenetic factors. Moreover, it will be necessary to discriminate between effects observed under conditions of well-operating and deregulated circadian clocks, and to explore the possibilities of correcting epigenetic malprogramming by melatonin.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Berliner Str. 28, Göttingen D-37073, Germany.
| |
Collapse
|
58
|
Jenwitheesuk A, Nopparat C, Mukda S, Wongchitrat P, Govitrapong P. Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int J Mol Sci 2014; 15:16848-84. [PMID: 25247581 PMCID: PMC4200827 DOI: 10.3390/ijms150916848] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/03/2014] [Accepted: 09/12/2014] [Indexed: 12/19/2022] Open
Abstract
Brain aging is linked to certain types of neurodegenerative diseases and identifying new therapeutic targets has become critical. Melatonin, a pineal hormone, associates with molecules and signaling pathways that sense and influence energy metabolism, autophagy, and circadian rhythms, including insulin-like growth factor 1 (IGF-1), Forkhead box O (FoxOs), sirtuins and mammalian target of rapamycin (mTOR) signaling pathways. This review summarizes the current understanding of how melatonin, together with molecular, cellular and systemic energy metabolisms, regulates epigenetic processes in the neurons. This information will lead to a greater understanding of molecular epigenetic aging of the brain and anti-aging mechanisms to increase lifespan under healthy conditions.
Collapse
Affiliation(s)
- Anorut Jenwitheesuk
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| | - Chutikorn Nopparat
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| | - Prapimpun Wongchitrat
- Center for Innovation Development and Technology Transfer, Faculty of Medical Technology, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| |
Collapse
|
59
|
Huang CT, Chiang RPY, Chen CL, Tsai YJ. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion. Sleep 2014; 37:1513-23. [PMID: 25142572 DOI: 10.5665/sleep.4002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
STUDY OBJECTIVES Sleep deprivation is common in patients with neuropathic pain, but the effect of sleep deprivation on pathological pain remains uncertain. This study investigated whether sleep deprivation aggravates neuropathic symptoms and enhances microglial activation in the cuneate nucleus (CN) in a median nerve chronic constriction injury (CCI) model. Also, we assessed if melatonin supplements during the sleep deprived period attenuates these effects. DESIGN Rats were subjected to sleep deprivation for 3 days by the disc-on-water method either before or after CCI. In the melatonin treatment group, CCI rats received melatonin supplements at doses of 37.5, 75, 150, or 300 mg/kg during sleep deprivation. Melatonin was administered at 23:00 once a day. PARTICIPANTS Male Sprague-Dawley rats, weighing 180-250 g (n = 190), were used. MEASUREMENTS Seven days after CCI, behavioral testing was conducted, and immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assay were used for qualitative and quantitative analyses of microglial activation and measurements of proinflammatory cytokines. RESULTS In rats who underwent post-CCI sleep deprivation, microglia were more profoundly activated and neuropathic pain was worse than those receiving pre-CCI sleep deprivation. During the sleep deprived period, serum melatonin levels were low over the 24-h period. Administration of melatonin to CCI rats with sleep deprivation significantly attenuated activation of microglia and development of neuropathic pain, and markedly decreased concentrations of proinflammatory cytokines. CONCLUSIONS Sleep deprivation makes rats more vulnerable to nerve injury-induced neuropathic pain, probably because of associated lower melatonin levels. Melatonin supplements to restore a circadian variation in melatonin concentrations during the sleep deprived period could alleviate nerve injury-induced behavioral hypersensitivity.
Collapse
|
60
|
Yu L, Sun Y, Cheng L, Jin Z, Yang Y, Zhai M, Pei H, Wang X, Zhang H, Meng Q, Zhang Y, Yu S, Duan W. Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: role of SIRT1. J Pineal Res 2014; 57:228-38. [PMID: 25052362 DOI: 10.1111/jpi.12161] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022]
Abstract
Melatonin confers cardioprotective effect against myocardial ischemia/reperfusion (MI/R) injury by reducing oxidative stress. Activation of silent information regulator 1 (SIRT1) signaling also reduces MI/R injury. We hypothesize that melatonin may protect against MI/R injury by activating SIRT1 signaling. This study investigated the protective effect of melatonin treatment on MI/R heart and elucidated its potential mechanisms. Rats were exposed to melatonin treatment in the presence or the absence of the melatonin receptor antagonist luzindole or SIRT1 inhibitor EX527 and then subjected to MI/R operation. Melatonin conferred a cardioprotective effect by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase release, upregulating SIRT1, Bcl-2 expression and downregulating Bax, caspase-3 and cleaved caspase-3 expression. Melatonin treatment also resulted in reduced myocardium superoxide generation, gp91(phox) expression, malondialdehyde level, and increased myocardium superoxide dismutase (SOD) level, which indicate that the MI/R-induced oxidative stress was significantly attenuated. However, these protective effects were blocked by EX527 or luzindole, indicating that SIRT1 signaling and melatonin receptor may be specifically involved in these effects. In summary, our results demonstrate that melatonin treatment attenuates MI/R injury by reducing oxidative stress damage via activation of SIRT1 signaling in a receptor-dependent manner.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Carloni S, Albertini MC, Galluzzi L, Buonocore G, Proietti F, Balduini W. Melatonin reduces endoplasmic reticulum stress and preserves sirtuin 1 expression in neuronal cells of newborn rats after hypoxia-ischemia. J Pineal Res 2014; 57:192-9. [PMID: 24980917 DOI: 10.1111/jpi.12156] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/27/2014] [Indexed: 12/29/2022]
Abstract
Conditions that interfere with the endoplasmic reticulum (ER) functions cause accumulation of unfolded proteins in the ER lumen, referred to as ER stress, and activate a homeostatic signaling network known as unfolded protein response (UPR). We have previously shown that in neonatal rats subjected to hypoxia-ischemia (HI), melatonin administration significantly reduces brain damage. This study assessed whether attenuation of ER stress is involved in the neuroprotective effect of melatonin after neonatal HI. We found that the UPR was strongly activated after HI. Melatonin significantly reduced the neuron splicing of XBP-1 mRNA, the increased phosphorylation of eIF2α, and elevated expression of chaperone proteins GRP78 and Hsp70 observed after HI in the brain. CHOP, which plays a convergent role in the UPR, was reduced as well. Melatonin also completely prevented the depletion of SIRT-1 induced by HI, and this effect was observed in the same neurons that over-express CHOP. These results demonstrate that melatonin reduces ER stress induced by neonatal HI and preserves SIRT-1 expression, suggesting that SIRT-1, due to its action in the modulation of a wide variety of signaling pathways involved in neuroprotection, may play a key role in the reduction of ER stress and neuroprotection observed after melatonin.
