51
|
Ross LA, Del Bene VA, Molholm S, Woo YJ, Andrade GN, Abrahams BS, Foxe JJ. Common variation in the autism risk gene CNTNAP2, brain structural connectivity and multisensory speech integration. BRAIN AND LANGUAGE 2017; 174:50-60. [PMID: 28738218 DOI: 10.1016/j.bandl.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/07/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Three lines of evidence motivated this study. 1) CNTNAP2 variation is associated with autism risk and speech-language development. 2) CNTNAP2 variations are associated with differences in white matter (WM) tracts comprising the speech-language circuitry. 3) Children with autism show impairment in multisensory speech perception. Here, we asked whether an autism risk-associated CNTNAP2 single nucleotide polymorphism in neurotypical adults was associated with multisensory speech perception performance, and whether such a genotype-phenotype association was mediated through white matter tract integrity in speech-language circuitry. Risk genotype at rs7794745 was associated with decreased benefit from visual speech and lower fractional anisotropy (FA) in several WM tracts (right precentral gyrus, left anterior corona radiata, right retrolenticular internal capsule). These structural connectivity differences were found to mediate the effect of genotype on audiovisual speech perception, shedding light on possible pathogenic pathways in autism and biological sources of inter-individual variation in audiovisual speech processing in neurotypicals.
Collapse
Affiliation(s)
- Lars A Ross
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Victor A Del Bene
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA; Ferkauf Graduate School of Psychology Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA; Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Young Jae Woo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gizely N Andrade
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA
| | - Brett S Abrahams
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John J Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA; Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
52
|
Uddén J, Snijders TM, Fisher SE, Hagoort P. A common variant of the CNTNAP2 gene is associated with structural variation in the left superior occipital gyrus. BRAIN AND LANGUAGE 2017; 172:16-21. [PMID: 27059522 DOI: 10.1016/j.bandl.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/04/2015] [Accepted: 02/20/2016] [Indexed: 05/23/2023]
Abstract
The CNTNAP2 gene encodes a cell-adhesion molecule that influences the properties of neural networks and the morphology and density of neurons and glial cells. Previous studies have shown association of CNTNAP2 variants with language-related phenotypes in health and disease. Here, we report associations of a common CNTNAP2 polymorphism (rs7794745) with variation in grey matter in a region in the dorsal visual stream. We tried to replicate an earlier study on 314 subjects by Tan et al. (2010), but now in a substantially larger group of more than 1700 subjects. Carriers of the T allele showed reduced grey matter volume in left superior occipital gyrus, while we did not replicate associations with grey matter volume in other regions identified by Tan et al. (2010). Our work illustrates the importance of independent replication in neuroimaging genetic studies of language-related candidate genes.
Collapse
Affiliation(s)
- Julia Uddén
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Tineke M Snijders
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Centre for Language Studies, Radboud University, Nijmegen, The Netherlands
| | - Simon E Fisher
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
53
|
An oscillopathic approach to developmental dyslexia: From genes to speech processing. Behav Brain Res 2017; 329:84-95. [DOI: 10.1016/j.bbr.2017.03.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/14/2017] [Accepted: 03/18/2017] [Indexed: 12/27/2022]
|
54
|
Riva V, Cantiani C, Benasich AA, Molteni M, Piazza C, Giorda R, Dionne G, Marino C. From CNTNAP2 to Early Expressive Language in Infancy: The Mediation Role of Rapid Auditory Processing. Cereb Cortex 2017; 28:2100-2108. [DOI: 10.1093/cercor/bhx115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/20/2017] [Indexed: 01/17/2023] Open
Affiliation(s)
- Valentina Riva
- Department of Child Psychiatry, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - Chiara Cantiani
- Department of Child Psychiatry, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - April A Benasich
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Massimo Molteni
- Department of Child Psychiatry, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - Caterina Piazza
- Bioengineering Lab, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - Ginette Dionne
- School of Psychology, Laval University, Québec, Canada G1V 0A6
| | - Cecilia Marino
- Department of Child Psychiatry, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
- Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Canada ON M6J 1H4
| |
Collapse
|
55
|
Carrion-Castillo A, Maassen B, Franke B, Heister A, Naber M, van der Leij A, Francks C, Fisher SE. Association analysis of dyslexia candidate genes in a Dutch longitudinal sample. Eur J Hum Genet 2017; 25:452-460. [PMID: 28074887 PMCID: PMC5386414 DOI: 10.1038/ejhg.2016.194] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 11/03/2016] [Accepted: 11/22/2016] [Indexed: 11/08/2022] Open
Abstract
Dyslexia is a common specific learning disability with a substantive genetic component. Several candidate genes have been proposed to be implicated in dyslexia susceptibility, such as DYX1C1, ROBO1, KIAA0319, and DCDC2. Associations with variants in these genes have also been reported with a variety of psychometric measures tapping into the underlying processes that might be impaired in dyslexic people. In this study, we first conducted a literature review to select single nucleotide polymorphisms (SNPs) in dyslexia candidate genes that had been repeatedly implicated across studies. We then assessed the SNPs for association in the richly phenotyped longitudinal data set from the Dutch Dyslexia Program. We tested for association with several quantitative traits, including word and nonword reading fluency, rapid naming, phoneme deletion, and nonword repetition. In this, we took advantage of the longitudinal nature of the sample to examine if associations were stable across four educational time-points (from 7 to 12 years). Two SNPs in the KIAA0319 gene were nominally associated with rapid naming, and these associations were stable across different ages. Genetic association analysis with complex cognitive traits can be enriched through the use of longitudinal information on trait development.
Collapse
Affiliation(s)
- Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Ben Maassen
- Centre for Language and Cognition Groningen, University of Groningen, Groningen, The Netherlands
- School of Behavioral and Cognitive Neurosciences, University Medical Centre Groningen, Groningen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Angelien Heister
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Marlies Naber
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Aryan van der Leij
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
56
|
Modyanova N, Perovic A, Wexler K. Grammar Is Differentially Impaired in Subgroups of Autism Spectrum Disorders: Evidence from an Investigation of Tense Marking and Morphosyntax. Front Psychol 2017; 8:320. [PMID: 28400738 PMCID: PMC5368187 DOI: 10.3389/fpsyg.2017.00320] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/20/2017] [Indexed: 12/23/2022] Open
Abstract
Deficits in the production of verbal inflection (tense marking, or finiteness) are part of the Optional Infinitive (OI) stage of typical grammatical development. They are also a hallmark of language impairment: they have been used as biomarkers in guiding genetic studies of Specific Language Impairment (SLI), and have also been observed in autism spectrum disorders (ASD). To determine the detailed nature of finiteness abilities in subgroups of ASD [autism with impaired language (ALI) vs. autism with normal language (ALN)], we compared tense marking abilities in 46 children with ALI and 37 children with ALN with that of two groups of nonverbal mental age (MA) and verbal MA-matched typically developing (TD) controls, the first such study described in the literature. Our participants' performance on two elicited production tasks, probing third-person-singular -s and past tense -ed, from the Rice/Wexler Test of Early Grammatical Impairment (TEGI, Rice and Wexler, 2001), revealed extensive deficits in the ALI group: their ability to correctly mark tense was significantly worse than their much younger TD controls', and significantly worse than that of the ALN group. In contrast, the ALN group performed similarly to their TD controls. We found good knowledge of the meaning of tense, and of case and agreement, in both ASD groups. Similarly, both ASD groups showed distributions of null or overt subjects with nonfinite and finite verbs in line with those found in young TD children. A key difference, however, was that the ALI group used (rather than simply omitted) the wrong tense in some sentences, a feature not reported in the OI stage for TD or SLI children. Our results confirm a clear distinction in the morphosyntactic abilities of the two subgroups of children with ASD: the language system responsible for finiteness in the ALN group seems to be functioning comparably to that of the TD children, whereas the ALI group, despite showing knowledge of case and agreement, seems to experience an extensive grammatical deficit with respect to finiteness which does not seem to improve with age. Crucially, our ALI group seems to have worse grammatical abilities even than those reported for SLI.
