51
|
Ville S, Poirier N, Branchereau J, Charpy V, Pengam S, Nerriere-Daguin V, Le Bas-Bernardet S, Coulon F, Mary C, Chenouard A, Hervouet J, Minault D, Nedellec S, Renaudin K, Vanhove B, Blancho G. Anti-CD28 Antibody and Belatacept Exert Differential Effects on Mechanisms of Renal Allograft Rejection. J Am Soc Nephrol 2016; 27:3577-3588. [PMID: 27160407 DOI: 10.1681/asn.2015070774] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 03/17/2016] [Indexed: 12/18/2022] Open
Abstract
Belatacept is a biologic that targets CD80/86 and prevents its interaction with CD28 and its alternative ligand, cytotoxic T lymphocyte antigen 4 (CTLA-4). Clinical experience in kidney transplantation has revealed a high incidence of rejection with belatacept, especially with intensive regimens, suggesting that blocking CTLA-4 is deleterious. We performed a head to head assessment of FR104 (n=5), a selective pegylated Fab' antibody fragment antagonist of CD28 that does not block the CTLA-4 pathway, and belatacept (n=5) in kidney allotransplantation in baboons. The biologics were supplemented with an initial 1-month treatment with low-dose tacrolimus. In cases of acute rejection, animals also received steroids. In the belatacept group, four of five recipients developed severe, steroid-resistant acute cellular rejection, whereas FR104-treated animals did not. Assessment of regulatory T cell-specific demethylated region methylation status in 1-month biopsy samples revealed a nonsignificant trend for higher regulatory T cell frequencies in FR104-treated animals. Transcriptional analysis did not reveal significant differences in Th17 cytokines but did reveal higher levels of IL-21, the main cytokine secreted by CD4 T follicular helper (Tfh) cells, in belatacept-treated animals. In vitro, FR104 controlled the proliferative response of human preexisting Tfh cells more efficiently than belatacept. In mice, selective CD28 blockade also controlled Tfh memory cell responses to KLH stimulation more efficiently than CD80/86 blockade. Our data reveal that selective CD28 blockade and belatacept exert different effects on mechanisms of renal allograft rejection, particularly at the level of Tfh cell stimulation.
Collapse
Affiliation(s)
- Simon Ville
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Centre Hospitalier Universitaire, Nantes, France
| | - Nicolas Poirier
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Effimune, Nantes, France; and
| | - Julien Branchereau
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Centre Hospitalier Universitaire, Nantes, France
| | | | - Sabrina Pengam
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Effimune, Nantes, France; and
| | - Véronique Nerriere-Daguin
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France
| | - Stéphanie Le Bas-Bernardet
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France
| | - Flora Coulon
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France
| | - Caroline Mary
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Effimune, Nantes, France; and
| | - Alexis Chenouard
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Centre Hospitalier Universitaire, Nantes, France
| | - Jeremy Hervouet
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France
| | - David Minault
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France
| | - Steven Nedellec
- MicroPiCell Facility, Structure Fédérative de Recherche (SFR) Bonamy, Structure Fedérative de recherche (FED) 4203, Unité Mixte de Service (UMS) 016, Nantes, France
| | - Karine Renaudin
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Centre Hospitalier Universitaire, Nantes, France
| | - Bernard Vanhove
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Effimune, Nantes, France; and
| | - Gilles Blancho
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France; .,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Centre Hospitalier Universitaire, Nantes, France
| |
Collapse
|
52
|
Qin R, Salama AK. Report of ipilimumab in a heart transplant patient with metastatic melanoma on tacrolimus. Melanoma Manag 2015; 2:311-314. [PMID: 30190859 DOI: 10.2217/mmt.15.27] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ipilimumab is the first immunotherapy shown to increase overall survival in patients with metastatic melanoma. Currently, there are no accepted guidelines for use of ipilimumab in organ transplant patients. There is only one report in the literature on successful administration of ipilimumab in two kidney transplant recipients. In this report, a heart transplant patient with metastatic melanoma was successfully treated with ipilimumab. He experienced no adverse drug reactions. However, after standard treatment with regimen of four doses at 3 mg/kg, he experienced disease progression. Here, we address concerns of organ rejection or ineffective treatment when using ipilimumab or other immune checkpoint inhibitors in patients who are chronically immunosuppressed.
Collapse
Affiliation(s)
- Rosie Qin
- School of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - April Ks Salama
- Division of Medical Oncology, Duke University Medical Center, Durham, NC 27710, USA.,Division of Medical Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
53
|
Poirier N, Chevalier M, Mary C, Hervouet J, Minault D, Baker P, Ville S, Le Bas-Bernardet S, Dilek N, Belarif L, Cassagnau E, Scobie L, Blancho G, Vanhove B. Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates. THE JOURNAL OF IMMUNOLOGY 2015; 196:274-83. [PMID: 26597009 DOI: 10.4049/jimmunol.1501810] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/28/2015] [Indexed: 11/19/2022]
Abstract
Novel therapies that specifically target activation and expansion of pathogenic immune cell subsets responsible for autoimmune attacks are needed to confer long-term remission. Pathogenic cells in autoimmunity include memory T lymphocytes that are long-lived and present rapid recall effector functions with reduced activation requirements. Whereas the CD28 costimulation pathway predominantly controls priming of naive T cells and hence generation of adaptive memory cells, the roles of CD28 costimulation on established memory T lymphocytes and the recall of memory responses remain controversial. In contrast to CD80/86 antagonists (CTLA4-Ig), selective CD28 antagonists blunt T cell costimulation while sparing CTLA-4 and PD-L1-dependent coinhibitory signals. Using a new selective CD28 antagonist, we showed that Ag-specific reactivation of human memory T lymphocytes was prevented. Selective CD28 blockade controlled both cellular and humoral memory recall in nonhuman primates and induced long-term Ag-specific unresponsiveness in a memory T cell-mediated inflammatory skin model. No modification of memory T lymphocytes subsets or numbers was observed in the periphery, and importantly no significant reactivation of quiescent viruses was noticed. These findings indicate that pathogenic memory T cell responses are controlled by both CD28 and CTLA-4/PD-L1 cosignals in vivo and that selectively targeting CD28 would help to promote remission of autoimmune diseases and control chronic inflammation.
