51
|
Chen D, Liang Y, Liang J, Shen F, Cheng Y, Qu H, Wa Y, Guo C, Gu R, Qian J, Chen X, Zhang C, Guan C. Beneficial effects of Lactobacillus rhamnosus hsryfm 1301 fermented milk on rats with nonalcoholic fatty liver disease. J Dairy Sci 2023; 106:1533-1548. [PMID: 36710180 DOI: 10.3168/jds.2022-22383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/12/2022] [Indexed: 01/30/2023]
Abstract
A growing stream of research suggests that probiotic fermented milk has a good effect on nonalcoholic fatty liver disease. This work aimed to study the beneficial effects of Lactobacillus rhamnosus hsryfm 1301 fermented milk (fermented milk) on rats with nonalcoholic fatty liver disease induced by a high-fat diet. The results showed that the body weight and the serum levels of total cholesterol, total glyceride, low-density lipoprotein, alanine transaminase, aspartate aminotransferase, free fatty acid, and reactive oxygen species were significantly increased in rats fed a high-fat diet (M) for 8 wk, whereas high-density lipoprotein cholesterol and superoxide dismutase were significantly decreased. However, the body weight and the serum levels of total cholesterol, total glyceride, alanine transaminase, aspartate aminotransferase, free fatty acid, reactive oxygen species, interleukin-8, tumor necrosis factor-α, and interleukin-6 were significantly decreased with fermented milk (T) for 8 wk, and the number of fat vacuoles in hepatocytes was lower than that in the M group. There were significant differences in 19 metabolites in serum between the M group and the C group (administration of nonfermented milk) and in 17 metabolites between the T group and the M group. The contents of 7 different metabolites, glycine, glycerophosphocholine, 1,2-dioleoyl-sn-glycero-3-phosphocholine, thioetheramide-PC, d-aspartic acid, oleic acid, and l-glutamate, were significantly increased in the M group rat serum, and l-palmitoyl carnitine, N6-methyl-l-lysine, thymine, and 2-oxadipic acid were significantly decreased. In the T group rat serum, the contents of 8 different metabolites-1-O-(cis-9-octadecenyl)-2-O-acetyl-sn-glycero-3-phosphocholine, acetylcarnitine, glycine, glycerophosphocholine, 1,2-dioleoyl-sn-glycero-3-phosphocholine, d-aspartic acid, oleic acid, and l-glutamate were significantly decreased, whereas creatinine and thymine were significantly increased. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that 50 metabolic pathways were enriched in the M/C group and T/M group rat serum, of which 12 metabolic pathways were significantly different, mainly distributed in lipid metabolism, amino acid, and endocrine system metabolic pathways. Fermented milk ameliorated inflammation, oxygenation, and hepatocyte injury by regulating lipid metabolism, amino acid metabolic pathways, and related metabolites in the serum of rats with nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Dawei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China; Jiangsu Yuhang Food Technology Co., Ltd., Yancheng 224200, China
| | - Yating Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Jiaojiao Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Feifei Shen
- Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou 225127, China
| | - Yue Cheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Hengxian Qu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Congcong Guo
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Jianya Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Xia Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Chengran Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China.
| |
Collapse
|
52
|
Giulioni C, Maurizi V, Galosi AB. The role of physical agents' exposure in male infertility: A critical review. Arch Ital Urol Androl 2023; 95:10890. [PMID: 36924383 DOI: 10.4081/aiua.2023.10890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND A decrease in semen quality is an increasingly widespread pathological condition worldwide. Jobs and lifestyles have changed a lot with the advancement of technology in the last few decades, and a new series of risk factors for male infertility have spread. OBJECTIVE This review aims to summarize the current literature on this relationship, evaluating alterations in semen parameters and hormonal profile. METHODS A deep research was performed through MEDLINE via PubMed, Scopus, and Web of Science on articles regarding the relationship between physical agents and male fertility over the last twenty years. Some physical agents already associated with male infertility, such as heat and radiation, while emerging ones, such as physical exertion, psychological stress and sedentary activities, were newly considered. RESULTS Most studies described sperm quality after exposure. Overall sperm impairment was shown after radiation and alteration of specific parameters, such as sperm concentration, were observed after psychological stress and sedentary work. In addition, an association was also reported between physical exertion and hormonal profile, especially pituitary hormones and testosterone. CONCLUSIONS Although the associations between physical agents and male infertility are suggestive, the level of evidence of the studies is not adequate to define their influence, except for physical exertion. Therefore, new prospective studies are necessary for the validation of the correlation and the possible safeguarding of the exposed working classes.
Collapse
Affiliation(s)
- Carlo Giulioni
- Department of Urology, Polytechnic University of Marche Region, Umberto I Hospital "Ospedali Riuniti", Ancona.
| | - Valentina Maurizi
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche Region, "Ospedali Riuniti" University Hospital, Ancona.
| | - Andrea Benedetto Galosi
- Department of Urology, Polytechnic University of Marche Region, Umberto I Hospital "Ospedali Riuniti", Ancona.
| |
Collapse
|
53
|
Becatti M, Cito G, Argento FR, Fini E, Bettiol A, Borghi S, Mannucci A, Fucci R, Giachini C, Picone R, Emmi G, Taddei N, Coccia ME, Fiorillo C. Blood Leukocyte ROS Production Reflects Seminal Fluid Oxidative Stress and Spermatozoa Dysfunction in Idiopathic Infertile Men. Antioxidants (Basel) 2023; 12:antiox12020479. [PMID: 36830037 PMCID: PMC9952358 DOI: 10.3390/antiox12020479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
A large proportion of infertile men do not receive a clear diagnosis, being considered as idiopathic or unexplained cases due to infertility diagnosis based on standard semen parameters. Particularly in unexplained cases, the search for new indicators seems mandatory to provide specific information. In the etiopathogenesis of male infertility oxidative stress displays important roles by negatively affecting sperm quality and function. In this study, performed in a population of 34 idiopathic infertile men and in 52 age-matched controls, redox parameters were assessed in blood, leukocytes, spermatozoa, and seminal fluid and related to semen parameters. The main findings indicate that blood oxidative stress markers reflect seminal oxidative stress. Interestingly, blood leukocyte ROS production was significantly correlated to sperm ROS production and to semen parameters. Overall, these results suggest the potential employ of blood redox markers as a relevant and adjunctive tool for sperm quality evaluation aimed to preconception care.
Collapse
Affiliation(s)
- Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy
- Correspondence: ; Tel.: +39-055-2751261
| | - Gianmartin Cito
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy
| | - Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy
| | - Amanda Mannucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy
| | - Rossella Fucci
- Assisted Reproductive Technology Centre, Careggi University Hospital, 50134 Firenze, Italy
| | - Claudia Giachini
- Assisted Reproductive Technology Centre, Careggi University Hospital, 50134 Firenze, Italy
| | - Rita Picone
- Assisted Reproductive Technology Centre, Careggi University Hospital, 50134 Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy
| | | | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy
| |
Collapse
|
54
|
Genotoxic Risks to Male Reproductive Health from Radiofrequency Radiation. Cells 2023; 12:cells12040594. [PMID: 36831261 PMCID: PMC9954667 DOI: 10.3390/cells12040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
During modern era, mobile phones, televisions, microwaves, radio, and wireless devices, etc., have become an integral part of our daily lifestyle. All these technologies employ radiofrequency (RF) waves and everyone is exposed to them, since they are widespread in the environment. The increasing risk of male infertility is a growing concern to the human population. Excessive and long-term exposure to non-ionizing radiation may cause genetic health effects on the male reproductive system which could be a primitive factor to induce cancer risk. With respect to the concerned aspect, many possible RFR induced genotoxic studies have been reported; however, reports are very contradictory and showed the possible effect on humans and animals. Thus, the present review is focusing on the genomic impact of the radiofrequency electromagnetic field (RF-EMF) underlying the male infertility issue. In this review, both in vitro and in vivo studies have been incorporated explaining the role of RFR on the male reproductive system. It includes RFR induced-DNA damage, micronuclei formation, chromosomal aberrations, SCE generation, etc. In addition, attention has also been paid to the ROS generation after radiofrequency radiation exposure showing a rise in oxidative stress, base adduct formation, sperm head DNA damage, or cross-linking problems between DNA & protein.
Collapse
|
55
|
Ameliorative Effects of Vitamins A, C, and E on Sperm Parameters, Testis Histopathology, and Oxidative Stress Status in Zinc Oxide Nanoparticle-Treated Rats. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4371611. [PMID: 36704721 PMCID: PMC9873442 DOI: 10.1155/2023/4371611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 01/19/2023]
Abstract
One of the most often utilized nanoparticles (NPs) in several technologies is zinc oxide (ZnO) NPs. However, these NPs are said to have harmful effects on the reproductive system. Thus, we designed this study to specify the potential preventive activity of vitamins (Vits) A, C, and E, as antioxidants, against toxicity of ZnO NPs in the testes of rats. A total of 54 Wistar rats were arranged in 9 groups of 6 and then orally received water (control 1), olive oil (control 2), Vit A (1000 IU/kg), Vit C (200 mg/kg), Vit E (100 IU/kg), ZnO (200 mg/kg), ZnO+Vit A, ZnO+Vit C, and ZnO+Vit E. To determine the amount of testicular injury, sperm analysis and histological evaluation were performed. In addition, oxidative stress status was examined using colorimetric and qRT-PCR methods. Our findings suggest that ZnO NPs cause adverse effects on sperm parameters and testicular histology. Furthermore, oxidative biomarkers (malondialdehyde and total oxidant capacity) were enhanced in the ZnO group. By contrast, the gene expression and activities of antioxidant enzymes (SOD, GPx, and CAT) noted a remarkable decrease in the ZnO group regarding control (p < 0.05). However, oxidative markers were remarkably mitigated after combined treatment of ZnO NPs and Vits A, C, or E compared to the rats given ZnO NPs (p < 0.05). Additionally, compared to the ZnO NP group, the rats receiving Vits+ZnO NPs exhibit increased antioxidant enzyme activity and mRNA expression (p < 0.05). The findings demonstrate the abovementioned Vits' ameliorative effects on toxicity incurred by ZnO NPs.