Collapse
Affiliation(s)
| | - Alexandra Perovic
- Department of Linguistics, Psychology and Language Sciences, University College London London, UK
| | - Ken Wexler
- Department of Brain and Cognitive Sciences and Department of Linguistics and Philosophy, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
57
|
Abstract
Intragenic deletions of the contactin-associated protein-like 2 gene (CNTNAP2) have been found in patients with Gilles de la Tourette syndrome, intellectual disability (ID), obsessive compulsive disorder, cortical dysplasia-focal epilepsy syndrome, autism, schizophrenia, Pitt-Hopkins syndrome, stuttering, and attention deficit hyperactivity disorder. A variety of molecular mechanisms, such as loss of transcription factor binding sites and perturbation of penetrance and expressivity, have been proposed to account for the phenotypic variability resulting from CNTNAP2 mutations. Deletions of both CNTNAP2 alleles produced truncated proteins lacking the transmembrane or some of the extracellular domains, or no protein at all. This observation can be extended to heterozygous intragenic deletions by assuming that such deletion-containing alleles lead to expression of a Caspr2 protein lacking one or several extracellular domains. Such altered forms of Capr2 proteins will lack the ability to bridge the intercellular space between neurons by binding to partners, such as CNTN1, CNTN2, DLG1, and DLG4. This presumed effect of intragenic deletions of CNTNAP2, and possibly other genes involved in connecting neuronal cells, represents a molecular basis for the postulated neuronal hypoconnectivity in autism and probably other neurodevelopmental disorders, including epilepsy, ID, language impairments and schizophrenia. Thus, CNTNAP2 may represent a paradigmatic case of a gene functioning as a node in a genetic and cellular network governing brain development and acquisition of higher cognitive functions.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
58
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
59
|
Reliable individual-level neural markers of high-level language processing: A necessary precursor for relating neural variability to behavioral and genetic variability. Neuroimage 2016; 139:74-93. [DOI: 10.1016/j.neuroimage.2016.05.073] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
|
60
|
Elvevåg B, Cohen AS, Wolters MK, Whalley HC, Gountouna V, Kuznetsova KA, Watson AR, Nicodemus KK. An examination of the language construct in NIMH's research domain criteria: Time for reconceptualization! Am J Med Genet B Neuropsychiatr Genet 2016; 171:904-19. [PMID: 26968151 PMCID: PMC5025728 DOI: 10.1002/ajmg.b.32438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/11/2016] [Indexed: 12/25/2022]
Abstract
The National Institute of Mental Health's Research Domain Criteria (RDoC) Initiative "calls for the development of new ways of classifying psychopathology based on dimensions of observable behavior." As a result of this ambitious initiative, language has been identified as an independent construct in the RDoC matrix. In this article, we frame language within an evolutionary and neuropsychological context and discuss some of the limitations to the current measurements of language. Findings from genomics and the neuroimaging of performance during language tasks are discussed in relation to serious mental illness and within the context of caveats regarding measuring language. Indeed, the data collection and analysis methods employed to assay language have been both aided and constrained by the available technologies, methodologies, and conceptual definitions. Consequently, different fields of language research show inconsistent definitions of language that have become increasingly broad over time. Individually, they have also shown significant improvements in conceptual resolution, as well as in experimental and analytic techniques. More recently, language research has embraced collaborations across disciplines, notably neuroscience, cognitive science, and computational linguistics and has ultimately re-defined classical ideas of language. As we move forward, the new models of language with their remarkably multifaceted constructs force a re-examination of the NIMH RDoC conceptualization of language and thus the neuroscience and genetics underlying this concept. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brita Elvevåg
- Department of Clinical MedicineUniversity of Tromsø−The Arctic University of NorwayTromsøNorway
- Norwegian Centre for eHealth ResearchUniversity Hospital of North NorwayTromsøNorway
| | - Alex S. Cohen
- Department of PsychologyLouisiana State UniversityBaton RougeLouisiana
| | - Maria K. Wolters
- School of InformaticsUniversity of EdinburghEdinburghUnited Kingdom
| | | | - Viktoria‐Eleni Gountouna
- Centre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Ksenia A. Kuznetsova
- Centre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Andrew R. Watson
- Division of PsychiatryUniversity of EdinburghEdinburghUnited Kingdom
| | - Kristin K. Nicodemus
- Centre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
61
|
Murphy E, Benítez-Burraco A. Bridging the Gap between Genes and Language Deficits in Schizophrenia: An Oscillopathic Approach. Front Hum Neurosci 2016; 10:422. [PMID: 27601987 PMCID: PMC4993770 DOI: 10.3389/fnhum.2016.00422] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is characterized by marked language deficits, but it is not clear how these deficits arise from the alteration of genes related to the disease. The goal of this paper is to aid the bridging of the gap between genes and schizophrenia and, ultimately, give support to the view that the abnormal presentation of language in this condition is heavily rooted in the evolutionary processes that brought about modern language. To that end we will focus on how the schizophrenic brain processes language and, particularly, on its distinctive oscillatory profile during language processing. Additionally, we will show that candidate genes for schizophrenia are overrepresented among the set of genes that are believed to be important for the evolution of the human faculty of language. These genes crucially include (and are related to) genes involved in brain rhythmicity. We will claim that this translational effort and the links we uncover may help develop an understanding of language evolution, along with the etiology of schizophrenia, its clinical/linguistic profile, and its high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| | | |
Collapse
|
62
|
Murphy E, Benítez-Burraco A. Language deficits in schizophrenia and autism as related oscillatory connectomopathies: An evolutionary account. Neurosci Biobehav Rev 2016; 83:742-764. [PMID: 27475632 DOI: 10.1016/j.neubiorev.2016.07.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 01/28/2023]
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are characterised by marked language deficits, but it is not clear how these arise from gene mutations associated with the disorders. Our goal is to narrow the gap between SZ and ASD and, ultimately, give support to the view that they represent abnormal (but related) ontogenetic itineraries for the human faculty of language. We will focus on the distinctive oscillatory profiles of the SZ and ASD brains, in turn using these insights to refine our understanding of how the brain implements linguistic computations by exploring a novel model of linguistic feature-set composition. We will argue that brain rhythms constitute the best route to interpreting language deficits in both conditions and mapping them to neural dysfunction and risk alleles of the genes. Importantly, candidate genes for SZ and ASD are overrepresented among the gene sets believed to be important for language evolution. This translational effort may help develop an understanding of the aetiology of SZ and ASD and their high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.
| | | |
Collapse
|
63
|
Smogavec M, Cleall A, Hoyer J, Lederer D, Nassogne MC, Palmer EE, Deprez M, Benoit V, Maystadt I, Noakes C, Leal A, Shaw M, Gecz J, Raymond L, Reis A, Shears D, Brockmann K, Zweier C. Eight further individuals with intellectual disability and epilepsy carrying bi-allelic CNTNAP2 aberrations allow delineation of the mutational and phenotypic spectrum. J Med Genet 2016; 53:820-827. [PMID: 27439707 DOI: 10.1136/jmedgenet-2016-103880] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/20/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heterozygous copy number variants (CNVs) or sequence variants in the contactin-associated protein 2 gene CNTNAP2 have been discussed as risk factors for a wide spectrum of neurodevelopmental and neuropsychiatric disorders. Bi-allelic aberrations in this gene are causative for an autosomal-recessive disorder with epilepsy, severe intellectual disability (ID) and cortical dysplasia (CDFES). As the number of reported individuals is still limited, we aimed at a further characterisation of the full mutational and clinical spectrum. METHODS Targeted sequencing, chromosomal microarray analysis or multigene panel sequencing was performed in individuals with severe ID and epilepsy. RESULTS We identified homozygous mutations, compound heterozygous CNVs or CNVs and mutations in CNTNAP2 in eight individuals from six unrelated families. All aberrations were inherited from healthy, heterozygous parents and are predicted to be deleterious for protein function. Epilepsy occurred in all affected individuals with onset in the first 3.5 years of life. Further common aspects were ID (severe in 6/8), regression of speech development (5/8) and behavioural anomalies (7/8). Interestingly, cognitive impairment in one of two affected brothers was, in comparison, relatively mild with good speech and simple writing abilities. Cortical dysplasia that was previously reported in CDFES was not present in MRIs of six individuals and only suspected in one. CONCLUSIONS By identifying novel homozygous or compound heterozygous, deleterious CNVs and mutations in eight individuals from six unrelated families with moderate-to-severe ID, early onset epilepsy and behavioural anomalies, we considerably broaden the mutational and clinical spectrum associated with bi-allelic aberrations in CNTNAP2.
Collapse
Affiliation(s)
- Mateja Smogavec
- Institute of Human Genetics, University Medical Center, Georg August University, Göttingen, Germany
| | - Alison Cleall
- Oxford Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Damien Lederer
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Marie-Cécile Nassogne
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Woluwe-Saint-Lambert, Belgium
| | - Elizabeth E Palmer
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Marie Deprez
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Valérie Benoit
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Charlotte Noakes
- Oxford Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alejandro Leal
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Section of Genetics and Biotechnology, School of Biology and Neuroscience Research Center, University of Costa Rica, San José, Costa Rica
| | - Marie Shaw
- School of Medicine, and the Robinson Research Institute, the University of Adelaide, Adelaide, South Australia, Australia
| | - Jozef Gecz
- School of Medicine, and the Robinson Research Institute, the University of Adelaide, Adelaide, South Australia, Australia
| | - Lucy Raymond
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Deborah Shears
- Department of Clinical Genetics, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Knut Brockmann
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center, Georg August University, Göttingen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
64
|
Pettigrew KA, Frinton E, Nudel R, Chan MTM, Thompson P, Hayiou-Thomas ME, Talcott JB, Stein J, Monaco AP, Hulme C, Snowling MJ, Newbury DF, Paracchini S. Further evidence for a parent-of-origin effect at the NOP9 locus on language-related phenotypes. J Neurodev Disord 2016; 8:24. [PMID: 27307794 PMCID: PMC4908686 DOI: 10.1186/s11689-016-9157-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Specific language impairment (SLI) is a common neurodevelopmental disorder, observed in 5-10 % of children. Family and twin studies suggest a strong genetic component, but relatively few candidate genes have been reported to date. A recent genome-wide association study (GWAS) described the first statistically significant association specifically for a SLI cohort between a missense variant (rs4280164) in the NOP9 gene and language-related phenotypes under a parent-of-origin model. Replications of these findings are particularly challenging because the availability of parental DNA is required. METHODS We used two independent family-based cohorts characterised with reading- and language-related traits: a longitudinal cohort (n = 106 informative families) including children with language and reading difficulties and a nuclear family cohort (n = 264 families) selected for dyslexia. RESULTS We observed association with language-related measures when modelling for parent-of-origin effects at the NOP9 locus in both cohorts: minimum P = 0.001 for phonological awareness with a paternal effect in the first cohort and minimum P = 0.0004 for irregular word reading with a maternal effect in the second cohort. Allelic and parental trends were not consistent when compared to the original study. CONCLUSIONS A parent-of-origin effect at this locus was detected in both cohorts, albeit with different trends. These findings contribute in interpreting the original GWAS report and support further investigations of the NOP9 locus and its role in language-related traits. A systematic evaluation of parent-of-origin effects in genetic association studies has the potential to reveal novel mechanisms underlying complex traits.
Collapse
Affiliation(s)
| | - Emily Frinton
- />School of Medicine, University of St Andrews, St Andrews, KY16 9TF UK
| | - Ron Nudel
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - May T. M. Chan
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
- />Worcester College, University of Oxford, Oxford, OX1 2HB UK
| | - Paul Thompson
- />Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3PT UK
| | | | - Joel B. Talcott
- />School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | - John Stein
- />Department of Physiology, University of Oxford, Parks Road, Oxford, OX1 3PT UK
| | - Anthony P. Monaco
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Charles Hulme
- />Division of Psychology and Language Sciences, University College London, London, WC1 3PG UK
| | - Margaret J. Snowling
- />Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3PT UK
- />St John’s College, University of Oxford, Oxford, OX1 3JP UK
| | - Dianne F. Newbury
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Silvia Paracchini
- />School of Medicine, University of St Andrews, St Andrews, KY16 9TF UK
| |
Collapse
|
65
|
Kim KC, Gonzales EL, Lázaro MT, Choi CS, Bahn GH, Yoo HJ, Shin CY. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. Biomol Ther (Seoul) 2016; 24:207-43. [PMID: 27133257 PMCID: PMC4859786 DOI: 10.4062/biomolther.2016.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/05/2016] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.