Collapse
Affiliation(s)
- Nicolas Poirier
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Effimune, 44000 Nantes, France
| | - Melanie Chevalier
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Centre Hospitalier Universitaire, 44000 Nantes, France; and
| | - Caroline Mary
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Effimune, 44000 Nantes, France
| | - Jeremy Hervouet
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France
| | - David Minault
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France
| | - Paul Baker
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Simon Ville
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France
| | - Stephanie Le Bas-Bernardet
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Centre Hospitalier Universitaire, 44000 Nantes, France; and
| | - Nahzli Dilek
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Effimune, 44000 Nantes, France
| | - Lyssia Belarif
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Effimune, 44000 Nantes, France
| | | | - Linda Scobie
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Gilles Blancho
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Centre Hospitalier Universitaire, 44000 Nantes, France; and
| | - Bernard Vanhove
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Effimune, 44000 Nantes, France;
| |
Collapse
|
54
|
Immunosenescence in renal transplantation: a changing balance of innate and adaptive immunity. Curr Opin Organ Transplant 2015; 20:417-23. [PMID: 26154914 DOI: 10.1097/mot.0000000000000210] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW With global demographic changes and an overall improved healthcare, more older end-stage renal disease (ESRD) patients receive kidney transplants. At the same time, organs from older donors are utilized more frequently. Those developments have and will continue to impact allocation, immunosuppression and efforts improving organ quality. RECENT FINDINGS Findings mainly outside the field of transplantation have provided insights into mechanisms that drive immunosenescence and immunogenicity, thus providing a rationale for an age-adapted immunosuppression and relevant clinical trials in the elderly. With fewer rejections in the elderly, alloimmune responses appear to be characterized by a decline in effectiveness and an augmented unspecific immune response. SUMMARY Immunosenescence displays broad and ambivalent effects in elderly transplant recipients. Those changes appear to compensate a decline in allospecific effectiveness by a shift towards an augmented unspecific immune response. Immunosuppression needs to target those age-specific changes to optimize outcomes in elderly transplant recipients.
Collapse
|
55
|
Abstract
Generation of an effective immune response against foreign antigens requires two distinct molecular signals: a primary signal provided by the binding of antigen-specific T-cell receptor to peptide-MHC on antigen-presenting cells and a secondary signal delivered via the engagement of costimulatory molecules. Among various costimulatory signaling pathways, the interactions between CD40 and its ligand CD154 have been extensively investigated given their essential roles in the modulation of adaptive immunity. Here, we review current understanding of the role CD40/CD154 costimulation pathway has in alloimmunity, and summarize recent mechanistic and preclinical advances in the evaluation of candidate therapeutic approaches to target this receptor-ligand pair in transplantation.
Collapse
Affiliation(s)
- Tianshu Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard N Pierson
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore VA Medical Center, Baltimore, MD, USA
| | - Agnes M Azimzadeh
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
56
|
Ville S, Poirier N, Blancho G, Vanhove B. Co-Stimulatory Blockade of the CD28/CD80-86/CTLA-4 Balance in Transplantation: Impact on Memory T Cells? Front Immunol 2015; 6:411. [PMID: 26322044 PMCID: PMC4532816 DOI: 10.3389/fimmu.2015.00411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/27/2015] [Indexed: 12/30/2022] Open
Abstract
CD28 and CTLA-4 are prototypal co-stimulatory and co-inhibitory cell surface signaling molecules interacting with CD80/86, known to be critical for immune response initiation and regulation, respectively. Initial “bench-to-beside” translation, two decades ago, resulted in the development of CTLA4-Ig, a biologic that targets CD80/86 and prevents T-cell costimulation. In spite of its proven effectiveness in inhibiting allo-immune responses, particularly in murine models, clinical experience in kidney transplantation with belatacept (high-affinity CTLA4-Ig molecule) reveals a high incidence of acute, cell-mediated rejection. Originally, the etiology of belatacept-resistant graft rejection was thought to be heterologous immunity, i.e., the cross-reactivity of the pool of memory T cells from pathogen-specific immune responses with alloantigens. Recently, the standard view that memory T cells arise from effector cells after clonal contraction has been challenged by a “developmental” model, in which less differentiated memory T cells generate effector cells. This review delineates how this shift in paradigm, given the differences in co-stimulatory and co-inhibitory signal depending on the maturation stage, could profoundly affect our understanding of the CD28/CD80-86/CTLA-4 blockade and highlights the potential advantages of selectively targeting CD28, instead of CD80/86, to control post-transplant immune responses.
Collapse
Affiliation(s)
- Simon Ville
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France
| | - Nicolas Poirier
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France ; Effimune SAS , Nantes , France
| | - Gilles Blancho
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France
| | - Bernard Vanhove
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France ; Effimune SAS , Nantes , France
| |
Collapse
|
57
|
Beyersdorf N, Kerkau T, Hünig T. CD28 co-stimulation in T-cell homeostasis: a recent perspective. Immunotargets Ther 2015; 4:111-22. [PMID: 27471717 PMCID: PMC4918251 DOI: 10.2147/itt.s61647] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
T-cells play a key role within the adaptive immune system mediating cellular immunity and orchestrating the immune response as a whole. Their activation requires not only recognition of antigen/major histocompatibility complexes by the T-cell receptor but in addition co-stimulation via the CD28 molecule through binding to CD80, CD86, or as recently discovered, inducible co-stimulator ligand expressed by antigen-presenting cells. Apart from tight control of the co-stimulatory signal by the T-cell receptor complex, expression of the inhibitory receptor cytotoxic T-lymphocyte antigen-4 (CTLA-4) sharing its ligands with CD28 is required to avoid inappropriate or prolonged T-cell activation. CD4(+) Foxp3(+) regulatory T (Treg) cells, which are crucial inhibitors of autoimmunity, add another level of complexity in that they differ from conventional non-regulatory CD4(+) T-cells by strongly depending on CD28 signaling for their generation and homeostasis. Moreover, CTLA-4 is constitutively expressed by Treg cells where it serves as a key mediator of suppression, while conventional CD4(+) T-cells express CTLA-4 only after activation. Here, we discuss recent insights into the molecular events underlying CD28-mediated co-stimulation, its impact on gene regulation, and the differential role of CD28 expression on Treg cells versus conventional CD4(+) and CD8(+) T-cells. Moreover, we summarize the exciting therapeutic options which have arisen from our current understanding of T-cell co-stimulation. Some of these have already been translated into the clinic, while others are expected to follow soon due to promising preclinical results. In particular, we discuss the failed 2006 trial of the CD28 superagonist TGN1412, and the return of this potent T-cell activator to clinical development.
