51
|
Akbulut SE, Okay A, Aksoy T, Aras ES, Büyük İ. The genome-wide characterization of WOX gene family in Phaseolus vulgaris L. during salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1297-1309. [PMID: 35910444 PMCID: PMC9334486 DOI: 10.1007/s12298-022-01208-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 06/03/2023]
Abstract
The WUSCHEL-Related Homeobox (WOX) family is a type of homeobox transcription factor superfamily and its members perform many functions ranging from plant embryonic growth to organ formation in plants. Although the WOX proteins have been identified and characterized in many plant species, genome-wide identification and characterization of WOX proteins in the Phaseolus vulgaris genome has been performed for the first time in this study. Accordingly, 18 WOX proteins were identified using bioinformatics tools and biochemical/physicochemical properties of these proteins were investigated. Phvul-WOX genes were found to be categorized into three major phylogenetic groups according to the phylogenetic analysis and a total of five segmental duplication events were detected after duplication analysis. Moreover, the Phvul-WOX genes were found to be expressed in different plant tissues at different levels and some stress-related miRNAs have been found to target the Phvul-WOX genes based on miRNA analysis. Additionaly, MDA content, total protein level and catalase enzyme activity analyses were conducted in two P. vulgaris cultivars namely Yakutiye cv. and Zulbiye cv. subjected to 150 mM salt stress. Next, these cultivars were used for screening the expression levels of Phvul-WOX-1, Phvul-WOX-9, Phvul-WOX-11, Phvul-WOX-15 and Phvul-WOX-16 genes in response to salt stress. The insights gained from this study may be of assistance to the researchers who work in this area. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01208-1.
Collapse
Affiliation(s)
- Simay Ezgi Akbulut
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Aybüke Okay
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Turkey
| | - Taner Aksoy
- Ministry of Agriculture and Forestry, General Directorate of Plant Production, Ankara, Turkey
- Faculty of Agriculture, Department of Agricultural Economics, Bursa, Turkey
| | - E. Sümer Aras
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - İlker Büyük
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
52
|
Zhou J, Qiao J, Wang J, Quan R, Huang R, Qin H. OsQHB Improves Salt Tolerance by Scavenging Reactive Oxygen Species in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:848891. [PMID: 35599895 PMCID: PMC9115556 DOI: 10.3389/fpls.2022.848891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity is a major environmental stress that restricts the growth and yield of crops. Mining the key genes involved in the balance of rice salt tolerance and yield will be extremely important for us to cultivate salt-tolerance rice varieties. In this study, we report a WUSCHEL-related homeobox (WOX) gene, quiescent-center-specific homeobox (OsQHB), positively regulates yield-related traits and negatively regulates salt tolerance in rice. Mutation in OsQHB led to a decrease in plant height, tiller number, panicle length, grain length and grain width, and an increase in salt tolerance. Transcriptome and qPCR analysis showed that reactive oxygen species (ROS) scavenging-related genes were regulated by OsQHB. Moreover, the osqhb mutants have higher ROS-scavenging enzymes activities and lower accumulation of ROS and malondialdehyde (MDA) under salt stress. Thus, our findings provide new insights into the role of rice WOX gene family in rice development and salt tolerance, and suggest that OsQHB is a valuable target for improving rice production in environments characterized by salt stress.
Collapse
Affiliation(s)
- Jiahao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinzhu Qiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| |
Collapse
|
53
|
A Preliminary Investigation on the Functional Validation and Interactions of PoWOX Genes in Peony (Paeonia ostii). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
As a woody plant, peony (Paeonia suffruticosa) has a long growth cycle and inefficient traditional breeding techniques. There is an urgent need in peony molecular breeding to establish an efficient and stable in vitro regeneration and genetic transformation system, in order to overcome the recalcitrant characteristics of peony regeneration and shorten the breeding cycle. The development of plant somatic embryos is an important way to establish an efficient and stable in vitro regeneration and genetic transformation system. Plant-specific WUSCHEL-related homeobox (WOX) family transcription factors play important roles in plant development, from embryogenesis to lateral organ development. Therefore, in this research, four PoWOX genes of “Fengdan” (Paeonia ostii) were cloned from the peony genome and transcriptome data of preliminary peony somatic embryos. The sequence characteristics and evolutionary relationships of the PoWOX genes were analyzed. It was demonstrated that the four PoWOX genes, named PoWOX1, PoWOX4, PoWOX11, and PoWOX13, belonged to three branches of the WOX gene family. Their expression patterns were analyzed at different stages of development and in different tissues of peony seedlings. The expression localization of the PoWOX genes was determined to be the nucleus via subcellular localization assay. Finally, the interaction protein of the PoWOX genes was identified via yeast two-hybrid assay combined with bimolecular fluorescence complementation assay. It was shown that PoWOX1 and PoWOX13 proteins could form homodimers by themselves, and PoWOX11 interacted with PoWOX1 and PoWOX13 to form heterodimers. Peony stem cell activity may be regulated from PoWOX1 and PoWOX13 by forming dimers and moving to peony stem cells through plasmodesmata. Additionally, PoWOX11–PoWOX1 and PoWOX11–PoWOX13 may play important regulatory functions in promoting the proliferation of stem cells and maintaining the homeostasis of stem cells in the SAM of peony stems. Exploring the critical genes and regulatory factors in the development of the peony somatic embryo is beneficial not only to understand the molecular and regulatory mechanisms of peony somatic embryo development but also to achieve directed breeding and improvements in efficiency through genetic engineering breeding technology to accelerate the fundamental process of molecular breeding in peony.
Collapse
|
54
|
Chang L, Hu M, Ning J, He W, Gao J, Ndjiondjop MN, Fu Y, Liu F, Sun H, Gu P, Sun C, Zhu Z. The genetic control of glabrous glume during African rice domestication. J Genet Genomics 2022; 49:427-436. [DOI: 10.1016/j.jgg.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/27/2022]
|
55
|
Global Analysis of the WOX Transcription Factor Gene Family in Populus × xiaohei T. S. Hwang et Liang Reveals Their Stress−Responsive Patterns. FORESTS 2022. [DOI: 10.3390/f13010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The WUSCHEL−related homeobox (WOX) family is a group of plant−specific transcription factors that play important regulatory roles in embryo formation, stem cell stability, and organogenesis. To date, there are few studies on the molecular mechanisms involved in this family of genes in response to stress. Thus, in this study, eight WOX genes were obtained from an endemic Chinese resilient tree species, Populus × xiaohei T. S. Hwang et Liang. Bioinformatic analysis showed that the WOX genes all contained a conserved structural domain consisting of 60 amino acids, with some differences in physicochemical properties. Phylogenetic analysis revealed that WOX members were divided into three evolutionary clades, with four, one, and three members in the ancient, intermediate, and modern evolutionary clades, respectively. The conserved structural domain species as well as the organization and gene structure of WOX genes within the same subfamily were highly uniform. Chromosomal distribution and genome synteny analyses revealed seven segmental−duplicated gene pairs among the PsnWOX gene family that were mainly under purifying selection conditions. Semi−quantitative interpretation (SQ−PCR) analysis showed that the WOX gene was differentially expressed in different tissues, and it was hypothesized that the functions performed by different members were diverse. The family members were strongly and differentially expressed under CdCl2, NaCl, NaHCO3, and PEG treatments, suggesting that WOX genes function in various aspects of abiotic stress defense responses. These results provide a theoretical basis for investigating the morphogenetic effects and abiotic stress responses of this gene family in woody plants.
Collapse
|
56
|
WUSCHEL-related homeobox family genes in rice control lateral root primordium size. Proc Natl Acad Sci U S A 2022; 119:2101846119. [PMID: 34983834 PMCID: PMC8740593 DOI: 10.1073/pnas.2101846119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
In recent years, phenotypic plasticity has received attention for improving plant adaptability to variable environments. For more than half a century, it has been known that rice and cereal plants develop different types of lateral roots (LRs), unlike the dicot model plant Arabidopsis. Despite the importance of plastic LR development under variable water conditions, the molecular mechanisms regulating LR types are unknown. Here, we report the regulatory mechanism of LR primordium size in rice, an important determinant of LR type. We identified two WUSCHEL-related homeobox (WOX) transcription factors that opposingly regulate LR primordium size. Our findings form the basis for improving root phenotypic plasticity for sustainable crop production under variable environments. The development of a plastic root system is essential for stable crop production under variable environments. Rice plants have two types of lateral roots (LRs): S-type (short and thin) and L-type (long, thick, and capable of further branching). LR types are determined at the primordium stage, with a larger primordium size in L-types than S-types. Despite the importance of LR types for rice adaptability to variable water conditions, molecular mechanisms underlying the primordium size control of LRs are unknown. Here, we show that two WUSCHEL-related homeobox (WOX) genes have opposing roles in controlling LR primordium (LRP) size in rice. Root tip excision on seminal roots induced L-type LR formation with wider primordia formed from an early developmental stage. QHB/OsWOX5 was isolated as a causative gene of a mutant that is defective in S-type LR formation but produces more L-type LRs than wild-type (WT) plants following root tip excision. A transcriptome analysis revealed that OsWOX10 is highly up-regulated in L-type LRPs. OsWOX10 overexpression in LRPs increased the LR diameter in an expression-dependent manner. Conversely, the mutation in OsWOX10 decreased the L-type LR diameter under mild drought conditions. The qhb mutants had higher OsWOX10 expression than WT after root tip excision. A yeast one-hybrid assay revealed that the transcriptional repressive activity of QHB was lost in qhb mutants. An electrophoresis mobility shift assay revealed that OsWOX10 is a potential target of QHB. These data suggest that QHB represses LR diameter increase, repressing OsWOX10. Our findings could help improve root system plasticity under variable environments.
Collapse
|
57
|
Feng C, Zou S, Gao P, Wang Z. In silico identification, characterization expression profile of WUSCHEL-Related Homeobox (WOX) gene family in two species of kiwifruit. PeerJ 2021; 9:e12348. [PMID: 34760371 PMCID: PMC8557698 DOI: 10.7717/peerj.12348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/29/2021] [Indexed: 11/23/2022] Open
Abstract
The WUSCHEL (WUS)-related homeobox (WOX) gene family is a class of plant-specific transcriptional factors and plays a crucial role in forming the shoot apical meristem and embryonic development, stem cell maintenance, and various other developmental processes. However, systematic identification and characterization of the kiwifruit WOX gene family have not been studied. This study identified 17 and 10 WOX genes in A. chinensis (Ac) and A. eriantha (Ae) genomes, respectively. Phylogenetic analysis classified kiwifruit WOX genes from two species into three clades. Analysis of phylogenetics, synteny patterns, and selection pressure inferred that WOX gene families in Ac and Ae had undergone different evolutionary patterns after whole-genome duplication (WGD) events, causing differences in WOX gene number and distribution. Ten conserved motifs were identified in the kiwifruit WOX genes, and motif architectures of WOXs belonging to different clades highly diverged. The cis-element analysis and expression profiles investigation indicated the functional differentiation of WOX genes and identified the potential WOXs in response to stresses. Our results provided insight into general characters, evolutionary patterns, and functional diversity of kiwifruit WOXs.