Collapse
Affiliation(s)
- Ki Chan Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - María T Lázaro
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chang Soon Choi
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Jeong Yoo
- Department of Neuropsychiatry, Seoul National University Bungdang Hospital, Seongnam 13620, Republic of Korea
| | - Chan Young Shin
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
66
|
Mueller KL, Murray JC, Michaelson JJ, Christiansen MH, Reilly S, Tomblin JB. Common Genetic Variants in FOXP2 Are Not Associated with Individual Differences in Language Development. PLoS One 2016; 11:e0152576. [PMID: 27064276 PMCID: PMC4827837 DOI: 10.1371/journal.pone.0152576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
Abstract
Much of our current knowledge regarding the association of FOXP2 with speech and language development comes from singleton and small family studies where a small number of rare variants have been identified. However, neither genome-wide nor gene-specific studies have provided evidence that common polymorphisms in the gene contribute to individual differences in language development in the general population. One explanation for this inconsistency is that previous studies have been limited to relatively small samples of individuals with low language abilities, using low density gene coverage. The current study examined the association between common variants in FOXP2 and a quantitative measure of language ability in a population-based cohort of European decent (n = 812). No significant associations were found for a panel of 13 SNPs that covered the coding region of FOXP2 and extended into the promoter region. Power analyses indicated we should have been able to detect a QTL variance of 0.02 for an associated allele with MAF of 0.2 or greater with 80% power. This suggests that, if a common variant associated with language ability in this gene does exist, it is likely of small effect. Our findings lead us to conclude that while genetic variants in FOXP2 may be significant for rare forms of language impairment, they do not contribute appreciably to individual variation in the normal range as found in the general population.
Collapse
Affiliation(s)
- Kathryn L. Mueller
- Hearing, Language and Literacy, Murdoch Childrens Institute, Melbourne, Australia
- Dept. of Communication Sciences and Disorders, The University of Iowa, Iowa City, United States of America
| | - Jeffrey C. Murray
- Dept. of Pediatrics, The University of Iowa, Iowa City, United States of America
| | - Jacob J. Michaelson
- Dept. of Psychiatry, The University of Iowa, Iowa City, United States of America
| | | | | | - J. Bruce Tomblin
- Dept. of Communication Sciences and Disorders, The University of Iowa, Iowa City, United States of America
| |
Collapse
|
67
|
Buttigieg J, Julie BM, Sharma A, Halawa A. Induction Immunosuppression in High-risk Kidney Transplant Recipients. EXP CLIN TRANSPLANT 2016; 14:367-76. [PMID: 27041548 DOI: 10.6002/ect.2015.0328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Kidney transplant remains the best type of renal replacement therapy in most patients with end-stage kidney disease, even in those with high immunologic risk. Immunosuppression in these patients is regarded as more complex, owing to the higher risk of both acute and chronic rejection. The advent of induction immunosuppression has resulted in a lower incidence of acute rejection and consequently improved short-term patient and allograft outcomes. Indeed, the use of these agents, especially in high-risk recipients, has become standard of care at most transplant centers. Transplant physicians are constantly faced with the challenge of estimating the recipients' immunologic risk and tailoring their immunosuppression accordingly. This review article aims to provide an up-to-date evaluation of the various studies available, which investigated the use of induction agents in kidney transplant, specifically in high-risk recipients. It evaluates the use of the most frequently used polyclonal antibody (rabbit antithymocyte globulin) versus the less commonly used monoclonal antibody alemtuzumab, superseded agents such as muromonab-CD3, and potentially emerging agents such as rituximab, bortezomib, and eculizumab. With this systematic review, we hope to inform the scientific community and facilitate this controversial decision through the implementation of robust scientific evidence.
Collapse
Affiliation(s)
- Jesmar Buttigieg
- From the Renal Division, Department of Medicine, Mater Dei Hospital, Malta; and the Faculty of Health and Science, Institute of Learning and Teaching, University of Liverpool, United Kingdom
| | | | | | | |
Collapse
|
68
|
Evans PD, Mueller KL, Gamazon ER, Cox NJ, Tomblin JB. A genome-wide sib-pair scan for quantitative language traits reveals linkage to chromosomes 10 and 13. GENES BRAIN AND BEHAVIOR 2016; 14:387-97. [PMID: 25997078 DOI: 10.1111/gbb.12223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 02/03/2023]
Abstract
Although there is considerable evidence that individual differences in language development are highly heritable, there have been few genome-wide scans to locate genes associated with the trait. Previous analyses of language impairment have yielded replicable evidence for linkage to regions on chromosomes 16q, 19q, 13q (within lab) and at 13q (between labs). Here we report the first linkage study to screen the continuum of language ability, from normal to disordered, as found in the general population. 383 children from 147 sib-ships (214 sib-pairs) were genotyped on the Illumina(®) Linkage IVb Marker Panel using three composite language-related phenotypes and a measure of phonological memory (PM). Two regions (10q23.33; 13q33.3) yielded genome-wide significant peaks for linkage with PM. A peak suggestive of linkage was also found at 17q12 for the overall language composite. This study presents two novel genetic loci for the study of language development and disorders, but fails to replicate findings by previous groups. Possible reasons for this are discussed.
Collapse
Affiliation(s)
- P D Evans
- Department of Medicine, The University of Chicago, IL, USA
| | - K L Mueller
- Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Communication Sciences and Disorders, The University of Iowa, IA, USA
| | - E R Gamazon
- Department of Medicine, The University of Chicago, IL, USA.,Present address: Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - N J Cox
- Department of Medicine, The University of Chicago, IL, USA.,Department of Communication Sciences and Disorders, The University of Iowa, IA, USA.,Present address: Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - J B Tomblin
- Department of Communication Sciences and Disorders, The University of Iowa, IA, USA
| |
Collapse
|
69
|
Abstract
The identification of developmental problems in a child's acquisition of speech, language and/or communication is a core activity in child surveillance. These are common difficulties with up to 15% of toddlers being 'late talkers' and 7% of children entering school with persisting impairments of their language development. These delays can confer disadvantages in the long term, adversely affecting language, cognition, academic attainment, behaviour and mental health. All children presenting with significant speech and language delay should be investigated with a comprehensive hearing assessment and be considered for speech and language therapy assessment. Socioeconomic adversity correlates with delayed language development. Clinical assessment should confirm that the presentation is definitely not acquired (see part 2) and will also guide whether the difficulty is primary, in which there are often familial patterns, or secondary, from a very wide range of aetiologies. Symptoms may be salient, such as the regression of communication in <3-year-olds which 'flags up' autism spectrum disorder. Further investigation will be informed from this clinical assessment, for example, genetic investigation for sex aneuploidies in enduring primary difficulties. Management of the speech and language difficulty itself is the realm of the speech and language therapist, who has an ever-increasing evidence-based choice of interventions. This should take place within a multidisciplinary team, particularly for children with more severe conditions who may benefit from individualised parental and educational supports.
Collapse
Affiliation(s)
- Anne O'Hare
- Department of Child Life & Health, Salvesen Mindroom Centre, School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Lynne Bremner
- Speech and Hearing Sciences, Queen Margaret University, Queen Margaret University Drive, Edinburgh, UK
| |
Collapse
|
70
|
Mozzi A, Forni D, Clerici M, Pozzoli U, Mascheretti S, Guerini FR, Riva S, Bresolin N, Cagliani R, Sironi M. The evolutionary history of genes involved in spoken and written language: beyond FOXP2. Sci Rep 2016; 6:22157. [PMID: 26912479 PMCID: PMC4766443 DOI: 10.1038/srep22157] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Humans possess a communication system based on spoken and written language. Other animals can learn vocalization by imitation, but this is not equivalent to human language. Many genes were described to be implicated in language impairment (LI) and developmental dyslexia (DD), but their evolutionary history has not been thoroughly analyzed. Herein we analyzed the evolution of ten genes involved in DD and LI. Results show that the evolutionary history of LI genes for mammals and aves was comparable in vocal-learner species and non-learners. For the human lineage, several sites showing evidence of positive selection were identified in KIAA0319 and were already present in Neanderthals and Denisovans, suggesting that any phenotypic change they entailed was shared with archaic hominins. Conversely, in FOXP2, ROBO1, ROBO2, and CNTNAP2 non-coding changes rose to high frequency after the separation from archaic hominins. These variants are promising candidates for association studies in LI and DD.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090 Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20100 Milan, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | | | - Stefania Riva
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Nereo Bresolin
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
- Dino Ferrari Centre, Department of Physiopathology and Transplantation, University of Milan, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| |
Collapse
|
71
|
|
72
|
Zhao YJ, Wang YP, Yang WZ, Sun HW, Ma HW, Zhao YR. CNTNAP2 Is Significantly Associated With Speech Sound Disorder in the Chinese Han Population. J Child Neurol 2015; 30:1806-11. [PMID: 25895914 DOI: 10.1177/0883073815581609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/10/2015] [Indexed: 11/15/2022]
Abstract
Speech sound disorder is the most common communication disorder. Some investigations support the possibility that the CNTNAP2 gene might be involved in the pathogenesis of speech-related diseases. To investigate single-nucleotide polymorphisms in the CNTNAP2 gene, 300 unrelated speech sound disorder patients and 200 normal controls were included in the study. Five single-nucleotide polymorphisms were amplified and directly sequenced. Significant differences were found in the genotype (P = .0003) and allele (P = .0056) frequencies of rs2538976 between patients and controls. The excess frequency of the A allele in the patient group remained significant after Bonferroni correction (P = .0280). A significant haplotype association with rs2710102T/+rs17236239A/+2538976A/+2710117A (P = 4.10e-006) was identified. A neighboring single-nucleotide polymorphism, rs10608123, was found in complete linkage disequilibrium with rs2538976, and the genotypes exactly corresponded to each other. The authors propose that these CNTNAP2 variants increase the susceptibility to speech sound disorder. The single-nucleotide polymorphisms rs10608123 and rs2538976 may merge into one single-nucleotide polymorphism.