Collapse
|
56
|
Hussain T, Kandeel M, Metwally E, Murtaza G, Kalhoro DH, Yin Y, Tan B, Chughtai MI, Yaseen A, Afzal A, Kalhoro MS. Unraveling the harmful effect of oxidative stress on male fertility: A mechanistic insight. Front Endocrinol (Lausanne) 2023; 14:1070692. [PMID: 36860366 PMCID: PMC9968806 DOI: 10.3389/fendo.2023.1070692] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/02/2023] [Indexed: 02/16/2023] Open
Abstract
Male infertility is a widely debated issue that affects males globally. There are several mechanisms involved. Oxidative stress is accepted to be the main contributing factor, with sperm quality and quantity affected by the overproduction of free radicals. Excess reactive oxygen species (ROS) cannot be controlled by the antioxidant system and, thus, potentially impact male fertility and hamper sperm quality parameters. Mitochondria are the driving force of sperm motility; irregularities in their function may lead to apoptosis, alterations to signaling pathway function, and, ultimately, compromised fertility. Moreover, it has been observed that the prevalence of inflammation may arrest sperm function and the production of cytokines triggered by the overproduction of ROS. Further, oxidative stress interacts with seminal plasma proteomes that influence male fertility. Enhanced ROS production disturbs the cellular constituents, particularly DNA, and sperms are unable to impregnate the ovum. Here, we review the latest information to better understand the relationship between oxidative stress and male infertility, the role of mitochondria, the cellular response, inflammation and fertility, and the interaction of seminal plasma proteomes with oxidative stress, as well as highlight the influence of oxidative stress on hormones; collectively, all of these factors are assumed to be important for the regulation of male infertility. This article may help improve our understanding of male infertility and the strategies to prevent it.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
- *Correspondence: Tarique Hussain, ; Bie Tan,
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- *Correspondence: Tarique Hussain, ; Bie Tan,
| | - Muhammad Ismail Chughtai
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Anjaleena Yaseen
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Ali Afzal
- Department of Zoology, Minhaj University, Lahore, Pakistan
| | - Muhammad Saleem Kalhoro
- Food Engineering and Bioprocess Technology, Asian Institute of Technology, Bangkok, Thailand
| |
Collapse
|
57
|
Effects of Extenders Supplementation with Gum Arabic and Antioxidants on Ram Spermatozoa Quality after Cryopreservation. Animals (Basel) 2022; 13:ani13010111. [PMID: 36611720 PMCID: PMC9818022 DOI: 10.3390/ani13010111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Semen cryopreservation is very important in animal agriculture to maximize the number of daughters of genetically superior males and to distribute the cryopreserved semen of good males all over the world. However, the freezing process generates some damage to sperm that reduce their fertilizing ability after thawing. Moreover, egg yolk, which is the most common animal-origin cryoprotectant used in semen dilution, is considered a source of biosecurity risk. In the current study, we aimed to compare the replacement of egg yolk in the extender by gum arabic (5%) along with supplementation with antioxidant cysteine or ascorbic acid on semen quality and freezability in Noemi rams in vitro. Semen from six rams were collected with an artificial vagina two times per week. Semen evaluation parameters such as color, volume, pH, general motility, percentage motility, concentration and cell viability ratio were assessed. Spermatozoa motility and concentration were estimated with the computer-assisted semen analysis system. The semen samples were frozen using a Tris extender containing either 15% egg yolk or 5% gum arabic. For antioxidant-supplemented extenders, cysteine or ascorbic acid was dissolved at concentrations of 0.10, 0.50 or 1.0 mM in egg yolk or gum arabic extender. The semen from each ejaculate of each ram were resuspended with a specific extender with glycerol (5%); the final volume after dilution was 1 mL semen to 4 mL extender. The samples were then cooled to 4 °C for 120 min, loaded into 0.5 mL straws and frozen in liquid nitrogen for 7 days. Supplementation of gum arabic or egg yolk extenders for ram semen with antioxidants such as cysteine or ascorbic acid has beneficial effects on semen quality after cold storage or cryopreservation. However, supplementation of a 5% gum arabic extender with cysteine at 0.5 or 1 mM concentration or ascorbic acid at 0.5 mM concentration improved the quality of spermatozoa postcryopreservation. It could be concluded that gum arabic is a good alternative for egg yolk in Noemi ram semen extenders. Antioxidants are necessary to support the addition of gum arabic to the extender to help the ram spermatozoa to survive freezing-thawing and oxidative stresses.
Collapse
|
58
|
Effects of whole cottonseed supplementation on performance, semen quality, and manganese superoxide dismutase concentrations in blood and semen of beef bulls. APPLIED ANIMAL SCIENCE 2022. [DOI: 10.15232/aas.2022-02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
59
|
Wei SM, Huang YM. Baicalein Alleviates Testicular Ischemia-Reperfusion Injury in a Rat Model of Testicular Torsion-Detorsion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1603469. [PMID: 36388170 PMCID: PMC9652068 DOI: 10.1155/2022/1603469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 07/27/2023]
Abstract
Testicular torsion/detorsion-induced ischemia/reperfusion injury is partly due to the overgeneration of reactive oxygen species. Baicalein, a main bioactive constituent derived from the dried root of Scutellaria baicalensis Georgi, possesses powerful antioxidative and anti-inflammatory properties. Therefore, we designed the research to explore the possible protective effect of baicalein against testicular ischemia-reperfusion injury. Sprague-Dawley rats were randomized into 4 groups, including control, testicular ischemia-reperfusion, testicular ischemia-reperfusion+vehicle injection, and testicular ischemia-reperfusion+baicalein therapy groups. The control group received surgical exposure of the left testis without torsion-detorsion. In the testicular ischemia-reperfusion group, the left testis underwent 720° counterclockwise torsion for two hours and then was allowed detorsion. Rats in the testicular ischemia-reperfusion+vehicle injection group received intraperitoneal injection of the vehicle at detorsion. In the baicalein-treated group, the intraperitoneal administration of baicalein dissolved in the vehicle was performed at detorsion. At four hours or three months following testicular detorsion, testicular tissues were removed to detect the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) which can recruit neutrophils into the testis, myeloperoxidase activity (an index of neutrophil infiltration in the testis), protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in neutrophils which can catalyze reactive oxygen species production, malondialdehyde concentration (a common marker of reactive oxygen species), and spermatogenesis. Both testicular ischemia-reperfusion and testicular ischemia-reperfusion+vehicle injection significantly increased the TNF-α and IL-1β levels, myeloperoxidase activity, NADPH oxidase protein expression, and malondialdehyde concentration, while decreased spermatogenesis in ipsilateral testes. In contrast, baicalein administration remarkably reduced TNF-α and IL-1β levels, myeloperoxidase activity, NADPH oxidase protein expression, and malondialdehyde concentration and also elevated spermatogenesis in ipsilateral testes. The results of our experiment demonstrate that baicalein alleviates testicular ischemia-reperfusion injury by inhibiting TNF-α and IL-1β secretion, neutrophil infiltration in the testis, and NADPH oxidase protein expression in neutrophils to reduce reactive oxygen species production.
Collapse
Affiliation(s)
- Si-Ming Wei
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou City, Zhejiang Province 310015, China
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, China
| | - Yu-Min Huang
- Department of Sport Science, College of Education, Zhejiang University, Hangzhou City, Zhejiang Province 310058, China
| |
Collapse
|
60
|
Nikitkina E, Shapiev I, Musidray A, Krutikova A, Plemyashov K, Bogdanova S, Leibova V, Shiryaev G, Turlova J. Assessment of Semen Respiratory Activity of Domesticated Species before and after Cryopreservation: Boars, Bulls, Stallions, Reindeers and Roosters. Vet Sci 2022; 9:vetsci9100513. [PMID: 36288126 PMCID: PMC9610926 DOI: 10.3390/vetsci9100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/13/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Artificial insemination is actively used in animal husbandry. It is important to know the quality of the sperm for artificial insemination. One of the indicators of sperm quality can be an assessment of energy metabolism, since energy is needed for sperm to move and fertilize the egg. We studied the respiration rate in spermatozoa of different animal species: bulls, stallions, boars, reindeer and roosters. To determine the production of energy (ATP), the substance 2.4-dinetrophenol (2.4-DNP) was used, which stopped the production of ATP. Semen was assessed before and after freezing. The evaluation showed the same response to the addition of 2.4-DNP to the semen of different species, as well as a sufficient relationship between the reaction of semen respiration to the addition of 2.4-DNP and the fertilizing ability of sperm. At the same time, no relationship was found between the respiratory rate and fertility. The 2.4-DNP test can be a suitable additional measure of sperm quality. Abstract To assess sperm quality, it is important to evaluate energy metabolism. The test substance 2.4-dinitrophenol (2.4-DNP) is an agent for destroying oxidative phosphorylation. 2.4-DNP shuts off the production of adenosine triphosphate (ATP) from oxidation and then, the respiration rate increases. If the respiratory chain is damaged, there is little or no response to adding 2.4-DNP. The aim of this study was to analyze the respiratory activity and oxidative phosphorylation in semen before and after freezing and compare the obtained data with the fertilizing ability of sperm. There was a reduction in sperm respiration rates in all species after thawing. The respiration of spermatozoa of boars, bulls, stallions, reindeers and chicken showed responses to 2.4-dinitrophenol. The only difference is in the strength of the response to the test substance. After freezing and thawing, respiratory stimulation by 2.4-DNP decreased. The results of our study show that respiration rate is not correlated with pregnancy rates and egg fertility. However, there was a high correlation between the stimulation of respiration by 2.4-dinitrophenol and pregnancy rates. The test for an increase in respiration rate after adding 2.4-dinitrophenol could be a suitable test of the fertilizing ability of sperm.
Collapse
|
61
|
Alesi S, Villani A, Mantzioris E, Takele WW, Cowan S, Moran LJ, Mousa A. Anti-Inflammatory Diets in Fertility: An Evidence Review. Nutrients 2022; 14:3914. [PMID: 36235567 PMCID: PMC9570802 DOI: 10.3390/nu14193914] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Infertility is a global health concern affecting 48 million couples and 186 million individuals worldwide. Infertility creates a significant economic and social burden for couples who wish to conceive and has been associated with suboptimal lifestyle factors, including poor diet and physical inactivity. Modifying preconception nutrition to better adhere with Food-Based Dietary Guidelines (FBDGs) is a non-invasive and potentially effective means for improving fertility outcomes. While several dietary patterns have been associated with fertility outcomes, the mechanistic links between diet and infertility remain unclear. A key mechanism outlined in the literature relates to the adverse effects of inflammation on fertility, potentially contributing to irregular menstrual cyclicity, implantation failure, and other negative reproductive sequelae. Therefore, dietary interventions which act to reduce inflammation may improve fertility outcomes. This review consistently shows that adherence to anti-inflammatory diets such as the Mediterranean diet (specifically, increased intake of monounsaturated and n-3 polyunsaturated fatty acids, flavonoids, and reduced intake of red and processed meat) improves fertility, assisted reproductive technology (ART) success, and sperm quality in men. Therefore, integration of anti-inflammatory dietary patterns as low-risk adjunctive fertility treatments may improve fertility partially or fully and reduce the need for prolonged or intensive pharmacological or surgical interventions.