Collapse
Affiliation(s)
- Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Urbino, Italy
| | | | | | | | | | | |
Collapse
|
62
|
Kozina EA, Khakimova GR, Khaindrava VG, Kucheryanu VG, Vorobyeva NE, Krasnov AN, Georgieva SG, Kerkerian-Le Goff L, Ugrumov MV. Tyrosine hydroxylase expression and activity in nigrostriatal dopaminergic neurons of MPTP-treated mice at the presymptomatic and symptomatic stages of parkinsonism. J Neurol Sci 2014; 340:198-207. [DOI: 10.1016/j.jns.2014.03.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 02/13/2014] [Accepted: 03/13/2014] [Indexed: 11/16/2022]
|
63
|
Deguil J, Ravasi L, Auffret A, Babiloni C, Bartres Faz D, Bragulat V, Cassé-Perrot C, Colavito V, Herrero Ezquerro MT, Lamberty Y, Lanteaume L, Pemberton D, Pifferi F, Richardson JC, Schenker E, Blin O, Tarragon E, Bordet R. Evaluation of symptomatic drug effects in Alzheimer's disease: strategies for prediction of efficacy in humans. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e329-42. [PMID: 24179995 DOI: 10.1016/j.ddtec.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In chronic diseases such as Alzheimer's disease (AD), the arsenal of biomarkers available to determine the effectiveness of symptomatic treatment is very limited. Interpretation of the results provided in literature is cumbersome and it becomes difficult to predict their standardization to a larger patient population. Indeed, cognitive assessment alone does not appear to have sufficient predictive value of drug efficacy in early clinical development of AD treatment. In recent years, research has contributed to the emergence of new tools to assess brain activity relying on innovative technologies of imaging and electrophysiology. However, the relevance of the use of these newer markers in treatment response assessment is waiting for validation. This review shows how the early clinical assessment of symptomatic drugs could benefit from the inclusion of suitable pharmacodynamic markers. This review also emphasizes the importance of re-evaluating a step-by-step strategy in drug development.
Collapse
|
64
|
Abstract
: Ulcerative colitis (UC), an inflammatory bowel disease, affects many people across the globe, and its prevalence is increasing steadily. Inflammation and oxidative stress play a vital role in the perpetuation of inflammatory process and the subsequent DNA damage associated with the development of UC. UC induces not only local but also systemic damage, which involves the perturbation of multiple molecular pathways. Furthermore, UC leads to an increased risk of colorectal cancer, the third most common malignancy in humans. Most of the drugs used for the treatment of UC are unsatisfactory because they are generally mono-targeted, relatively ineffective and unaffordable for many people. Thus, agents that can target multiple molecular pathways and are less expensive have enormous potential to treat UC. Melatonin has beneficial effects against UC in experimental and clinical studies because of its ability to modulate several molecular pathways of inflammation, oxidative stress, fibrosis, and cellular injury. However, many novel targets are yet to be explored on which melatonin may act to exert its favorable effects in UC. It is time to explore improved intervention strategies with melatonin in UC on the basis of studies investigating different molecular targets using proteomic and genomic approaches. This review identifies various molecular targets for melatonin with the intent of providing novel strategies for combating UC and the associated extraintestinal manifestations of this debilitating disease.
Collapse
Affiliation(s)
- Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | | |
Collapse
|
65
|
Early-life sleep deprivation persistently depresses melatonin production and bio-energetics of the pineal gland: potential implications for the development of metabolic deficiency. Brain Struct Funct 2014; 220:663-76. [DOI: 10.1007/s00429-014-0716-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
|
66
|
Colavito V, Fabene PF, Grassi-Zucconi G, Pifferi F, Lamberty Y, Bentivoglio M, Bertini G. Experimental sleep deprivation as a tool to test memory deficits in rodents. Front Syst Neurosci 2013; 7:106. [PMID: 24379759 PMCID: PMC3861693 DOI: 10.3389/fnsys.2013.00106] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/21/2013] [Indexed: 12/19/2022] Open
Abstract
Paradigms of sleep deprivation (SD) and memory testing in rodents (laboratory rats and mice) are here reviewed. The vast majority of these studies have been aimed at understanding the contribution of sleep to cognition, and in particular to memory. Relatively little attention, instead, has been devoted to SD as a challenge to induce a transient memory impairment, and therefore as a tool to test cognitive enhancers in drug discovery. Studies that have accurately described methodological aspects of the SD protocol are first reviewed, followed by procedures to investigate SD-induced impairment of learning and memory consolidation in order to propose SD protocols that could be employed as cognitive challenge. Thus, a platform of knowledge is provided for laboratory protocols that could be used to assess the efficacy of drugs designed to improve memory performance in rodents, including rodent models of neurodegenerative diseases that cause cognitive deficits, and Alzheimer's disease in particular. Issues in the interpretation of such preclinical data and their predictive value for clinical translation are also discussed.