Collapse
Affiliation(s)
- Yun-Jing Zhao
- Department of Developmental Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue-Ping Wang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wen-Zhu Yang
- Department of Developmental Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong-Wei Sun
- Department of Pediatrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Hong-Wei Ma
- Department of Developmental Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Ru Zhao
- Department of Developmental Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
73
|
Zhao Y, Liu X, Sun H, Wang Y, Yang W, Ma H. Contactin‑associated protein‑like 2 expression in SH‑SY5Y cells is upregulated by a FOXP2 mutant with a shortened poly‑glutamine tract. Mol Med Rep 2015; 12:8162-8. [PMID: 26497390 DOI: 10.3892/mmr.2015.4483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/14/2015] [Indexed: 11/06/2022] Open
Abstract
The forkhead box protein P2 (FOXP2) gene encodes an important transcription factor that contains a polyglutamine (poly‑Q) tract and a forkhead DNA binding domain. It has been observed that FOXP2 is associated with speech sound disorder (SSD), and mutations that decrease the length of the poly‑Q tract were identified in the FOXP2 gene of SSD patients. However, the exact role of poly‑Q reduction is not well understood. In the present study, constructs expressing wild‑type and poly‑Q reduction mutants of FOXP2 were generated by polymerase chain reaction (PCR) using lentiviral vectors and transfected into the SH‑SY5Y neuronal cell line. Quantitative reverse transcription (qRT)‑PCR and western blotting indicated that infected cells stably expressed high levels of FOXP2. Using this cell model, the impact of FOXP2 on the expression of contactin‑associated protein‑like 2 (CNTNAP2) were investigated, and CNTNAP2 mRNA expression levels were observed to be significantly higher in cells expressing poly‑Q‑reduced FOXP2. In addition, the expression level of CASPR2, a mammalian homolog of Drosophila Neurexin IV, was increased in cells expressing the FOXP2 mutant. Demonstration of regulation by FOXP2 indicates that CNTNAP2 may also be involved in SSD.
Collapse
Affiliation(s)
- Yunjing Zhao
- Department of Developmental Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaoliang Liu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hongwei Sun
- Department of Pediatrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yueping Wang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Wenzhu Yang
- Department of Developmental Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hongwei Ma
- Department of Developmental Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
74
|
Abstract
Language is a defining characteristic of the human species, but its foundations remain mysterious. Heritable disorders offer a gateway into biological underpinnings, as illustrated by the discovery that FOXP2 disruptions cause a rare form of speech and language impairment. The genetic architecture underlying language-related disorders is complex, and although some progress has been made, it has proved challenging to pinpoint additional relevant genes with confidence. Next-generation sequencing and genome-wide association studies are revolutionizing understanding of the genetic bases of other neurodevelopmental disorders, like autism and schizophrenia, and providing fundamental insights into the molecular networks crucial for typical brain development. We discuss how a similar genomic perspective, brought to the investigation of language-related phenotypes, promises to yield equally informative discoveries. Moreover, we outline how follow-up studies of genetic findings using cellular systems and animal models can help to elucidate the biological mechanisms involved in the development of brain circuits supporting language.
Collapse
Affiliation(s)
- Sarah A Graham
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands;
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; .,Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 EN Nijmegen, The Netherlands;
| |
Collapse
|
75
|
Genetic variation in melatonin pathway enzymes in children with autism spectrum disorder and comorbid sleep onset delay. J Autism Dev Disord 2015; 45:100-10. [PMID: 25059483 DOI: 10.1007/s10803-014-2197-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Sleep disruption is common in individuals with autism spectrum disorder (ASD). Genes whose products regulate endogenous melatonin modify sleep patterns and have been implicated in ASD. Genetic factors likely contribute to comorbid expression of sleep disorders in ASD. We studied a clinically unique ASD subgroup, consisting solely of children with comorbid expression of sleep onset delay. We evaluated variation in two melatonin pathway genes, acetylserotonin O-methyltransferase (ASMT) and cytochrome P450 1A2 (CYP1A2). We observed higher frequencies than currently reported (p < 0.04) for variants evidenced to decrease ASMT expression and related to decreased CYP1A2 enzyme activity (p ≤ 0.0007). We detected a relationship between genotypes in ASMT and CYP1A2 (r(2) = 0.63). Our results indicate that expression of sleep onset delay relates to melatonin pathway genes.
Collapse
|
76
|
Mayes AK, Reilly S, Morgan AT. Neural correlates of childhood language disorder: a systematic review. Dev Med Child Neurol 2015; 57:706-17. [PMID: 25692930 DOI: 10.1111/dmcn.12714] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2014] [Indexed: 01/28/2023]
Abstract
AIM The neurobiological contributions of childhood language disorder are not well understood. Yet there is increasing evidence that language disorder is associated with differences in brain structure and/or function in core language regions. A key hypothesis has been that children with language disorder do not show the same degree of leftward asymmetry of these regions as observed in typically developing children. We aimed to systematically review structural and functional magnetic resonance imaging (fMRI) studies to examine brain commonalities and differences between children with language disorder and typically developing controls; and differences in leftward asymmetry between these groups. METHOD A systematic review was conducted using MeSH terms synonymous with childhood language disorder and brain MRI methods. The search identified 1443 papers, and 18 articles met the criteria and were appraised for level and quality of evidence. RESULTS Atypical brain structure and function was reported within traditionally recognized language regions across studies, including the inferior frontal gyrus, posterior superior temporal gyrus, and caudate nucleus. The direction of difference (e.g. increased/decreased) was variable, however, likely because of differences in language disorder groups examined and magnetic resonance data acquisition and analysis approaches. As regards asymmetry, there was some evidence of reduction of the anticipated structural and functional leftward asymmetry in frontal language regions in language disorder groups. INTERPRETATION Mounting evidence suggests that children with language disorder have atypical brain structure and function within neural regions integral to language. There is limited support for the hypothesis that children with language disorder show a reduction of leftward structural and/or functional asymmetry in frontal language regions. Interpretation is limited, however, by a high degree of variability in language disorder assessment and phenotype, and in magnetic resonance methodologies. A large-scale magnetic resonance study of brain structure and function is required in a well-defined language disorder population cohort, with replication, to provide confirmatory data on the neural correlates of childhood language disorder.
Collapse
Affiliation(s)
- Angela K Mayes
- Murdoch Childrens Research Institute, Melbourne, Vic., Australia
| | - Sheena Reilly
- Murdoch Childrens Research Institute, Melbourne, Vic., Australia.,The University of Melbourne, Melbourne, Vic., Australia
| | - Angela T Morgan
- Murdoch Childrens Research Institute, Melbourne, Vic., Australia.,The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
77
|
Variants of the CNTNAP2 5' promoter as risk factors for autism spectrum disorders: a genetic and functional approach. Mol Psychiatry 2015; 20:839-49. [PMID: 25224256 DOI: 10.1038/mp.2014.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 06/04/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
Abstract
Contactin-associated protein-like 2 gene (CNTNAP2), a member of the Neurexin gene superfamily, is one of the best-replicated risk genes for autism spectrum disorders (ASD). ASD are predominately genetically determined neurodevelopmental disorders characterized by impairments of language development, social interaction and communication, as well as stereotyped behavior and interests. Although CNTNAP2 expression levels were proposed to alter ASD risk, no study to date has focused on its 5' promoter. Here, we directly sequenced the CNTNAP2 5' promoter region of 236 German families with one child with ASD and detected four novel variants. Furthermore, we genotyped the three most frequent variants (rs150447075, rs34712024, rs71781329) in an additional sample of 356 families and found nominal association of rs34712024G with ASD and rs71781329GCG[7] with language development. The four novel and the three known minor alleles of the identified variants were predicted to alter transcription factor binding sites (TFBS). At the functional level, the respective sequences spanning these seven variants were bound by nuclear factors. In a luciferase promoter assay, the respective minor alleles showed cell line-specific and differentiation stage-dependent effects at the level of promoter activation. The novel potential rare risk-variant M2, a G>A mutation -215 base pairs 5' of the transcriptional start site, significantly reduced promoter efficiency in HEK293T and in undifferentiated and differentiated neuroblastoid SH-SY5Y cells. This variant was transmitted to a patient with autistic disorder. The under-transmitted, protective minor G allele of the common variant rs34712024, in contrast, increased transcriptional activity. These results lead to the conclusion that the pathomechanism of CNTNAP2 promoter variants on ASD risk is mediated by their effect on TFBSs, and thus confirm the hypothesis that a reduced CNTNAP2 level during neuronal development increases liability for ASD.
Collapse
|
78
|
Nebel RA, Kirschen J, Cai J, Woo YJ, Cherian K, Abrahams BS. Reciprocal Relationship between Head Size, an Autism Endophenotype, and Gene Dosage at 19p13.12 Points to AKAP8 and AKAP8L. PLoS One 2015; 10:e0129270. [PMID: 26076356 PMCID: PMC4468215 DOI: 10.1371/journal.pone.0129270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/06/2015] [Indexed: 12/30/2022] Open
Abstract
Microcephaly and macrocephaly are overrepresented in individuals with autism and are thought to be disease-related risk factors or endophenotypes. Analysis of DNA microarray results from a family with a low functioning autistic child determined that the proband and two additional unaffected family members who carry a rare inherited 760 kb duplication of unknown clinical significance at 19p13.12 are macrocephalic. Consideration alongside overlapping deletion and duplication events in the literature provides support for a strong relationship between gene dosage at this locus and head size, with losses and gains associated with microcephaly (p=1.11x10(-11)) and macrocephaly (p=2.47x10(-11)), respectively. Data support A kinase anchor protein 8 and 8-like (AKAP8 and AKAP8L) as candidate genes involved in regulation of head growth, an interesting finding given previous work implicating the AKAP gene family in autism. Towards determination of which of AKAP8 and AKAP8L may be involved in the modulation of head size and risk for disease, we analyzed exome sequencing data for 693 autism families (2591 individuals) where head circumference data were available. No predicted loss of function variants were observed, precluding insights into relationship to head size, but highlighting strong evolutionary conservation. Taken together, findings support the idea that gene dosage at 19p13.12, and AKAP8 and/or AKAP8L in particular, play an important role in modulation of head size and may contribute to autism risk. Exome sequencing of the family also identified a rare inherited variant predicted to disrupt splicing of TPTE / PTEN2, a PTEN homologue, which may likewise contribute to both macrocephaly and autism risk.