Collapse
Affiliation(s)
- Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
58
|
Abstract
PURPOSE OF REVIEW Immunosuppression regimens have helped improve rejection episodes following lung transplantation, but long-term outcomes are still not comparable with cardiac, hepatic, or renal transplantation. This review summarizes the immunobiology that contributes to rejection events and future opportunities in outcomes on the basis of providing optimized delivery of the immunosuppression based on immune-monitoring techniques, taking into account individual patient pharmacokinetics and phenotypic variance. RECENT FINDINGS Drug toxicities, narrow therapeutic drug monitoring windows, and current immunoassays currently do not assist in detecting the global degree of immunosuppression. The currently available randomized control trials for induction therapy or maintenance therapies do not provide additional benefits compared with previously reported retrospective trials. To push beyond the current barriers, transplant teams are focusing on the role of pharmacokinetics, assessing phenotypic variable to potentially modify to quadruple therapy and using extracorporeal photopheresis. SUMMARY Conventional practice for the choices of immunosuppression is being evaluated on the basis of randomized control trials as opposed to retrospective studies or single-center trials. The future direction of immunosuppression will be continued by dynamic processes taking into consideration measures to improve tolerance, reducing treatment burden, and providing the best level of evidence while accounting for rejection, infections, renal function, and other comorbidities.
Collapse
|
59
|
Abstract
BACKGROUND CTLA-4 immunoglobulin fusion proteins (CTLA4-Ig) suppress immune reactions by blocking the T-cell costimulatory CD28-CD80-86 pathway and are used in clinical trials for diseases featuring exaggerated T-cell reactivity including autoimmune diseases and allograft rejection. However, because CTLA4-Ig has been suspected to interfere with T regulatory (Treg) cell homeostasis and function, recently, substantial concerns on CTLA4-Ig's potentially antitolerogenic effects have been raised. METHODS We tested immunoregulatory CTLA4-Ig explicitly for its effect on Treg cell numbers, frequencies and function in an in vitro murine major histocompatibility complex mismatched setting using C57BL/6 bone marrow-derived dendritic cells as stimulators of allogeneic Balb/c Foxp3 T cells, which allowed for tracing Treg cells in a straightforward fashion. RESULTS The presence of CTLA4-Ig in mixed leukocyte reactions-while dampening the global proliferative response of allostimulated Balb/c T cells-resulted in a relative increase of the frequency of thymus-derived CD4CD25Foxp3 Treg cells with intact suppressive activity. This relative increase was caused by a selective inhibitory effect of CTLA4-Ig on proliferating conventional T cells, whereas the proliferative capacity of Treg cells in cell cultures remained unaffected. Additionally, in the presence of CTLA4-Ig, the frequency of apoptosis was decreased in these cells. CONCLUSION Our findings unequivocally demonstrate that CTLA4-Ig does not negatively affect Treg cell frequencies and function in vitro.
Collapse
|
60
|
Poirier N, Dilek N, Mary C, Ville S, Coulon F, Branchereau J, Tillou X, Charpy V, Pengam S, Nerriere-Daguin V, Hervouet J, Minault D, Le Bas-Bernardet S, Renaudin K, Vanhove B, Blancho G. FR104, an antagonist anti-CD28 monovalent fab' antibody, prevents alloimmunization and allows calcineurin inhibitor minimization in nonhuman primate renal allograft. Am J Transplant 2015; 15:88-100. [PMID: 25488654 DOI: 10.1111/ajt.12964] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 01/25/2023]
Abstract
Selective targeting of CD28 might represent an effective immunomodulation strategy by preventing T cell costimulation, while favoring coinhibition since inhibitory signals transmitted through CTLA-4; PD-L1 and B7 would not be affected. We previously showed in vitro and in vivo that anti-CD28 antagonists suppress effector T cells while enhancing regulatory T cell (Treg) suppression and immune tolerance. Here, we evaluate FR104, a novel antagonist pegylated anti-CD28 Fab' antibody fragment, in nonhuman primate renal allotransplantation. FR104, in association with low doses of tacrolimus or with rapamycin in a steroid-free therapy, prevents acute rejection and alloantibody development and prolongs allograft survival. However, when FR104 was associated with mycophenolate mofetil and steroids, half of the recipients rejected their grafts prematurely. Finally, we observed an accumulation of Helios-negative Tregs in the blood and within the graft after FR104 therapy, confirmed by Treg-specific demethylated region DNA analysis. In conclusion, FR104 reinforces immunosuppression in calcineurin inhibitor (CNI)-low or CNI-free protocols, without the need of steroids. Accumulation of intragraft Tregs suggested the promotion of immunoregulatory mechanisms. Selective CD28 antagonists might become an alternative CNI-sparing strategy to B7 antagonists for kidney transplant recipients.
Collapse
Affiliation(s)
- N Poirier
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche 1064, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France; Effimune SAS, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Krummey SM, Ford ML. Braking bad: novel mechanisms of CTLA-4 inhibition of T cell responses. Am J Transplant 2014; 14:2685-90. [PMID: 25387592 PMCID: PMC4364523 DOI: 10.1111/ajt.12938] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/02/2014] [Accepted: 07/16/2014] [Indexed: 01/25/2023]
Abstract
The coinhibitory receptor cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a master regulator of T cell responses and its function is critical in models of transplant tolerance. The CD28/CTLA-4 pathway is also an important therapeutic target, as the costimulation blocker belatacept was recently approved for use following renal transplantation. While the traditional model of CTLA-4 coinhibition focuses on its ability to directly counteract CD28 costimulation, recently this paradigm has significantly broadened. Recent work has uncovered the ability of CTLA-4 to act as a cell-extrinsic coinhibitory molecule on CD4(+) T cell effectors. While it has been appreciated that CTLA-4 is required for FoxP3(+) regulatory T cell (Treg) suppression, current studies have elucidated important differences in the function of CTLA-4 on Tregs compared to effectors. CTLA-4 expression patterns also differ by T cell subset, with Th17 cells expressing significantly higher levels of CTLA-4. Thus, in contrast to the traditional model of CTLA-4 as a negative receptor to counter CD28 costimulation, recent work has begun to define CTLA-4 as a global regulator of T cell responses with subset-specific functions. Future studies must continue to uncover the molecular mechanisms that govern CTLA-4 function. These novel findings have implications for novel strategies to maximize the regulatory potential of CTLA-4 during allogeneic T cell responses.
