51
|
Rice Senescence-Induced Receptor-Like Kinase ( OsSRLK) Is Involved in Phytohormone-Mediated Chlorophyll Degradation. Int J Mol Sci 2019; 21:ijms21010260. [PMID: 31905964 PMCID: PMC6982081 DOI: 10.3390/ijms21010260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 01/26/2023] Open
Abstract
Chlorophyll breakdown is a vital catabolic process of leaf senescence as it allows the recycling of nitrogen and other nutrients. In the present study, we isolated rice senescence-induced receptor-like kinase (OsSRLK), whose transcription was upregulated in senescing rice leaves. The detached leaves of ossrlk mutant (ossrlk) contained more green pigment than those of the wild type (WT) during dark-induced senescence (DIS). HPLC and immunoblot assay revealed that degradation of chlorophyll and photosystem II proteins was repressed in ossrlk during DIS. Furthermore, ultrastructural analysis revealed that ossrlk leaves maintained the chloroplast structure with intact grana stacks during dark incubation; however, the retained green color and preserved chloroplast structures of ossrlk did not enhance the photosynthetic competence during age-dependent senescence in autumn. In ossrlk, the panicles per plant was increased and the spikelets per panicle were reduced, resulting in similar grain productivity between WT and ossrlk. By transcriptome analysis using RNA sequencing, genes related to phytohormone, senescence, and chlorophyll biogenesis were significantly altered in ossrlk compared to those in WT during DIS. Collectively, our findings indicate that OsSRLK may degrade chlorophyll by participating in a phytohormone-mediated pathway.
Collapse
|
52
|
Zentgraf U, Doll J. Arabidopsis WRKY53, a Node of Multi-Layer Regulation in the Network of Senescence. PLANTS (BASEL, SWITZERLAND) 2019; 8:E578. [PMID: 31817659 PMCID: PMC6963213 DOI: 10.3390/plants8120578] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
Leaf senescence is an integral part of plant development aiming at the remobilization of nutrients and minerals out of the senescing tissue into developing parts of the plant. Sequential as well as monocarpic senescence maximize the usage of nitrogen, mineral, and carbon resources for plant growth and the sake of the next generation. However, stress-induced premature senescence functions as an exit strategy to guarantee offspring under long-lasting unfavorable conditions. In order to coordinate this complex developmental program with all kinds of environmental input signals, complex regulatory cues have to be in place. Major changes in the transcriptome imply important roles for transcription factors. Among all transcription factor families in plants, the NAC and WRKY factors appear to play central roles in senescence regulation. In this review, we summarize the current knowledge on the role of WRKY factors with a special focus on WRKY53. In contrast to a holistic multi-omics view we want to exemplify the complexity of the network structure by summarizing the multilayer regulation of WRKY53 of Arabidopsis.
Collapse
Affiliation(s)
- Ulrike Zentgraf
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany;
| | | |
Collapse
|
53
|
Zheng X, Jehanzeb M, Zhang Y, Li L, Miao Y. Characterization of S40-like proteins and their roles in response to environmental cues and leaf senescence in rice. BMC PLANT BIOLOGY 2019; 19:174. [PMID: 31046677 PMCID: PMC6498481 DOI: 10.1186/s12870-019-1767-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Senescence affects the quality and yield of plants by regulating different traits of plants. A few members of S40 gene family, the barley HvS40 and the Arabidopsis AtS40-3, have been shown to play a role in leaf senescence in Barley and Arabidopsis. Although we previously reported that S40 family exist in most of plants, up to now, no more function of S40 members in plant has been demonstrated. The aim of this study was to provide the senescence related information of S40 gene family in rice as rice is a major crop that feeds about half of the human population in the world. RESULTS A total of 16 OsS40 genes were identified from the genome database of Oryza sativa L. japonica by bioinformatics analysis. Phylogenetic analysis reveals that the 16 OsS40 proteins are classified into five groups, and 4 of the 16 members belong to group I to which also the HvS40 and AtS40-3 is assigned. S40 genes of rice show high structural similarities, as 13 out of the 16 genes have no intron and the other 3 genes have only 1 or 2 introns. The expression patterns of OsS40 genes were analyzed during natural as well as stress-induced leaf senescence in correspondence with senescence marker genes. We found that 6 of them displayed differential but clearly up-regulated transcript profiles under diverse situations of senescence, including darkness, nitrogen deficiency, hormone treatments as well as pathogen infection. Furthermore, three OsS40 proteins were identified as nuclear located proteins by transient protoplast transformation assay. CONCLUSIONS Taking all findings together, we concluded that OsS40-1, OsS40-2, OsS40-12 and OsS40-14 genes have potential regulatory function of crosstalk among abiotic, biotic and developmental senescence in rice. Our results provide valuable baseline for functional validation studies of the rice S40 genes in rice leaf senescence.