Collapse
Affiliation(s)
- Rebecca A. Nebel
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jill Kirschen
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jinlu Cai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Young Jae Woo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Koshi Cherian
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Brett S. Abrahams
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
79
|
Koeda M, Watanabe A, Tsuda K, Matsumoto M, Ikeda Y, Kim W, Tateno A, Naing BT, Karibe H, Shimada T, Suzuki H, Matsuura M, Okubo Y. Interaction effect between handedness and CNTNAP2 polymorphism (rs7794745 genotype) on voice-specific frontotemporal activity in healthy individuals: an fMRI study. Front Behav Neurosci 2015; 9:87. [PMID: 25941478 PMCID: PMC4403548 DOI: 10.3389/fnbeh.2015.00087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/22/2015] [Indexed: 11/18/2022] Open
Abstract
Recent neuroimaging studies have demonstrated that Contactin-associated protein-like2 (CNTNAP2) polymorphisms affect left-hemispheric function of language processing in healthy individuals, but no study has investigated the influence of these polymorphisms on right-hemispheric function involved in human voice perception. Further, although recent reports suggest that determination of handedness is influenced by genetic effect, the interaction effect between handedness and CNTNAP2 polymorphisms for brain activity in human voice perception and language processing has not been revealed. We aimed to investigate the interaction effect of handedness and CNTNAP2 polymorphisms in respect to brain function for human voice perception and language processing in healthy individuals. Brain function of 108 healthy volunteers (74 right-handed and 34 non-right-handed) was examined while they were passively listening to reverse sentences (rSEN), identifiable non-vocal sounds (SND), and sentences (SEN). Full factorial design analysis was calculated by using three factors: (1) rs7794745 (A/A or A/T), (2) rs2710102 [G/G or A carrier (A/G and A/A)], and (3) voice-specific response (rSEN or SND). The main effect of rs7794745 (A/A or A/T) was significantly revealed at the right middle frontal gyrus (MFG) and bilateral superior temporal gyrus (STG). This result suggests that rs7794745 genotype affects voice-specific brain function. Furthermore, interaction effect was significantly observed among MFG-STG activations by human voice perception, rs7794745 (A/A or A/T), and handedness. These results suggest that CNTNAP2 polymorphisms could be one of the important factors in the neural development related to vocal communication and language processing in both right-handed and non-right-handed healthy individuals.
Collapse
Affiliation(s)
- Michihiko Koeda
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School Tokyo, Japan
| | - Atsushi Watanabe
- Division of Personalized Genetic Medicine, Nippon Medical School Hospital Tokyo, Japan ; Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School Tokyo, Japan
| | - Kumiko Tsuda
- Department of Biofunctional Informatics, Tokyo Medical and Dental University Tokyo, Japan
| | - Miwako Matsumoto
- Department of Biofunctional Informatics, Tokyo Medical and Dental University Tokyo, Japan
| | - Yumiko Ikeda
- Department of Pediatric Dentistry, Nippon Dental University Tokyo, Japan
| | - Woochan Kim
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School Tokyo, Japan
| | - Amane Tateno
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School Tokyo, Japan
| | - Banyar Than Naing
- Division of Personalized Genetic Medicine, Nippon Medical School Hospital Tokyo, Japan ; Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School Tokyo, Japan
| | - Hiroyuki Karibe
- Department of Pediatric Dentistry, Nippon Dental University Tokyo, Japan
| | - Takashi Shimada
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School Tokyo, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School Tokyo, Japan
| | - Masato Matsuura
- Department of Biofunctional Informatics, Tokyo Medical and Dental University Tokyo, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School Tokyo, Japan
| |
Collapse
|
80
|
Geschwind DH, State MW. Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol 2015; 14:1109-20. [PMID: 25891009 DOI: 10.1016/s1474-4422(15)00044-7] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/21/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder is typical of the majority of neuropsychiatric syndromes in that it is defined by signs and symptoms, rather than by aetiology. Not surprisingly, the causes of this complex human condition are manifold and include a substantial genetic component. Recent developments in gene-hunting technologies and methods, and the resulting plethora of genetic findings, promise to open new avenues to understanding of disease pathophysiology and to contribute to improved clinical management. Despite remarkable genetic heterogeneity, evidence is emerging for converging pathophysiology in autism spectrum disorder, but how this notion of convergent pathways will translate into therapeutics remains to be established. Leveraging genetic findings through advances in model systems and integrative genomic approaches could lead to the development of new classes of therapies and a personalised approach to treatment.
Collapse
Affiliation(s)
- Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, and Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Matthew W State
- Department of Psychiatry, Langley Porter Psychiatric Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
81
|
Villanueva P, Nudel R, Hoischen A, Fernández MA, Simpson NH, Gilissen C, Reader RH, Jara L, Echeverry MM, Francks C, Baird G, Conti-Ramsden G, O’Hare A, Bolton PF, Hennessy ER, Palomino H, Carvajal-Carmona L, Veltman JA, Cazier JB, De Barbieri Z, Fisher SE, Newbury DF. Exome sequencing in an admixed isolated population indicates NFXL1 variants confer a risk for specific language impairment. PLoS Genet 2015; 11:e1004925. [PMID: 25781923 PMCID: PMC4363375 DOI: 10.1371/journal.pgen.1004925] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/25/2014] [Indexed: 11/06/2022] Open
Abstract
Children affected by Specific Language Impairment (SLI) fail to acquire age appropriate language skills despite adequate intelligence and opportunity. SLI is highly heritable, but the understanding of underlying genetic mechanisms has proved challenging. In this study, we use molecular genetic techniques to investigate an admixed isolated founder population from the Robinson Crusoe Island (Chile), who are affected by a high incidence of SLI, increasing the power to discover contributory genetic factors. We utilize exome sequencing in selected individuals from this population to identify eight coding variants that are of putative significance. We then apply association analyses across the wider population to highlight a single rare coding variant (rs144169475, Minor Allele Frequency of 4.1% in admixed South American populations) in the NFXL1 gene that confers a nonsynonymous change (N150K) and is significantly associated with language impairment in the Robinson Crusoe population (p = 2.04 × 10-4, 8 variants tested). Subsequent sequencing of NFXL1 in 117 UK SLI cases identified four individuals with heterozygous variants predicted to be of functional consequence. We conclude that coding variants within NFXL1 confer an increased risk of SLI within a complex genetic model.
Collapse
Affiliation(s)
- Pía Villanueva
- Human Genetics Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- School of Speech and Hearing Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Child and Dental Maxillary Orthopedics, Faculty of Dentistry, University of Chile, Santiago, Chile
- Doctoral Program of Psychology, Graduate School, University of Granada, Granada, Spain
| | - Ron Nudel
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Alexander Hoischen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Nuala H. Simpson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rose H. Reader
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Lillian Jara
- Human Genetics Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Maria Magdalena Echeverry
- Grupo de Citogenetica, Filogenia y Evolucion de las Poblaciones, Facultades de Ciencias y de Ciencias de la Salud, Universidad del Tolima, Ibague, Colombia
| | - Clyde Francks
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Gillian Baird
- Newcomen Centre, the Evelina Children’s Hospital, London, United Kingdom
| | - Gina Conti-Ramsden
- School of Psychological Sciences, University of Manchester, Manchester, United Kingdom
| | - Anne O’Hare
- Department of Reproductive and Developmental Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick F. Bolton
- Departments of Child & Adolescent Psychiatry & Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | | | | | - Hernán Palomino
- Department of Child and Dental Maxillary Orthopedics, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Luis Carvajal-Carmona
- Grupo de Citogenetica, Filogenia y Evolucion de las Poblaciones, Facultades de Ciencias y de Ciencias de la Salud, Universidad del Tolima, Ibague, Colombia
- UC Davis Genome Center, Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Joris A. Veltman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jean-Baptiste Cazier
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Centre for Computational Biology, University of Birmingham, Edgbaston, United Kingdom
| | - Zulema De Barbieri
- School of Speech and Hearing Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Simon E. Fisher
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Dianne F. Newbury
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- St Johns College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
82
|
Poot M. Connecting the CNTNAP2 Networks with Neurodevelopmental Disorders. Mol Syndromol 2015; 6:7-22. [PMID: 25852443 DOI: 10.1159/000371594] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2014] [Indexed: 12/23/2022] Open
Abstract
Based on genomic rearrangements and copy number variations, the contactin-associated protein-like 2 gene (CNTNAP2) has been implicated in neurodevelopmental disorders such as Gilles de la Tourette syndrome, intellectual disability, obsessive compulsive disorder, cortical dysplasia-focal epilepsy syndrome, autism, schizophrenia, Pitt-Hopkins syndrome, and attention deficit hyperactivity disorder. To explain the phenotypic pleiotropy of CNTNAP2 alterations, several hypotheses have been put forward. Those include gene disruption, loss of a gene copy by a heterozygous deletion, altered regulation of gene expression due to loss of transcription factor binding and DNA methylation sites, and mutations in the amino acid sequence of the encoded protein which may provoke altered interactions of the CNTNAP2-encoded protein, Caspr2, with other proteins. Also exome sequencing, which covers <0.2% of the CNTNAP2 genomic DNA, has revealed numerous single nucleotide variants in healthy individuals and in patients with neurodevelopmental disorders. In some of these disorders, disruption of CNTNAP2 may be interpreted as a susceptibility factor rather than a directly causative mutation. In addition to being associated with impaired development of language, CNTNAP2 may turn out to be a central node in the molecular networks controlling neurodevelopment. This review discusses the impact of CNTNAP2 mutations on its functioning at multiple levels of the combinatorial genetic networks that govern brain development. In addition, recommendations for genomic testing in the context of clinical genetic management of patients with neurodevelopmental disorders and their families are put forward.