Collapse
|
62
|
Gardner D, Jeffery LE, Sansom DM. Understanding the CD28/CTLA-4 (CD152) pathway and its implications for costimulatory blockade. Am J Transplant 2014; 14:1985-91. [PMID: 25098238 DOI: 10.1111/ajt.12834] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/25/2023]
Abstract
T cell activation is a key event in the adaptive immune system and vital in the generation of protective cellular and humoral immunity. Activation is required to generate CD4 effector T cell responses and provide help for B cell and cytotoxic T cell responses. While defective T responses to foreign antigen result in infectious pathology, over-reactive T cell responses against self-antigens result in autoimmunity and, in a transplantation setting, tissue rejection. Understanding how T cell activation is normally regulated is critical to therapeutic intervention and the CD28/CTLA-4 (CD152) pathway represents the initial activation checkpoint in molecular terms. In particular, while the CTLA-4 pathway is well established as an essential regulator of self-reactivity, its mechanism of action is still uncertain. Such mechanistic issues are important given its central position in T cell activation and the increasing number of therapeutic modalities aimed at manipulating the CD28/CTLA-4 pathway. Here, we provide an updated view of CTLA-4 biology, reviewing the established features of the system and highlighting its interplay with CD28. We then discuss how recent progress in our understanding of this pathway affects our interpretations following intervention.
Collapse
Affiliation(s)
- D Gardner
- University of Birmingham, MRC Centre for Immune Regulation, Birmingham, UK
| | | | | |
Collapse
|
63
|
An agonistic anti-BTLA mAb (3C10) induced generation of IL-10-dependent regulatory CD4+ T cells and prolongation of murine cardiac allograft. Transplantation 2014; 97:301-9. [PMID: 24448587 DOI: 10.1097/01.tp.0000438204.96723.8b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The co-inhibitory receptor B and T lymphocyte attenuator (BTLA) has been implicated in the regulation of autoimmunity and may potentially play an important role in allograft tolerance. This study investigated the effect of an agonistic anti-BTLA mAb (3C10) in the fully major histocompatibility complex-mismatched murine cardiac transplantation. METHODS CBA mice underwent transplantation of C57BL/6 hearts and received one dose of 3C10 on the day of transplantation (day 0) or four doses of 3C10 on day 0, 3, 6, and 9. Adoptive transfer studies were performed to determine whether regulatory cells were generated. Moreover, to confirm the requirement for regulatory T cell and Th-2 cytokines, anti-interleukin (IL)-2 receptor alpha antibody (PC-61) or anti-IL-10 antibody (JES-2A5) was administered to a 3C10-treated CBA recipient. RESULTS CBA mice treated with one and four doses of 3C10 prolonged allograft survival (median survival times [MSTs], 43 and >100 days, respectively). Secondary CBA recipients given whole splenocytes or CD4 cells from primary 3C10-treated CBA recipients had significantly prolonged survival of C57BL/6 hearts (MSTs, >100 in both). Also, flow cytometry studies showed an increased CD4CD25Foxp3 cell population in 3C10-treated mice. Additionally, IL-2 and interferon-γ production were suppressed in 3C10-treated mice, and IL-4 and IL-10 from 3C10-treated CBA mice increased. Moreover, 3C10 directly suppressed alloproliferation in a mixed leukocyte culture. However, administration of PC-61 or JES-2A5 clearly attenuated prolonged survival of 3C10-treated mice (MSTs, 15.5 and 13.5 days, respectively). CONCLUSION 3C10 could control acute rejection by its suppressive effect on alloreactive T cells and induction of IL-10-dependent regulatory CD4 T cells.
Collapse
|
64
|
Liao H, Yang DH. CD4 +CD25 +Foxp3 + Treg cells and liver transplant tolerance. Shijie Huaren Xiaohua Zazhi 2014; 22:1226-1234. [DOI: 10.11569/wcjd.v22.i9.1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several subgroups of regulatory T (Treg) cells play crucial roles in both induction and maintenance of immune tolerance to self-antigens and alloantigens. The most extensively and comprehensively studied regulatory T cell subgroup is CD4+CD25+Foxp3+ Treg cells. Numerous studies indicate that insufficiency or dysfunction of CD4+CD25+Foxp3+ Treg cells is responsible for the development of many autoimmune diseases and rejections after organ transplantation. Therefore, harnessing CD4+CD25+Foxp3+ Treg cells may provide a promising approach for inducing and maintaining liver transplant tolerance. In this review, we will focus on the history and classification of regulatory T cells, the mechanisms by which regulatory T cells induce transplant tolerance and their roles in liver transplant tolerance.
Collapse
|
65
|
Poirier N, Mary C, Le Bas-Bernardet S, Daguin V, Belarif L, Chevalier M, Hervouet J, Minault D, Ville S, Charpy V, Blancho G, Vanhove B. Advantages of Papio anubis for preclinical testing of immunotoxicity of candidate therapeutic antagonist antibodies targeting CD28. MAbs 2014; 6:697-707. [PMID: 24598534 DOI: 10.4161/mabs.28375] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antagonist anti-CD28 antibodies prevent T-cell costimulation and are functionally different from CTLA4Ig since they cannot block CTLA-4 and PDL-1 co-inhibitory signals. They demonstrated preclinical efficacy in suppressing effector T cells while enhancing immunoregulatory mechanisms. Because a severe cytokine release syndrome was observed during the Phase 1 study with the superagonist anti-CD28 TGN1412, development of other anti-CD28 antibodies requires careful preclinical evaluation to exclude any potential immunotoxicity side-effects. The failure to identify immunological toxicity of TGN1412 using macaques led us to investigate more relevant preclinical models. We report here that contrary to macaques, and like in man, all baboon CD4-positive T lymphocytes express CD28 in their effector memory cells compartment, a lymphocyte subtype that is the most prone to releasing cytokines after reactivation. Baboon lymphocytes are able to release pro-inflammatory cytokines in vitro in response to agonist or superagonist anti-CD28 antibodies. Furthermore, we compared the reactivity of human and baboon lymphocytes after transfer into non obese diabetic/severe combined immunodeficiency (NOD/SCID) interleukin-2rγ knockout mice and confirmed that both cell types could release inflammatory cytokines in situ after injection of agonistic anti-CD28 antibodies. In contrast, FR104, a monovalent antagonistic anti-CD28 antibody, did not elicit T cell activation in these assays, even in the presence of anti-drug antibodies. Infusion to baboons also resulted in an absence of cytokine release. In conclusion, the baboon represents a suitable species for preclinical immunotoxicity evaluation of anti-CD28 antibodies because their effector memory T cells do express CD28 and because cytokine release can be assessed in vitro and trans vivo.