Collapse
Affiliation(s)
- Chen Feng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Shuaiyu Zou
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Zupeng Wang
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan, China.,Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
58
|
Genome-Wide Analysis of the Homeobox Gene Family and Identification of Drought-Responsive Members in Populus trichocarpa. PLANTS 2021; 10:plants10112284. [PMID: 34834651 PMCID: PMC8653966 DOI: 10.3390/plants10112284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
Homeobox (HB) genes play critical roles in the regulation of plant morphogenesis, growth and development. Here, we identified a total of 156 PtrHB genes from the Populus trichocarpa genome. According to the topologies and taxonomy of the phylogenetic tree constructed by Arabidopsis thaliana HB members, all PtrHB proteins were divided into six subgroups, namely HD-ZIP, ZF-HD, HB-PHD, TALE, WOX and HB-OTHERS. Multiple alignments of conserved homeodomains (HDs) revealed the conserved loci of each subgroup, while gene structure analysis showed similar exon–intron gene structures, and motif analysis indicated the similarity of motif number and pattern in the same subgroup. Promoter analysis indicated that the promoters of PtrHB genes contain a series of cis-acting regulatory elements involved in responding to various abiotic stresses, indicating that PtrHBs had potential functions in these processes. Collinearity analysis revealed that there are 96 pairs of 127 PtrHB genes mainly distributing on Chromosomes 1, 2, and 5. We analyzed the spatio-temporal expression patterns of PtrHB genes, and the virus-induced gene silencing (VIGS) of PtrHB3 gene resulted in the compromised tolerance of poplar seedlings to mannitol treatment. The bioinformatics on PtrHB family and preliminary exploration of drought-responsive genes can provide support for further study of the family in woody plants, especially in drought-related biological processes. It also provides a direction for developing new varieties of poplar with drought resistance. Overall, our results provided significant information for further functional analysis of PtrHB genes in poplar and demonstrated that PtrHB3 is a dominant gene regulating tolerance to water stress treatment in poplar seedlings.
Collapse
|
59
|
Shi L, Wang K, Du L, Song Y, Li H, Ye X. Genome-Wide Identification and Expression Profiling Analysis of WOX Family Protein-Encoded Genes in Triticeae Species. Int J Mol Sci 2021; 22:ijms22179325. [PMID: 34502234 PMCID: PMC8431079 DOI: 10.3390/ijms22179325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
The WOX family is a group of plant-specific transcription factors which regulate plant growth and development, cell division and differentiation. From the available genome sequence databases of nine Triticeae species, 199 putative WOX genes were identified. Most of the identified WOX genes were distributed on the chromosomes of homeologous groups 1 to 5 and originated via the orthologous evolution approach. Parts of WOX genes in Triticum aestivum were confirmed by the specific PCR markers using a set of Triticum. durum-T. aestivum genome D substitution lines. All of these identified WOX proteins could be grouped into three clades, similar to those in rice and Arabidopsis. WOX family members were conserved among these Triticeae plants; all of them contained the HOX DNA-binding homeodomain, and WUS clade members contained the characteristic WUS-box motif, while only WUS and WOX9 contained the EAR motif. The RNA-seq and qPCR analysis revealed that the TaWOX genes had tissue-specific expression feature. From the expression patterns of TaWOX genes during immature embryo callus production, TaWOX9 is likely closely related with the regulation of regeneration process in T. aestivum. The findings in this study could provide a basis for evolution and functional investigation and practical application of the WOX family genes in Triticeae species.
Collapse
Affiliation(s)
- Lei Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (K.W.); (L.D.)
- Key Laboratory of Agricultural Biotechnology of Ningxia, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (K.W.); (L.D.)
| | - Lipu Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (K.W.); (L.D.)
| | - Yuxia Song
- Key Laboratory of Agricultural Biotechnology of Ningxia, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (K.W.); (L.D.)
- Correspondence: (H.L.); (X.Y.)
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (K.W.); (L.D.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (H.L.); (X.Y.)
| |
Collapse
|
60
|
Shafique Khan F, Zeng RF, Gan ZM, Zhang JZ, Hu CG. Genome-Wide Identification and Expression Profiling of the WOX Gene Family in Citrus sinensis and Functional Analysis of a CsWUS Member. Int J Mol Sci 2021; 22:4919. [PMID: 34066408 PMCID: PMC8124563 DOI: 10.3390/ijms22094919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/23/2023] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors (TFs) are well known for their role in plant development but are rarely studied in citrus. In this study, we identified 11 putative genes from the sweet orange genome and divided the citrus WOX genes into three clades (modern/WUSCHEL(WUS), intermediate, and ancient). Subsequently, we performed syntenic relationship, intron-exon organization, motif composition, and cis-element analysis. Co-expression analysis based on RNA-seq and tissue-specific expression patterns revealed that CsWOX gene expression has multiple intrinsic functions. CsWUS homolog of AtWUS functions as a transcriptional activator and binds to specific DNA. Overexpression of CsWUS in tobacco revealed dramatic phenotypic changes, including malformed leaves and reduced gynoecia with no seed development. Silencing of CsWUS in lemon using the virus-induced gene silencing (VIGS) system implied the involvement of CsWUS in cells of the plant stem. In addition, CsWUS was found to interact with CsCYCD3, an ortholog in Arabidopsis (AtCYCD3,1). Yeast one-hybrid screening and dual luciferase activity revealed that two TFs (CsRAP2.12 and CsHB22) bind to the promoter of CsWUS and regulate its expression. Altogether, these results extend our knowledge of the WOX gene family along with CsWUS function and provide valuable findings for future study on development regulation and comprehensive data of WOX members in citrus.
Collapse
Affiliation(s)
| | | | | | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (F.S.K.); (R.-F.Z.); (Z.-M.G.)
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (F.S.K.); (R.-F.Z.); (Z.-M.G.)
| |
Collapse
|
61
|
Wolabu TW, Wang H, Tadesse D, Zhang F, Behzadirad M, Tvorogova VE, Abdelmageed H, Liu Y, Chen N, Chen J, Allen RD, Tadege M. WOX9 functions antagonistic to STF and LAM1 to regulate leaf blade expansion in Medicago truncatula and Nicotiana sylvestris. THE NEW PHYTOLOGIST 2021; 229:1582-1597. [PMID: 32964420 DOI: 10.1111/nph.16934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
WOX family transcription factors regulate multiple developmental programs. The intermediate clade transcriptional activator WOX9 functions together with the modern clade transcriptional repressor WOX genes in embryogenesis and meristems maintenance, but the mechanism of this interaction is unclear. STF and LAM1 are WOX1 orthologs required for leaf blade outgrowth in Medicago truncatula and Nicotiana sylvestris, respectively. Using biochemical methods and genome editing technology, here we show that WOX9 is an abaxial factor and functions antagonistically to STF and LAM1 to regulate leaf blade development. While NsWOX9 ectopic expression enhances the lam1 mutant phenotype, and antisense expression partially rescues the lam1 mutant, both overexpression and knockout of NsWOX9 in N. sylvestris resulted in a range of severe leaf blade distortions, indicating important role in blade development. Our results indicate that direct repression of WOX9 by WUS clade repressor STF/LAM1 is required for correct blade architecture and patterning in M. truncatula and N. sylvestris. These findings suggest that controlling transcriptional activation and repression mechanisms by direct interaction of activator and repressor WOX genes may be required for cell proliferation and differentiation homeostasis, and could be an evolutionarily conserved mechanism for the development of complex and diverse morphology in flowering plants.
Collapse
Affiliation(s)
- Tezera W Wolabu
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Hui Wang
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dimiru Tadesse
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Fei Zhang
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8104, USA
| | - Marjan Behzadirad
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Varvara E Tvorogova
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, 199034, Russia
| | - Haggag Abdelmageed
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Agricultural Botany, Faculty of Agriculture, Cairo University, Giza,, 12613, Egypt
| | - Ye Liu
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Naichong Chen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Randy D Allen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Million Tadege
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
62
|
Han N, Tang R, Chen X, Xu Z, Ren Z, Wang L. Genome-wide identification and characterization of WOX genes in Cucumis sativus. Genome 2021; 64:761-776. [PMID: 33493082 DOI: 10.1139/gen-2020-0029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
WUSCHEL-related homeobox (WOX) proteins are plant-specific transcription factors that are profoundly involved in regulation of plant development and stress responses. In this study, we totally identified 11 WOX transcription factor family members in cucumber (Cucumis sativus, CsWOX) genome and classified them into three clades with nine subclades based on phylogenetic analysis results. Alignment of amino acid sequences revealed that all WOX members in cucumber contained the typical homeodomain, which consists of 60-66 amino acids and is folded into a helix-turn-helix structure. Gene duplication event analysis indicated that CsWOX1a and CsWOX1b were a segment duplication pair, which might affect the number of WOX members in cucumber genome. The expression profiles of CsWOX genes in different tissues demonstrated that the members sorted into the ancient clade (CsWOX13a and CsWOX13b) were constitutively expressed at higher levels in comparison to the others. Cis-element analysis in promoter regions suggested that the expression of CsWOX genes was associated with phytohormone pathways and stress responses, which was further supported by RNA-seq data. Taken together, our results provide new insights into the evolution of cucumber WOX genes and improve our understanding about the biological functions of the CsWOX gene family.