Collapse
Affiliation(s)
- Martin Poot
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
83
|
Insights into the genetic foundations of human communication. Neuropsychol Rev 2015; 25:3-26. [PMID: 25597031 DOI: 10.1007/s11065-014-9277-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022]
Abstract
The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss the strategies that researchers are using to reveal genetic factors contributing to communicative abilities, and review progress in identifying the relevant genes and genetic variants. The first gene directly implicated in a speech and language disorder was FOXP2. Using this gene as a case study, we illustrate how evidence from genetics, molecular cell biology, animal models and human neuroimaging has converged to build a picture of the role of FOXP2 in neurodevelopment, providing a framework for future endeavors to bridge the gaps between genes, brains and behavior.
Collapse
|
84
|
Association study between autistic-like traits and polymorphisms in the autism candidate regions RELN, CNTNAP2, SHANK3, and CDH9/10. Mol Autism 2014; 5:55. [PMID: 25540679 PMCID: PMC4276093 DOI: 10.1186/2040-2392-5-55] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/20/2014] [Indexed: 01/14/2023] Open
Abstract
Background Autistic-like traits (ALTs) are continuously distributed in the general population, with the autism spectrum disorder (ASD) at the upper extreme end. A genetic overlap has been shown between ALTs and ASD, indicating that common variation in ASD candidate genes may also influence ALTs. In our study, we have investigated the SNP rs4307059 that has been associated with both ALTs and ASD. In addition, we genotyped polymorphisms in a selection of genes involved in synaptic functioning, that is, SHANK3, RELN, and CNTNAP2, which repeatedly have been associated with ASD. The possible associations of these polymorphisms with ALTs, as well as genetic factors for neurodevelopmental problems (NDPs), were investigated in a large cohort from the general population: The Child and Adolescent Twin Study in Sweden. For analyses of ALTs and NDPs, 12,319 subjects (including 2,268 monozygotic (MZ) and 3,805 dizygotic (DZ) twin pairs) and 8,671 subjects (including 2,243 MZ and 2,044 DZ twin pairs), respectively, were included in the analyses. Findings We could not replicate the previous association between rs4307059 and social communication impairment. Moreover, common variations in CNTNAP2 (rs7794745 and rs2710102), RELN (rs362691), and SHANK3 (rs9616915) were not significantly associated with ALTs in our study. Conclusions Our results do not suggest that the investigated genes, which previously has been found associated with ASD diagnosis, have any major influence on ALTs in children from the general population. Electronic supplementary material The online version of this article (doi:10.1186/2040-2392-5-55) contains supplementary material, which is available to authorized users.
Collapse
|
85
|
Taylor LJ, Maybery MT, Grayndler L, Whitehouse AJO. Evidence for distinct cognitive profiles in autism spectrum disorders and specific language impairment. J Autism Dev Disord 2014; 44:19-30. [PMID: 23670577 DOI: 10.1007/s10803-013-1847-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Findings that a subgroup of children with an autism spectrum disorder (ASD) have linguistic capabilities that resemble specific language impairment (SLI) have led some authors to hypothesise that ASD and SLI have a shared aetiology. While considerable research has explored overlap in the language phenotypes of the two conditions, little research has examined possible overlap in cognitive characteristics. In this study, we explored nonword and sentence repetition performance, as well as performance on the Children's Embedded Figures Test (CEFT) for children with ASD or SLI. As expected, 'language impaired' children with ASD (ALI) and children with SLI performed worse than both 'language normal' ASD (ALN) and typically developing (TD) children on the nonword and sentence repetition tests. Further, the SLI children performed worse than all other groups on the CEFT. This finding supports distinct cognitive profiles in ASD and SLI and may provide further evidence for distinct aetiological mechanisms in the two conditions.
Collapse
Affiliation(s)
- Lauren J Taylor
- Neurocognitive Development Unit, School of Psychology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia,
| | | | | | | |
Collapse
|
86
|
Bohland JW, Myers EM, Kim E. An informatics approach to integrating genetic and neurological data in speech and language neuroscience. Neuroinformatics 2014; 12:39-62. [PMID: 23949335 DOI: 10.1007/s12021-013-9201-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A number of heritable disorders impair the normal development of speech and language processes and occur in large numbers within the general population. While candidate genes and loci have been identified, the gap between genotype and phenotype is vast, limiting current understanding of the biology of normal and disordered processes. This gap exists not only in our scientific knowledge, but also in our research communities, where genetics researchers and speech, language, and cognitive scientists tend to operate independently. Here we describe a web-based, domain-specific, curated database that represents information about genotype-phenotype relations specific to speech and language disorders, as well as neuroimaging results demonstrating focal brain differences in relevant patients versus controls. Bringing these two distinct data types into a common database ( http://neurospeech.org/sldb ) is a first step toward bringing molecular level information into cognitive and computational theories of speech and language function. One bridge between these data types is provided by densely sampled profiles of gene expression in the brain, such as those provided by the Allen Brain Atlases. Here we present results from exploratory analyses of human brain gene expression profiles for genes implicated in speech and language disorders, which are annotated in our database. We then discuss how such datasets can be useful in the development of computational models that bridge levels of analysis, necessary to provide a mechanistic understanding of heritable language disorders. We further describe our general approach to information integration, discuss important caveats and considerations, and offer a specific but speculative example based on genes implicated in stuttering and basal ganglia function in speech motor control.
Collapse
Affiliation(s)
- Jason W Bohland
- Departments of Health Sciences and Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Ave, Room 403, Boston, MA, 02215, USA,
| | | | | |
Collapse
|
87
|
Gialluisi A, Newbury DF, Wilcutt EG, Olson RK, DeFries JC, Brandler WM, Pennington BF, Smith SD, Scerri TS, Simpson NH, Luciano M, Evans DM, Bates TC, Stein JF, Talcott JB, Monaco AP, Paracchini S, Francks C, Fisher SE. Genome-wide screening for DNA variants associated with reading and language traits. GENES BRAIN AND BEHAVIOR 2014; 13:686-701. [PMID: 25065397 PMCID: PMC4165772 DOI: 10.1111/gbb.12158] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/20/2014] [Accepted: 07/24/2014] [Indexed: 01/04/2023]
Abstract
Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a genome-wide association scan (GWAS) meta-analysis using three richly characterized datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading- and language-related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected P ≈ 10–7 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on-going international efforts to identify genes contributing to reading and language skills.
Collapse
Affiliation(s)
- A Gialluisi
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Condro MC, White SA. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning. J Comp Neurol 2014; 522:169-85. [PMID: 23818387 DOI: 10.1002/cne.23394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/11/2013] [Accepted: 06/19/2013] [Indexed: 11/12/2022]
Abstract
Variants of the contactin associated protein-like 2 (Cntnap2) gene are risk factors for language-related disorders including autism spectrum disorder, specific language impairment, and stuttering. Songbirds are useful models for study of human speech disorders due to their shared capacity for vocal learning, which relies on similar cortico-basal ganglia circuitry and genetic factors. Here we investigate Cntnap2 protein expression in the brain of the zebra finch, a songbird species in which males, but not females, learn their courtship songs. We hypothesize that Cntnap2 has overlapping functions in vocal learning species, and expect to find protein expression in song-related areas of the zebra finch brain. We further expect that the distribution of this membrane-bound protein may not completely mirror its mRNA distribution due to the distinct subcellular localization of the two molecular species. We find that Cntnap2 protein is enriched in several song control regions relative to surrounding tissues, particularly within the adult male, but not female, robust nucleus of the arcopallium (RA), a cortical song control region analogous to human layer 5 primary motor cortex. The onset of this sexually dimorphic expression coincides with the onset of sensorimotor learning in developing males. Enrichment in male RA appears due to expression in projection neurons within the nucleus, as well as to additional expression in nerve terminals of cortical projections to RA from the lateral magnocellular nucleus of the nidopallium. Cntnap2 protein expression in zebra finch brain supports the hypothesis that this molecule affects neural connectivity critical for vocal learning across taxonomic classes.
Collapse
Affiliation(s)
- Michael C Condro
- Molecular, Cellular & Integrative Physiology Interdepartmental Program, University of California, Los Angeles, California, 90095
| | | |
Collapse
|
89
|
French CA, Fisher SE. What can mice tell us about Foxp2 function? Curr Opin Neurobiol 2014; 28:72-9. [PMID: 25048596 DOI: 10.1016/j.conb.2014.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/29/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022]
Abstract
Disruptions of the FOXP2 gene cause a rare speech and language disorder, a discovery that has opened up novel avenues for investigating the relevant neural pathways. FOXP2 shows remarkably high conservation of sequence and neural expression in diverse vertebrates, suggesting that studies in other species are useful in elucidating its functions. Here we describe how investigations of mice that carry disruptions of Foxp2 provide insights at multiple levels: molecules, cells, circuits and behaviour. Work thus far has implicated the gene in key processes including neurite outgrowth, synaptic plasticity, sensorimotor integration and motor-skill learning.