Collapse
Affiliation(s)
- Simon Alesi
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3168, Australia
| | - Anthony Villani
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Evangeline Mantzioris
- Clinical and Health Sciences & Alliance for Research in Nutrition, Exercise and Activity (ARENA), University of South Australia, Adelaide, SA 5001, Australia
| | - Wubet Worku Takele
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3168, Australia
| | - Stephanie Cowan
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3168, Australia
| | - Lisa J. Moran
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3168, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
62
|
Ribas-Maynou J, Delgado-Bermúdez A, Mateo-Otero Y, Viñolas E, Hidalgo CO, Ward WS, Yeste M. Determination of double- and single-stranded DNA breaks in bovine sperm is predictive of their fertilizing capacity. J Anim Sci Biotechnol 2022; 13:105. [PMID: 36114517 PMCID: PMC9482281 DOI: 10.1186/s40104-022-00754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The analysis of chromatin integrity has become an important determinant of sperm quality. In frozen-thawed bovine sperm, neither the sequence of post-thaw injury events nor the dynamics of different types of sperm DNA breaks are well understood. The aim of the present work was to describe such sperm degradation aftermath focusing on DNA damage dynamics, and to assess if this parameter can predict pregnancy rates in cattle. RESULTS A total of 75 cryopreserved ejaculates from 25 Holstein bulls were evaluated at two post-thawing periods (0-2 h and 2-4 h), analyzing global and double-stranded DNA damage through alkaline and neutral Comet assays, chromatin deprotamination and decondensation, sperm motility, viability, acrosomal status, and intracellular levels of total ROS, superoxides and calcium. Insemination of 59,605 females was conducted using sperm from the same bulls, thus obtaining the non-return to estrus rates after 90 d (NRR). Results showed an increased rate of double-stranded breaks in the first period (0-2 h: 1.29 ± 1.01%/h vs. 2-4 h: 0.13 ± 1.37%/h; P < 0.01), whereas the rate of sperm with moderate + high single-stranded breaks was higher in the second period (0-2 h: 3.52 ± 7.77 %/h vs. 2-4h: 21.06 ± 11.69 %/h; P < 0.0001). Regarding sperm physiology, viability decrease rate was different between the two periods (0-2 h: - 4.49 ± 1.79%/h vs. 2-4 h: - 2.50 ± 3.39%/h; P = 0.032), but the progressive motility decrease rate was constant throughout post-thawing incubation (0-2 h: - 4.70 ± 3.42%/h vs. 2-4 h: - 1.89 ± 2.97%/h; P > 0.05). Finally, whereas no correlations between bull fertility and any dynamic parameter were found, there were correlations between the NRR and the basal percentage of highly-damaged sperm assessed with the alkaline Comet (Rs = - 0.563, P = 0.003), between NRR and basal progressive motility (Rs = 0.511, P = 0.009), and between NRR and sperm with high ROS at 4 h post-thaw (Rs = 0.564, P = 0.003). CONCLUSION The statistically significant correlations found between intracellular ROS, sperm viability, sperm motility, DNA damage and chromatin deprotamination suggested a sequence of events all driven by oxidative stress, where viability and motility would be affected first and sperm chromatin would be altered at a later stage, thus suggesting that bovine sperm should be used for fertilization within 2 h post-thaw. Fertility correlations supported that the assessment of global DNA damage through the Comet assay may help predict bull fertility.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/ Maria Aurèlia Campany, 69, ES-17003, Girona, Spain. .,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain. .,Institute for Biogenesis Research, Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/ Maria Aurèlia Campany, 69, ES-17003, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/ Maria Aurèlia Campany, 69, ES-17003, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Estel Viñolas
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/ Maria Aurèlia Campany, 69, ES-17003, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Carlos O Hidalgo
- Department of Animal Selection and Reproduction, The Regional Agri-Food Research and Development Service of Asturias (SERIDA), ES-33394, Gijón, Spain
| | - W Steven Ward
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/ Maria Aurèlia Campany, 69, ES-17003, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), ES-08010, Barcelona, Spain
| |
Collapse
|
63
|
Escada-Rebelo S, Cristo MI, Ramalho-Santos J, Amaral S. Mitochondria-Targeted Compounds to Assess and Improve Human Sperm Function. Antioxid Redox Signal 2022; 37:451-480. [PMID: 34847742 DOI: 10.1089/ars.2021.0238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Currently 10%-15% of couples in reproductive age face infertility issues. More importantly, male factor contributes to 50% of these cases (either alone or in combination with female causes). Among various reasons, impaired sperm function is the main cause for male infertility. Furthermore, mitochondrial dysfunction and oxidative stress due to increased reactive oxygen species (ROS) production, particularly of mitochondrial origin, are believed to be the main contributors. Recent Advances: Mitochondrial dysfunction, particularly due to increased ROS production, has often been linked to impaired sperm function/quality. For decades, different methods and approaches have been developed to assess mitochondrial features that might correlate with sperm functionality. This connection is now completely accepted, with mitochondrial functionality assessment used more commonly as a readout of sperm functionality. More recently, mitochondria-targeted compounds are on the frontline for both assessment and therapeutic approaches. Critical Issues: In this review, we summarize the current methods for assessing key mitochondrial parameters known to reflect sperm quality as well as therapeutic strategies using mitochondria-targeted antioxidants aiming to improve sperm function in various situations, particularly after sperm cryopreservation. Future Directions: Although more systematic research is needed, mitochondria-targeted compounds definitely represent a promising tool to assess as well as to protect and improve sperm function. Antioxid. Redox Signal. 37, 451-480.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| | - Maria Inês Cristo
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra Amaral
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
64
|
Talebi S, Arab A, Sorraya N. The Association Between Dietary Antioxidants and Semen Parameters: A Cross-Sectional Study Among Iranian Infertile Men. Biol Trace Elem Res 2022; 200:3957-3964. [PMID: 34741245 DOI: 10.1007/s12011-021-03007-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
We aimed to explore the relationship between intakes of food-derived antioxidants (zinc, vitamin E, β-carotene, and selenium) and semen parameters in an infertile male population. This is a cross-sectional study among infertile men (> 18 years) referred to Isfahan Fertility and Infertility Center in Iran from March 2019 to October 2019. The main outcome measures were semen volume, sperm count, concentration, total motility, and morphology. Micronutrients considered in this analysis were zinc, selenium, β-carotene, and vitamin E. A total of 350 infertile men with a mean (SE) age of 34.77 (0.42) were included in this study. Selenium intake tended to be positively associated with higher semen volume (β = 0.79; 95% CI: - 0.01, 1.59) and sperm total motility after adjustment for main confounders (β = 2.64; 95% CI: - 3.61, 8.89). Intake of β-carotene was only associated with higher sperm total motility (β = 5.46; 95% CI: - 0.84, 11.77). No significant association was detected between intakes of zinc and vitamin E and semen parameters.In a population of infertile adult men, selenium intake was associated with higher sperm total motility and semen volume, and in the case of β-carotene, better sperm total motility. Further, prospective studies are warranted.
Collapse
Affiliation(s)
- Shokoofeh Talebi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Sorraya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
65
|
Arciero V, Ammar O, Maggi M, Vignozzi L, Muratori M, Dabizzi S. Vapour fast freezing with low semen volumes can highly improve motility and viability or DNA quality of cryopreserved human spermatozoa. Andrology 2022; 10:1123-1133. [PMID: 35712876 PMCID: PMC9544568 DOI: 10.1111/andr.13208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/02/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To challenge a vapour fast freezing (VFF) cryopreservation procedure (conventional VFF) with several vitrification protocols and VFF conducted with small semen volumes (10 μl, microVFF), in order to implement a procedure for sperm banking in subjects with small sperm number. MATERIALS AND METHODS Conventional VFF was conducted with test yolk buffer (TYB) as freezing medium and 500 μl straws as carriers. MicroVFF was conducted with TYB and using tips or cell sleepers as carriers. Vitrification was performed with TYB or SpermFreeze as freezing medium and with microspheres and tips as carriers. The effect of different procedures on progressive and total motility, viability, oxidative stress and DNA fragmentation of spermatozoa (sDF) was determined. Fresh and thawed samples, the latter after adequate washing/centrifuging, were evaluated. In some experiments, motility and viability recovery was determined in thawed samples, omitting the washing/centrifuging step. RESULTS All the cryopreservation procedures blunted sperm motility and viability and induced increase of oxidative stress and sDF. However, VFF better preserved sperm motility and viability and less induced oxidative stress and sDF than vitrification, independently from the freezing medium and the carriers used in the latter. MicroVFF with cell sleepers resulted in a percentage increase of 57.58 ± 63.63%, 48.82 ± 74.96% and 24.55 ± 39.20% of, respectively, progressive and total motility and viability compared to the conventional VFF. Further, when tips were used, microVFF resulted in a percentage decrease of 15.77 ± 20.77% of sDF with respect to conventional VFF. Finally, omission of washing/centrifuging in post thawed samples, resulted in a much lower negative effect on motility and viability. DISCUSSION AND CONCLUSION VFF, and in particular microVFF, better prevents sperm cryodamage than vitrification. Washing/centrifuging step after sample thawing seems to be responsible for a relevant fraction of damage to sperm motility and viability. Overall, our results are promising for developing a novel strategy of sperm banking in subjects with small sperm number, where low semen volumes are mandatory.
Collapse
Affiliation(s)
- Valentina Arciero
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Oumaima Ammar
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
- Department of Andrology, Women's Endocrinology and Gender Incongruence UnitCareggi HospitalItaly
| | - Monica Muratori
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Sara Dabizzi
- Department of Andrology, Women's Endocrinology and Gender Incongruence UnitCareggi HospitalItaly
| |
Collapse
|
66
|
Diniz A, Alves MG, Candeias E, Duarte AI, Moreira PI, Silva BM, Oliveira PF, Rato L. Type 2 Diabetes Induces a Pro-Oxidative Environment in Rat Epididymis by Disrupting SIRT1/PGC-1α/SIRT3 Pathway. Int J Mol Sci 2022; 23:ijms23168912. [PMID: 36012191 PMCID: PMC9409047 DOI: 10.3390/ijms23168912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes mellitus type 2 (T2DM) has been associated with alterations in the male reproductive tract, especially in the epididymis. Although it is known that T2DM alters epididymal physiology, disturbing mitochondrial function and favoring oxidative stress, the mechanisms remain unknown. Sirtuin 1 (SIRT1), peroxisome proliferators-activated receptor γ coactivator 1α (PGC-1α), and sirtuin 3 (SIRT3) are key regulators of mitochondrial function and inducers of antioxidant defenses. In this study, we hypothesized that the epididymal SIRT1/PGC-1α/SIRT3 axis mediates T2DM-induced epididymis dysfunction by controlling the oxidative profile. Using 7 Goto-Kakizaki (GK) rats (a non-obese model that spontaneously develops T2DM early in life), and 7 age-matched Wistar control rats, we evaluated the protein levels of SIRT1, PGC-1α, and SIRT3, as well as the expression of mitochondrial respiratory complexes. The activities of epididymal glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) were determined, as well as the epididymal antioxidant capacity. We also evaluated protein nitration, carbonylation, and lipid peroxidation in the epididymis. The T2DM rats presented with hyperglycemia and glucose intolerance. Epididymal levels of SIRT1, PGC-1α, and SIRT3 were decreased, as well as the expression of the mitochondrial complexes II, III, and V, in the T2DM rats. We found a significant decrease in the activities of SOD, CAT, and GPx, consistent with the lower antioxidant capacity and higher protein nitration and lipid peroxidation detected in the epididymis of the T2DM rats. In sum, T2DM disrupted the epididymal SIRT1/PGC-1α/SIRT3 pathway, which is associated with a compromised mitochondrial function. This resulted in a decline of the antioxidant defenses and an increased oxidative damage in that tissue, which may be responsible for the impaired male reproductive function observed in diabetic men.
Collapse
Affiliation(s)
- Antónia Diniz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Marco G. Alves
- Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4500-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-600 Porto, Portugal
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ana I. Duarte
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517 Coimbra, Portugal
- Mitochondrial Toxicology & Experimental Therapeutics Laboratory, CNC-Center for Neuroscience and Cell Biology, UC-Biotech Building, Lot 8A, Biocant Park, 3060-197 Cantanhede, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão-Pólo 3, Rua D. Francisco de Lemos, 3030-789 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula I. Moreira
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Branca M. Silva
- Faculdade de Ciências da Saúde, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (P.F.O.); (L.R.)
| | - Luís Rato
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Health School of the Polytechnic Institute of Guarda, 6300-035 Guarda, Portugal
- Correspondence: (P.F.O.); (L.R.)
| |
Collapse
|
67
|
Bao B, Ke M, Guo J, Pan Z, Huang H, Ke Z, Zhou X, Liu B. Bibliometrics and visualisation analysis of literature on varicocele: From 2002 to 2021. Andrologia 2022; 54:e14537. [PMID: 35920088 DOI: 10.1111/and.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/27/2022] Open
Abstract
Varicocele is a common disease in men, with a global incidence of approximately 25%. A comprehensive and systematic analysis of the knowledge map on it will help in assessing frontier research and identify knowledge gaps. In total, 4103 articles published from 2002 to 2021 in 1066 journals were included. They represent the current research status worldwide, potential hotspots and future research directions. In the past decades, the number of publications and citations of varicocele-related studies have increased steadily. Academic institutions in the United States played a leading role in varicocele research. The country, institution, journal and author with the most publications were the United States (779), Cleveland Clinic Foundation (132), Andrologia (246) and Agarwal A (106), respectively. The most frequently used keywords were Varicocele (1620), Male Infertility (944), Varicocelectomy (288), Testis (245), Sperm (166), Oxidative Stress (144), Azoospermia (119), Semen Analysis (118), Laparoscopy (116) and Adolescent (97). Currently, the main focus of current varicocele research is its surgical treatment method and effect on sperm quality. The frontier research hotspot is the specific mechanism of varicocele-induced decrease in sperm quality.
Collapse
Affiliation(s)
- Binghao Bao
- Graduate School of Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Minghui Ke
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Jianqiang Guo
- Graduate School of Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Zhengkun Pan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Haonan Huang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Zhenghao Ke
- Graduate School of Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Baoxing Liu
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
68
|
Bang S, Tanga BM, Fang X, Seong G, Saadeldin IM, Qamar AY, Lee S, Kim KJ, Park YJ, Nabeel AHT, Yu IJ, Cooray A, Lee KP, Cho J. Cryopreservation of Pig Semen Using a Quercetin-Supplemented Freezing Extender. Life (Basel) 2022; 12:life12081155. [PMID: 36013334 PMCID: PMC9410179 DOI: 10.3390/life12081155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) produced during freeze−thaw procedures cause oxidative damage to the sperm, reducing fertility. We aimed to improve the post-thaw quality of pig sperm by quercetin (QRN) supplementation to reduce the cryodamage associated with the freeze−thaw procedure. Four equal aliquots of pooled boar semen were diluted with a freezing extender supplemented with different concentrations of QRN (0, 25, 50, and 100 µM) and then were subjected to cryopreservation in liquid nitrogen. Semen analysis was performed following 7 days of cryopreservation. Results demonstrated that the semen samples supplemented with 50 µM QRN significantly improved the post-thaw sperm quality than those subjected to other supplementations (p < 0.05). Semen samples supplemented with 50 µM QRN showed significantly improved plasma membrane functional integrity (47.5 ± 1.4 vs. 43.1 ± 4.1, 45.3 ± 1.7, and 44.1 ± 1.4) and acrosome integrity (73.6 ± 3.4 vs. 66.3 ± 2.4, 66.7 ± 3.6, and 68.3 ± 32.9) as compared to the control, 25 µM, and 100 µM QRN groups, respectively. The mitochondrial activity of the 50 µM QRN group was greater than control and 25 µM QRN groups (43.0 ± 1.0 vs. 39.1 ± 0.9 and 41.9 ± 1.0) but showed no difference with the 100 µM QRN group. Moreover, the 50 µM QRN group showed a higher sperm number displaced to 1 cm and 3 cm points in the artificial mucus than other groups. Therefore, supplementing the freezing extender with QRN can serve as an effective tool to reduce the magnitude of oxidative damage associated with sperm freezing.