Collapse
Affiliation(s)
- Ni Han
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Rui Tang
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xueqian Chen
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhixuan Xu
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Lina Wang
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
63
|
Rathour M, Sharma A, Kaur A, Upadhyay SK. Genome-wide characterization and expression and co-expression analysis suggested diverse functions of WOX genes in bread wheat. Heliyon 2020; 6:e05762. [PMID: 33937537 PMCID: PMC8079172 DOI: 10.1016/j.heliyon.2020.e05762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
WUSCHEL-related homeobox (WOX) genes belong to the homeobox superfamily, are plant-specific and play vital functions in the growth and development. Herein, we identified a total of 43 TaWOX genes in the allohexaploid (AABBDD) genome of Triticum aestivum L. These genes were distributed on the various chromosomes of each subgenome (A, B and D). The phylogenetic analysis showed the clustering of TaWOXs into three clades: ancient, intermediate and modern or WUS. The gene and protein structures including exon/intron organization, intron phases, and domain and motif distribution were found to be conserved in each phylogenetic clade. The subcellular localization was predicted as nuclear. The Ka/Ks analyses suggested the purifying selection of paralogous genes. The differential expression profiling of various TaWOXs in numerous tissue developmental stages and different layers of grains suggested their role in growth and development. Moreover, a few genes exhibited modulated expression during abiotic and biotic stress conditions, which revealed their roles in stress response. The occurrence of various cis-acting regulatory elements further confirmed their role in plant development and stress tolerance. The co-expression analyses suggested the interactions of these genes with other genes, involved in various processes including plant development, signalling and stress responses. The present study reported several characteristic features of TaWOXs genes that can be useful for further characterization in future studies.
Collapse
Affiliation(s)
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Amandeep Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
64
|
|
65
|
Zhang C, Wang J, Wang X, Li C, Ye Z, Zhang J. UF, a WOX gene, regulates a novel phenotype of un-fused flower in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110523. [PMID: 32563463 DOI: 10.1016/j.plantsci.2020.110523] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Flower formation is a basic condition for fruit set in all flowering plants. The normal stamen of tomato flower fused together to form a yellow cylinder surrounding the carpels. In this study, we identified an un-fused flower (uf) tomato mutant that is defective in petal, carpal and stamen fusion and lateral outgrowth. After RNA-seq-based BSA (BSR), the candidate region location was identified in the long arm of chromosome 3. Using map-based cloning with InDel and CAPS markers, the UF candidate gene was mapped in a 104 kb region. In this region, a WOX (WUSCHEL-related homeobox) transcription factor SlWOX1 was considered as a candidate of UF as there is a 72bp deletion in its second exon in uf mutant. The mutations of SlWOX1 generated by CRISPR/CAS9 approach under wild-type background reproduced the phenotypes of uf mutant, indicating that the SlWOX1 gene is indeed UF. Interestingly, expression analysis of organ lateral polarity determinant genes showed that abaxial genes (SlYABBY5 and SlARF4) and adaxial genes (AS and HD-ZIPIII) were significantly down-regulated in the uf mutant, which is different to that in Arabidopsis and petunia. In conclusion, this work revealed a novel function of SlWOX1 in the regulation of flower development in tomato.
Collapse
Affiliation(s)
- Chunli Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Jiafa Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Xin Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan430070, PR China.
| |
Collapse
|
66
|
Tang Y, Li H, Guan Y, Li S, Xun C, Dong Y, Huo R, Guo Y, Bao X, Pei E, Shen Q, Zhou H, Liao J. Genome-Wide Identification of the Physic Nut WUSCHEL-Related Homeobox Gene Family and Functional Analysis of the Abiotic Stress Responsive Gene JcWOX5. Front Genet 2020; 11:670. [PMID: 32655627 PMCID: PMC7325900 DOI: 10.3389/fgene.2020.00670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/02/2020] [Indexed: 11/29/2022] Open
Abstract
Plant-specific WOX transcription factors have important regulatory functions in plant development and response to abiotic stress. However, the identification and functional analysis of members of the WOX family have rarely been reported in the physic nut plant until now. Our research identified 12 WOX genes (JcWOXs) in physic nut, and these genes were divided into three groups corresponding to the ancient clade, WUS clade, and intermediate clade. Expression analysis based on RNA-seq and qRT-PCR showed that most of the JcWOX genes were expressed in at least one of the tissues tested, whereas five genes were identified as being highly responsive to drought and salt stresses. Subcellular localization analysis in Arabidopsis protoplast cells showed that JcWOX5 encoded a nuclear-localized protein. JcWOX5-overexpression plants increased sensitivity to drought stress, and transgenic plants suggested a lower proline content and CAT activity, higher relative electrolyte leakage, higher MDA content, and higher rate of water loss under drought conditions. Expression of some stress-related genes was obviously lower in the transformed rice lines as compared to their expression in wild-type rice lines under drought stress. Further data on JcWOX5-overexpressing plants reducing drought tolerance verified the potential role of JcWOX genes in responsive to abiotic stress. Collectively, the study provides a foundation for further functional analysis of JcWOX genes and the improvement of physic nut crops.
Collapse
Affiliation(s)
- Yuehui Tang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou, China
| | - Han Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Yaxin Guan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Shen Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Chunfei Xun
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Yanyang Dong
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Rui Huo
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Yuxi Guo
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Xinxin Bao
- School of Journalism and Communication, Zhoukou Normal University, Zhoukou, China
| | - Enqing Pei
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Qianmiao Shen
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - He Zhou
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Jingjing Liao
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| |
Collapse
|
67
|
Li X, Li J, Cai M, Zheng H, Cheng Z, Gao J. Identification and Evolution of the WUSCHEL-Related Homeobox Protein Family in Bambusoideae. Biomolecules 2020; 10:biom10050739. [PMID: 32397500 PMCID: PMC7278010 DOI: 10.3390/biom10050739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Bamboos (Bambusoideae) are fast-growing species due to their rapid growth rate and ability to reproduce annually via cloned buds produced on the rhizome. WUSCHEL-related homeobox (WOX) genes have been reported to regulate shoot apical meristem organization, lateral organ formation, cambium and vascular proliferation, and so on, but have rarely been studied in bamboos. In this study, the WOXs of both herbaceous bamboo species (12 OlaWOXs and nine RguWOXs) and woody bamboo species (18 GanWOXs, 27 PheWOXs, and 26 BamWOXs) were identified and categorized into three clades based on their phylogenetic relationship-ancient, intermediate, or WUS clade. Polyploidy is the major driver of the expansion of the bamboo WOX family. Eight conserved domains, besides the homeodomain, were identified by comparatively analyzing the WOXs of dicot and monocot species. Intensive purifying selection pressure in the coding region of specific domains explained the functional similarity of WOXs between different species. For Bambusoideae WOXs, polyploidy is the major driver of the expansion of the WOX family. Stronger purifying selection was found in orthologous WOXs of Bambusoideae, especially for WOX4s and WOX5s, which are conserved not only at the translational levels, but also at the genome level. Several conserved cis-acting elements were discovered at similar position in the promoters of the orthologous WOXs. For example, AP2/ERF protein-binding elements and B3 protein-binding elements were found in the promoters of the bamboo WOX4, while MYB protein-binding elements and Dof protein-binding elements were found in the promoters of bamboo WOX5, and MADS protein-binding sites was found in the promoters of bamboo WUS, WOX3, and WOX9. These conserved positions may play an important role in regulating the expression of bamboo WOXs. Our work provides insight into the origin and evolution of bamboo WOXs, and will facilitate functional investigations of the clonal propagation of bamboos.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Gao
- Correspondence: or ; Tel.: +86-010-8478-9801
| |
Collapse
|
68
|
Gu R, Song X, Liu X, Yan L, Zhou Z, Zhang X. Genome-wide analysis of CsWOX transcription factor gene family in cucumber (Cucumis sativus L.). Sci Rep 2020; 10:6216. [PMID: 32277156 PMCID: PMC7148364 DOI: 10.1038/s41598-020-63197-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/21/2020] [Indexed: 12/22/2022] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors are plant-specific members that characterized by the presence of a homeodomain. It has been shown that WOX members regulate several aspects of plant development, but the biological functions of this CsWOX gene family remain largely unknown in cucumber (Cucumis sativus L.). In this study, we identified and characterized 11 putative CsWOX genes in cucumber, which are also divided into three major clades (e.g., the Ancient clade, the Intermediate clade and the WUS clade). Expression pattern analysis revealed tissue-specific expression patterns of CsWOX genes, including that CsWOX9 is mainly expressed in developing fruit and also has lower expression in tip and axillary bud, which was further confirmed by in situ hybridization assay. Moreover, overexpression of CsWOX9 in Arabidopsis led to increased branches and rosette leaves, and shorter siliques. Together, these results indicated that CsWOX members may regulate cucumber growth and development.
Collapse
Affiliation(s)
- Ran Gu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaofei Song
- Analysis and Testing Centre, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Liying Yan
- College of Horticulture Science and Technology, Hebei Normal University of Science& Technology, Qinhuangdao, 066004, China
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
69
|
Chang W, Guo Y, Zhang H, Liu X, Guo L. Same Actor in Different Stages: Genes in Shoot Apical Meristem Maintenance and Floral Meristem Determinacy in Arabidopsis. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
70
|
Li Z, Liu D, Xia Y, Li Z, Jing D, Du J, Niu N, Ma S, Wang J, Song Y, Yang Z, Zhang G. Identification of the WUSCHEL-Related Homeobox (WOX) Gene Family, and Interaction and Functional Analysis of TaWOX9 and TaWUS in Wheat. Int J Mol Sci 2020; 21:ijms21051581. [PMID: 32111029 PMCID: PMC7084607 DOI: 10.3390/ijms21051581] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 11/16/2022] Open
Abstract
The WUSCHEL-related homeobox (WOX) is a family of plant-specific transcription factors, with important functions, such as regulating the dynamic balance of division and differentiation of plant stem cells and plant organ development. We identified 14 distinct TaWOX genes in the wheat (Triticum aestivum L.) genome, based on a genome-wide scan approach. All of the genes under evaluation had positional homoeologs on subgenomes A, B and D except TaWUS and TaWOX14. Both TaWOX14a and TaWOX14d had a paralogous copy on the same genome due to tandem duplication events. A phylogenetic analysis revealed that TaWOX genes could be divided into three groups. We performed functional characterization of TaWOX genes based on the evolutionary relationships among the WOX gene families of wheat, rice (Oryza sativa L.), and Arabidopsis. An overexpression analysis of TaWUS in Arabidopsis revealed that it affected the development of outer floral whorl organs. The overexpression analysis of TaWOX9 in Arabidopsis revealed that it promoted the root development. In addition, we identified some interaction between the TaWUS and TaWOX9 proteins by screening wheat cDNA expression libraries, which informed directions for further research to determine the functions of TaWUS and TaWOX9. This study represents the first comprehensive data on members of the WOX gene family in wheat.