Collapse
Affiliation(s)
- Valeria Colavito
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| | - Paolo F Fabene
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| | | | - Fabien Pifferi
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle Brunoy, France
| | - Yves Lamberty
- Neuroscience Therapeutic Area, UCB Pharma s.a. Braine l'Alleud, Belgium
| | - Marina Bentivoglio
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| | - Giuseppe Bertini
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| |
Collapse
|
67
|
Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms. J Pineal Res 2013; 55:325-56. [PMID: 24112071 DOI: 10.1111/jpi.12090] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
The classic theories of aging such as the free radical theory, including its mitochondria-related versions, have largely focused on a few specific processes of senescence. Meanwhile, numerous interconnections have become apparent between age-dependent changes previously thought to proceed more or less independently. Increased damage by free radicals is not only linked to impairments of mitochondrial function, but also to inflammaging as it occurs during immune remodeling and by release of proinflammatory cytokines from mitotically arrested, DNA-damaged cells that exhibit the senescence-associated secretory phenotype (SASP). Among other effects, SASP can cause mutations in stem cells that reduce the capacity for tissue regeneration or, in worst case, lead to cancer stem cells. Oxidative stress has also been shown to promote telomere attrition. Moreover, damage by free radicals is connected to impaired circadian rhythmicity. Another nexus exists between cellular oscillators and metabolic sensing, in particular to the aging-suppressor SIRT1, which acts as an accessory clock protein. Melatonin, being a highly pleiotropic regulator molecule, interacts directly or indirectly with all the processes mentioned. These influences are critically reviewed, with emphasis on data from aged organisms and senescence-accelerated animals. The sometimes-controversial findings obtained either in a nongerontological context or in comparisons of tumor with nontumor cells are discussed in light of evidence obtained in senescent organisms. Although, in mammals, lifetime extension by melatonin has been rarely documented in a fully conclusive way, a support of healthy aging has been observed in rodents and is highly likely in humans.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
68
|
Zhang L, Zhang HQ, Liang XY, Zhang HF, Zhang T, Liu FE. Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII. Behav Brain Res 2013; 256:72-81. [PMID: 23933144 DOI: 10.1016/j.bbr.2013.07.051] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 07/23/2013] [Accepted: 07/27/2013] [Indexed: 12/11/2022]
Abstract
Sleep deprivation (SD) has been shown to induce oxidative stress which causes cognitive impairment. Melatonin, an endogenous potent antioxidant, protects neurons from oxidative stress in many disease models. The present study investigated the effect of melatonin against SD-induced cognitive impairment and attempted to define the possible mechanisms involved. SD was induced in rats using modified multiple platform model. Melatonin (15 mg/kg) was administered to the rats via intraperitoneal injection. The open field test and Morris water maze were used to evaluate cognitive ability. The cerebral cortex (CC) and hippocampus were dissected and homogenized. Nitric oxide (NO) and malondialdehyde (MDA) levels and the superoxide dismutase (SOD) enzyme activity of hippocampal and cortical tissues (10% wet weight per volume) were performed to determine the level of oxidative stress. The expression of brain-derived neurotrophic factor (BDNF) and calcium-calmodulin dependent kinase II (CaMKII) proteins in CC and hippocampus was assayed by means of immunohistochemistry. The results revealed that SD impairs cognitive ability, while melatonin treatment prevented these changes. In addition, melatonin reversed SD-induced changes in NO, MDA and SOD in both of the CC and hippocampus. The results of immunoreactivity showed that SD decreased gray values of BDNF and CaMKII in CC and hippocamal CA1, CA3 and dentate gyrus regions, whereas melatonin improved the gray values. In conclusion, our results suggest that melatonin prevents cognitive impairment induced by SD. The possible mechanism may be attributed to its ability to reduce oxidative stress and increase the levels of CaMKII and BDNF in CC and hippocampus.
Collapse
Affiliation(s)
- Lei Zhang
- Experiment Teaching Center of Basic Medicine, The Fourth Military Medical University, Xi'an, 710033 Shan Xi Province, China; Department of General Surgery, 406 Hospital, Da Lian, 116041 Liao Ning Province, China; State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710033 Shan Xi Province, China
| | | | | | | | | | | |
Collapse
|
69
|
Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 2013; 153:1448-60. [PMID: 23791176 PMCID: PMC3748806 DOI: 10.1016/j.cell.2013.05.027] [Citation(s) in RCA: 450] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 03/11/2013] [Accepted: 05/13/2013] [Indexed: 12/24/2022]
Abstract
SIRT1 is a NAD(+)-dependent protein deacetylase that governs many physiological pathways, including circadian rhythm in peripheral tissues. Here, we show that SIRT1 in the brain governs central circadian control by activating the transcription of the two major circadian regulators, BMAL1 and CLOCK. This activation comprises an amplifying circadian loop involving SIRT1, PGC-1α, and Nampt. In aged wild-type mice, SIRT1 levels in the suprachiasmatic nucleus are decreased, as are those of BMAL1 and PER2, giving rise to a longer intrinsic period, a more disrupted activity pattern, and an inability to adapt to changes in the light entrainment schedule. Young mice lacking brain SIRT1 phenocopy these aging-dependent circadian changes, whereas mice that overexpress SIRT1 in the brain are protected from the effects of aging. Our findings indicate that SIRT1 activates the central pacemaker to maintain robust circadian control in young animals, and a decay in this activity may play an important role in aging.