Collapse
Affiliation(s)
- Nicolas Poirier
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Effimune SAS; Nantes, France
| | - Caroline Mary
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Effimune SAS; Nantes, France
| | - Stephanie Le Bas-Bernardet
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Centre Hospitalier Universitaire; Nantes, France
| | - Veronique Daguin
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Lyssia Belarif
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Melanie Chevalier
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Jeremy Hervouet
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - David Minault
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Simon Ville
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Vianney Charpy
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Gilles Blancho
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Centre Hospitalier Universitaire; Nantes, France
| | - Bernard Vanhove
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Effimune SAS; Nantes, France
| |
Collapse
|
66
|
Liu D, Krummey SM, Badell IR, Wagener M, Schneeweis LA, Stetsko DK, Suchard SJ, Nadler SG, Ford ML. 2B4 (CD244) induced by selective CD28 blockade functionally regulates allograft-specific CD8+ T cell responses. ACTA ACUST UNITED AC 2014; 211:297-311. [PMID: 24493803 PMCID: PMC3920565 DOI: 10.1084/jem.20130902] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Blockade of CD28 signals results in the up-regulation of 2B4 on primary CD8+ effectors and plays a critical role in controlling antigen-specific CD8+ T cell responses. Mounting evidence in models of both autoimmunity and chronic viral infection suggests that the outcome of T cell activation is critically impacted by the constellation of co-stimulatory and co-inhibitory receptors expressed on the cell surface. Here, we identified a critical role for the co-inhibitory SLAM family member 2B4 (CD244) in attenuating primary antigen-specific CD8+ T cell responses in the presence of immune modulation with selective CD28 blockade. Our results reveal a specific up-regulation of 2B4 on antigen-specific CD8+ T cells in animals in which CD28 signaling was blocked. However, 2B4 up-regulation was not observed in animals treated with CTLA-4 Ig (abatacept) or CD28 blockade in the presence of anti–CTLA-4 mAb. 2B4 up-regulation after CD28 blockade was functionally significant, as the inhibitory impact of CD28 blockade was diminished when antigen-specific CD8+ T cells were deficient in 2B4. In contrast, 2B4 deficiency had no effect on CD8+ T cell responses during unmodified rejection or in the presence of CTLA-4 Ig. We conclude that blockade of CD28 signals in the presence of preserved CTLA-4 signals results in the unique up-regulation of 2B4 on primary CD8+ effectors, and that this 2B4 expression plays a critical functional role in controlling antigen-specific CD8+ T cell responses.
Collapse
Affiliation(s)
- Danya Liu
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
The myriad of co-stimulatory signals expressed, or induced, upon T-cell activation suggests that these signalling pathways shape the character and magnitude of the resulting autoreactive or alloreactive T-cell responses during autoimmunity or transplantation, respectively. Reducing pathological T-cell responses by targeting T-cell co-stimulatory pathways has met with therapeutic success in many instances, but challenges remain. In this Review, we discuss the T-cell co-stimulatory molecules that are known to have critical roles during T-cell activation, expansion, and differentiation. We also outline the functional importance of T-cell co-stimulatory molecules in transplantation, tolerance and autoimmunity, and we describe how therapeutic blockade of these pathways might be harnessed to manipulate the immune response to prevent or attenuate pathological immune responses. Ultimately, understanding the interplay between individual co-stimulatory and co-inhibitory pathways engaged during T-cell activation and differentiation will lead to rational and targeted therapeutic interventions to manipulate T-cell responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Mandy L Ford
- The Emory Transplant Center, Emory University, 101 Woodruff Circle, Woodruff Memorial Research Building Suite 5105, Atlanta, GA 30322, USA
| | - Andrew B Adams
- The Emory Transplant Center, Emory University, 101 Woodruff Circle, Woodruff Memorial Research Building Suite 5105, Atlanta, GA 30322, USA
| | - Thomas C Pearson
- The Emory Transplant Center, Emory University, 101 Woodruff Circle, Woodruff Memorial Research Building Suite 5105, Atlanta, GA 30322, USA
| |
Collapse
|
68
|
Dilek N, Poirier N, Hulin P, Coulon F, Mary C, Ville S, Vie H, Clémenceau B, Blancho G, Vanhove B. Targeting CD28, CTLA-4 and PD-L1 costimulation differentially controls immune synapses and function of human regulatory and conventional T-cells. PLoS One 2013; 8:e83139. [PMID: 24376655 PMCID: PMC3871694 DOI: 10.1371/journal.pone.0083139] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/30/2013] [Indexed: 01/07/2023] Open
Abstract
CD28, CTLA-4 and PD-L1, the three identified ligands for CD80/86, are pivotal positive and negative costimulatory molecules that, among other functions, control T cell motility and formation of immune synapse between T cells and antigen-presenting cells (APCs). What remains incompletely understood is how CD28 leads to the activation of effector T cells (Teff) but inhibition of suppression by regulatory T cells (Tregs), while CTLA-4 and PD-L1 inhibit Teff function but are crucial for the suppressive function of Tregs. Using alloreactive human T cells and blocking antibodies, we show here by live cell dynamic microscopy that CD28, CTLA-4, and PD-L1 differentially control velocity, motility and immune synapse formation in activated Teff versus Tregs. Selectively antagonizing CD28 costimulation increased Treg dwell time with APCs and induced calcium mobilization which translated in increased Treg suppressive activity, in contrast with the dampening effect on Teff responses. The increase in Treg suppressive activity after CD28 blockade was also confirmed with polyclonal Tregs. Whereas CTLA-4 played a critical role in Teff by reversing TCR-induced STOP signals, it failed to affect motility in Tregs but was essential for formation of the Treg immune synapse. Furthermore, we identified a novel role for PD-L1-CD80 interactions in suppressing motility specifically in Tregs. Thus, our findings reveal that the three identified ligands of CD80/86, CD28, CTLA-4 and PD-L1, differentially control immune synapse formation and function of the human Teff and Treg cells analyzed here. Individually targeting CD28, CTLA-4 and PD-L1 might therefore represent a valuable therapeutic strategy to treat immune disorders where effector and regulatory T cell functions need to be differentially targeted.