Collapse
Affiliation(s)
- Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Xun Fang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Gyeonghwan Seong
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Islam M. Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ahmad Yar Qamar
- Collage of Veterinary and Animal Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Keun-Jung Kim
- Livestock Experiment Institute, Government of Chungcheongnam-do, Cheongyang-gun 33303, Korea; (K.-J.K.); (Y.-J.P.)
| | - Yun-Jae Park
- Livestock Experiment Institute, Government of Chungcheongnam-do, Cheongyang-gun 33303, Korea; (K.-J.K.); (Y.-J.P.)
| | - Abdelbagi Hamad Talha Nabeel
- Laboratory of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea; (A.H.T.N.); (I.-j.Y.)
| | - Il-jeoung Yu
- Laboratory of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea; (A.H.T.N.); (I.-j.Y.)
| | - Akila Cooray
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (A.C.); (K.P.L.)
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (A.C.); (K.P.L.)
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
- Correspondence: ; Tel.: +82-42-821-6788; Fax: +82-72-821-89
| |
Collapse
|
69
|
Calvert JK, Fendereski K, Ghaed M, Bearelly P, Patel DP, Hotaling JM. The male infertility evaluation still matters in the era of high efficacy assisted reproductive technology. Fertil Steril 2022; 118:34-46. [PMID: 35725120 DOI: 10.1016/j.fertnstert.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 11/04/2022]
Abstract
Today's reproductive endocrinology and infertility providers have many tools at their disposal when it comes to achieving pregnancy. In the setting of highly efficacious assisted reproductive technology, it is natural to assume that male factor infertility can be overcome by acquiring sperm and then bypassing the male evaluation. In this review, we go through guideline statements and a stepwise male factor infertility evaluation to propose that a thorough male evaluation remains important to optimize pregnancy and live birth. The foundation of this parallel evaluation is referral to a reproductive urologist for the optimization of the male partner, for advanced diagnostics and interventions, and for the detection of other underlying male pathology. We also discuss what future developments might have an impact on the workup of the infertile male.
Collapse
Affiliation(s)
- Joshua K Calvert
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah
| | - Kiarad Fendereski
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah
| | - Mohammadali Ghaed
- Urology Department, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Priyanka Bearelly
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah
| | - Darshan P Patel
- Department of Urology, University of California San Diego Health, San Diego, California
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah.
| |
Collapse
|
70
|
Sheikh AB, Fudim M, Garg I, Minhas AMK, Sobotka AA, Patel MR, Eng MH, Sobotka PA. The Clinical Problem of Pelvic Venous Disorders. Interv Cardiol Clin 2022; 11:307-324. [PMID: 35710285 DOI: 10.1016/j.iccl.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pelvic venous disorders are inter-related pathologic conditions caused by reflux and obstruction in the pelvic veins. It can present a spectrum of clinical features based on the route of transmission of venous hypertension to either distal or caudal venous reservoirs. Imaging can help to visualize pelvic vascular and visceral structures to rule out other gynecologic, gastrointestinal, and urologic diseases. Endovascular treatment, owing to its low invasive nature and high success rate, has become the mainstay in the management of pelvic venous disorders. This article reviews the pathophysiology, clinical presentations, and diagnostic and therapeutic approaches to pelvic venous disorders.
Collapse
Affiliation(s)
- Abu Baker Sheikh
- Department of Internal Medicine, University of New Mexico Health Sciences Center, 1021 Medical Arts Avenue NE, Albuquerque, NM 87102, USA
| | - Marat Fudim
- Division of Cardiology, Duke University Medical Center, 200 Trent Drive, Durham, NC 27710, USA; Duke Clinical Research Institute, 300 West Morgan Street, Durham, NC 27701, USA.
| | - Ishan Garg
- Department of Internal Medicine, University of New Mexico Health Sciences Center, 1021 Medical Arts Avenue NE, Albuquerque, NM 87102, USA
| | - Abdul Mannan Khan Minhas
- Department of Internal Medicine, Forrest General Hospital, 6051 US 49, Hattiesburg, MS 39401, USA
| | | | - Manesh R Patel
- Division of Cardiology, Duke University Medical Center, 200 Trent Drive, Durham, NC 27710, USA; Duke Clinical Research Institute, 300 West Morgan Street, Durham, NC 27701, USA
| | - Marvin H Eng
- Division of Cardiology, University of Arizona, Banner University Medical Center, 1111 E McDowell Rd, Phoenix, AZ 85006, USA
| | - Paul A Sobotka
- The Ohio State University, 281 West Lane Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
71
|
Abdelnour SA, Swelum AA, Sindi RA, Barkat RA, Khalifa NE, Amin AA, El-Raghi AA, Tufarelli V, Losacco C, Abd El-Hack ME. Responses of sperm mitochondria functionality in animals to thermal stress: The mitigating effects of dietary natural antioxidants. Reprod Domest Anim 2022; 57:1101-1112. [PMID: 35754099 DOI: 10.1111/rda.14193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
The reproductive consequences of global warming representing heat stress (HS) have been widely received more attention in the last decades. HS induced significant influence on the male reproductive cell, especially sperm functionally. Reduction in the sperm function induced by HS leads to failure of fertility potential. The main effects of HS on sperm are reducing sperm motility, increased abnormalities and changes in the fluidity of the membrane as well as cell morphology. Moreover, the destruction of mitochondrial function could be the result of adverse influences of HS. The protein contents and enzymes of mitochondria were lowered after the exposure of sperm to HS. Some natural antioxidants were used for improving sperm mitochondrial function under HS conditions. In this review, it was highlighted the potential influences of HS on sperm function through reduction in ATP Synthesis yield, mitochondrial activity, mitochondrial protein contents and mitochondrial enzymes, which involves the interference of mitochondrial remodelling in sperm of animals.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Ramya A Sindi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rasha A Barkat
- Department of Physiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Fuka, Matrouh University, Matrouh, Egypt
| | - Ahmed A Amin
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ali Ali El-Raghi
- Department of Animal Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', Valenzano, Italy
| | - Caterina Losacco
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', Valenzano, Italy
| | | |
Collapse
|
72
|
Aphrodisiac Performance of Bioactive Compounds from Mimosa pudica Linn.: In Silico Molecular Docking and Dynamics Simulation Approach. Molecules 2022; 27:molecules27123799. [PMID: 35744923 PMCID: PMC9229059 DOI: 10.3390/molecules27123799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Plants and their derived molecules have been traditionally used to manage numerous pathological complications, including male erectile dysfunction (ED). Mimosa pudica Linn. commonly referred to as the touch-me-not plant, and its extract are important sources of new lead molecules in drug discovery research. The main goal of this study was to predict highly effective molecules from M. pudica Linn. for reaching and maintaining penile erection before and during sexual intercourse through in silico molecular docking and dynamics simulation tools. A total of 28 bioactive molecules were identified from this target plant through public repositories, and their chemical structures were drawn using Chemsketch software. Graph theoretical network principles were applied to identify the ideal target (phosphodiesterase type 5) and rebuild the network to visualize the responsible signaling genes, proteins, and enzymes. The 28 identified bioactive molecules were docked against the phosphodiesterase type 5 (PDE5) enzyme and compared with the standard PDE5 inhibitor (sildenafil). Pharmacokinetics (ADME), toxicity, and several physicochemical properties of bioactive molecules were assessed to confirm their drug-likeness property. Molecular dynamics (MD) simulation modeling was performed to investigate the stability of PDE5–ligand complexes. Four bioactive molecules (Bufadienolide (−12.30 kcal mol−1), Stigmasterol (−11.40 kcal mol−1), Isovitexin (−11.20 kcal mol−1), and Apigetrin (−11.20 kcal mol−1)) showed the top binding affinities with the PDE5 enzyme, much more powerful than the standard PDE5 inhibitor (−9.80 kcal mol−1). The four top binding bioactive molecules were further validated for a stable binding affinity with the PDE5 enzyme and conformation during the MD simulation period as compared to the apoprotein and standard PDE5 inhibitor complexes. Further, the four top binding bioactive molecules demonstrated significant drug-likeness characteristics with lower toxicity profiles. According to the findings, the four top binding molecules may be used as potent and safe PDE5 inhibitors and could potentially be used in the treatment of ED.
Collapse
|
73
|
Bacteriospermia and Male Infertility: Role of Oxidative Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:141-163. [PMID: 35641869 DOI: 10.1007/978-3-030-89340-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Male infertility is one of the major challenging and prevalent diseases having diverse etiologies of which bacteriospermia play a significant role. It has been estimated that approximately 15% of all infertility cases are due to infections caused by uropathogens and in most of the cases bacteria are involved in infection and inflammation leading to the development of bacteriospermia. In response to bacterial load, excess infiltration of leukocytes in the urogenital tract occurs and concomitantly generates oxidative stress (OS). Bacteria may induce infertility either by directly interacting with sperm or by generating reactive oxygen species (ROS) and impair sperm parameters such as motility, volume, capacitation, hyperactivation. They may also induce apoptosis leading to sperm death. Acute bacteriospermia is related with another clinical condition called leukocytospermia and both compromise male fertility potential by OS-mediated damage to sperm leading to male infertility. However, bacteriospermia as a clinical condition as well as the mechanism of action remains poorly understood, necessitating further research in order to understand the role of individual bacterial species and their impact in male infertility.
Collapse
|
74
|
Meng X, Li L, An H, Deng Y, Ling C, Lu T, Song G, Wang Y. Lycopene Alleviates Titanium Dioxide Nanoparticle-Induced Testicular Toxicity by Inhibiting Oxidative Stress and Apoptosis in Mice. Biol Trace Elem Res 2022; 200:2825-2837. [PMID: 34396458 DOI: 10.1007/s12011-021-02881-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The research was carried out to investigate the possible ameliorative effect of lycopene on TiO2 NPs-induced male reproductive toxicity and explore the possible mechanism. METHODS Ninety-six healthy male Institute of Cancer Research (ICR) mice were equally divided into eight groups (control group, 50 mg/kg TiO2 NPs group, 5 mg/kg LYC group, 20 mg/kg LYC group, 40 mg/kg LYC group, 50 mg/kg TiO2 NPs + 5 mg/kg LYC group, 50 mg/kg TiO2 NPs + 20 mg/kg LYC group, 50 mg/kg TiO2 NPs + 40 mg/kg LYC group), and the mice were treated by intragastric administration every day for 30 days in this research. Sperm parameters, testicular histopathology, oxidant and antioxidant enzymes, and cell apoptosis-related protein expression in the testicular tissue were analyzed. RESULTS The results showed that TiO2 NPs exposure significantly decreased sperm count and motility, and TiO2 NPs also increased sperm malformation in the epididymis; these characteristics were improved when co-administration with LYC. Testicular histopathological lesions like disorder of germ cells arrange, detachment, atrophy, and vacuolization were observed after TiO2 NPs exposure, and these abnormalities were effectively ameliorated by co-administration with LYC. Oxidative stress was induced by TiO2 NPs exposure as evidenced by increased the level of MDA and decreased the activity of SOD as well as the level of anti-O2-, and these alterations were effectively prevented by co-administration with LYC. LYC also alleviated TiO2 NPs-induced germ cell apoptosis by inhibiting mitochondrial apoptotic pathway, as shown by the upregulation of Bcl-2, the downregulation of Bax, Cleaved Caspase 3, and Cleaved Caspase 9. CONCLUSION LYC could ameliorate TiO2 NPs-induced testicular damage via inhibiting oxidative stress and apoptosis, which could be used to alleviate the testicular toxicity associated with TiO2 NPs intake.