Collapse
Affiliation(s)
- Hung-Chun Chang
- Paul F. Glenn Laboratory, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leonard Guarente
- Paul F. Glenn Laboratory, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
70
|
Paraíso AF, Mendes KL, Santos SHS. Brain activation of SIRT1: role in neuropathology. Mol Neurobiol 2013; 48:681-9. [PMID: 23615921 DOI: 10.1007/s12035-013-8459-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/09/2013] [Indexed: 01/27/2023]
Abstract
Sirtuins (SIRTs) are a family of regulatory proteins of genetic information with a high degree of conservation among species. The SIRTs are heavily involved in several physiological functions including control of gene expression, metabolism, and aging. SIRT1 has been the most studied sirtuin and plays important role in the prevention and progression of neurodegenerative diseases acting in different pathways of proteins involved in brain function. SIRT1 activation regulates important genes that also exert neuroprotective actions such as p53, nuclear factor kappa B, peroxisome proliferator-activated receptor-gamma (PPARγ), PPARγ coactivator-1α, liver X receptor, and forkhead box O. It is well established in literature that growing population aging, oxidative stress, inflammation, and genetic factors are important conditions to development of neurodegenerative disorders. However, the exact pathophysiological mechanisms leading to these diseases remain obscure. The sirtuins show strong potential to become valuable predictive and prognostic markers for diseases and as therapeutic targets for the treatment of a variety of neurodegenerative disorders. In this context, the aim of the current review is to present an actual view of the potential role of SIRT1 in modulating the interaction between target genes and neurodegenerative diseases on the brain.
Collapse
Affiliation(s)
- Alanna Fernandes Paraíso
- Laboratory of Health Science, Postgraduate Program in Health Science, State University of Montes Claros (Unimontes), Av. Cula Mangabeira, 562-Santo Expedito, Montes Claros, Minas Gerais, 39401-001, Brazil
| | | | | |
Collapse
|
71
|
Cardinali DP, Pagano ES, Scacchi Bernasconi PA, Reynoso R, Scacchi P. Melatonin and mitochondrial dysfunction in the central nervous system. Horm Behav 2013; 63:322-30. [PMID: 22391273 DOI: 10.1016/j.yhbeh.2012.02.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 01/19/2023]
Abstract
Cell death and survival are critical events for neurodegeneration, mitochondria being increasingly seen as important determinants of both. Mitochondrial dysfunction is considered a major causative factor in Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Increased free radical generation, enhanced mitochondrial inducible nitric oxide (NO) synthase activity and NO production, and disrupted electron transport system and mitochondrial permeability transition, have all been involved in impaired mitochondrial function. Melatonin, the major secretory product of the pineal gland, is an antioxidant and an effective protector of mitochondrial bioenergetic function. Both in vitro and in vivo, melatonin was effective to prevent oxidative stress/nitrosative stress-induced mitochondrial dysfunction seen in experimental models of AD, PD and HD. These effects are seen at doses 2-3 orders of magnitude higher than those required to affect sleep and circadian rhythms, both conspicuous targets of melatonin action. Melatonin is selectively taken up by mitochondria, a function not shared by other antioxidants. A limited number of clinical studies indicate that melatonin can improve sleep and circadian rhythm disruption in PD and AD patients. More recently, attention has been focused on the development of potent melatonin analogs with prolonged effects which were employed in clinical trials in sleep-disturbed or depressed patients in doses considerably higher than those employed for melatonin. In view that the relative potencies of the analogs are higher than that of the natural compound, clinical trials employing melatonin in the range of 50-100mg/day are needed to assess its therapeutic validity in neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Pontificia Universidad Católica Argentina, Facultad de Ciencias Médicas, 1107 Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
72
|
Rodella LF, Favero G, Rossini C, Foglio E, Bonomini F, Reiter RJ, Rezzani R. Aging and vascular dysfunction: beneficial melatonin effects. AGE (DORDRECHT, NETHERLANDS) 2013; 35:103-115. [PMID: 22109832 PMCID: PMC3543744 DOI: 10.1007/s11357-011-9336-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/25/2011] [Indexed: 05/29/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological functions and metabolic processes. In aging and in diseases associated with the elderly, the loss of cells in vital structures or organs may be related to several factors. Sirtuin1 (SIRT1) is a member of the sirtuin family of protein deacetylases involved in life span extension; however, its involvement in the aging is not yet completely defined. Recently, melatonin, a pleiotropic molecule, shown to activate SIRT1 in primary neurons of young animals, as well as in aged neurons of a murine model of senescence. Melatonin is known to modulate oxidative stress-induced senescence and pro-survival pathways. We treated 6- and 15-week-old apolipoprotein E (APOE)-deficient mice (APOE 6w and 15w) with two melatonin formulations (FAST and RETARD) to evaluate their anti-aging effect. Morphological changes in vessels (aortic arch) of APOE mice were evaluated SIRT1, p53, endothelial nitric oxide synthase (eNOS), and endothelin-1 (ET-1) markers. We demonstrate that SIRT1 and eNOS decresed in APOE mice between 6 and 15 weeks and that aging induced an elevated expression of p53 and ET-1 in APOE animals. Melatonin improved the impairment of endothelial damage and reduced loss of SIRT1 and eNOS decreasing p53 and ET-1 expression. The RETARD melatonin preparation caused a greater improvement of vessel cytoarchitecture. In summary, we indicate that SIRT1-p53-eNOS axis as one of the important marker of advanced vascular dysfunctions linked to aging. Finally, we suggest that extended-release melatonin (RETARD) provides a more appropriate option for contrasting these dysfunctions compared with rapid release melatonin (FAST) administration.