Collapse
Affiliation(s)
- Nahzli Dilek
- Institut National de la Santé Et de la Recherche Médicale, Unité mixte de Recherche 1064, Nantes, France
| | - Nicolas Poirier
- Institut National de la Santé Et de la Recherche Médicale, Unité mixte de Recherche 1064, Nantes, France
| | - Philippe Hulin
- Institut National de la Santé Et de la Recherche Médicale, Unité mixte de Recherche 892, Nantes, France
- Cellular and Tissular Imaging Core Facility (MicroPICell), Nantes, France
| | - Flora Coulon
- Institut National de la Santé Et de la Recherche Médicale, Unité mixte de Recherche 1064, Nantes, France
| | - Caroline Mary
- Institut National de la Santé Et de la Recherche Médicale, Unité mixte de Recherche 1064, Nantes, France
- Effimune S.A.S, Nantes, France
| | - Simon Ville
- Institut National de la Santé Et de la Recherche Médicale, Unité mixte de Recherche 1064, Nantes, France
| | - Henri Vie
- Institut National de la Santé Et de la Recherche Médicale, Unité mixte de Recherche 892, Nantes, France
| | - Béatrice Clémenceau
- Institut National de la Santé Et de la Recherche Médicale, Unité mixte de Recherche 892, Nantes, France
| | - Gilles Blancho
- Institut National de la Santé Et de la Recherche Médicale, Unité mixte de Recherche 1064, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Institut de Transplantation Urologie Néphrologie, Nantes, France
- Université de Nantes, Faculté de Médecine, Nantes, France
| | - Bernard Vanhove
- Institut National de la Santé Et de la Recherche Médicale, Unité mixte de Recherche 1064, Nantes, France
- Effimune S.A.S, Nantes, France
- Université de Nantes, Faculté de Médecine, Nantes, France
- * E-mail:
| |
Collapse
|
69
|
Maltzman JS, Turka LA. T-cell costimulatory blockade in organ transplantation. Cold Spring Harb Perspect Med 2013; 3:a015537. [PMID: 24296352 DOI: 10.1101/cshperspect.a015537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Before it became possible to derive T-cell lines and clones, initial experimentation on the activation requirements of T lymphocytes was performed on transformed cell lines, such as Jurkat. These studies, although technically correct, proved misleading as most transformed T cells can be activated by stimulation of the clonotypic T-cell receptor (TCR) alone. In contrast, once it became possible to study nontransformed T cells, it quickly became clear that TCR stimulation by itself is insufficient for optimal activation of naïve T cells, but in fact, induces a state of anergy. It then became clear that functional activation of T cells requires not only recognition of major histocompatibility complex (MHC) and peptide by the TCR, but also requires ligation of costimulatory receptors expressed on the cell surface.
Collapse
Affiliation(s)
- Jonathan S Maltzman
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
70
|
Levitsky J, Miller J, Huang X, Chandrasekaran D, Chen L, Mathew JM. Inhibitory effects of belatacept on allospecific regulatory T-cell generation in humans. Transplantation 2013; 96:689-96. [PMID: 23883971 PMCID: PMC3800494 DOI: 10.1097/tp.0b013e31829f1607] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND It is unclear if new costimulatory blockade agents, such as the cytotoxic T lymphocyte-associated antigen 4-Ig molecule belatacept (BEL), promote or inhibit the potential for immunologic tolerance in transplantation. We therefore tested the in vitro effects of BEL on human regulatory T cells (Tregs) in mixed lymphocyte reactions (MLR) alone and in combination with maintenance agents used in transplant recipients. METHODS BEL, mycophenolic acid (MPA), and sirolimus, either alone or in combination, were added to healthy volunteer Treg-MLR, testing (a) H-TdR incorporation for inhibition of lymphoproliferation and (b) flow cytometry to analyze for newly generated CD4+ CD25(high) FOXP3+ Tregs in carboxyfluorescein succinimidyl ester-labeled MLR responders. In addition, the modulatory effects of putative Tregs generated in the presence of these drugs were also tested using the lymphoproliferation and flow cytometric assays. RESULTS In comparison with medium controls, BEL dose-dependently inhibited both lymphoproliferation and Treg generation in human leukocyte antigen DR matched and mismatched MLRs either alone or in combination with MPA or sirolimus. However, MPA alone inhibited lymphoproliferation but significantly enhanced Treg generation at subtherapeutic concentrations (P<0.01). In addition, purified CD4+ CD127- cells generated in MLR in the presence of MPA and added as third component modulators in fresh MLRs significantly enhanced newly developed Tregs in the proliferating responder cells compared with those generated with BEL or medium controls. CONCLUSIONS BEL alone and in combination with agents used in transplant recipients inhibits the in vitro generation of human Tregs. BEL might therefore be a less optimal agent for tolerance induction in human organ transplantation.
Collapse
Affiliation(s)
- Josh Levitsky
- 1 Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL. 2 Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL. 3 Jesse Brown VA Medical Center, Chicago, IL. 4 Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | | | | |
Collapse
|
71
|
Riella LV, Sayegh MH. T-cell co-stimulatory blockade in transplantation: two steps forward one step back! Expert Opin Biol Ther 2013; 13:1557-68. [PMID: 24083381 DOI: 10.1517/14712598.2013.845661] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The concern about nephrotoxicity with calcineurin inhibitors led to the search of novel agents for immunosuppression. Based on the requirement of T-cell co-stimulatory signals to fully activated naïve T cells, it became clear that blocking these pathways could be an appealing therapeutic target. However, some unexpected findings were noticed in the recent clinical trials of belatacept, including a higher rate of rejection, which warranted further investigation with some interesting concepts emerging from the bench. AREAS COVERED This article aims to review the literature of the B7:CD28 co-stimulatory blockade in transplantation, including the basic immunology behind its development, clinical application and potential limitations. EXPERT OPINION Targeting co-stimulatory pathways were found to be much more complex than initially anticipated due to the interplay between not only various co-stimulatory pathways but also various co-inhibitory ones. In addition, co-stimulatory signals have different roles in diverse immune cell types. Therefore, targeting CD28 ligands with cytotoxic T lymphocyte antigen-4 (CTLA4)-Ig may have some deleterious effects, including the inhibition of regulatory T cells, blockade of co-inhibitory signals (CTLA4) and promotion of Th17 cells. Co-stimulatory independence of memory T cells was another unforeseen limitation. Learning how to better integrate co-stimulatory targeting with other immunosuppressive agents will be critical for the improvement of long-term graft survival.