Collapse
|
71
|
The WUSCHELa ( PtoWUSa) is Involved in Developmental Plasticity of Adventitious Root in Poplar. Genes (Basel) 2020; 11:genes11020176. [PMID: 32041377 PMCID: PMC7073988 DOI: 10.3390/genes11020176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022] Open
Abstract
WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors play critical roles in cell fate determination during plant development. As the founding member of the WOX family, WUSCHEL (WUS) is characterized for its role in maintaining stem cell in meristem. In this study, we investigated the function of Populus tomentosa WUSCHELa (PtoWUSa) in adventitious roots (ARs) in poplar. Expression profile analysis showed that PtoWUSa was not only expressed in shoot apical meristem and stem, but also expressed in ARs. Ectopic expression of PtoWUSa in Arabidopsis resulted in shortened primary root, as well as agravitropism and multiple branches. Overexpression of PtoWUSa in poplar increased the number of ARs but decreased their length. Moreover, the AR tip and lateral root tip became larger and swollen. In addition, the expression of auxin transporter genes PIN-FORMED were downregulated in ARs of transgenic plant. Taken together, these results suggest that PtoWUSa could be involved in AR development in poplar through regulating the polar auxin transport in ARs.
Collapse
|
72
|
Tanaka W, Hirano HY. Antagonistic action of TILLERS ABSENT1 and FLORAL ORGAN NUMBER2 regulates stem cell maintenance during axillary meristem development in rice. THE NEW PHYTOLOGIST 2020; 225:974-984. [PMID: 31486529 DOI: 10.1111/nph.16163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Shoot branches are formed from the axillary meristem and their formation is a key process in plant development. Although our understanding of the mechanisms underlying stem cell maintenance in the shoot apical meristem (SAM) is progressing, our knowledge of these mechanisms during the process of axillary meristem development is insufficient. To elucidate the genetic mechanisms underlying axillary meristem development in rice (Oryza sativa), we undertook a molecular genetic analysis focusing on TILLERS ABSENT1 (TAB1) and FLORAL ORGAN NUMBER2 (FON2), respective orthologs of the WUSCHEL and CLAVATA3 genes involved in SAM maintenance in Arabidopsis (Arabidopsis thaliana). We revealed that stem cells were established at an early stage of axillary meristem development in the wild-type, but were not maintained in tab1. By contrast, the stem cell region and TAB1 expression domain were expanded in fon2, and FON2 overexpression inhibited axillary meristem formation. These results indicate that TAB1 is required to maintain stem cells during axillary meristem development, whereas FON2 negatively regulates stem cell fate by restricting TAB1 expression. Thus, the genetic pathway regulating SAM maintenance in Arabidopsis seems to have been recruited to play a specific role within a narrow developmental window - namely, axillary meristem establishment - in rice.
Collapse
Affiliation(s)
- Wakana Tanaka
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Hiro-Yuki Hirano
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8654, Japan
| |
Collapse
|
73
|
Genome-Wide Identification of WOX Gene Family and Expression Analysis during Rejuvenational Rhizogenesis in Walnut (Juglans regia L.). FORESTS 2019. [DOI: 10.3390/f11010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rejuvenation is an efficient approach used in the cuttings of trees and horticultural crops, to improve their rooting ability, especially in difficult-to-root trees. WOX gene family members are involved in cell-fate transformation through balancing the maintenance and proliferation of the stem cells. However, there are no reports about the WOX gene family in Walnut (Juglans regia L.) and its relationship between rejuvenation and adventitious roots formation (ARF). Here, a genome-wide identification of JrWOX genes and their physical and chemical properties, phylogeny, and expression profiles in different organs and during rejuvenation-induced ARF is reported. The phenotype and histology characteristics of mature and rejuvenated cuttings (Mc and Rc) are also observed. In this study, 12 genes were identified and clustered into three groups based on phylogenetics, special domains, and conserved motifs. The gene structures and conserved motifs were relatively conserved, while the 12 sequences of the JrWOXs domain were diversified. Gene expression in root, stem, leaf, female flower, immature fruit, and zygotic embryo revealed that the expression levels of JrWOX4a, JrWOX4b, JrWOX5, JrWOX11, and JrWOX13 in the root were significantly higher than those of other JrWOXs, while only the expression of JrWOX11 was exclusive to the root organ. Additionally, rejuvenation treatment significantly induced almost all JrWOX genes, except JrWOX4a, JrWOX4b, and JrWOX13 (Rc 0 vs. Mc 0). During the ARF process, the transcripts of JrWOX11 and JrWOX5 were consecutively increased on a significance level; in contrast, the transcription levels of the other JrWOXs decreased or changed insignificantly. The phenotype and histology observation indicate that rejuvenation treatment made the base of the stem expand and reduced the thickness and density of sclerenchyma between the cortex and phloem. This might provide the conditions for the formation of new meristem niches. The results provided insight into the JrWOX genes’ general characteristics and their roles in rejuvenation-induced ARF.
Collapse
|
74
|
Identification of Homeobox Genes Associated with Lignification and Their Expression Patterns in Bamboo Shoots. Biomolecules 2019; 9:biom9120862. [PMID: 31835882 PMCID: PMC6995565 DOI: 10.3390/biom9120862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/17/2022] Open
Abstract
: Homeobox (HB) genes play critical roles in regulating various aspects of plant growth and development. However, little is known about HB genes in bamboo. In this study, a total of 115 HB genes (PeHB001‒PeHB115) were identified from moso bamboo (Phyllostachys edulis) and grouped into 13 distinct classes (BEL, DDT, HD-ZIP I‒IV, KNOX, NDX, PHD, PINTOX, PLINC, SAWADEE, and WOX) based on the conserved domains and phylogenetic analysis. The number of members in the different classes ranged from 2 to 24, and they usually varied in terms of exon‒intron distribution pattern and length. There were 20 conserved motifs found in 115 PeHBs, with motif 1 being the most common. Gene ontology (GO) analysis showed that PeHBs had diverse molecular functions, with 19 PeHBs being annotated as having xylem development, xylem, and phloem pattern formation functions. Co-expression network analysis showed that 10 of the 19 PeHBs had co-expression correlations, and three members of the KNOX class were hub proteins that interacted with other transcription factors (TFs) such as MYB, bHLH, and OVATE, which were associated with lignin synthesis. Yeast two-hybridization results further proved that PeHB037 (BEL class) interacted with PeHB057 (KNOX class). Transcriptome expression profiling indicated that all PeHBs except PeHB017 were expressed in at least one of the seven tissues of moso bamboo, and 90 PeHBs were expressed in all the tissues. The qRT-PCR results of the 19 PeHBs showed that most of them were upregulated in shoots as the height increased. Moreover, a KNOX binding site was found in the promoters of the key genes involved in lignin synthesis such as Pe4CL, PeC3H, PeCCR, and PeCOMT, which had positive expression correlations with five KNOX genes. Similar results were found in winter bamboo shoots with prolonged storage time, which was consistent with the degree of lignification. These results provide basic data on PeHBs in moso bamboo, which will be helpful for future functional research on PeHBs with positive regulatory roles in the process of lignification.
Collapse
|
75
|
Fu Y, Dong T, Tan L, Yin D, Zhang M, Zhao G, Ye M, Wu R. Identification of Shoot Differentiation-Related Genes in Populus euphratica Oliv. Genes (Basel) 2019; 10:genes10121034. [PMID: 31835855 PMCID: PMC6947848 DOI: 10.3390/genes10121034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022] Open
Abstract
De novo shoot regeneration is one of the important manifestations of cell totipotency in organogenesis, which reflects a survival strategy organism evolved when facing natural selection. Compared with tissue regeneration, and somatic embryogenesis, de novo shoot regeneration denotes a shoot regeneration process directly from detatched or injured tissues of plant. Studies on plant shoot regeneration had identified key genes mediating shoot regeneration. However, knowledge was derived from Arabidopsis; the regeneration capacity is hugely distinct among species. To achieve a comprehensive understanding of the shoot regeneration mechanism from tree species, we select four genetic lines of Populus euphratica from a natural population to be sequenced at transcriptome level. On the basis of the large difference of differentiation capacity, between the highly differentiated (HD) and low differentiated (LD) groups, the analysis of differential expression identified 4920 differentially expressed genes (DEGs), which were revealed in five groups of expression patterns by clustering analysis. Enrichment showed crucial pathways involved in regulation of regeneration difference, including “plant hormone signal transduction”, “cell differentiation”, "cellular response to auxin stimulus", and “auxin-activated signaling pathway”. The expression of nine genes reported to be associated with shoot regeneration was validated using quantitative real-time PCR (qRT-PCR). For the specificity of regeneration mechanism with P. euphratica, large amount of DEGs involved in "plant-pathogen interaction", ubiquitin-26S proteosome mediated proteolysis pathway, stress-responsive DEGs, and senescence-associated DEGs were summarized to possibly account for the differentiation difference with distinct genotypes of P. euphratica. The result in this study helps screening of key regulators in mediating the shoot differentiation. The transcriptomic characteristic in P. euphratica further enhances our understanding of key processes affecting the regeneration capacity of de novo shoots among distinct species.
Collapse
Affiliation(s)
- Yaru Fu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.F.); (T.D.); (L.T.); (D.Y.); (M.Z.); (G.Z.); (R.W.)
| | - Tianyu Dong
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.F.); (T.D.); (L.T.); (D.Y.); (M.Z.); (G.Z.); (R.W.)
| | - Lizhi Tan
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.F.); (T.D.); (L.T.); (D.Y.); (M.Z.); (G.Z.); (R.W.)
| | - Danni Yin
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.F.); (T.D.); (L.T.); (D.Y.); (M.Z.); (G.Z.); (R.W.)
| | - Miaomiao Zhang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.F.); (T.D.); (L.T.); (D.Y.); (M.Z.); (G.Z.); (R.W.)
| | - Guomiao Zhao
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.F.); (T.D.); (L.T.); (D.Y.); (M.Z.); (G.Z.); (R.W.)
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.F.); (T.D.); (L.T.); (D.Y.); (M.Z.); (G.Z.); (R.W.)
- Correspondence: ; Tel.: +86-10-6233-7061
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.F.); (T.D.); (L.T.); (D.Y.); (M.Z.); (G.Z.); (R.W.)
- Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
76
|
Wu CC, Li FW, Kramer EM. Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants. PLoS One 2019; 14:e0223521. [PMID: 31603924 PMCID: PMC6788696 DOI: 10.1371/journal.pone.0223521] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
The adaptation of plants to land required multiple morphological innovations. Among these include a variety of lateral organs that are initiated from apical meristems, in which the mantainance of undifferentiated stem cells is regulated by the homeodomain WUSCHEL-RELATED (WOX) transcription factors. Expansion of the WOX gene family has been associated with whole genome duplication (WGD) events and postulated to have been pivotal to the evolution of morphological complexity in land plants. Previous studies have classified the WOX gene family into three superclades (e.g., the ancient clade, the intermediate clade, and the modern clade). In order to improve our understanding of the evolution of the WOX gene family, we surveyed the WOX gene sequences from 38 genomes and 440 transcriptomes spanning the Viridiplantae and Rhodophyta. The WOX phylogeny inferred from 1039 WOX proteins drawn from 267 species with improved support along the backbone of the phylogeny suggests that the plant-specific WOX family contains three ancient superclades, which we term Type 1 (T1WOX, the WOX10/13/14 clade), Type 2 (T2WOX, the WOX8/9 and WOX11/12 clades), and Type 3 (T3WOX, the WUS, WOX1/6, WOX2, WOX3, WOX4 and WOX5/7 clades). Divergence of the T1WOX and T2WOX superclades may predate the diversification of vascular plants. Synteny analysis suggests contribution of WGD to expansion of the WOX family. Promoter analysis finds that the capacity of the WOX genes to be regulated by the auxin and cytokinin signaling pathways may be deeply conserved in the Viridiplantae. This study improves our phylogenetic context for elucidating functional evolution of the WOX gene family, which has likely contributed to the morphological complexity of land plants.
Collapse
Affiliation(s)
- Cheng-Chiang Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, New York, United States of America
- Section of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Elena M. Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
77
|
Hao Q, Zhang L, Yang Y, Shan Z, Zhou XA. Genome-Wide Analysis of the WOX Gene Family and Function Exploration of GmWOX18 in Soybean. PLANTS 2019; 8:plants8070215. [PMID: 31373320 PMCID: PMC6681341 DOI: 10.3390/plants8070215] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022]
Abstract
WUSCHEL-related homeobox (WOX) is a family of transcription factors that are unique to plants and is characterized by the presence of a homeodomain. The WOX transcription factor plays an important role in regulating plant growth and development and the response to abiotic stress. Soybean is one of the most important oil crops worldwide. In this study, based on the available genome data of soybean, the WOX gene family was identified by bioinformatics analysis. The chromosome distribution, gene and protein structures, phylogenetic relationship and gene expression patterns of this family were comprehensively compared. The results showed that a total of 33 putative WOX genes in the soybean genome were found and then designated as GmWOX1- GmWOX33, which were distributed across 19 chromosomes except chromosome 16. Multiple sequence analysis of the GmWOX gene family revealed a highly conserved homeodomain. Phylogenetic tree analysis showed that 33 WOX genes could be divided into three major clades (modern/WUS, intermediate and ancient) in soybean. Of these 33 WOX genes, some showed differential expression patterns in the tested tissues (leaves, pods, unopen and open flowers, nodules, seed, roots, root hairs, stems, shoot apical meristems and shoot tips). In addition, the expression profile and qRT-PCR analysis showed that most of the GmWOX genes responded to different abiotic stress treatments (cold and drought). According to the expression pattern of GmWOX genes in the high regeneration capacity soybean material P3, overexpression of GmWOX18 was selected for function analysis. The overexpression of GmWOX18 increased the regeneration ability of clustered buds. The results will provide valuable information for further studies on the roles of WOX genes in regulating soybean growth, development and responses to abiotic stress, as well as a basis for the functional identification and analysis of WOX genes in soybean.
Collapse
Affiliation(s)
- Qingnan Hao
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan 430062, China
- Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Ling Zhang
- Jilin Provincial Key laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130033, China.
| | - Yanyan Yang
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan 430062, China
| | - Zhihui Shan
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Xin-An Zhou
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
78
|
Ishimoto K, Sohonahra S, Kishi-Kaboshi M, Itoh JI, Hibara KI, Sato Y, Watanabe T, Abe K, Miyao A, Nosaka-Takahashi M, Suzuki T, Ta NK, Shimizu-Sato S, Suzuki T, Toyoda A, Takahashi H, Nakazono M, Nagato Y, Hirochika H, Sato Y. Specification of basal region identity after asymmetric zygotic division requires mitogen-activated protein kinase 6 in rice. Development 2019; 146:dev.176305. [PMID: 31118231 DOI: 10.1242/dev.176305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/13/2019] [Indexed: 01/31/2023]
Abstract
Asymmetric cell division is a key step in cellular differentiation in multicellular organisms. In plants, asymmetric zygotic division produces the apical and basal cells. The mitogen-activated protein kinase (MPK) cascade in Arabidopsis acts in asymmetric divisions such as zygotic division and stomatal development, but whether the effect on cellular differentiation of this cascade is direct or indirect following asymmetric division is not clear. Here, we report the analysis of a rice mutant, globular embryo 4 (gle4). In two- and four-cell-stage embryos, asymmetric zygotic division and subsequent cell division patterns were indistinguishable between the wild type and gle4 mutants. However, marker gene expression and transcriptome analyses showed that specification of the basal region was compromised in gle4 We found that GLE4 encodes MPK6 and that GLE4/MPK6 is essential in cellular differentiation rather than in asymmetric zygotic division. Our findings provide a new insight into the role of MPK in plant development. We propose that the regulation of asymmetric zygotic division is separate from the regulation of cellular differentiation that leads to apical-basal polarity.
Collapse
Affiliation(s)
- Kiyoe Ishimoto
- Department of Plant Production Sciences, Graduate School of Bioagricultural sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shino Sohonahra
- Department of Plant Production Sciences, Graduate School of Bioagricultural sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mitsuko Kishi-Kaboshi
- Molecular Genetics Department, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Jun-Ichi Itoh
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Ken-Ichiro Hibara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yutaka Sato
- Genome Resource Unit, Agrogenomics Resource Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Tsuneaki Watanabe
- Molecular Genetics Department, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kiyomi Abe
- Molecular Genetics Department, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Akio Miyao
- Molecular Genetics Department, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | - Toshiya Suzuki
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Nhung Kim Ta
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Sae Shimizu-Sato
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Atsushi Toyoda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hirokazu Takahashi
- Department of Plant Production Sciences, Graduate School of Bioagricultural sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mikio Nakazono
- Department of Plant Production Sciences, Graduate School of Bioagricultural sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yasuo Nagato
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Hirohiko Hirochika
- Molecular Genetics Department, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yutaka Sato
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
79
|
Li M, Wang R, Liu Z, Wu X, Wang J. Genome-wide identification and analysis of the WUSCHEL-related homeobox (WOX) gene family in allotetraploid Brassica napus reveals changes in WOX genes during polyploidization. BMC Genomics 2019; 20:317. [PMID: 31023229 PMCID: PMC6482515 DOI: 10.1186/s12864-019-5684-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/11/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND WUSCHEL-related homeobox (WOX) genes encoding plant-specific homeobox (HB) transcription factors play important roles in the growth and development of plants. To date, WOX genes has been identified and analyzed in many polyploids (such as cotton and tobacco), but the evolutionary analysis of them during polyploidization is rare. With the completion of genome sequencing, allotetraploid Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are a good system for studying this question. RESULTS In this study, 52, 25 and 29 WOX genes were identified in allotetraploid B. napus (2n = 4x = 38, AnCn), the An genome donor B. rapa (2n = 2x = 20, Ar) and the Cn genome donor B. oleracea (2n = 2x = 18, Co), respectively. All identified WOX genes in B. napus and its diploid progenitors were divided into three clades, and these genes were selected to perform gene structure and chromosome location analysis. The results showed that at least 70 and 67% of WOX genes maintained the same gene structure and relative position on chromosomes, respectively, indicating that WOX genes in B. napus were highly conserved at the DNA level during polyploidization. In addition, the analysis of duplicated genes and transposable elements (TEs) near WOX genes showed that whole-genome triplication (WGT) events, segmental duplication and abundant TEs played important roles in the expansion of the WOX gene family in B. napus. Moreover, the analysis of the expression profiles of WOX gene pairs with evolutionary relationships suggested that the WOX gene family may have changed at the transcriptional regulation level during polyploidization. CONCLUSIONS The results of this study increased our understanding of the WOX genes in B. napus and its diploid progenitors, providing a rich resource for further study of WOX genes in these species. In addition, the changes in WOX genes during the process of polyploidization were discussed from the aspects of gene number, gene structure, gene relative location and gene expression, which provides a reference for future polyploidization analysis.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Zhengyi Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062 China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
80
|
Global Analysis of WOX Transcription Factor Gene Family in Brassica napus Reveals Their Stress- and Hormone-Responsive Patterns. Int J Mol Sci 2018; 19:ijms19113470. [PMID: 30400610 PMCID: PMC6274733 DOI: 10.3390/ijms19113470] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023] Open
Abstract
The plant-specific WUSCHEL-related homeobox (WOX) transcription factor gene family is important for plant growth and development but little studied in oil crops. We identified and characterized 58 putative WOX genes in Brassica napus (BnWOXs), which were divided into three major clades and nine subclades based on the gene structure and conserved motifs. Collinearity analysis revealed that most BnWOXs were the products of allopolyploidization and segmental duplication events. Gene structure analysis indicated that introns/exons and protein motifs were conserved in each subclade and RNA sequencing revealed that BnWOXs had narrow expression profiles in major tissues and/or organs across different developmental stages. The expression pattern of each clade was highly conserved and similar to that of the sister and orthologous pairs from Brassica rapa and Brassica oleracea. Quantitative real-time polymerase chain reaction showed that members of the WOX4 subclade were induced in seedling roots by abiotic and hormone stresses, indicating their contribution to root development and abiotic stress responses. 463 proteins were predicted to interact with BnWOXs, including peptides regulating stem cell homeostasis in meristems. This study provides insights into the evolution and expression of the WOX gene family in B. napus and will be useful in future gene function research.