Collapse
Affiliation(s)
- Catherine A French
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
90
|
Hoogman M, Guadalupe T, Zwiers MP, Klarenbeek P, Francks C, Fisher SE. Assessing the effects of common variation in the FOXP2 gene on human brain structure. Front Hum Neurosci 2014; 8:473. [PMID: 25013396 PMCID: PMC4076884 DOI: 10.3389/fnhum.2014.00473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/09/2014] [Indexed: 02/05/2023] Open
Abstract
The FOXP2 transcription factor is one of the most well-known genes to have been implicated in developmental speech and language disorders. Rare mutations disrupting the function of this gene have been described in different families and cases. In a large three-generation family carrying a missense mutation, neuroimaging studies revealed significant effects on brain structure and function, most notably in the inferior frontal gyrus, caudate nucleus, and cerebellum. After the identification of rare disruptive FOXP2 variants impacting on brain structure, several reports proposed that common variants at this locus may also have detectable effects on the brain, extending beyond disorder into normal phenotypic variation. These neuroimaging genetics studies used groups of between 14 and 96 participants. The current study assessed effects of common FOXP2 variants on neuroanatomy using voxel-based morphometry (VBM) and volumetric techniques in a sample of >1300 people from the general population. In a first targeted stage we analyzed single nucleotide polymorphisms (SNPs) claimed to have effects in prior smaller studies (rs2253478, rs12533005, rs2396753, rs6980093, rs7784315, rs17137124, rs10230558, rs7782412, rs1456031), beginning with regions proposed in the relevant papers, then assessing impact across the entire brain. In the second gene-wide stage, we tested all common FOXP2 variation, focusing on volumetry of those regions most strongly implicated from analyses of rare disruptive mutations. Despite using a sample that is more than 10 times that used for prior studies of common FOXP2 variation, we found no evidence for effects of SNPs on variability in neuroanatomy in the general population. Thus, the impact of this gene on brain structure may be largely limited to extreme cases of rare disruptive alleles. Alternatively, effects of common variants at this gene exist but are too subtle to be detected with standard volumetric techniques.
Collapse
Affiliation(s)
- Martine Hoogman
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands
| | - Tulio Guadalupe
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands
| | - Marcel P Zwiers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Patricia Klarenbeek
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Clyde Francks
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Simon E Fisher
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| |
Collapse
|
91
|
Reading and language disorders: the importance of both quantity and quality. Genes (Basel) 2014; 5:285-309. [PMID: 24705331 PMCID: PMC4094934 DOI: 10.3390/genes5020285] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 01/25/2023] Open
Abstract
Reading and language disorders are common childhood conditions that often co-occur with each other and with other neurodevelopmental impairments. There is strong evidence that disorders, such as dyslexia and Specific Language Impairment (SLI), have a genetic basis, but we expect the contributing genetic factors to be complex in nature. To date, only a few genes have been implicated in these traits. Their functional characterization has provided novel insight into the biology of neurodevelopmental disorders. However, the lack of biological markers and clear diagnostic criteria have prevented the collection of the large sample sizes required for well-powered genome-wide screens. One of the main challenges of the field will be to combine careful clinical assessment with high throughput genetic technologies within multidisciplinary collaborations.
Collapse
|
92
|
Rodenas-Cuadrado P, Ho J, Vernes SC. Shining a light on CNTNAP2: complex functions to complex disorders. Eur J Hum Genet 2014; 22:171-8. [PMID: 23714751 PMCID: PMC3895625 DOI: 10.1038/ejhg.2013.100] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 03/25/2013] [Accepted: 04/09/2013] [Indexed: 11/08/2022] Open
Abstract
The genetic basis of complex neurological disorders involving language are poorly understood, partly due to the multiple additive genetic risk factors that are thought to be responsible. Furthermore, these conditions are often syndromic in that they have a range of endophenotypes that may be associated with the disorder and that may be present in different combinations in patients. However, the emergence of individual genes implicated across multiple disorders has suggested that they might share similar underlying genetic mechanisms. The CNTNAP2 gene is an excellent example of this, as it has recently been implicated in a broad range of phenotypes including autism spectrum disorder (ASD), schizophrenia, intellectual disability, dyslexia and language impairment. This review considers the evidence implicating CNTNAP2 in these conditions, the genetic risk factors and mutations that have been identified in patient and population studies and how these relate to patient phenotypes. The role of CNTNAP2 is examined in the context of larger neurogenetic networks during development and disorder, given what is known regarding the regulation and function of this gene. Understanding the role of CNTNAP2 in diverse neurological disorders will further our understanding of how combinations of individual genetic risk factors can contribute to complex conditions.
Collapse
Affiliation(s)
- Pedro Rodenas-Cuadrado
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Joses Ho
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sonja C Vernes
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
93
|
Veatch OJ, Veenstra-Vanderweele J, Potter M, Pericak-Vance MA, Haines JL. Genetically meaningful phenotypic subgroups in autism spectrum disorders. GENES BRAIN AND BEHAVIOR 2014; 13:276-85. [PMID: 24373520 DOI: 10.1111/gbb.12117] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/21/2013] [Accepted: 12/18/2013] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with strong evidence for genetic susceptibility. However, the effect sizes for implicated chromosomal loci are small, hard to replicate and current evidence does not explain the majority of the estimated heritability. Phenotypic heterogeneity could be one phenomenon complicating identification of genetic factors. We used data from the Autism Diagnostic Interview-Revised, Autism Diagnostic Observation Schedule, Vineland Adaptive Behavior Scales, head circumferences, and ages at exams as classifying variables to identify more clinically similar subgroups of individuals with ASD. We identified two distinct subgroups of cases within the Autism Genetic Resource Exchange dataset, primarily defined by the overall severity of evaluated traits. In addition, there was significant familial clustering within subgroups (odds ratio, OR ≈ 1.38-1.42, P < 0.00001), and genotypes were more similar within subgroups compared to the unsubgrouped dataset (Fst = 0.17 ± 0.0.0009). These results suggest that the subgroups recapitulate genetic etiology. Using the same approach in an independent dataset from the Autism Genome Project, we similarly identified two distinct subgroups of cases and confirmed this severity-based dichotomy. We also observed evidence for genetic contributions to subgroups identified in the replication dataset. Our results provide more effective methods of phenotype definition that should increase power to detect genetic factors influencing risk for ASD.
Collapse
Affiliation(s)
- O J Veatch
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
94
|
Schneider E, El Hajj N, Richter S, Roche-Santiago J, Nanda I, Schempp W, Riederer P, Navarro B, Bontrop RE, Kondova I, Scholz CJ, Haaf T. Widespread differences in cortex DNA methylation of the "language gene" CNTNAP2 between humans and chimpanzees. Epigenetics 2014; 9:533-45. [PMID: 24434791 PMCID: PMC4121364 DOI: 10.4161/epi.27689] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CNTNAP2, one of the largest genes in the human genome, has been linked to human-specific language abilities and neurodevelopmental disorders. Our hypothesis is that epigenetic rather than genetic changes have accelerated the evolution of the human brain. To compare the cortex DNA methylation patterns of human and chimpanzee CNTNAP2 at ultra-high resolution, we combined methylated DNA immunoprecipitation (MeDIP) with NimbleGen tiling arrays for the orthologous gene and flanking sequences. Approximately 1.59 Mb of the 2.51 Mb target region could be aligned and analyzed with a customized algorithm in both species. More than one fifth (0.34 Mb) of the analyzed sequence throughout the entire gene displayed significant methylation differences between six human and five chimpanzee cortices. One of the most striking interspecies differences with 28% methylation in human and 59% in chimpanzee cortex (by bisulfite pyrosequencing) lies in a region 300 bp upstream of human SNP rs7794745 which has been associated with autism and parent-of-origin effects. Quantitative real-time RT PCR revealed that the protein-coding splice variant CNTNAP2-201 is 1.6-fold upregulated in human cortex, compared with the chimpanzee. Transcripts CNTNAP2-001, -002, and -003 did not show skewed allelic expression, which argues against CNTNAP2 imprinting, at least in adult human brain. Collectively, our results suggest widespread cortex DNA methylation changes in CNTNAP2 since the human-chimpanzee split, supporting a role for CNTNAP2 fine-regulation in human-specific language and communication traits.
Collapse
Affiliation(s)
- Eberhard Schneider
- Institute for Human Genetics; Julius Maximilian University; Würzburg, Germany
| | - Nady El Hajj
- Institute for Human Genetics; Julius Maximilian University; Würzburg, Germany
| | - Steven Richter
- Institute for Human Genetics; Julius Maximilian University; Würzburg, Germany
| | | | - Indrajit Nanda
- Institute for Human Genetics; Julius Maximilian University; Würzburg, Germany
| | - Werner Schempp
- Institute for Human Genetics; University of Freiburg; Freiburg, Germany
| | - Peter Riederer
- Clinical Neurochemistry Laboratory; Department of Psychiatry; University Hospital; Würzburg, Germany
| | - Bianca Navarro
- Institute of Legal Medicine; University Medical Center; Mainz, Germany
| | | | - Ivanela Kondova
- Biomedical Primate Research Center; Rijswijk, The Netherlands
| | - Claus Jürgen Scholz
- Laboratory for Microarray Applications; IZKF; Julius Maximilians University; Würzburg, Germany
| | - Thomas Haaf
- Institute for Human Genetics; Julius Maximilian University; Würzburg, Germany
| |
Collapse
|
95
|
Abstract
Specific language impairment (SLI) is a multifactorial neurodevelopmental disorder which occurs unexpectedly and without an obvious cause. Over a decade of research suggests that SLI is highly heritable. Several genes and loci have already been implicated in SLI through linkage and targeted association methods. Recently, genome-wide association studies (GWAS) of SLI and language traits in the general population have been reported and, consequently, new candidate genes have been identified. This review aims to summarise the literature concerning genome-wide studies of SLI. In addition, this review highlights the methodologies that have been used to research the genetics of SLI to date, and also considers the current, and future, contributions that GWAS can offer.