Collapse
Affiliation(s)
- Xiaojia Meng
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Li Li
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Hongmei An
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Yaxin Deng
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Chunmei Ling
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Tianjiao Lu
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Guanling Song
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
| | - Yan Wang
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
| |
Collapse
|
75
|
Anbara H, Shahrooz R, Razi M, Malekinejad H, Najafi G, Shalizar-Jalali A. Repro-protective role of royal jelly in phenylhydrazine-induced hemolytic anemia in male mice: Histopathological, embryological, and biochemical evidence. ENVIRONMENTAL TOXICOLOGY 2022; 37:1124-1135. [PMID: 35099105 DOI: 10.1002/tox.23470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 12/12/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
To estimate the repro-protective effect of royal jelly (RJ) on phenylhydrazine (PHZ)-induced anemia's detrimental effects, 24 mature mice were divided into control group (0.10 mL normal saline; intra-peritoneally), RJ group (100 mg/kg/day; orally), experimental anemia (EA) group that received only PHZ (6 mg/100 g/48 h; intra-peritoneally), and RJ + EA (according to the previous prescription) group. After 35 days, testicular histoarchitecture, RNA damage in germinal cells, sperm characteristics, testicular total anti-oxidant capacity and malondialdehyde as well as serum testosterone levels, pre-implantation embryo development and cyclin D1 and c-myc mRNA levels at two-cell, morula and blastocyst stages were analyzed. Spermatogenesis indices were ameliorated following RJ co-administration. Moreover, RJ co-treatment reduced germinal cells RNA damage, improved sperm characteristics, boosted pre-implantation embryo development and restored androgenesis, and oxidant/anti-oxidant status. Co-administration of RJ also decreased mRNA levels of cyclin D1 and up-regulated those of c-myc in two-cell embryos, morulas and blastocysts. The findings suggest that RJ can play a repro-protective role in PHZ-induced anemia in mice through anti-oxidant defense system reinforcement and androgenesis restoration as well as cyclin D1 and c-myc expressions regulation.
Collapse
Affiliation(s)
- Hojat Anbara
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rasoul Shahrooz
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholamreza Najafi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ali Shalizar-Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
76
|
Tella T, Adegbegi A, Emeninwa C, Odola A, Ayangbenro A, Adaramoye O. Evaluation of the antioxidative potential of diisopropyldithiocarbamates sodium salt on diclofenac-induced toxicity in male albino rats. Toxicol Rep 2022; 9:828-833. [PMID: 36518424 PMCID: PMC9742835 DOI: 10.1016/j.toxrep.2022.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
Diclofenac (DIC) is a non-steroidal anti-inflammatory drug (NSAID) which is known to induce oxidative stress. Dithiocarbamates are compounds with proven antioxidant effect. The aim of the present study was to investigate the antioxidant capacity of diisopropyldithiocarbamates sodium salt (a synthetized compound) (Na(i-Pr2dtc)) against diclofenac-induced toxicity in the testes of male Wistar albino rats. The animals were assigned into six groups of six rats each. Group 1 (control) received corn oil, Groups 2, 3, 4, 5, 6 received DIC (100 mg/kg), DIC and (Na(i-Pr2dtc) (30 mg/kg), DIC and vitamin E (30 mg/kg), (Na(i-Pr2dtc) (30 mg/kg) and vitamin E only respectively. Our findings show that treatment with DIC significantly reduced superoxide dismutase (SOD) activity by 42% compared to normal control (NC) animals. In DIC treated group, Na(i-Pr2dtc) caused a 17% elevation of catalase (CAT) activity compared to DIC only group. Reduced glutathione level was significantly reduced in DIC only treated group when compared with DIC and VIT E treated group. Photomicrographs of testis from Na(i-Pr2dtc) treated rats showed normal seminiferous epithelium with no lesions. In conclusion, Na(i-Pr2dtc) has antioxidant properties.
Collapse
Key Words
- Antioxidant
- CAT, Catalase
- DDTC, Diethyldithiocarbamate
- DIC, Diclofenac
- Diclofenac
- Diisopropyldithiocarbamates sodium salt
- GSH, Reduced glutathione
- LPO, Lipid peroxidation
- NC, Normal control
- NSAID, Non-steroidal anti-inflammatory drug
- Na i-Pr2dtc, Diisopropyldithiocarbamate sodium salt
- POSS, Positive oxidative stress status
- PUFA, Polyunsaturated fatty acids
- ROS, Reactive oxygen species
- SOD, Superoxide dismutase
- Testes and vitamin E
- VIT E, Vitamin E
Collapse
Affiliation(s)
- Toluwani Tella
- Department of Biochemistry, North-West University, Mmabatho 2735, South Africa
| | - Ademuyiwa Adegbegi
- Biochemistry Unit, Department of Science Laboratory Technology, Rufus Giwa Polytechnic, Owo, Ondo State, Nigeria
| | - Chiedu Emeninwa
- Department of Biochemistry, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adekunle Odola
- Department of Chemistry, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ayansina Ayangbenro
- Food Security and Safety, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | | |
Collapse
|
77
|
Zheng L, Ma J, Yao B. MicroRNAs in aging male reproduction. Aging (Albany NY) 2022; 14:2928-2929. [PMID: 35384867 PMCID: PMC9037258 DOI: 10.18632/aging.204003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Lu Zheng
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Bing Yao
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| |
Collapse
|
78
|
Kavoussi PK, Gilkey MS, Machen GL, Kavoussi SK, Dorsey C. Varicocele repair improves static oxidation reduction potential as a measure of seminal oxidative stress levels in infertile men: A prospective clinical trial using the MiOXSYS system. Urology 2022; 165:193-197. [DOI: 10.1016/j.urology.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/08/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
79
|
Gai J, Dervisevic E, Devendran C, Cadarso VJ, O'Bryan MK, Nosrati R, Neild A. High-Frequency Ultrasound Boosts Bull and Human Sperm Motility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104362. [PMID: 35419997 PMCID: PMC9008414 DOI: 10.1002/advs.202104362] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/16/2021] [Indexed: 05/05/2023]
Abstract
Sperm motility is a significant predictor of male fertility potential and is directly linked to fertilization success in both natural and some forms of assisted reproduction. Sperm motility can be impaired by both genetic and environmental factors, with asthenozoospermia being a common clinical presentation. Moreover, in the setting of assisted reproductive technology clinics, there is a distinct absence of effective and noninvasive technology to increase sperm motility without detriment to the sperm cells. Here, a new method is presented to boost sperm motility by increasing the intracellular rate of metabolic activity using high frequency ultrasound. An increase of 34% in curvilinear velocity (VCL), 10% in linearity, and 32% in the number of motile sperm cells is shown by rendering immotile sperm motile, after just 20 s exposure. A similar effect with an increase of 15% in VCL treating human sperm with the same setting is also identified. This cell level mechanotherapy approach causes no significant change in cell viability or DNA fragmentation index, and, as such, has the potential to be applied to encourage natural fertilization or less invasive treatment choices such as in vitro fertilization rather than intracytoplasmic injection.
Collapse
Affiliation(s)
- Junyang Gai
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Esma Dervisevic
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Citsabehsan Devendran
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Moira K. O'Bryan
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3800Australia
- School of BioSciencesFaculty of Sciencethe University of MelbourneParkvilleVictoria3010Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3800Australia
| |
Collapse
|
80
|
Andrological Aspects of Exercise: Moderate Swimming Protects against Isoproterenol Induced Testis and Semen Abnormalities in Rats. Antioxidants (Basel) 2022; 11:antiox11030436. [PMID: 35326087 PMCID: PMC8944432 DOI: 10.3390/antiox11030436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
The development and progression of male infertility are closely linked to a sedentary lifestyle; however, its underlying mechanisms are not fully elucidated. Our aim was to assess the protective effects of moderate swimming exercise on the male reproductive system in isoproterenol-treated rats. Male Wistar rats were divided into five groups as follows: (1) non-interventional controls (CTRL), (2) isoproterenol-treated (ISO), (3) pre-treatment swimming training + ISO (PRE + ISO), (4) ISO + post-treatment swimming training (ISO+POST), (5) pre-treatment swimming training + ISO + post-treatment swimming training (PRE + ISO + POST) groups. Testicular oxidative stress was induced by ISO injection (1.0 mg/kg). Rats in the pre- or post-training groups were trained five days a week. At the end of the experimental period, serum testosterone levels, sperms’ hyaluronan binding, and total glutathione (GSH) content, as well as myeloperoxidase activity (MPO), TNF alpha and IL6 concentrations in the testis and semen, were measured. Serum testosterone levels, sperms’ hyaluronan binding, and GSH content were found to be significantly reduced, while MPO, TNF alpha and IL6 concentrations in the testis and semen were elevated after the ISO treatment compared to the CTRL group. Moderate-intensity swimming exercise effectively alleviated the negative effects of high oxidative stress. Our findings provide the first evidence that moderate-intensity swimming exercise confers sustained protection from isoproterenol-induced adverse effects on testicular inflammation.
Collapse
|
81
|
Helmi ZR, Hameed BH. CYP24A1 Gene Expression in Spermatozoa of Human and Other Oxidation Level Controlling Enzymes as Biomarkers of Infertility. J Obstet Gynaecol India 2022; 72:290-294. [PMID: 35928074 PMCID: PMC9343504 DOI: 10.1007/s13224-021-01608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022] Open
Abstract
Background Physiologically, the spermatozoa are exposed to reactive oxygen species (ROS), and those ROS can strongly affect sperm's function through sperm capacitation. However, producing a high level of ROS reduces the sperm anti-oxidation system that may cause infertility, especially in cases with normal sperm count. Purpose To investigate the expression of the CYP24A1 gene in human spermatozoa and other oxidation-related biomarkers, including vitamin E, ROS, and catalase as added tools to predict male infertility. Method The study included 50 infertile men and 50 young volunteers from the general Iraqi population. Blood samples were drawn from all included men, and semen samples were collected by masturbation. All the samples of semen were investigated for CYP24A1 expression, and routine semen analysis was performed. In addition, the serum was separated and used to assess other biochemical parameters, namely catalase, reactive oxygen species, and vitamin E, which were measured by ELISA. Results Serum ROS levels were higher in patients than control groups, while the serum catalase and vitamin E levels were significantly lower in patients than controls. CYP24A1 gene expression is significantly higher in infertile men with sperm count higher than 70 million and reaches twofold times the control. Conclusion CYP24A1 gene expression is significantly higher in infertile men and can be used as a marker of infertility, especially in infertile males with normal sperm count. At the same time, the serum catalase and vitamin E levels were significantly lower, which can be added as tools to predict male infertility..
Collapse
|
82
|
Mannucci A, Argento FR, Fini E, Coccia ME, Taddei N, Becatti M, Fiorillo C. The Impact of Oxidative Stress in Male Infertility. Front Mol Biosci 2022; 8:799294. [PMID: 35071326 PMCID: PMC8766739 DOI: 10.3389/fmolb.2021.799294] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
At present infertility is affecting about 15% of couples and male factor is responsible for almost 50% of infertility cases. Oxidative stress, due to enhanced Reactive Oxygen Species (ROS) production and/or decreased antioxidants, has been repeatedly suggested as a new emerging causative factor of this condition. However, the central roles exerted by ROS in sperm physiology cannot be neglected. On these bases, the present review is focused on illustrating both the role of ROS in male infertility and their main sources of production. Oxidative stress assessment, the clinical use of redox biomarkers and the treatment of oxidative stress-related male infertility are also discussed.