Collapse
Affiliation(s)
- Leonardo V Riella
- Brigham & Women's Hospital, Boston Children's Hospital, Harvard Medical School, Transplantation Research Center, Renal Division , 221 Longwood Ave, Boston MA 02115 , USA +1 617 732 5259 ; +1 617 732 5254 ;
| | | |
Collapse
|
72
|
Suchard SJ, Davis PM, Kansal S, Stetsko DK, Brosius R, Tamura J, Schneeweis L, Bryson J, Salcedo T, Wang H, Yang Z, Fleener CA, Ignatovich O, Plummer C, Grant S, Nadler SG. A Monovalent Anti-Human CD28 Domain Antibody Antagonist: Preclinical Efficacy and Safety. THE JOURNAL OF IMMUNOLOGY 2013; 191:4599-610. [DOI: 10.4049/jimmunol.1300470] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
73
|
Harden JL, Egilmez NK. Indoleamine 2,3-dioxygenase and dendritic cell tolerogenicity. Immunol Invest 2013; 41:738-64. [PMID: 23017144 DOI: 10.3109/08820139.2012.676122] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This article summarizes the molecular and cellular mechanisms that regulate the activity of indoleamine 2,3-dioxygenase (IDO), a potent immune-suppressive enzyme, in dendritic cells (DCs). Specific attention is given to differential up-regulation of IDO in distinct DC subsets, its function in immune homeostasis/autoimmunity, infection and cancer; and the associated immunological outcomes. The review will conclude with a discussion of the poorly defined mechanisms that mediate the long-term maintenance of IDO-expression in response to inflammatory stimuli and how selective modulation of IDO activity may be used in the treatment of disease.
Collapse
Affiliation(s)
- Jamie L Harden
- The State University of New York at Buffalo, Buffalo, New York 14214, USA.
| | | |
Collapse
|
74
|
Mary C, Coulon F, Poirier N, Dilek N, Martinet B, Blancho G, Vanhove B. Antagonist properties of monoclonal antibodies targeting human CD28: role of valency and the heavy-chain constant domain. MAbs 2012; 5:47-55. [PMID: 23221503 DOI: 10.4161/mabs.22697] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Antagonist antibodies targeting CD28 have been proposed as an alternative to the use of CD80/86 antagonists to modulate T cell responses in autoimmunity and transplantation. Advantages would be the blockade of CD28-mediated co-stimulatory signals without impeding the co-inhibitory signals dependent on CD80 interactions with CTLA-4 and PD-L1 that are important for the control of immune responses and for the function of regulatory T cells. Anti-CD28 antibodies are candidate antagonists only if they prevent access to the CD80/86 ligands without simultaneously stimulating CD28 itself, a process that is believed to depend on receptor multimerization. In this study, we evaluated the impact of different formats of a potentially antagonist anti-human CD28 antibody on T cell activation. In particular, we examined the role of valency and of the presence of an Fc domain, two components that might affect receptor multimerization either directly or in the presence of accessory cells expressing Fc receptors. Among monovalent (Fab', scFv), divalent (Fab'2), monovalent-Fc (Fv-Fc) and divalent-Fc (IgG) formats, only the monovalent formats showed consistent absence of induced CD28 multimerization and absence of associated activation of phosphoinositol-3-kinase, and clear antagonist properties in T cell stimulation assays. In contrast, divalent antibodies showed agonist properties that resulted in cell proliferation and cytokine release in an Fc-independent manner. Conjugation of monovalent antibodies with polyethylene glycol, α-1-antitrypsin or an Fc domain significantly extended their in vivo half-life without modifying their antagonist properties. In conclusion, these data indicate that monovalency is mandatory for maintaining the antagonistic activity of anti-CD28 monoclonal antibodies.
Collapse
Affiliation(s)
- Caroline Mary
- Institut National de Santé Et de Recherche Médicale Unité Mixte de Recherche-Santé, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
75
|
Vanhove B, Azimzadeh A. Reply to "Biologics in organ transplantation". Transpl Int 2012; 26:e25. [PMID: 23176194 DOI: 10.1111/tri.12009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
76
|
Poirier N, Mary C, Dilek N, Hervouet J, Minault D, Blancho G, Vanhove B. Preclinical efficacy and immunological safety of FR104, an antagonist anti-CD28 monovalent Fab' antibody. Am J Transplant 2012; 12:2630-40. [PMID: 22759318 DOI: 10.1111/j.1600-6143.2012.04164.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antagonist anti-CD28 antibodies prevent T cell costimulation and differentiate from CTLA4Ig since they cannot block CTLA-4 and PDL-1 coinhibitory signals. They demonstrated efficacy in suppressing effector T cells while enhancing regulatory T cells function and immune tolerance. However, anti-CD28 antibodies devoid of immunotoxicity and with a good pharmacokinetic profile have not yet been developed. Here, we describe FR104, a novel humanized pegylated anti-CD28 Fab' antibody fragment presenting a long elimination half-life in monkeys. In vitro, FR104 failed to induce human T cell proliferation and cytokines secretion, even in the presence of anti-CD3 antibodies or when cross-linked with secondary antibodies. Furthermore, in humanized NOD/SCID mice adoptively transferred with human PBMC, whereas superagonist and divalent antibodies elicited rapid cytokines secretion and human T cell activation, FR104 did not. These humanized mice developed a florid graft-versus-host disease, which was prevented by administration of FR104 in a CTLA4-dependent manner. Interestingly, administration of high doses of CTLA4-Ig was ineffective to prevent GVHD, whereas administration of low doses was partially effective. In conclusion, we demonstrated that FR104 is devoid of agonist activity on human T cells and thus compatible with a clinical development that might lead to higher therapeutic indexes, by sparing CTLA-4, as compared to CD80/CD86 antagonists.