Collapse
|
81
|
Minh-Thu PT, Kim JS, Chae S, Jun KM, Lee GS, Kim DE, Cheong JJ, Song SI, Nahm BH, Kim YK. A WUSCHEL Homeobox Transcription Factor, OsWOX13, Enhances Drought Tolerance and Triggers Early Flowering in Rice. Mol Cells 2018; 41:781-798. [PMID: 30078233 PMCID: PMC6125423 DOI: 10.14348/molcells.2018.0203] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Plants have evolved strategies to cope with drought stress by maximizing physiological capacity and adjusting developmental processes such as flowering time. The WOX13 orthologous group is the most conserved among the clade of WOX homeodomain-containing proteins and is found to function in both drought stress and flower development. In this study, we isolated and characterized OsWOX13 from rice. OsWOX13 was regulated spatially in vegetative organs but temporally in flowers and seeds. Overexpression of OsWOX13 (OsWOX13-ov) in rice under the rab21 promoter resulted in drought resistance and early flowering by 7-10 days. Screening of gene expression profiles in mature leaf and panicles of OsWOX13-ov showed a broad spectrum of effects on biological processes, such as abiotic and biotic stresses, exerting a cross-talk between responses. Protein binding microarray and electrophoretic mobility shift assay analyses supported ATTGATTG as the putative cis-element binding of OsWOX13. OsDREB1A and OsDREB1F, drought stress response transcription factors, contain ATTGATTG motif(s) in their promoters and are preferentially expressed in OsWOX13-ov. In addition, Heading date 3a and OsMADS14, regulators in the flowering pathway and development, were enhanced in OsWOX13-ov. These results suggest that OsWOX13 mediates the stress response and early flowering and, thus, may be a regulator of genes involved in drought escape.
Collapse
Affiliation(s)
- Pham-Thi Minh-Thu
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
| | - Joung Sug Kim
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
| | - Songhwa Chae
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
| | - Kyong Mi Jun
- Genomics Genetics Institute, GreenGene Biotech Inc., Yongin 17058,
Korea
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54875,
Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826,
Korea
| | - Sang Ik Song
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
| | - Baek Hie Nahm
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
- Genomics Genetics Institute, GreenGene Biotech Inc., Yongin 17058,
Korea
| | - Yeon-Ki Kim
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
| |
Collapse
|
82
|
Que F, Wang GL, Li T, Wang YH, Xu ZS, Xiong AS. Genome-wide identification, expansion, and evolution analysis of homeobox genes and their expression profiles during root development in carrot. Funct Integr Genomics 2018; 18:685-700. [PMID: 29909521 DOI: 10.1007/s10142-018-0624-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 01/31/2023]
Abstract
The homeobox gene family, a large family represented by transcription factors, has been implicated in secondary growth, early embryo patterning, and hormone response pathways in plants. However, reports about the information and evolutionary history of the homeobox gene family in carrot are limited. In the present study, a total of 130 homeobox family genes were identified in the carrot genome. Specific codomain and phylogenetic analyses revealed that the genes were classified into 14 subgroups. Whole genome and proximal duplication participated in the homeobox gene family expansion in carrot. Purifying selection also contributed to the evolution of carrot homeobox genes. In Gene Ontology (GO) analysis, most members of the HD-ZIP III and IV subfamilies were found to have a lipid binding (GO:0008289) term. Most HD-ZIP III and IV genes also harbored a steroidogenic acute regulatory protein-related lipid transfer (START) domain. These results suggested that the HD-ZIP III and IV subfamilies might be related to lipid transfer. Transcriptome and quantitative real-time PCR (RT-qPCR) data indicated that members of the WOX and KNOX subfamilies were likely implicated in carrot root development. Our study provided a useful basis for further studies on the complexity and function of the homeobox gene family in carrot.
Collapse
Affiliation(s)
- Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
83
|
Song N, Xu Z, Wang J, Qin Q, Jiang H, Si W, Li X. Genome-wide analysis of maize CONSTANS-LIKE gene family and expression profiling under light/dark and abscisic acid treatment. Gene 2018; 673:1-11. [PMID: 29908279 DOI: 10.1016/j.gene.2018.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022]
Abstract
The CONSTANS-LIKE (COL) gene has an important role both in regulation flowering through photoperiodic control and response to abiotic stress. In the present study, we performed a genome-wide analysis of maize COL gene family and identified 19 non-redundant ZmCOL genes, which were unequally distributed on ten maize chromosomes. Analysis of compound phylogenetic tree (maize, sorghum, rice and Arabidopsis) showed high bootstrap, as well as conserved domain and semblable gene structures among members within the same clade, revealing that COL genes in same clade were from the common ancestral and prior to the divergence of monocots and dicots lineages. Calculation of Ka/Ks ratio demonstrated that most duplicated ZmCOLs experienced purifying selection, which suggested limited functional divergence after duplication events. Comparing interspecies gene collinearity between three major grasses species, extensive microsynteny was detected among maize, sorghum and rice COL-containing segments. Additionally, several light-responsive and one ABA-responsive cis-elements could be detected for ZmCOL genes in group A. Therefore, qRT-PCR was performed to explore the expression patterns of ZmCOL genes in group A under light/dark conditions and ABA treatment. Our results laid the foundation for functional characterization of ZmCOL proteins and uncovering the biological roles of COL genes in response to stress in future.
Collapse
Affiliation(s)
- Nannan Song
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zhilan Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jing Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Qianqian Qin
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
84
|
Liu W, Xu L. Recruitment of IC-WOX Genes in Root Evolution. TRENDS IN PLANT SCIENCE 2018; 23:490-496. [PMID: 29680635 DOI: 10.1016/j.tplants.2018.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 05/25/2023]
Abstract
Root evolution has resulted in the extant bifurcating roots in lycophytes, adventitious/lateral roots in euphyllophytes (ferns and seed plants), and primary roots in seed plants. Here, we hypothesize a role for intermediate-clade-WUSCHEL-RELATED HOMEOBOX (IC-WOX) genes in root evolution. IC-WOX might not be specifically involved in lycophyte bifurcation rooting. In the fern Ceratopteris richardii, IC-WOX is expressed in adventitious/lateral root founder cells. In the seed plant Arabidopsis thaliana, there are two IC-WOX subclades, AtWOX11/12 and AtWOX8/9, in adventitious and primary root founder cells, respectively. Thus, IC-WOX was recruited in the common ancestor of ferns and seed plants for adventitious/lateral root organogenesis and evolved into two subclades in seed plants: one was retained in adventitious root organogenesis, while the other was recruited for primary root organogenesis.
Collapse
Affiliation(s)
- Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
85
|
Ramkumar TR, Kanchan M, Upadhyay SK, Sembi JK. Identification and characterization of WUSCHEL-related homeobox ( WOX ) gene family in economically important orchid species Phalaenopsis equestris and Dendrobium catenatum. PLANT GENE 2018; 14:37-45. [DOI: 10.1016/j.plgene.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
86
|
Li X, Hamyat M, Liu C, Ahmad S, Gao X, Guo C, Wang Y, Guo Y. Identification and Characterization of the WOX Family Genes in Five Solanaceae Species Reveal Their Conserved Roles in Peptide Signaling. Genes (Basel) 2018; 9:genes9050260. [PMID: 29772825 PMCID: PMC5977200 DOI: 10.3390/genes9050260] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 11/24/2022] Open
Abstract
Members of the plant-specific WOX (WUSCHEL-related homeobox) transcription factor family have been reported to play important roles in peptide signaling that regulates stem cell maintenance and cell fate specification in various developmental processes. Even though remarkable advances have been made in studying WOX genes in Arabidopsis, little is known about this family in Solanaceae species. A total of 45 WOX members from five Solanaceae species were identified, including eight members from Solanum tuberosum, eight from Nicotiana tomentosiformis, 10 from Solanum lycopersicum, 10 from Nicotiana sylvestris and nine from Nicotiana tabacum. The newly identified WOX members were classified into three clades and nine subgroups based on phylogenetic analysis using three different methods. The patterns of exon-intron structure and motif organization of the WOX proteins agreed with the phylogenetic results. Gene duplication events and ongoing evolution were revealed by additional branches on the phylogenetic tree and the presence of a partial WUS-box in some non-WUS clade members. Gene expression with or without CLE (clavata3 (clv3)/embryo surrounding region-related) peptide treatments revealed that tobacco WOX genes showed similar or distinct expression patterns compared with their Arabidopsis homologues, suggesting either functional conservation or divergence. Expression of Nicotiana tabacum WUSCHEL (NtabWUS) in the organizing center could rescue the wus-1 mutant phenotypes in Arabidopsis, implying conserved roles of the Solanaceae WOX proteins in peptide-mediated regulation of plant development.
Collapse
Affiliation(s)
- Xiaoxu Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Madiha Hamyat
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Cheng Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Salman Ahmad
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xiaoming Gao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Cun Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yuanying Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
87
|
Alvarez JM, Bueno N, Cañas RA, Avila C, Cánovas FM, Ordás RJ. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in Pinus pinaster: New insights into the gene family evolution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:304-318. [PMID: 29278847 DOI: 10.1016/j.plaphy.2017.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 05/23/2023]
Abstract
WUSCHEL-RELATED HOMEOBOX (WOX) genes are key players controlling stem cells in plants and can be divided into three clades according to the time of their appearance during plant evolution. Our knowledge of stem cell function in vascular plants other than angiosperms is limited, they separated from gymnosperms ca 300 million years ago and their patterning during embryogenesis differs significantly. For this reason, we have used the model gymnosperm Pinus pinaster to identify WOX genes and perform a thorough analysis of their gene expression patterns. Using transcriptomic data from a comprehensive range of tissues and stages of development we have shown three major outcomes: that the P. pinaster genome encodes at least fourteen members of the WOX family spanning all the major clades, that the genome of gymnosperms contains a WOX gene with no homologues in angiosperms representing a transitional stage between intermediate- and WUS-clade proteins, and that we can detect discrete WUS and WOX5 transcripts for the first time in a gymnosperm.