Collapse
Affiliation(s)
- Amanda Mannucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Maria Elisabetta Coccia
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
83
|
Tesi EP, Ben‐Azu B, Mega OO, Mordi J, Knowledge OO, Awele ED, Rotu RA, Emojevwe V, Adebayo OG, Eneni OA. Kolaviron, a flavonoid‐rich extract ameliorates busulfan‐induced chemo‐brain and testicular damage in male rats through inhibition of oxidative stress, inflammatory, and apoptotic pathways. J Food Biochem 2022; 46:e14071. [DOI: 10.1111/jfbc.14071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Edesiri P. Tesi
- Department of Science Laboratory Technology Delta State Polytechnic Ogwashi‐Uku Nigeria
| | - Benneth Ben‐Azu
- Department of Pharmacology Faculty of Basic Medical Science, College of Health Sciences Delta State University Abraka Nigeria
| | - Oyovwi O. Mega
- Department of Basic Medical Sciences Achievers University Owo Nigeria
| | - Joseph Mordi
- Department of Biochemistry Faculty of Basic Medical Science, College of Health Sciences Delta State University Abraka Nigeria
| | - Obed O. Knowledge
- Department of Science Laboratory Technology Delta State Polytechnic Ogwashi‐Uku Nigeria
| | - Egbuchua D. Awele
- Department of Science Laboratory Technology Delta State Polytechnic Ogwashi‐Uku Nigeria
| | - Rume A. Rotu
- Department of Physiology Faculty of Basic Medical Science College of Medicine University of Ibadan Ibadan Nigeria
| | - Victor Emojevwe
- Department of Physiology Faculty of Basic Medical Science University of Medical Sciences Ondo Nigeria
| | - Olusegun G. Adebayo
- Neurophysiology Unit, Department of Physiology PAMO University of Medical Sciences Port‐Harcourt Nigeria
| | - Okubo Aya‐Ebi Eneni
- Department of Pharmacology and Toxicology Faculty of Pharmacy Niger Delta University Amassoma Nigeria
| |
Collapse
|
84
|
Juárez-Rojas L, Casillas F, López A, Betancourt M, Ommati MM, Retana-Márquez S. Physiological role of reactive oxygen species in testis and epididymal spermatozoa. Andrologia 2022; 54:e14367. [PMID: 35034376 DOI: 10.1111/and.14367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/02/2021] [Accepted: 12/18/2021] [Indexed: 11/26/2022] Open
Abstract
The reactive oxygen species (ROS) play an important role in various aspects of male reproductive function, for spermatozoa to acquire the ability to fertilize. However, the increase in ROS generation, both due to internal and external factors, can induce oxidative stress, causing alterations in the structure and function of phospholipids and proteins. In the nucleus, ROS attack DNA, causing its fragmentation and activation of apoptosis, thus altering gene and protein expression. Accumulating evidence also reveals that endogenously produced ROS can act as second messengers in regulating cell signalling pathways and in the transduction of signals that are responsible for regulating spermatogonia self-renewal and proliferation. In the epididymis, they actively participate in the formation of disulphide bridges required for the final condensation of chromatin, as well as in the phosphorylation and dephosphorylation of proteins contained in the fibrous sheath of the flagellum, stimulating the activation of progressive motility in epididymal spermatozoa. In this review, the role of small amounts of ROS during spermatogenesis and epididymal sperm maturation was discussed.
Collapse
Affiliation(s)
- Lizbeth Juárez-Rojas
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Fahiel Casillas
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Alma López
- Department of Health Sciences, Autonomous Metropolitan University-Iztapalapa Campus, Mexico City, Mexico
| | - Miguel Betancourt
- Department of Health Sciences, Autonomous Metropolitan University-Iztapalapa Campus, Mexico City, Mexico
| | - Mohammad Mehdi Ommati
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, People's Republic of China
| | - Socorro Retana-Márquez
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| |
Collapse
|
85
|
Er H, Tas GG, Soygur B, Ozen S, Sati L. Acute and Chronic Exposure to 900 MHz Radio Frequency Radiation Activates p38/JNK-mediated MAPK Pathway in Rat Testis. Reprod Sci 2022; 29:1471-1485. [PMID: 35015292 DOI: 10.1007/s43032-022-00844-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/01/2022] [Indexed: 10/19/2022]
Abstract
The use of electronic devices such as mobile phones has had a long stretch of rapid growth all over the world. Therefore, exposure to radio frequency radiation (RFR) has increased enormously. Here, we aimed to assess the balance between cell death and proliferation and also investigate the involvement of the JNK/p38 MAPK signaling pathway in the testis of rats exposed to 900 MHz RFR in acute and chronic periods (2 h/day, 5 days/week) for 1 or 10 weeks, respectively. The expression of proliferating cell nuclear antigen (PCNA), Bcl-xL, cleaved caspase-3, phosphorylated-JNK (p-JNK), and phosphorylated-p38 (p-p38) was analyzed in line with histopathology and TUNEL analysis in rat testis. There were no histopathological differences between sham and RFR groups in the acute and chronic groups. PCNA expression was not altered between groups in both periods. However, alterations for cleaved caspase-3 and Bcl-xL were observed depending on the exposure period. TUNEL analysis showed a significant increase in the RFR group in the acute period, whereas no difference in the chronic groups for the apoptotic index was reported. In addition, both p-p38 and p-JNK protein expressions increased significantly in RFR groups in both periods. Our study indicated that 900 MHz RFR might result in alterations during acute period exposure for several parameters, but this can be ameliorated in the chronic period in rat testis. Here, we also report the involvement of the p38/JNK-mediated MAPK pathway after exposure to 900 MHz RFR. Hence, this information might shed light in future studies toward detailed molecular mechanisms in male reproduction and infertility.
Collapse
Affiliation(s)
- Hakan Er
- Department of Biophysics, Akdeniz University School of Medicine, Akdeniz University, Antalya, Turkey.,Department of Medical Imaging Techniques, Vocational School of Health Services, Akdeniz University, Antalya, Turkey
| | - Gizem Gamze Tas
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Bikem Soygur
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.,Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
86
|
Oxidative Stress-Induced Male Infertility: Role of Antioxidants in Cellular Defense Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:275-309. [PMID: 36472828 DOI: 10.1007/978-3-031-12966-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Male infertility is linked to several environmental and mutagenic factors. Most of these factors, i.e., lifestyle, radiations, and chemical contaminations, work on the fundamental principles of physics, chemistry, and biology. Principally, it may induce oxidative stress (OS) and produce free radicals within the cells. The negative effect of OS may enhance the reactive oxygen species (ROS) levels in male reproductive organs and impair basic functions in a couple's fertility. Evidence suggests that infertile men have significantly increased ROS levels and a reduced antioxidant capacity compared with fertile men. Although, basic spermatic function and fertilizing capacity depend on a delicate balance between physiological activity of ROS and antioxidants to protect from cellular oxidative injury in sperm, that is essential to achieve pregnancy. The ideal oxidation-reduction (REDOX) equilibrium requires a maintenance of a range of ROS concentrations and modulation of antioxidants. For this reason, the chapter focuses on the effects of ROS in sperm functions and the current concepts regarding the benefits of medical management in men with diminished fertility and amelioration of the effect to improve sperm function. Also, this evidence-based study suggests an increasing rate of infertility that poses a global challenge for human health, urging the need of health care professionals to offer a correct diagnosis, comprehension of the process, and an individualized management of the patients.
Collapse
|
87
|
Sengupta P, Dutta S, Alahmar AT. Reductive Stress and Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:311-321. [PMID: 36472829 DOI: 10.1007/978-3-031-12966-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Male infertility research and clinical advances had vast progress in the last few decades. Strong research evidence underpinned the concepts of oxidative stress (OS)-mediated male reproductive disruptions, which bear answers to several cases of idiopathic male infertility. Antioxidant treatment held the prime solution for OS-mediated male infertility. But excess use of antioxidants is challenged by the research breakthrough that reductive stress also predisposes to male infertility, resolutely instituting that any biological extremes of the redox spectrum are deleterious to male fertility. Superfluity of reducing agents may hinder essential oxidation mechanisms, affecting physiological homeostasis. These mechanisms need to be explicated and updated time and again to identify the fine thread between OS-mediated male infertility treatment and induction of reductive stress. This chapter thus presents the evidence-based concepts pertaining to the antioxidants actions to combat OS-induced male infertility, the mechanism of induction of reductive stress and its impact on male reproduction.
Collapse
Affiliation(s)
- Pallav Sengupta
- Physiology Unit, Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, UAE.
| | - Sulagna Dutta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai, India
| | - Ahmed T Alahmar
- Department of Medical Physiology, College of Medicine, University of Babylon, Hillah, Iraq
| |
Collapse
|
88
|
Mohammed Ali N, Albarzanji R, Zakar S. Impact of ciprofloxacin and coenzyme Q10 on spermatogenesis in mice. MEDICAL JOURNAL OF BABYLON 2022. [DOI: 10.4103/mjbl.mjbl_55_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
89
|
Bactericidal Activity of Multilayered Hybrid Structures Comprising Titania Nanoparticles and CdSe Quantum Dots under Visible Light. NANOMATERIALS 2021; 11:nano11123331. [PMID: 34947680 PMCID: PMC8708662 DOI: 10.3390/nano11123331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
Titania nanoparticle/CdSe quantum dot hybrid structures are a promising bactericidal coating that exhibits a pronounced effect against light-sensitive bacteria. Here, we report the results of a comprehensive study of the photophysical properties and bactericidal functionality of these hybrid structures on various bacterial strains. We found that our structures provide the efficient generation of superoxide anions under the action of visible light due to electron transfer from QDs to titania nanoparticles with ~60% efficiency. We also tested the antibacterial activity of hybrid structures on five strains of bacteria. The formed structures combined with visible light irradiation effectively inhibit the growth of Escherichia coli, Bacillus subtilis, and Mycobacterium smegmatis bacteria, the last of which is a photosensitive causative agent model of tuberculosis.
Collapse
|
90
|
Liang K, Yao L, Wang S, Zheng L, Qian Z, Ge Y, Chen L, Cheng X, Ma R, Li C, Jing J, Yang Y, Yu W, Xue T, Chen Q, Cao S, Ma J, Yao B. miR-125a-5p increases cellular DNA damage of aging males and perturbs stage-specific embryo development via Rbm38-p53 signaling. Aging Cell 2021; 20:e13508. [PMID: 34751998 PMCID: PMC8672779 DOI: 10.1111/acel.13508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/26/2021] [Accepted: 10/09/2021] [Indexed: 11/29/2022] Open
Abstract
An increasing number of men are fathering children at an older age than in the past. While advanced maternal age has long been recognized as a risk factor for adverse reproductive outcomes, the influence of paternal age on reproduction is incompletely comprehended. Herein, we found that miR‐125a‐5p was upregulated in the sperm of aging males and was related to inferior sperm DNA integrity as an adverse predictor. Moreover, we demonstrated that miR‐125a‐5p suppressed mitochondrial function and increased cellular DNA damage in GC2 cells. We also found that miR‐125a‐5p perturbed embryo development at specific morula/blastocyst stages. Mechanistically, we confirmed that miR‐125a‐5p disturbed the mitochondrial function by targeting Rbm38 and activating the p53 damage response pathway, and induced a developmental delay in a p21‐dependent manner. Our study revealed an important role of miR‐125a‐5p in sperm function and early embryo development of aging males, and provided a fresh view to comprehend the aging process in sperm.