Collapse
Affiliation(s)
- Luigi Fabrizio Rodella
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Gaia Favero
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Claudia Rossini
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Eleonora Foglio
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Francesca Bonomini
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Russel J. Reiter
- />Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Rita Rezzani
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| |
Collapse
|
73
|
Anderson G, Maes M. Melatonin: an overlooked factor in schizophrenia and in the inhibition of anti-psychotic side effects. Metab Brain Dis 2012; 27:113-9. [PMID: 22527998 DOI: 10.1007/s11011-012-9307-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/11/2012] [Indexed: 12/11/2022]
Abstract
This paper reviews melatonin as an overlooked factor in the developmental etiology and maintenance of schizophrenia; the neuroimmune and oxidative pathophysiology of schizophrenia; specific symptoms in schizophrenia, including sleep disturbance; circadian rhythms; and side effects of antipsychotics, including tardive dyskinesia and metabolic syndrome. Electronic databases, i.e. PUBMED, Scopus and Google Scholar were used as sources for this review using keywords: schizophrenia, psychosis, tardive dyskinesia, antipsychotics, metabolic syndrome, drug side effects and melatonin. Articles were selected on the basis of relevance to the etiology, course and treatment of schizophrenia. Melatonin levels and melatonin circadian rhythm are significantly decreased in schizophrenic patients. The adjunctive use of melatonin in schizophrenia may augment the efficacy of antipsychotics through its anti-inflammatory and antioxidative effects. Further, melatonin would be expected to improve sleep disorders in schizophrenia and side effects of anti-psychotics, such as tardive dyskinesia, metaboilic syndrome and hypertension. It is proposed that melatonin also impacts on the tryptophan catabolic pathway via its effect on stress response and cortisol secretion, thereby impacting on cortex associated cognition, amygdala associated affect and striatal motivational processing. The secretion of melatonin is decreased in schizophrenia, contributing to its etiology, pathophysiology and management. Melatonin is likely to have impacts on the metabolic side effects of anti-psychotics that contribute to subsequent decreases in life-expectancy.
Collapse
|
74
|
Chang HM, Liao WC, Sheu JN, Chang CC, Lan CT, Mai FD. Sleep deprivation impairs Ca2+ expression in the hippocampus: ionic imaging analysis for cognitive deficiency with TOF-SIMS. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:425-435. [PMID: 22494489 DOI: 10.1017/s1431927612000086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sleep deprivation causes cognitive dysfunction in which impaired neuronal plasticity in hippocampus may underlie the molecular mechanisms of this deficiency. Considering calcium-mediated NMDA receptor subunit 1 (NMDAR1) and neuronal nitric oxide synthase (nNOS) activation plays an important role in the regulation of neuronal plasticity, the present study is aimed to determine whether total sleep deprivation (TSD) would impair calcium expression, together with injury of the neuronal plasticity in hippocampus. Adult rats subjected to TSD were processed for time-of-flight secondary ion mass spectrometry, NMDAR1 immunohistochemistry, nNOS biochemical assay, cytochrome oxidase histochemistry, and the Morris water maze learning test to detect ionic, neurochemical, bioenergetic as well as behavioral changes of neuronal plasticity, respectively. Results indicated that in normal rats, strong calcium signaling along with intense NMDAR1/nNOS expression were observed in hippocampal regions. Enhanced calcium imaging and neurochemical expressions corresponded well with strong bioenergetic activity and good performance of behavioral testing. However, following TSD, both calcium intensity and NMDAR1/nNOS expressions were significantly decreased. Behavioral testing also showed poor responses after TSD. As proper calcium expression is essential for maintaining hippocampal neuronal plasticity, impaired calcium expression would depress downstream NMDAR1-mediated nNOS activation, which might contribute to the initiation or development of TSD-related cognitive deficiency.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | | | | | |
Collapse
|
75
|
Domínguez-Alonso A, Ramírez-Rodríguez G, Benítez-King G. Melatonin increases dendritogenesis in the hilus of hippocampal organotypic cultures. J Pineal Res 2012; 52:427-36. [PMID: 22257024 DOI: 10.1111/j.1600-079x.2011.00957.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuropsychiatric disorders are characterized by hippocampus decreased volume and loss of dendrite arborizations in the subiculum and prefrontal cortex. These structural changes are associated with diminished memory performance. Hilar neurons of the hippocampus integrate spatial memory and are lost in dementia. They receive information from dentate gyrus neurons through dendrites, while they send axonal tracts to the CA3 region. Dendrites are complex structures of neurons that receive chemical information from presynaptic and postsynaptic terminals. Melatonin, the main product of the pineal gland, has neuroprotective actions through its free radical-scavenging properties and decreases neuronal apoptosis. Recently, we found that melatonin increases dendrite maturation and complexity in new neurons formed in the dentate gyrus of mice. In addition, in N1E-115 cultured cells, the indole stimulates early stages of neurite formation, a process that is known to antecede dendrite formation and maturation. Thus, in this study, we explored whether melatonin stimulates dendrite formation and complexity in the adult rat hippocampus in organotypic slice cultures, which is a model that preserves the hippocampal circuitry and their tridimensional organizations of connectivity. The effects of melatonin were studied in nonpathological conditions and in the absence of harmful agents. The results showed that the indole at nocturnal concentrations reached in the cerebrospinal fluid stimulates dendritogenesis at formation, growth, and maturation stages. Also, data showed that dendrites formed became competent to form presynaptic specializations. Evidence strongly suggests that melatonin may be useful in the treatment of neuropsychiatric diseases to repair the loss of dendrites and re-establish lost synaptic connections.