Collapse
Affiliation(s)
- N Poirier
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche 1064, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
77
|
Ferrer IR, Wagener ME, Song M, Ford ML. CD154 blockade alters innate immune cell recruitment and programs alloreactive CD8+ T cells into KLRG-1(high) short-lived effector T cells. PLoS One 2012; 7:e40559. [PMID: 22792369 PMCID: PMC3390379 DOI: 10.1371/journal.pone.0040559] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/08/2012] [Indexed: 11/19/2022] Open
Abstract
CD154/CD40 blockade combined with donor specific transfusion remains one of the most effective therapies in prolonging allograft survival. Despite this, the mechanisms by which these pathways synergize to prevent rejection are not completely understood. Utilizing a BALB/c (H2-K(d)) to B6 (H2-K(b)) fully allogeneic skin transplant model system, we performed a detailed longitudinal analysis of the kinetics and magnitude of CD8(+) T cell expansion and differentiation in the presence of CD154/CD40 pathway blockade. Results demonstrated that treatment with anti-CD154 vs. DST had distinct and opposing effects on activated CD44(high) CD62L(low) CD8(+) T cells in skin graft recipients. Specifically, CD154 blockade delayed alloreactive CD8(+) T cell responses, while DST accelerated them. DST inhibited the differentiation of alloreactive CD8(+) T cells into multi-cytokine producing effectors, while CD40/CD154 blockade led to the diminution of the KLRG-1(low) long-lived memory precursor population compared with either untreated or DST treated animals. Moreover, only CD154 blockade effectively inhibited CXCL1 expression and neutrophil recruitment into the graft. When combined, anti-CD154 and DST acted synergistically to profoundly diminish the absolute number of IFN-γ producing alloreactive CD8(+) T cells, and intra-graft expression of inflammatory chemokines. These findings demonstrate that the previously described ability of anti-CD154 and DST to result in alloreactive T cell deletion involves both delayed kinetics of T cell expansion and differentiation and inhibited development of KLRG-1(low) memory precursor cells.
Collapse
Affiliation(s)
- Ivana R. Ferrer
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, Georgia, United States of America
| | - Maylene E. Wagener
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, Georgia, United States of America
| | - Mingqing Song
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, Georgia, United States of America
| | - Mandy L. Ford
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
78
|
Poirier N, Blancho G, Vanhove B. CD28-specific immunomodulating antibodies: what can be learned from experimental models? Am J Transplant 2012; 12:1682-90. [PMID: 22471377 DOI: 10.1111/j.1600-6143.2012.04032.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tolerance induction to alloantigens remains a major challenge in transplant immunology. Progress in the last decade of our understanding of T-cell activation has led to the development of new immunotherapeutic strategies to replace conventional immunosuppression which inhibits the immune system in a nonspecific way. In particular, positive and negative costimulatory molecules of the CD28 family have been consistently demonstrated to be critical for the development of productive immune responses as well as the establishment and maintenance of peripheral tolerance. However, recent discoveries of novel costimulatory interactions confer a novel dimension to the immunoregulatory interactions within the B7:CD28 family and compels a revised view within a "quintet" of costimulatory molecules: CD28/B7/CTLA-4/PD-L1/ICOSL. Complexity introduced in this more detailed costimulatory pathway has important implications in therapeutic interventions against human immunological diseases and, especially, highlight the fundamental differences in selectively targeting CD28 molecules instead of B7 counterparts. In this review, we discuss these differences and emphasize different CD28-specific immunomodulating strategies evaluated in experimental models of transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- N Poirier
- Institut National de la Santé Et de la Recherche Médicale, Unité Mixte de Recherche 1064, Nantes, France
| | | | | |
Collapse
|
79
|
Ferrer IR, Wagener ME, Song M, Kirk AD, Larsen CP, Ford ML. Antigen-specific induced Foxp3+ regulatory T cells are generated following CD40/CD154 blockade. Proc Natl Acad Sci U S A 2011; 108:20701-6. [PMID: 22143783 PMCID: PMC3251074 DOI: 10.1073/pnas.1105500108] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blockade of the CD40/CD154 pathway potently attenuates T-cell responses in models of autoimmunity, inflammation, and transplantation. Indeed, CD40 pathway blockade remains one of the most powerful methods of prolonging graft survival in models of transplantation. But despite this effectiveness, the cellular and molecular mechanisms underlying the protective effects of CD40 pathway blockade are incompletely understood. Furthermore, the relative contributions of deletion, anergy, and regulation have not been measured in a model in which donor-reactive CD4(+) and CD8(+) T-cell responses can be assessed simultaneously. To investigate the impact of CD40/CD154 pathway blockade on graft-specific T-cell responses, a transgenic mouse model was used in which recipients containing ovalbumin-specific CD4(+) and CD8(+) TCR transgenic T cells were grafted with skin expressing ovalbumin in the presence or absence of anti-CD154 and donor-specific transfusion. The results indicated that CD154 blockade altered the kinetics of donor-reactive CD8(+) T-cell expansion, delaying differentiation into IFN-γ(+) TNF(+) multifunctional cytokine producers. The eventual differentiation of cytokine-producing effectors in tolerant animals coincided with the emergence of an antigen-specific CD4(+) CD25(hi) Foxp3(+) T-cell population, which did not arise from endogenous natural T(reg) but rather were peripherally generated from naïve Foxp3(-) precursors.
Collapse
Affiliation(s)
- Ivana R. Ferrer
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322
| | - Maylene E. Wagener
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322
| | - Minqing Song
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322
| | - Allan D. Kirk
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322
| | - Christian P. Larsen
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322
| | - Mandy L. Ford
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322
| |
Collapse
|
80
|
Abstract
Gradually improved immunosuppression has contributed significantly to the progress achieved in transplantation medicine so far. Nevertheless, current drug regimens are associated with late graft loss--in particular as a result of immunologic damage or drug toxicity--and substantial morbidity. Recently, the costimulation blocker belatacept (marketed under the name Nulojix®) has been approved for immunosuppression in renal transplantation. Belatacept (a mutated version of CTLA4Ig) is a fusion protein rationally designed to block CD28, a critical activating receptor on T cells, by binding and saturating its ligands B7-1 and B7-2. In phase II and III trials, belatacept was compared with cyclosporine (in combination with basiliximab, MMF, and steroids). Advantages observed with belatacept include superior graft function, preservation of renal structure and improved cardiovascular risk profile. Concerns associated with belatacept are a higher frequency of cellular rejection episodes and more post-transplant lymphoproliferative disorder (PTLD) cases especially in EBV seronegative patients, who should be excluded from belatacept-based regimens. Thus, after almost three decades of calcineurin inhibitors as mainstay of immunosuppression, belatacept offers a potential alternative. In this article, we will provide an overview of belatacept's preclinical development and will discuss the available evidence from clinical trials.
Collapse
Affiliation(s)
- Thomas Wekerle
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria.
| | | |
Collapse
|