Collapse
Affiliation(s)
- José M Alvarez
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Spain.
| | - Natalia Bueno
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Spain
| | - Rafael A Cañas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Spain
| | - Concepción Avila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Spain
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Spain
| | - Ricardo J Ordás
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Spain
| |
Collapse
|
88
|
Honda E, Yew CL, Yoshikawa T, Sato Y, Hibara KI, Itoh JI. LEAF LATERAL SYMMETRY1, a Member of the WUSCHEL-RELATED HOMEOBOX3 Gene Family, Regulates Lateral Organ Development Differentially from Other Paralogs, NARROW LEAF2 and NARROW LEAF3 in Rice. PLANT & CELL PHYSIOLOGY 2018; 59:376-391. [PMID: 29272531 DOI: 10.1093/pcp/pcx196] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/05/2017] [Indexed: 05/29/2023]
Abstract
In several eudicot species, one copy of each member of the WUSCHEL-RELATED HOMEOBOX (WOX) gene family, WOX1 and WOX3, is redundantly or differentially involved in lateral leaf outgrowth, whereas only the WOX3 gene regulating the lateral domain of leaf development has been reported in grass. In this study, we show that a WOX3 gene, LEAF LATERAL SYMMETRY1 (LSY1), regulates lateral leaf development in a different manner ftom that of other duplicated paralogs of WOX3, NARROW LEAF2 (NAL2)/NAL3, in rice. A loss-of-function mutant of LSY1 exhibited an asymmetrical defect from early leaf development, which is different from a symmetric defect in a double loss-of-function mutant of NAL2/3, whereas the expression of both genes was observed in a similar domain in the margins of leaf primordia. Unlike NAL2/3, overexpression of LSY1 produced malformed leaves whose margins were curled adaxially. Expression domains and the level of adaxial/abaxial marker genes were affected in the LSY1-overexpressing plants, indicating that LSY1 is involved in regulation of adaxial-abaxial patterning at the margins of the leaf primordia. Additive phenotypes in some leaf traits of lsy1 nal2/3 triple mutants and the unchanged level of NAL2/3 expression in the lsy1 background suggested that LSY1 regulates lateral leaf development independently of NAL2/3. Our results indicated that all of the rice WOX3 genes are involved in leaf lateral outgrowth, but the functions of LSY1 and NAL2/3 have diverged. We propose that the function of WOX3 and the regulatory mode of leaf development in rice are comparable with those of WOX1/WOX3 in eudicot species.
Collapse
Affiliation(s)
- Eriko Honda
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657 Japan
| | - Chow-Lih Yew
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657 Japan
| | - Takanori Yoshikawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657 Japan
| | - Yutaka Sato
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540 Japan
| | - Ken-Ichiro Hibara
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657 Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657 Japan
| |
Collapse
|
89
|
Yang Z, Gong Q, Qin W, Yang Z, Cheng Y, Lu L, Ge X, Zhang C, Wu Z, Li F. Genome-wide analysis of WOX genes in upland cotton and their expression pattern under different stresses. BMC PLANT BIOLOGY 2017; 17:113. [PMID: 28683794 PMCID: PMC5501002 DOI: 10.1186/s12870-017-1065-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/25/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND WUSCHEL-related homeobox (WOX) family members play significant roles in plant growth and development, such as in embryo patterning, stem-cell maintenance, and lateral organ formation. The recently published cotton genome sequences allow us to perform comprehensive genome-wide analysis and characterization of WOX genes in cotton. RESULTS In this study, we identified 21, 20, and 38 WOX genes in Gossypium arboreum (2n = 26, A2), G. raimondii (2n = 26, D5), and G. hirsutum (2n = 4x = 52, (AD)t), respectively. Sequence logos showed that homeobox domains were significantly conserved among the WOX genes in cotton, Arabidopsis, and rice. A total of 168 genes from three typical monocots and six dicots were naturally divided into three clades, which were further classified into nine sub-clades. A good collinearity was observed in the synteny analysis of the orthologs from At and Dt (t represents tetraploid) sub-genomes. Whole genome duplication (WGD) and segmental duplication within At and Dt sub-genomes played significant roles in the expansion of WOX genes, and segmental duplication mainly generated the WUS clade. Copia and Gypsy were the two major types of transposable elements distributed upstream or downstream of WOX genes. Furthermore, through comparison, we found that the exon/intron pattern was highly conserved between Arabidopsis and cotton, and the homeobox domain loci were also conserved between them. In addition, the expression pattern in different tissues indicated that the duplicated genes in cotton might have acquired new functions as a result of sub-functionalization or neo-functionalization. The expression pattern of WOX genes under different stress treatments showed that the different genes were induced by different stresses. CONCLUSION In present work, WOX genes, classified into three clades, were identified in the upland cotton genome. Whole genome and segmental duplication were determined to be the two major impetuses for the expansion of gene numbers during the evolution. Moreover, the expression patterns suggested that the duplicated genes might have experienced a functional divergence. Together, these results shed light on the evolution of the WOX gene family, and would be helpful in future research.
Collapse
Affiliation(s)
- Zhaoen Yang
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qian Gong
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenqiang Qin
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zuoren Yang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuan Cheng
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lili Lu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Ge
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chaojun Zhang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhixia Wu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052, China.
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
90
|
Cao Y, Han Y, Meng D, Li G, Li D, Abdullah M, Jin Q, Lin Y, Cai Y. Genome-Wide Analysis Suggests the Relaxed Purifying Selection Affect the Evolution of WOX Genes in Pyrus bretschneideri, Prunus persica, Prunus mume, and Fragaria vesca. Front Genet 2017; 8:78. [PMID: 28663757 PMCID: PMC5471313 DOI: 10.3389/fgene.2017.00078] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/29/2017] [Indexed: 12/22/2022] Open
Abstract
WUSCHEL-related homeobox (WOX) family is one of the largest group of transcription factors (TFs) specifically found in plant kingdom. WOX TFs play an important role in plant development processes and evolutionary novelties. Although the roles of WOXs in Arabidopsis and rice have been well-studied, however, little are known about the relationships among the main clades in the molecular evolution of these genes in Rosaceae. Here, we carried out a genome-wide analysis and identified 14, 10, 10, and 9 of WOX genes from four Rosaceae species (Fragaria vesca, Prunus persica, Prunus mume, and Pyrus bretschneideri, respectively). According to evolutionary analysis, as well as amino acid sequences of their homodomains, these genes were divided into three clades with nine subgroups. Furthermore, due to the conserved structural patterns among these WOX genes, it was proposed that there should exist some highly conserved regions of microsynteny in the four Rosaceae species. Moreover, most of WOX gene pairs were presented with the conserved orientation among syntenic genome regions. In addition, according to substitution models analysis using PMAL software, no significant positive selection was detected, but type I functional divergence was identified among certain amino acids in WOX protein. These results revealed that the relaxed purifying selection might be the main driving force during the evolution of WOX genes in the tested Rosaceae species. Our result will be useful for further precise research on evolution of the WOX genes in family Rosaceae.
Collapse
Affiliation(s)
- Yunpeng Cao
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Yahui Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefei, China
| | - Dandan Meng
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Guohui Li
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Dahui Li
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Muhammad Abdullah
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefei, China
| | - Qing Jin
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Yi Lin
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| |
Collapse
|
91
|
Xu W, Tao J, Chen M, Dreni L, Luo Z, Hu Y, Liang W, Zhang D. Interactions between FLORAL ORGAN NUMBER4 and floral homeotic genes in regulating rice flower development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:483-498. [PMID: 28204535 PMCID: PMC6055531 DOI: 10.1093/jxb/erw459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/03/2016] [Indexed: 05/21/2023]
Abstract
The floral meristem (FM) is self-maintaining at the early stages of flower development, but it is terminated when a fixed number of floral organs are produced. The FLORAL ORGAN NUMBER4 (FON4; also known as FON2) gene, an ortholog of Arabidopsis CLAVATA3 (CLV3), is required for regulating FM size and determinacy in rice. However, its interactions with floral homeotic genes remain unknown. Here, we report the genetic interactions between FON4 and floral homeotic genes OsMADS15 (an A-class gene), OsMADS16 (also called SUPERWOMAN1, SPW1, a B-class gene), OsMADS3 and OsMADS58 (C-class genes), OsMADS13 (a D-class gene), and OsMADS1 (an E-class gene) during flower development. We observed an additive phenotype in the fon4 double mutant with the OsMADS15 mutant allele dep (degenerative palea). The effect on the organ number of whorl 2 was enhanced in fon4 spw1. Double mutant combinations of fon4 with osmads3, osmads58, osmads13, and osmads1 displayed enhanced defects in FM determinacy and identity, respectively, indicating that FON4 and these genes synergistically control FM activity. In addition, the expression patterns of all the genes besides OsMADS13 had no obvious change in the fon4 mutant. This work reveals how the meristem maintenance gene FON4 genetically interacts with C, D, and E floral homeotic genes in specifying FM activity in monocot rice.
Collapse
Affiliation(s)
- Wei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Juhong Tao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ludovico Dreni
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- Correspondence:
| |
Collapse
|
92
|
Homeobox Is Pivotal for OsWUS Controlling Tiller Development and Female Fertility in Rice. G3-GENES GENOMES GENETICS 2016; 6:2013-21. [PMID: 27194802 PMCID: PMC4938654 DOI: 10.1534/g3.116.028837] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OsWUS has recently been shown to be a transcription factor gene critical for tiller development and fertility in rice. The OsWUS protein consists of three conserved structural domains, but their biological functions are still unclear. We discovered a new rice mutant resulting from tissue culture, which hardly produced tillers and exhibited complete female sterility. The male and female floral organs of the mutant were morphologically indistinguishable from those of the wild type. We named the mutant srt1 for completely sterile and reduced tillering 1. Map-based cloning revealed that the mutant phenotypes were caused by a mutation in OsWUS. Compared with the two previously reported null allelic mutants of OsWUS (tab1-1 and moc3-1), which could produce partial N-terminal peptides of OsWUS, the srt1 protein contained a deletion of only seven amino acids within the conserved homeobox domain of OsWUS. However, the mutant phenotypes (monoculm and female sterility) displayed in srt1 were as typical and severe as those in tab1-1 and moc3-1. This indicates that the homeobox domain of SRT1 is essential for the regulation of tillering and sterility in rice. In addition, srt1 showed an opposite effect on panicle development to that of the two null allelic mutants, implying that the srt1 protein might still have partial or even new functions on panicle development. The results of this study suggest that the homeobox domain is pivotal for OsWUS function.
Collapse
|
93
|
Segatto ALA, Thompson CE, Freitas LB. Molecular evolution analysis of WUSCHEL-related homeobox transcription factor family reveals functional divergence among clades in the homeobox region. Dev Genes Evol 2016; 226:259-68. [PMID: 27150824 DOI: 10.1007/s00427-016-0545-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
Gene families have been shown to play important roles in plant evolution and are associated with diversification and speciation. Genes of WUSCHEL-related homeobox family of transcription factors have important functions in plant development and are correlated with the appearance of evolutionary novelties. There are several published studies related to this family, but little is known about the relationships among the main clades in the phylogeny and the molecular evolution of the family. In this study, we obtained a well-resolved Bayesian phylogenetic tree establishing the relationships among the main clades and determining the position of Selaginella moellendorffii WOX genes. Moreover, a correlation was identified between the number of genes in the genomes and the events of whole-genome duplications. The intron-exon structure is more consistent across the modern clade, which appeared more recently in the WOX evolutionary history, and coincides with the development of higher complexity in plant species. No positive selection was detected among sites through the branches in the tree. However, with regard to the main clades, functional divergence among certain amino acids in the homeodomain region was found. Relaxed purifying selection could be the main driving force in the evolution of these genes and in agreement with some genes have been demonstrated to be functionally redundant.