Collapse
Affiliation(s)
- Aline Domínguez-Alonso
- Departamento de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México, D.F
| | | | | |
Collapse
|
76
|
Hardeland R, Madrid JA, Tan DX, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 2012; 52:139-66. [PMID: 22034907 DOI: 10.1111/j.1600-079x.2011.00934.x] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Evidence is accumulating regarding the importance of circadian core oscillators, several associated factors, and melatonin signaling in the maintenance of health. Dysfunction of endogenous clocks, melatonin receptor polymorphisms, age- and disease-associated declines of melatonin likely contribute to numerous diseases including cancer, metabolic syndrome, diabetes type 2, hypertension, and several mood and cognitive disorders. Consequences of gene silencing, overexpression, gene polymorphisms, and deviant expression levels in diseases are summarized. The circadian system is a complex network of central and peripheral oscillators, some of them being relatively independent of the pacemaker, the suprachiasmatic nucleus. Actions of melatonin on peripheral oscillators are poorly understood. Various lines of evidence indicate that these clocks are also influenced or phase-reset by melatonin. This includes phase differences of core oscillator gene expression under impaired melatonin signaling, effects of melatonin and melatonin receptor knockouts on oscillator mRNAs or proteins. Cross-connections between melatonin signaling pathways and oscillator proteins, including associated factors, are discussed in this review. The high complexity of the multioscillator system comprises alternate or parallel oscillators based on orthologs and paralogs of the core components and a high number of associated factors with varying tissue-specific importance, which offers numerous possibilities for interactions with melatonin. It is an aim of this review to stimulate research on melatonin signaling in peripheral tissues. This should not be restricted to primary signal molecules but rather include various secondarily connected pathways and discriminate between direct effects of the pineal indoleamine at the target organ and others mediated by modulation of oscillators.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Germany.
| | | | | | | |
Collapse
|
77
|
Motilva V, García-Mauriño S, Talero E, Illanes M. New paradigms in chronic intestinal inflammation and colon cancer: role of melatonin. J Pineal Res 2011; 51:44-60. [PMID: 21752096 DOI: 10.1111/j.1600-079x.2011.00915.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In intestinal bowel disease (IBD), immune-mediated conditions exert their effects through various cells and proinflammatory mediators. Recent data support a participation of the endoplasmic reticulum stress and mitochondrial dysfunctions in IBD. Moreover, it is evident that chronic degenerative pathologies, including IBD, share comparable disease mechanisms with alteration in the autophagy mechanisms. Chronic inflammation in IBD exposes these patients to a number of signals known to have tumorigenic effects. This circuitry of inflammation and cancer modifies apoptosis and autophagy, and promotes cellular cycle progression, invasion, and angiogenesis. Melatonin has been shown as a specific antioxidant reducing oxidative damage in both lipid and aqueous cell environments. However, several studies provide further insight into the molecular mechanisms of melatonin action in the colon. In this line, recent data suggest that melatonin modulates autophagy and sirtuin activity. An anti-autophagic property of melatonin has been demonstrated, and it could contribute to its anti-oncogenic activity. Nevertheless, there is no information about whether antitumoral effects of melatonin on colon cancer are dependent on autophagy. Sirtuins have pleiotropic effects on cancer development, being reported both as facilitator and as suppressor of colon cancer development. Sirtuins and melatonin are connected through the circadian clock machinery, and melatonin seems able to correct the alterations in sirtuin activity associated with several pathological conditions. Autophagy and sirtuin activities are linked through 5'AMP-activated protein kinase (AMPK) activation, which switches on autophagy and increases sirtuin. The effect of melatonin on AMPK and the impact of this effect on IBD and colon cancer remain an open question.