Collapse
Affiliation(s)
- Kuan Liang
- Center of Reproductive Medicine Nanjing Jinling Hospital The First School of Clinical Medicine Southern Medical University Nanjing China
| | - Liangyu Yao
- Department of Urology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Shuxian Wang
- Center of Reproductive Medicine Nanjing Jinling Hospital Clinical School of Medical College Nanjing University Nanjing China
| | - Lu Zheng
- Center of Reproductive Medicine Nanjing Jinling Hospital Clinical School of Medical College Nanjing University Nanjing China
| | - Zhang Qian
- Center of Reproductive Medicine Nanjing Jinling Hospital Clinical School of Medical College Nanjing University Nanjing China
| | - Yifeng Ge
- Center of Reproductive Medicine Nanjing Jinling Hospital The First School of Clinical Medicine Southern Medical University Nanjing China
- Center of Reproductive Medicine Nanjing Jinling Hospital Clinical School of Medical College Nanjing University Nanjing China
| | - Li Chen
- Center of Reproductive Medicine Nanjing Jinling Hospital The First School of Clinical Medicine Southern Medical University Nanjing China
- Center of Reproductive Medicine Nanjing Jinling Hospital Clinical School of Medical College Nanjing University Nanjing China
| | - Xi Cheng
- Center of Reproductive Medicine Nanjing Jinling Hospital Clinical School of Medical College Nanjing University Nanjing China
| | - Rujun Ma
- Center of Reproductive Medicine Nanjing Jinling Hospital The First School of Clinical Medicine Southern Medical University Nanjing China
- Center of Reproductive Medicine Nanjing Jinling Hospital Clinical School of Medical College Nanjing University Nanjing China
| | - Chuwei Li
- Center of Reproductive Medicine Nanjing Jinling Hospital Clinical School of Medical College Nanjing University Nanjing China
| | - Jun Jing
- Center of Reproductive Medicine Nanjing Jinling Hospital The First School of Clinical Medicine Southern Medical University Nanjing China
- Center of Reproductive Medicine Nanjing Jinling Hospital Clinical School of Medical College Nanjing University Nanjing China
| | - Yang Yang
- Basic Medical Laboratory Nanjing Jinling Hospital Clinical School of Medical College Nanjing University Nanjing China
| | - Wanwan Yu
- Department of Emergency medicine Jinling Hospital, Medical School of Nanjing University Nanjing China
| | - Tongmin Xue
- Department Reproductive Medical Center Jinling Hospital Nanjing Medicine University Nanjing China
| | - Qiwei Chen
- Center of Reproductive Medicine Nanjing Jinling Hospital The First School of Clinical Medicine Southern Medical University Nanjing China
| | - Siyuan Cao
- School of Life Science Nanjing Normal University Nanjing China
| | - Jinzhao Ma
- Center of Reproductive Medicine Nanjing Jinling Hospital The First School of Clinical Medicine Southern Medical University Nanjing China
- Center of Reproductive Medicine Nanjing Jinling Hospital Clinical School of Medical College Nanjing University Nanjing China
| | - Bing Yao
- Center of Reproductive Medicine Nanjing Jinling Hospital The First School of Clinical Medicine Southern Medical University Nanjing China
- Center of Reproductive Medicine Nanjing Jinling Hospital Clinical School of Medical College Nanjing University Nanjing China
- Department Reproductive Medical Center Jinling Hospital Nanjing Medicine University Nanjing China
- School of Life Science Nanjing Normal University Nanjing China
| |
Collapse
|
91
|
Adelakun SA, Ukwenya VO, Akintunde OW. Vitamin B 12 ameliorate Tramadol-induced oxidative stress, endocrine imbalance, apoptosis and NO/iNOS/NF-κB expression in Sprague Dawley rats through regulatory mechanism in the pituitary-gonadal axis. Tissue Cell 2021; 74:101697. [PMID: 34923198 DOI: 10.1016/j.tice.2021.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
This study aimed at the effect of vitamin B12 (VB12) on tramadol (TRM) induced pituitary-gonadal Axis toxicity. Thirty-two (32) adult male rats were randomized into four groups of eight (n = 8) rats each. Group A served as control was given 1 mL normal saline, group B received 50 mg /kg bwt TRM, group C received 0.5 mg/kg bwt VB12 and group D received 50 mg /kg bwt TRM and 0.5 mg/kg bwt VB12 through gastric gavage daily for 8 weeks. Parameters tested include sperm parameter, male reproductive hormone, testicular histology, glucose, lactate dehydrogenase (LDH), acid phosphate (ACP), and alkaline phosphate (ALP) activity, steroidogenic protein, cytochrome P450 A1, nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nuclear factor- kappa B (NF-κB), oxidative and antioxidant makers. Tramadol significantly decreases sperm quality, hormone, steroidogenic protein, cytochrome P450 A1, ACP, ALP, and increases glucose, LDH, oxidative stress, mtTFA, and UCP2, p53 expression, NO, iNOS, NF-κB, IL-1β, IL-6, TNF-α, and caspase-3 activity. Degenerative alterations of the testes' and pituitary architecture and perturbation of spermatogenesis were observed in TRM-treated rats. The intervention of VB12 downregulated testicular oxidative stress, inflammatory markers, glucose, lactate, LDH, p53, caspase-3, mtTFA, and UCP2. And upregulate antioxidant, sperm quality, hormone, and spermatogenic cells. Vitamin B12 exhibited mitigation against TRM-induced testicular dysfunction via its antioxidant, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Sunday Aderemi Adelakun
- Department of Human Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria; Department of Anatomy, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Victor Okoliko Ukwenya
- Department of Human Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria
| | - Olalekan Wasiu Akintunde
- Department of Anatomy, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| |
Collapse
|
92
|
Le Foll N, Pont JC, L’Hostis A, Guilbert T, Bouillaud F, Wolf JP, Ziyyat A. Cyclic FEE Peptide Improves Human Sperm Movement Parameters without Modification of Their Energy Metabolism. Int J Mol Sci 2021; 22:ijms222011263. [PMID: 34681924 PMCID: PMC8539654 DOI: 10.3390/ijms222011263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cyclic fertilin peptide (cFEE: phenylalanine, glutamic acid; glutamic acid) improves gamete interaction in humans. We investigate whether it could be via improvement of sperm movement parameters and their mitochondrial ATP production. Sperm movement parameters were studied using computer-assisted sperm analysis (CASA) in sperm samples from 38 patients with normal sperm in medium supplemented with cyclic fertilin against a control group. Sperm mitochondrial functions were studied using donor’s sperm, incubated or not with cFEE. It was evaluated by the measurement of their ATP production using bioluminescence, their respiration by high resolution oxygraphy, and of mitochondrial membrane potential (MMP) using potentiometric dyes and flow cytometry. cFEE significantly improved sperm movement parameters and percentage of hyperactivated sperm. Impact of inhibitors showed OXPHOS as the predominant energy source for sperm movement. However, cFEE had no significant impact on any of the analyzed mitochondrial bioenergetic parameters, suggesting that it could act via a more efficient use of its energy resources.
Collapse
Affiliation(s)
- Nathalie Le Foll
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (N.L.F.); (J.-C.P.); (A.L.); (T.G.); (F.B.); (A.Z.)
- Service D’histologie, D’embryologie, Biologie de la Reproduction, AP-HP, Hôpital Cochin, 75014 Paris, France
| | - Jean-Christophe Pont
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (N.L.F.); (J.-C.P.); (A.L.); (T.G.); (F.B.); (A.Z.)
| | - Audrey L’Hostis
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (N.L.F.); (J.-C.P.); (A.L.); (T.G.); (F.B.); (A.Z.)
- Service D’histologie, D’embryologie, Biologie de la Reproduction, AP-HP, Hôpital Cochin, 75014 Paris, France
| | - Thomas Guilbert
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (N.L.F.); (J.-C.P.); (A.L.); (T.G.); (F.B.); (A.Z.)
| | - Frédéric Bouillaud
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (N.L.F.); (J.-C.P.); (A.L.); (T.G.); (F.B.); (A.Z.)
| | - Jean-Philippe Wolf
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (N.L.F.); (J.-C.P.); (A.L.); (T.G.); (F.B.); (A.Z.)
- Service D’histologie, D’embryologie, Biologie de la Reproduction, AP-HP, Hôpital Cochin, 75014 Paris, France
- Correspondence: ; Tel.: +33-(1)-58-41-37-31
| | - Ahmed Ziyyat
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (N.L.F.); (J.-C.P.); (A.L.); (T.G.); (F.B.); (A.Z.)
- Service D’histologie, D’embryologie, Biologie de la Reproduction, AP-HP, Hôpital Cochin, 75014 Paris, France
| |
Collapse
|
93
|
Balci CN, Firat T, Acar N, Kukner A. Carvacrol treatment opens Kir6.2 ATP-dependent potassium channels and prevents apoptosis on rat testis following ischemia-reperfusion injury model. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 62:179-190. [PMID: 34609420 PMCID: PMC8597367 DOI: 10.47162/rjme.62.1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Testicular torsion is a urological problem that causes subfertility and testicular damage in males. Testis torsion and detorsion lead to ischemia–reperfusion (IR) injury in the testis. Testicular IR injury causes the increase of reactive oxygen species (ROS), oxidative stress (OS) and germ cell-specific apoptosis. In this study, we aimed to investigate whether Carvacrol has a protective effect on testicular IR injury and its effects on Kir6.2 channels, which is a member of adenosine triphosphate (ATP)-dependent potassium channels. In the study, 2–4 months old 36 albino Wistar rats were used. For experimental testicular IR model, the left testis was rotated counterclockwise at 720° for two hours, and after two hours following torsion, detorsion was performed. Carvacrol was dissolved in 5% Dimethyl Sulfoxide (DMSO) at a dose of 73 mg/kg and half an hour before detorsion, 0.2 mL was administered intraperitoneally. In testicular tissues, caspase 3 and Kir6.2 immunoexpressions were examined. Serum malondialdehyde (MDA) and testosterone levels were measured. Apoptotic cells and serum MDA levels were significantly decreased and Kir6.2 activation was significantly increased in Carvacrol-administrated IR group. As a result of our study, Carvacrol may activates Kir6.2 channels and inhibits apoptosis and may have a protective effect on testicular IR injury.
Collapse
Affiliation(s)
- Cemre Nur Balci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey;
| | | | | | | |
Collapse
|
94
|
Symeonidis EN, Evgeni E, Palapelas V, Koumasi D, Pyrgidis N, Sokolakis I, Hatzichristodoulou G, Tsiampali C, Mykoniatis I, Zachariou A, Sofikitis N, Kaltsas A, Dimitriadis F. Redox Balance in Male Infertility: Excellence through Moderation-"Μέτρον ἄριστον". Antioxidants (Basel) 2021; 10:antiox10101534. [PMID: 34679669 PMCID: PMC8533291 DOI: 10.3390/antiox10101534] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/02/2022] Open
Abstract
Male infertility, a relatively common and multifactorial medical condition, affects approximately 15% of couples globally. Based on WHO estimates, a staggering 190 million people struggle with this health condition, and male factor is the sole or contributing factor in roughly 20–50% of these cases. Nowadays, urologists are confronted with a wide spectrum of conditions ranging from the typical infertile male to more complex cases of either unexplained or idiopathic male infertility, requiring a specific patient-tailored diagnostic approach and management. Strikingly enough, no identifiable cause in routine workup can be found in 30% to 50% of infertile males. The medical term male oxidative stress infertility (MOSI) was recently coined to describe infertile men with abnormal sperm parameters and oxidative stress (OS), including those previously classified as having idiopathic infertility. OS is a critical component of male infertility, entailing an imbalance between reactive oxygen species (ROS) and antioxidants. ROS abundance has been implicated in sperm abnormalities, while the exact impact on fertilization and pregnancy has long been a subject of considerable debate. In an attempt to counteract the deleterious effects of OS, urologists resorted to antioxidant supplementation. Mounting evidence indicates that indiscriminate consumption of antioxidants has led in some cases to sperm cell damage through a reductive-stress-induced state. The “antioxidant paradox”, one of the biggest andrological challenges, remains a lurking danger that needs to be carefully avoided and thoroughly investigated. For that reason, oxidation-reduction potential (ORP) emerged as a viable ancillary tool to basic semen analysis, measuring the overall balance between oxidants and antioxidants (reductants). A novel biomarker, the Male infertility Oxidative System (MiOXSYS®), is a paradigm shift towards that goal, offering a quantification of OS via a quick, reliable, and reproducible measurement of the ORP. Moderation or “Μέτρον” according to the ancient Greeks is the key to successfully safeguarding redox balance, with MiOXSYS® earnestly claiming its position as a guarantor of homeostasis in the intracellular redox milieu. In the present paper, we aim to offer a narrative summary of evidence relevant to redox regulation in male reproduction, analyze the impact of OS and reductive stress on sperm function, and shed light on the “antioxidant paradox” phenomenon. Finally, we examine the most up-to-date scientific literature regarding ORP and its measurement by the recently developed MiOXSYS® assay.
Collapse
Affiliation(s)
- Evangelos N. Symeonidis
- Department of Urology, “G. Gennimatas” General Hospital, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (E.N.S.); (I.M.)
| | - Evangelini Evgeni
- Cryogonia Cryopreservation Bank, 11526 Athens, Greece; (E.E.); (D.K.)
| | - Vasileios Palapelas
- 3rd Department of Obstetrics and Gynecology, Hippokration General Hospital, School of Medicine, Aristotle University, 54642 Thessaloniki, Greece;
| | - Dimitra Koumasi
- Cryogonia Cryopreservation Bank, 11526 Athens, Greece; (E.E.); (D.K.)
| | - Nikolaos Pyrgidis
- Department of Urology, ‘Martha-Maria’ Hospital Nuremberg, 90491 Nuremberg, Germany; (N.P.); (I.S.); (G.H.)
| | - Ioannis Sokolakis
- Department of Urology, ‘Martha-Maria’ Hospital Nuremberg, 90491 Nuremberg, Germany; (N.P.); (I.S.); (G.H.)
| | | | | | - Ioannis Mykoniatis
- Department of Urology, “G. Gennimatas” General Hospital, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (E.N.S.); (I.M.)