Collapse
Affiliation(s)
- Ana Lúcia A Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves 9500, PO Box 15053, Porto Alegre, RS, 91501-970, Brazil
| | - Claudia E Thompson
- Center for Biotechnology, Department of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves 9500, Porto Alegre, RS, 90509-900, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves 9500, PO Box 15053, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
94
|
Stem cell lineage in body layer specialization and vascular patterning of rice root and leaf. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-015-0849-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
95
|
Ge Y, Liu J, Zeng M, He J, Qin P, Huang H, Xu L. Identification of WOX Family Genes in Selaginella kraussiana for Studies on Stem Cells and Regeneration in Lycophytes. FRONTIERS IN PLANT SCIENCE 2016; 7:93. [PMID: 26904063 PMCID: PMC4742569 DOI: 10.3389/fpls.2016.00093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/18/2016] [Indexed: 05/02/2023]
Abstract
Plant stem cells give rise to all tissues and organs and also serve as the source for plant regeneration. The organization of plant stem cells has undergone a progressive change from simple to complex during the evolution of vascular plants. Most studies on plant stem cells have focused on model angiosperms, the most recently diverged branch of vascular plants. However, our knowledge of stem cell function in other vascular plants is limited. Lycophytes and euphyllophytes (ferns, gymnosperms, and angiosperms) are two existing branches of vascular plants that separated more than 400 million years ago. Lycophytes retain many of the features of early vascular plants. Based on genome and transcriptome data, we identified WUSCHEL-RELATED HOMEOBOX (WOX) genes in Selaginella kraussiana, a model lycophyte that is convenient for in vitro culture and observations of organ formation and regeneration. WOX genes are key players controlling stem cells in plants. Our results showed that the S. kraussiana genome encodes at least eight members of the WOX family, which represent an early stage of WOX family evolution. Identification of WOX genes in S. kraussiana could be a useful tool for molecular studies on the function of stem cells in lycophytes.
Collapse
Affiliation(s)
- Yachao Ge
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Jie Liu
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Minhuan Zeng
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Jianfeng He
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Peng Qin
- Department of Instrumentation Science and Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Lin Xu
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
- *Correspondence: Lin Xu,
| |
Collapse
|
96
|
Xu M, Xie W, Huang M. Two WUSCHEL-related HOMEOBOX genes, PeWOX11a and PeWOX11b, are involved in adventitious root formation of poplar. PHYSIOLOGIA PLANTARUM 2015; 155:446-56. [PMID: 25998748 DOI: 10.1111/ppl.12349] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 05/24/2023]
Abstract
The plant-specific WUSCHEL-related HOMEOBOX (WOX) transcription factors play important roles in key developmental processes, but knowledge regarding functional characterization of WOX genes in poplar remains limited. To reveal genes and signaling pathways associated with adventitious rooting in poplar, here we isolated and characterized two WOX genes through the rapid amplification of cDNA ends (RACE), sequence aligning, expression profiling, protoplast transfection and poplar transformation. Detailed information about the sequence similarity, structural features, evolutionary relationships, expression patterns and subcellular localization of the two genes were revealed. Overexpression of either PeWOX11a or PeWOX11b not only increased the number of adventitious roots on the cuttings but also induced ectopic roots in the aerial parts of transgenic poplars. Meanwhile, their overexpression in transgenic poplars affected axillary bud and leaf development. These results suggest that PeWOX11a and PeWOX11b were involved in multiple developmental processes of poplar, especially in adventitious root formation. Our results provide new insights into the molecular mechanisms underlying adventitious root formation of poplar.
Collapse
Affiliation(s)
- Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Wenfan Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Minren Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, China
| |
Collapse
|
97
|
Wang P, Li C, Li C, Zhao C, Xia H, Zhao S, Hou L, Gao C, Wan S, Wang X. Identification and expression dynamics of three WUSCHEL related homeobox 13 (WOX13) genes in peanut. Dev Genes Evol 2015; 225:221-33. [PMID: 26115849 DOI: 10.1007/s00427-015-0506-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
WUSCHEL-related homeobox (WOX) genes play key roles in plant stem cell maintenance and development. WOX genes showed specific expression patterns which are important for their functions. WOX13 subfamily genes as the ancestor genes of this family were less studied in the past. In this study, we cloned three Arachis hypogaea (peanut) WOX13 (AhWOX13) subfamily genes from peanut: WOX13A and WOX13B1, 2. WOX13B1 encoded a same protein as WOX13B2, and there were only two-base difference between these two genes. Differential expression patterns were observed for these three AhWOX13 subfamily genes in different tissues and developmental stages. Phylogenic trees analysis showed that these AhWOX13 subfamily genes were the most conserved WOX genes and belonged to the ancient clade of WOX family. This was also supported by the conserved motif analysis. Selective pressure analysis showed that the WOX family genes mainly underwent weak purifying selection (ω = 0.58097), while many positive mutations accumulated during the evolution history. Under the purifying selection, gene duplication event and loss of duplicated gene play important roles in the expansion and evolution of WOX family.
Collapse
Affiliation(s)
- Pengfei Wang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
The investigation of transcription factor (TF) families is a major focus of postgenomic research. The plant-specific ASYMMETRIC LEAVES2-LIKE (ASL) / LATERAL ORGAN BOUNDARIES Domain (LBD) proteins constitute a major zincfinger-like-domain transcription factor family, and regulate diverse biological processes in plants. However, little is known about LBD genes in maize (Zea mays). In this study, a total of 44 LBD genes were identified in maize genome and were phylogenetically clustered into two groups (I and II), together with LBDs from Arabidopsis. The predicted maize LBDs were distributed across all the 10 chromosomes with different densities. In addition, the gene structures of maize LBDs were analysed. The expression profiles of the maize LBD genes under normal growth conditions were analysed by microarray data and qRT-PCR. The results indicated that LBDs might be involved in various aspects of physiological and developmental processes in maize. To our knowledge, this is the first report of a genomewide analysis of the maize LBD gene family, which would provide valuable information for understanding the classification and putative functions of the gene family.
Collapse
|
99
|
Zhao S, Jiang QT, Ma J, Wang JR, Liu YX, Chen GY, Qi PF, Pu ZE, Lu ZX, Zheng YL, Wei YM. Characterization and expression analysis of WOX2 homeodomain transcription factor in Aegilops tauschii. Genet Mol Biol 2015; 38:79-85. [PMID: 25983628 PMCID: PMC4415562 DOI: 10.1590/s1415-475738138120140192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/30/2014] [Indexed: 11/25/2022] Open
Abstract
The WUSCHEL (WUS)-related homeobox (WOX) gene family coordinates transcription during the early phases of embryogenesis. In this study, a putative WOX2 homolog was isolated and characterized from Aegilops tauschii, the donor of D genome of Triticum aestivum. The sequence consisted of 2045 bp, and contained an open reading frame (ORF), encoded 322 amino acids. The predicted protein sequence contained a highly conserved homeodomain and the WUS-box domain, which is present in some members of the WOX protein family. The full-length ORF was subcloned into prokaryotic expression vector pET-30a, and an approximately 34-kDa protein was expressed in Escherichia coli BL21 (DE3) cells with IPTG induction. The molecular mass of the expressed protein was identical to that predicted by the cDNA sequence. Phylogenetic analysis suggested that Ae. tauschii WOX2 is closely related to the rice and maize orthologs. Quantitative PCR analysis showed that WOX2 from Ae. tauschii was primarily expressed in the seeds; transcription increased during seed development and declined after the embryos matured, suggesting that WOX2 is associated with embryo development in Ae. tauschii.
Collapse
Affiliation(s)
- Shan Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu,
Sichua, China
| | - Qian-Tao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu,
Sichua, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu,
Sichua, China
| | - Ji-Rui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu,
Sichua, China
| | - Ya-Xi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu,
Sichua, China
| | - Guo-Yue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu,
Sichua, China
| | - Peng-Fei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu,
Sichua, China
| | - Zhi-En Pu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu,
Sichua, China
| | - Zhen-Xiang Lu
- Lethbridge Research Centre, Agriculture and Agri-Food Canada,
Lethbridge, Canada
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu,
Sichua, China
- Key Laboratory of Southwestern Crop Germplasm Utilization, Ministry of
Agriculture, Ya’an, Sichuan, China
| | - Yu-Ming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu,
Sichua, China
| |
Collapse
|
100
|
Gao B, Wen C, Fan L, Kou Y, Ma N, Zhao L. A Rosa canina WUSCHEL-related homeobox gene, RcWOX1, is involved in auxin-induced rhizoid formation. PLANT MOLECULAR BIOLOGY 2014; 86:671-679. [PMID: 25301174 DOI: 10.1007/s11103-014-0255-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
Homeobox (HB) proteins are important transcription factors that regulate the developmental decisions of eukaryotes. WUSCHEL-related homeobox (WOX) transcription factors, known as a plant-specific HB family, play a key role in plant developmental processes. Our previous work has indicated that rhizoids are induced by auxin in rose (Rosa spp.), which acts as critical part of an efficient plant regeneration system. However, the function of WOX genes in auxin-induced rhizoid formation remains unclear. Here, we isolated and characterized a WUSCHEL-related homeobox gene from Rosa canina, RcWOX1, containing a typical homeodomain with 65 amino acid residues. Real-time reverse transcription PCR (qRT-PCR) analysis revealed that RcWOX1 was expressed in the whole process of callus formation and in the early stage of rhizoid formation. Moreover, its expression was induced by auxin treatment. In Arabidopsis transgenic lines expressing the RcWOX1pro::GUS and 35S::GFP-RcWOX1, RcWOX1 was specifically expressed in roots and localized to the nucleus. Overexpression of RcWOX1 in Arabidopsis increased lateral root density and induced upregulation of PIN1 and PIN7 genes. Therefore, we postulated that RcWOX1 is a functional transcription factor that plays an essential role in auxin-induced rhizoid formation.
Collapse
Affiliation(s)
- Bin Gao
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|