Collapse
Affiliation(s)
- Virginia Motilva
- Department of Pharmacology, University of Seville, Seville, Spain.
| | | | | | | |
Collapse
|
78
|
Wu UI, Mai FD, Sheu JN, Chen LY, Liu YT, Huang HC, Chang HM. Melatonin inhibits microglial activation, reduces pro-inflammatory cytokine levels, and rescues hippocampal neurons of adult rats with acute Klebsiella pneumoniae meningitis. J Pineal Res 2011; 50:159-70. [PMID: 21062353 DOI: 10.1111/j.1600-079x.2010.00825.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Acute bacterial meningitis caused by Klebsiella pneumoniae (K. pneumoniae) is a major health threat with a high mortality rate and severe neuro-cognitive sequelae. The intense pro-inflammatory cytokine released from calcium-mediated microglial activation plays an important role in eliciting neuronal damage in the hippocampal region. Considering melatonin possesses anti-inflammatory and immuno-modulatory properties, the present study determined whether melatonin can effectively decrease inflammatory responses and prevent hippocampal damage in animals subjected to K. pneumoniae. Adult rats inoculated with K. pneumoniae received a melatonin injection immediately thereafter at doses of 5, 25, 50, or 100 mg/kg. Following 24 h of survival, all experimental animals were processed for time-of-flight secondary ion mass spectrometry (for detecting glial calcium intensity), isolectin-B4 histochemistry (reliable marker for microglial activation), pro-inflammatory cytokine measurement as well as cytochrome oxidase and in situ dUTP end-labeling (representing neuronal bio-energetic status and apoptotic changes, respectively). Results indicate that in K. pneumoniae-infected rats, numerous calcium-enriched microglia, enhanced pro-inflammatory cytokine, and various apoptotic neurons with low bio-energetic activity were detected in hippocampus. Following melatonin administration, however, all parameters including glial calcium intensity, microglial activation, pro-inflammatory cytokine levels, and number of apoptotic neurons were successfully decreased with maximal change observed at a melatonin dose of 100 mg/kg. Enzymatic data corresponded well with above findings in which all surviving neurons displayed high bio-energetic activity. As effectively reducing glia-mediated inflammatory response is neuro-protective to hippocampal neurons, the present study supports the clinical use of melatonin as a potential therapeutic agent to counteract K. pneumoniae meningitis-induced neuro-cognitive damage.
Collapse
Affiliation(s)
- Un-In Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
79
|
Anderson G, Ojala JO. Alzheimer's and seizures: interleukin-18, indoleamine 2,3-dioxygenase and quinolinic Acid. Int J Tryptophan Res 2010; 3:169-73. [PMID: 22084597 PMCID: PMC3195251 DOI: 10.4137/ijtr.s4603] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Emergent seizures are common in Alzheimer's disease (AD), although the mechanisms mediating this are unknown. It is proposed that stress induced interleukin-18 (IL-18), via interferon-gamma (IFNy) and independently, increases indoleamine 2,3-dioxygenase (IDO) and subsequent quinolinic acid (QA) in microglia. QA increases seizures and concurrently contributes to neuronal loss via excitotoxicity. The ApoE4 allele interacts with IL-18 polymorphisms to increase the risk of AD, and seems likely to potentiate the emergence of seizures. Concurrent changes in IDO and the kynurenine pathways at the blood-brain-barrier (BBB) have implications for treatment, including in the efficacy of different anti-hypertensives. Melatonin is proposed to inhibit these overlapping excitotoxic and neurodegenerative processes, and would be a useful adjunctive treatment.
Collapse
Affiliation(s)
- G Anderson
- CRC, Rm 1/2, 1229 Dumbarton Road, Glasgow, Scotland, U.K
| | - JO Ojala
- University of Eastern Finland, Institute of Clinical Medicine/Neurology, P.O. Box 1627, FI-70211 Kuopio
- University of Eastern Finland, Clinical Research Centre/Brain Research Unit. P.O. Box 1627 (Yliopistonranta 1B), FI-70211 Kuopio
| |
Collapse
|
80
|
Chang HM, Mai FD, Lei SL, Ling YC. Impaired sodium levels in the suprachiasmatic nucleus are associated with the formation of cardiovascular deficiency in sleep-deprived rats. J Anat 2010; 217:694-704. [PMID: 20946541 DOI: 10.1111/j.1469-7580.2010.01312.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Biological rhythms are a ubiquitous feature of all higher organisms. The rhythmic center of mammals is located in the suprachiasmatic nucleus (SCN), which projects to a number of brainstem centers to exert diurnal control over many physiological processes, including cardiovascular regulation. Total sleep deprivation (TSD) is a harmful condition known to impair cardiovascular activity, but the molecular mechanisms are unknown. As the inward sodium current has long been suggested as playing an important role in driving the spontaneous firing of the SCN, the present study aimed to determine if changes in sodium expression, together with its molecular machinery (Na-K ATPase) and rhythmic activity within the SCN, would occur during TSD. Adult rats subjected to different periods of TSD were processed for time-of-flight secondary ion mass spectrometry, Na-K ATPase assay, and cytochrome oxidase (COX) (an endogenous bioenergetic marker for neuronal activity) histochemistry. Cardiovascular dysfunction was determined through analysis of heart rate and changes in mean arterial pressure. Results indicated that, in normal rats, strong sodium signals were expressed throughout the entire SCN. Enzymatic data corresponded well with spectrometric findings in which high levels of Na-K ATPase and COX were observed in this nucleus. However, following TSD, all parameters including sodium imaging, sodium intensity as well as COX activities were drastically decreased. Na-K ATPase showed an increase in responsiveness following TSD. Both heart rate and mean arterial pressure measurements indicated an exaggerated pressor effect following TSD treatment. As proper sodium levels are essential for SCN activation, reduced SCN sodium levels may interrupt the oscillatory control, which could serve as the underlying mechanism for the initiation or development of TSD-related cardiovascular deficiency.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | | | | | | |