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45500 Ioannina, Greece; (A.Z.); (N.S.); (A.K.)
| | - Nikolaos Sofikitis
- Department of Urology, School of Medicine, Ioannina University, 45500 Ioannina, Greece; (A.Z.); (N.S.); (A.K.)
| | - Ares Kaltsas
- Department of Urology, School of Medicine, Ioannina University, 45500 Ioannina, Greece; (A.Z.); (N.S.); (A.K.)
| | - Fotios Dimitriadis
- Department of Urology, “G. Gennimatas” General Hospital, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (E.N.S.); (I.M.)
- Correspondence: ; Tel.: +30-23-1041-1121
| |
Collapse
|
95
|
Effects of Taurine on Sperm Quality during Room Temperature Storage in Hu Sheep. Animals (Basel) 2021; 11:ani11092725. [PMID: 34573691 PMCID: PMC8470579 DOI: 10.3390/ani11092725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/26/2023] Open
Abstract
Simple Summary Hu sheep sperm is highly susceptible to ROS during storage at room temperature. It is very important to use an antioxidant to ameliorate oxidative damage. Tau is an important amino acid peptide antioxidant with a wide range of biological effects. It can effectively scavenge free radicals, regulate reproductive function, improve immunity, and enhance its antioxidant capacity. However, the effects of Tau in the preservation of Hu sheep semen at room temperature are unclear. Therefore, Tau was added to Hu sheep semen preserved at room temperature to explore its effect on semen. The results showed that adding an appropriate concentration of Tau had a positive effect on Hu sheep semen preserved at room temperature; in particular, 20 mM Tau performed best. Abstract The present study aimed to investigate whether the presence of Tau protected Hu sheep sperm from ROS stress during storage at room temperature. The semen was diluted with extender (Tris-based) at room temperature, supplemented with different concentrations of Tau (0, 10, 20, 40, 80, or 100 mM), and stored at 15 °C. Sperm quality parameters (sperm progressive motility, kinetic parameters, plasma membrane integrity rate, acrosome integrity rate, and MMP) and antioxidant parameters (ROS, MDA, SOD, CAT, and T-AOC) were evaluated during the preservation of semen. The addition of Tau, especially at a concentration of 20 mM, exerted positive effects on sperm quality parameters and antioxidant parameters compared to the sperm without Tau treatment (control group). The addition of Tau, especially at a concentration of 100 mM, exerted negative effects on sperm quality parameters and antioxidant parameters compared to the control group. Interestingly, the results indicated that the sperm acrosome integrity rate did not change during storage time. In conclusion, the addition of Tau to sperm preserved at room temperature can enhance the antioxidant ability of sperm, reduce the LPO on the 5th day, and improve the quality of semen preserved at room temperature. These results implied that Tau had potential to enhance Hu sheep sperm reproductive performance.
Collapse
|
96
|
Genetic Association in the Maintenance of the Mitochondrial Microenvironment and Sperm Capacity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5561395. [PMID: 34527175 PMCID: PMC8437596 DOI: 10.1155/2021/5561395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023]
Abstract
Sperm motility is one of the major determinants of male fertility. Since sperm need a great deal of energy to support their fast movement by active metabolism, they are thus extremely vulnerable to oxidative damage by the reactive oxygen species (ROS) and other free radicals generated as byproducts in the electron transport chain. The present study is aimed at understanding the impact of a mitochondrial oxidizing/reducing microenvironment in the etiopathology of male infertility. We detected the mitochondrial DNA (mtDNA) 4,977 bp deletion in human sperm. We examined the gene mutation of ATP synthase 6 (ATPase6 m.T8993G) in ATP generation, the gene polymorphisms of uncoupling protein 2 (UCP2, G-866A) in the uncoupling of oxidative phosphorylation, the role of genes such as manganese superoxide dismutase (MnSOD, C47T) and catalase (CAT, C-262T) in the scavenging system in neutralizing reactive oxygen species, and the role of human 8-oxoguanine DNA glycosylase (hOGG1, C1245G) in 8-hydroxy-2′-deoxyguanosine (8-OHdG) repair. We found that the sperm with higher motility were found to have a higher mitochondrial membrane potential and mitochondrial bioenergetics. The genotype frequencies of UCP2 G-866A, MnSOD C47T, and CAT C-262T were found to be significantly different among the fertile subjects, the infertile subjects with more than 50% motility, and the infertile subjects with less than 50% motility. A higher prevalence of the mtDNA 4,977 bp deletion was found in the subjects with impaired sperm motility and fertility. Furthermore, we found that there were significant differences between the occurrences of the mtDNA 4,977 bp deletion and MnSOD (C47T) and hOGG1 (C1245G). In conclusion, the maintenance of the mitochondrial redox microenvironment and genome integrity is an important issue in sperm motility and fertility.
Collapse
|
97
|
Al Smadi MA, Hammadeh ME, Batiha O, Al Sharu E, Altalib MM, Jahmani MY, Mahdy A, Amor H. Elevated seminal protein carbonyl concentration is correlated with asthenozoospermia and affects adversely the laboratory intracytoplasmic sperm injection (ICSI) outcomes. Andrologia 2021; 53:e14232. [PMID: 34449913 DOI: 10.1111/and.14232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 11/27/2022] Open
Abstract
Elevated concentrations of reactive oxygen species (ROS) in the semen can lead to oxidative protein damage as they react with the amino acids' side chains in the protein, leading to the generation of carbonyl groups. This study aimed to investigate the effect of protein carbonyl (PC) concentration on sperm motility and the laboratory intracytoplasmic sperm injection (ICSI) outcomes. A total of 150 couples from the ICSI cycle were enrolled in this study and were divided into three groups (G) according to the PC concentration as following, G1 included samples with PC concentrations <0.65 nmol/mg, G2 included samples with 0.65≤PC≤2.23 nmol/mg and G3 included samples with PC>2.23 (nmol/mg). PC concentrations were measured in all semen samples, and the laboratory ICSI outcomes were evaluated for all injected oocytes. The Kruskal-Wallis p-values for the differences in the medians of sperm motility, fertilisation rate, embryo cleavage score and embryo quality score were <0.05. Furthermore, Dunn's post hoc test showed a significant difference between all groups, p-values <0.05, except for the medians of embryo quality score between G2 and G3. In conclusion, our results showed that sperm motility and laboratory ICSI outcomes are affected negatively by higher concentrations of PC in the semen.
Collapse
Affiliation(s)
- Mohammad A Al Smadi
- Department of Obstetrics & Gynecology, Reproductive Medicine Unit, Saarland University, Homburg, Germany
| | - Mohamad Eid Hammadeh
- Department of Obstetrics & Gynecology, Reproductive Medicine Unit, Saarland University, Homburg, Germany
| | - Osamah Batiha
- Department of Biotechnology & Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Emad Al Sharu
- Reproductive Endocrinology and IVF Unit, King Hussein Medical Center, Amman, Jordan
| | | | | | - Ahmed Mahdy
- Department of Internal Medicine V, Pneumology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Houda Amor
- Department of Obstetrics & Gynecology, Reproductive Medicine Unit, Saarland University, Homburg, Germany
| |
Collapse
|
98
|
Asadi A, Ghahremani R, Abdolmaleki A, Rajaei F. Role of sperm apoptosis and oxidative stress in male infertility: A narrative review. Int J Reprod Biomed 2021; 19:493-504. [PMID: 34401644 PMCID: PMC8350854 DOI: 10.18502/ijrm.v19i6.9371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/22/2020] [Accepted: 12/05/2020] [Indexed: 01/02/2023] Open
Abstract
Activation of caspase, externalization of phosphatidyl serine, change in the mitochondrial membrane potential, and DNA fragmentation are apoptosis markers found in human ejaculated spermatozoa. Also, reactive oxygen species (ROS) play a vital role in the different types of male infertility. In this review, data sources including Google Scholar, Scopus, PubMed, and Science Direct were searched for publications with no particular time restriction to get a holistic and comprehensive view of the research. Apoptosis regulates the male germ cells, correct function and development from the early embryonic stages of gonadal differentiation to fertilization. In addition to maintaining a reasonable ratio between the Sertoli and germ cells, apoptosis is one of the well-known quality control mechanisms in the testis. Also, high ROS levels cause a heightened and dysregulated apoptotic response. Apoptosis is one of the well-known mechanisms of quality control in the testis. Nevertheless, increased apoptosis may have adverse effects on sperm production. Recent studies have shown that ROS and the consequent oxidative stress play a crucial role in apoptosis. This review aims to assimilate and summarize recent findings on the apoptosis in male reproduction and fertility. Also, this review discusses the update on the role of ROS in normal sperm function to guide future research in this area.
Collapse
Affiliation(s)
- Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rozita Ghahremani
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.,BioScience and Biotechnology Research Center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
99
|
Measurement of Oxidative Stress Index in Seminal Plasma Can Predict In Vivo Fertility of Liquid-Stored Porcine Artificial Insemination Semen Doses. Antioxidants (Basel) 2021; 10:antiox10081203. [PMID: 34439450 PMCID: PMC8388916 DOI: 10.3390/antiox10081203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
The study evaluated the relation between the oxidative stress index (OSI) in porcine seminal plasma (n = 76) with sperm resilience and in vivo fertility (farrowing rate and litter size of 3137 inseminated sows) of liquid-stored artificial insemination (AI) semen doses. The OSI was assessed as the ratio of advanced oxidation protein products to Trolox-equivalent antioxidant capacity, both measured using an automated analyzer. Sperm motility (computer-assisted sperm analyzer) and viability (flow cytometry) were evaluated in semen AI-doses at 0 and 72 h of storage at 17 °C. Sperm resilience was defined as the difference between storage intervals. Semen AI-doses were hierarchically clustered as having high, medium and low seminal OSI (p < 0.001) with those of low displaying higher resilience (p < 0.01). Boars were hierarchically clustered into two groups (p < 0.001) as having either positive or negative farrowing rate and litter size deviation; the negative one showing higher seminal OSI (p < 0.05). In sum, seminal OSI was negatively related to sperm motility and the in vivo fertility of liquid-stored boar semen AI-doses, with the receiver operating characteristic curve presenting seminal OSI as a good predictive biomarker of in vivo fertility of AI-boars (area under the curve: 0.815, p < 0.05).
Collapse
|
100
|
Mohammadi T, Soltani L. Effects of hydroethanolic extracts of Terminalia chebula and Thymbra spicata on ram fresh semen under normal and oxidative stress conditions. Vet Med Sci 2021; 7:1778-1785. [PMID: 34288575 PMCID: PMC8464289 DOI: 10.1002/vms3.580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to evaluate protective effects of hydroethanolic extracts of Terminalia chebula and Thymbra spicata on viability, lipid peroxidation (LPO) and DNA integrity of ram fresh semen under normal and oxidative stress (OS) conditions. Antioxidant activities of different concentrations of Terminalia chebula and Thymbra spicata extracts were evaluated with DPPH assay. Semen samples were taken from three fertile adult rams. After diluting semen with Tris-base extender, different concentrations of Terminalia chebula and Thymbra spicata (30, 300, and 3000 μg/ml) extracts were used under normal and induced OS conditions. The group not receiving any supplements was considered as control group. A total of 50 μM hydrogen peroxide was used to induce OS. MTT solution was added to each of treatment groups which were kept in an incubator at 37°C for 2 h. After incubation, readings were obtained by ELISA reader. DNA integrity and LPO were determined with acridine orange (AO) staining and malondialdehyde (MDA) assay. Higher concentrations of Terminalia chebula and Thymbra spicata extracts preserved viability and DNA integrity while reducing MDA concentrations compared to other treatment groups. Also, under induced OS, higher concentrations of both extracts reduced detrimental effects of H2 O2 . In conclusion, it seems that addition of Terminalia chebula and Thymbra spicata extracts can reduce induced OS in spermatozoa.
Collapse
Affiliation(s)
- Tayebeh Mohammadi
- Basic Sciences and Pathobiology Department, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Leila Soltani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|