Collapse
Affiliation(s)
- Rose H. Reader
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Laura E. Covill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Ron Nudel
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Dianne F. Newbury
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
- St John’s College, University of Oxford, Oxford, OX1 3JP UK
| |
Collapse
|
96
|
Howe LD, Parmar PG, Paternoster L, Warrington NM, Kemp JP, Briollais L, Newnham JP, Timpson NJ, Smith GD, Ring SM, Evans DM, Tilling K, Pennell CE, Beilin LJ, Palmer LJ, Lawlor DA. Genetic influences on trajectories of systolic blood pressure across childhood and adolescence. ACTA ACUST UNITED AC 2013; 6:608-14. [PMID: 24200906 DOI: 10.1161/circgenetics.113.000197] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Blood pressure (BP) tends to increase across childhood and adolescence, but the genetic influences on rates of BP change are not known. Potentially important genetic influences could include genetic variants identified in genome-wide association studies of adults as being associated with BP, height, and body mass index. Understanding the contribution of these genetic variants to changes in BP across childhood and adolescence could yield understanding into the life course development of cardiovascular risk. METHODS AND RESULTS Pooling data from 2 cohorts (the Avon Longitudinal Study of Parents and Children [n=7013] and the Western Australian Pregnancy Cohort [n=1459]), we examined the associations of allelic scores of 29 single-nucleotide polymorphisms (SNPs) for adult BP, 180 height SNPs, and 32 body mass index SNPs, with trajectories of systolic BP (SBP) from 6 to 17 years of age, using linear spline multilevel models. The allelic scores of BP and body mass index SNPs were associated with SBP at 6 years of age (per-allele effect sizes, 0.097 mm Hg [SE, 0.039 mm Hg] and 0.107 mm Hg [SE, 0.037 mm Hg]); associations with age-related changes in SBP between 6 and 17 years of age were of small magnitude and imprecisely estimated. The allelic score of height SNPs was only weakly associated with SBP changes. No sex or cohort differences in genetic effects were observed. CONCLUSIONS Allelic scores of BP and body mass index SNPs demonstrated associations with SBP at 6 years of age with a similar magnitude but were not strongly associated with changes in SBP with age between 6 and 17 years. Further work is required to identify variants associated with changes with age in BP.
Collapse
Affiliation(s)
- Laura D Howe
- MRC Integrative Epidemiology Unit at the University of Bristol
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Eicher JD, Gruen JR. Imaging-genetics in dyslexia: connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments. Mol Genet Metab 2013; 110:201-12. [PMID: 23916419 PMCID: PMC3800223 DOI: 10.1016/j.ymgme.2013.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 12/19/2022]
Abstract
Dyslexia is a common pediatric disorder that affects 5-17% of schoolchildren in the United States. It is marked by unexpected difficulties in fluent reading despite adequate intelligence, opportunity, and instruction. Classically, neuropsychologists have studied dyslexia using a variety of neurocognitive batteries to gain insight into the specific deficits and impairments in affected children. Since dyslexia is a complex genetic trait with high heritability, analyses conditioned on performance on these neurocognitive batteries have been used to try to identify associated genes. This has led to some successes in identifying contributing genes, although much of the heritability remains unexplained. Additionally, the lack of relevant human brain tissue for analysis and the challenges of modeling a uniquely human trait in animals are barriers to advancing our knowledge of the underlying pathophysiology. In vivo imaging technologies, however, present new opportunities to examine dyslexia and reading skills in a clearly relevant context in human subjects. Recent investigations have started to integrate these imaging data with genetic data in attempts to gain a more complete and complex understanding of reading processes. In addition to bridging the gap from genetic risk variant to a discernible neuroimaging phenotype and ultimately to the clinical impairments in reading performance, the use of neuroimaging phenotypes will reveal novel risk genes and variants. In this article, we briefly discuss the genetic and imaging investigations and take an in-depth look at the recent imaging-genetics investigations of dyslexia.
Collapse
Affiliation(s)
- John D. Eicher
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | - Jeffrey R. Gruen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
- Departments of Pediatrics and Investigative Medicine, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
98
|
Carrion-Castillo A, Franke B, Fisher SE. Molecular genetics of dyslexia: an overview. DYSLEXIA (CHICHESTER, ENGLAND) 2013; 19:214-240. [PMID: 24133036 DOI: 10.1002/dys.1464] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 05/28/2023]
Abstract
Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs.
Collapse
Affiliation(s)
- Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | | | | |
Collapse
|
99
|
Worthey EA, Raca G, Laffin JJ, Wilk BM, Harris JM, Jakielski KJ, Dimmock DP, Strand EA, Shriberg LD. Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech. J Neurodev Disord 2013; 5:29. [PMID: 24083349 PMCID: PMC3851280 DOI: 10.1186/1866-1955-5-29] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/16/2013] [Indexed: 12/12/2022] Open
Abstract
Background Childhood apraxia of speech (CAS) is a rare, severe, persistent pediatric motor speech disorder with associated deficits in sensorimotor, cognitive, language, learning and affective processes. Among other neurogenetic origins, CAS is the disorder segregating with a mutation in FOXP2 in a widely studied, multigenerational London family. We report the first whole-exome sequencing (WES) findings from a cohort of 10 unrelated participants, ages 3 to 19 years, with well-characterized CAS. Methods As part of a larger study of children and youth with motor speech sound disorders, 32 participants were classified as positive for CAS on the basis of a behavioral classification marker using auditory-perceptual and acoustic methods that quantify the competence, precision and stability of a speaker’s speech, prosody and voice. WES of 10 randomly selected participants was completed using the Illumina Genome Analyzer IIx Sequencing System. Image analysis, base calling, demultiplexing, read mapping, and variant calling were performed using Illumina software. Software developed in-house was used for variant annotation, prioritization and interpretation to identify those variants likely to be deleterious to neurodevelopmental substrates of speech-language development. Results Among potentially deleterious variants, clinically reportable findings of interest occurred on a total of five chromosomes (Chr3, Chr6, Chr7, Chr9 and Chr17), which included six genes either strongly associated with CAS (FOXP1 and CNTNAP2) or associated with disorders with phenotypes overlapping CAS (ATP13A4, CNTNAP1, KIAA0319 and SETX). A total of 8 (80%) of the 10 participants had clinically reportable variants in one or two of the six genes, with variants in ATP13A4, KIAA0319 and CNTNAP2 being the most prevalent. Conclusions Similar to the results reported in emerging WES studies of other complex neurodevelopmental disorders, our findings from this first WES study of CAS are interpreted as support for heterogeneous genetic origins of this pediatric motor speech disorder with multiple genes, pathways and complex interactions. We also submit that our findings illustrate the potential use of WES for both gene identification and case-by-case clinical diagnostics in pediatric motor speech disorders.
Collapse
Affiliation(s)
- Elizabeth A Worthey
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
von Hohenberg CC, Wigand MC, Kubicki M, Leicht G, Giegling I, Karch S, Hartmann AM, Konte B, Friedl M, Ballinger T, Eckbo R, Bouix S, Jäger L, Shenton ME, Rujescu D, Mulert C. CNTNAP2 polymorphisms and structural brain connectivity: a diffusion-tensor imaging study. J Psychiatr Res 2013; 47:1349-56. [PMID: 23871450 PMCID: PMC3780783 DOI: 10.1016/j.jpsychires.2013.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 11/16/2022]
Abstract
CNTNAP2 is a gene on chromosome 7 that has shown associations with autism and schizophrenia, and there is evidence that it plays an important role for neuronal synchronization and brain connectivity. In this study, we assessed the relationship between Diffusion Tensor Imaging (DTI), a putative marker of anatomical brain connectivity, and multiple single nucleotide polymorphisms (SNPs) spread out over this large gene. 81 healthy controls and 44 patients with schizophrenia (all Caucasian) underwent DTI and genotyping of 31 SNPs within CNTNAP2. We employed Tract-based Spatial Statistics (TBSS) for inter-subject brain registration and computed average diffusivity values for six major white matter tracts. Analyses of Covariance (ANCOVAs) were computed to test for possible associations with genotypes. The strongest association, which survived rigorous Bonferroni correction, was between rs2710126 genotype and Fractional Anisotropy (FA) in the uncinate fasciculus (p = .00003). This anatomical location is particularly interesting given the enriched fronto-temporal expression of CNTNAP2 in the developing brain. For this SNP, no phenotype association has been reported before. There were several further genotype-DTI associations that were nominally significant but did not survive Bonferroni correction, including an association between axial diffusivity in the dorsal cingulum bundle and a region in intron 13 (represented by rs2710102, rs759178, rs2538991), which has previously been reported to be associated with anterior-posterior functional connectivity. We present new evidence about the effects of CNTNAP2 on brain connectivity, whose disruption has been hypothesized to be central to schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Christian Clemm von Hohenberg
- Psychiatry Neuroimaging Laboratory, Brigham and Women's
Hospital and Harvard Medical School, Boston, MA,Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany,Psychiatry Neuroimaging Branch, Imaging Center NeuroImage Nord and
Department of Psychiatry and Psychotherapy, University Medical Center
Hamburg-Eppendorf, Germany
| | - Marlene C. Wigand
- Psychiatry Neuroimaging Laboratory, Brigham and Women's
Hospital and Harvard Medical School, Boston, MA,Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany,Psychiatry Neuroimaging Branch, Imaging Center NeuroImage Nord and
Department of Psychiatry and Psychotherapy, University Medical Center
Hamburg-Eppendorf, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Brigham and Women's
Hospital and Harvard Medical School, Boston, MA,Departments of Psychiatry and Radiology, Harvard Medical School,
Boston, MA
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Imaging Center NeuroImage Nord and
Department of Psychiatry and Psychotherapy, University Medical Center
Hamburg-Eppendorf, Germany
| | - Ina Giegling
- Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Susanne Karch
- Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Annette M. Hartmann
- Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Bettina Konte
- Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Marion Friedl
- Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Ballinger
- Psychiatry Neuroimaging Laboratory, Brigham and Women's
Hospital and Harvard Medical School, Boston, MA
| | - Ryan Eckbo
- Psychiatry Neuroimaging Laboratory, Brigham and Women's
Hospital and Harvard Medical School, Boston, MA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Brigham and Women's
Hospital and Harvard Medical School, Boston, MA,Departments of Psychiatry and Radiology, Harvard Medical School,
Boston, MA
| | - Lorenz Jäger
- Department of Radiology, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's
Hospital and Harvard Medical School, Boston, MA,Departments of Psychiatry and Radiology, Harvard Medical School,
Boston, MA,Clinical Neuroscience Division, Laboratory of Neuroscience, Veterans
Affairs Boston Healthcare System, Brockton Division, Brockton, MA
| | - Dan Rujescu
- Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany,Department of Psychiatry, University Hospital and Faculty of
Medicine, Martin-Luther-Universität Halle-Wittenberg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Imaging Center NeuroImage Nord and
Department of Psychiatry and Psychotherapy, University Medical Center
Hamburg-Eppendorf, Germany
| |
Collapse
|