Collapse
|
81
|
Prenatal corticosteroids: pretermer outcomes, stress, schizophrenia, multiple sclerosis and the developmental role of melatonin and vitamin D3. J Pediatr Adolesc Gynecol 2010; 23:317-20. [PMID: 20836246 DOI: 10.1016/j.jpag.2010.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
82
|
Hong Y, Palaksha KJ, Park K, Park S, Kim HD, Reiter RJ, Chang KT. Melatonin plus exercise-based neurorehabilitative therapy for spinal cord injury. J Pineal Res 2010; 49:201-9. [PMID: 20626592 DOI: 10.1111/j.1600-079x.2010.00786.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Spinal cord injury (SCI) is damage to the spinal cord caused by the trauma or disease that results in compromised or loss of body function. Subsequent to SCI in humans, many individuals have residual motor and sensory deficits that impair functional performance and quality of life. The available treatments for SCI are rehabilitation therapy, activity-based therapies, and pharmacological treatment using antioxidants and their agonists. Among pharmacological treatments, the most efficient and commonly used antioxidant for experimental SCI treatment is melatonin, an indolamine secreted by pineal gland at night. Melatonin's receptor-independent free radical scavenging action and its broad-spectrum antioxidant activity makes it an ideal antioxidant to protect tissue from oxidative stress-induced secondary damage after SCI. Owing to the limitations of an activity-based therapy and antioxidant treatment singly on the functional recovery and oxidative stress-induced secondary damages after SCI, a melatonin plus exercise treatment may be a more effective therapy for SCI. As suggested herein, supplementation with melatonin in conjunction with exercise not only would improve the functional recovery by enhancing the beneficial effects of exercise but would reduce the secondary tissue damage simultaneously. Finally, melatonin may protect against exercise-induced fatigue and impairments. In this review, based on the documented evidence regarding the beneficial effects of melatonin, activity-based therapy and the combination of both on functional recovery, as well as reduction of secondary damage caused by oxidative stress after SCI, we suggest the melatonin combined with exercise would be a novel neurorehabilitative strategy for the faster recovery after SCI.
Collapse
Affiliation(s)
- Yonggeun Hong
- Department of Physical Therapy, Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, 607 O-bang Dong, Gimhae 621-749, Korea.
| | | | | | | | | | | | | |
Collapse
|
83
|
Neuronal-immune interactions in mediating stress effects in the etiology and course of schizophrenia: role of the amygdala in developmental co-ordination. Med Hypotheses 2010; 76:54-60. [PMID: 20843610 DOI: 10.1016/j.mehy.2010.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 08/10/2010] [Indexed: 11/24/2022]
Abstract
Stress, in its many forms, is long associated with the etiology and course of schizophrenia. The mechanisms mediating the impacts of stress are not fully elucidated. Here it is proposed that stress induced cortisol alters kynurenic acid (KA) and quinolinic acid (QA) in the cortex and amygdala/striatum, respectively. These effects are significantly modulated by BAG-1 (bcl-2 associated anthanogene) and involve ROS, IL-18, and the induction of IDO (indoleamine 2,3-dioxygenase). The kynurenine pathway (KP) products response to stress seems to mediate both prenatal etiology and symptom course in adulthood. It is suggested that the effects of cortisol and quinolinic acid in the amygdala, coupled to an increase in dopamine efflux, mediate amygdala driven developmental changes in the cortex and VTA/N.Accumbens junction. This change in patterned brain activity co-ordinates alterations in motivated behaviour and thought outputs. Such developmental alterations determine changes in sensory-amygdala interactions, readily allowing developmental links to changes in lateral inhibition and pre-pulse inhibition. Decreases in vitamin D3 and melatonin further potentiate such stress induced changes. The likely involvement of glia in mediating increases in the KP products suggests that adaptation to stress is driven by neuronal activity as a form of glia to glia communication.
Collapse
|
84
|
Hardeland R. Neuroprotection by radical avoidance: search for suitable agents. Molecules 2009; 14:5054-102. [PMID: 20032877 PMCID: PMC6255388 DOI: 10.3390/molecules14125054] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 11/30/2009] [Accepted: 12/04/2009] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration is frequently associated with damage by free radicals. However, increases in reactive oxygen and nitrogen species, which may ultimately lead to neuronal cell death, do not necessarily reflect its primary cause, but can be a consequence of otherwise induced cellular dysfunction. Detrimental processes which promote free radical formation are initiated, e.g., by disturbances in calcium homeostasis, mitochondrial malfunction, and an age-related decline in the circadian oscillator system. Free radicals generated at high rates under pathophysiological conditions are insufficiently detoxified by scavengers. Interventions at the primary causes of dysfunction, which avoid secondary rises in radical formation, may be more efficient. The aim of such approaches should be to prevent calcium overload, to reduce mitochondrial electron dissipation, to support electron transport capacity, and to avoid circadian perturbations. L-theanine and several amphiphilic nitrones are capable of counteracting excitotoxicity and/or mitochondrial radical formation. Resveratrol seems to promote mitochondrial biogenesis. Mitochondrial effects of leptin include attenuation of electron leakage. Melatonin combines all the requirements mentioned, additionally regulates anti- and pro-oxidant enzymes and is, with few exceptions, very well tolerated. In this review, the perspectives, problems and limits of drugs are compared which may be suitable for reducing the formation of free radicals.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Berliner str. 28, D-37073 Göttingen, Germany.
| |
Collapse
|