Collapse
Affiliation(s)
- Xiangzi Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Muhammad Jehanzeb
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Yuanyuan Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Li Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.
| |
Collapse
|
54
|
Nintemann SJ, Palmgren M, López-Marqués RL. Catch You on the Flip Side: A Critical Review of Flippase Mutant Phenotypes. TRENDS IN PLANT SCIENCE 2019; 24:468-478. [PMID: 30885637 DOI: 10.1016/j.tplants.2019.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
Lipid flippases are integral membrane proteins that use ATP hydrolysis to power the generation of phospholipid asymmetry between the two leaflets of biological membranes, a process essential for cell survival. Although the first report of a plant lipid flippase was published in 2000, progress in the field has been slow, partially due to the high level of redundancy in this gene family. However, recently an increasing number of reports have examined the physiological function of lipid flippases, mainly in Arabidopsis thaliana. In this review we aim to summarize recent findings on the physiological relevance of lipid flippases in plant adaptation to a changing environment and caution against misinterpretation of pleiotropic effects in genetic studies of flippases.
Collapse
Affiliation(s)
- Sebastian J Nintemann
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Rosa Laura López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark; https://plen.ku.dk/english/research/transport_biology/blf/.
| |
Collapse
|
55
|
The H3K27me3 demethylase REF6 promotes leaf senescence through directly activating major senescence regulatory and functional genes in Arabidopsis. PLoS Genet 2019; 15:e1008068. [PMID: 30969965 PMCID: PMC6457497 DOI: 10.1371/journal.pgen.1008068] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/06/2019] [Indexed: 11/19/2022] Open
Abstract
The roles of histone demethylation in the regulation of plant flowering, disease resistance, rhythmical response, and seed germination have been elucidated recently; however, how histone demethylation affects leaf senescence remains largely unclear. In this study, we exploited yeast one-hybrid (Y1H) to screen for the upstream regulators of NONYELLOWING1 (NYE1), and identified RELATIVE OF EARLY FLOWERING6 (REF6), a histone H3 lysine 27 tri-methylation (H3K27me3) demethylase, as a putative binding protein of NYE1 promoter. By in vivo and in vitro analyses, we demonstrated that REF6 directly binds to the motif CTCGYTY in NYE1/2 promoters through its zinc finger domain and positively regulates their expression. Loss-of-function of REF6 delayed chlorophyll (Chl) degradation, whereas overexpression of REF6 accelerated Chl degradation. Subsequently, we revealed that REF6 positively regulates the general senescence process by directly up-regulating ETHYLENE INSENSITIVE 2 (EIN2), ORESARA1 (ORE1), NAC-LIKE, ACTIVATED BY AP3/PI (NAP), PYRUVATE ORTHOPHOSPHATE DIKINASE (PPDK), PHYTOALEXIN DEFICIENT 4 (PAD4), LIPOXYGENASE 1 (LOX1), NAC DOMAIN CONTAINING PROTEIN 3 (AtNAC3), and NAC TRANSCRIPTION FACTOR-LIKE 9 (NTL9), the key regulatory and functional genes predominantly involved in the regulation of developmental leaf senescence. Importantly, loss-of-function of REF6 increased H3K27me3 levels at all the target Senescence associated genes (SAGs). We therefore conclusively demonstrate that H3K27me3 methylation represents an epigenetic mechanism prohibiting the premature transcriptional activation of key developmentally up-regulated senescence regulatory as well as functional genes in Arabidopsis. Leaves of higher plants start yellowing and subsequently die (senescence) at particular developmental stages as a result of both internal and external regulations. Leaf senescence is evolved to facilitate nutrient remobilization to young/important organs to meet their rapid development, and a large number of genes (Senescence associated genes, SAGs) are activated to regulate/facilitate the process. It has been intriguing how these genes are kept transcriptionally inactive to ensure an effective photosynthesis before the initiation of leaf senescence. Here, we reveal an epigenetic mechanism responsible for the prohibition of their premature transcription. We found that an H3K27me3 demethylase, RELATIVE OF EARLY FLOWERING 6 (REF6), directly promotes the expression of its ten target senescence regulatory and functional genes (EIN2, ORE1, NAP, AtNAC3, NTL9, NYE1/2, LOX1, PAD4, and PPDK), which are involved in major phytohormones’ signaling, biosynthesis, and chlorophyll degradation. Crucially, REF6 is substantially involved in promoting the H3K27me3 demethylation of both their promoter and/or coding regions during the aging process of leaves. We therefore provide conclusive evidence that H3K27me3 methylation is an epigenetic mechanism hindering the premature transcriptional activation of key SAGs, which helps to explain the “aging effect” of senescence initiation.
Collapse
|
56
|
Xu J, Chen L, Sun H, Wusiman N, Sun W, Li B, Gao Y, Kong J, Zhang D, Zhang X, Xu H, Yang X. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1525-1538. [PMID: 30715415 PMCID: PMC6411381 DOI: 10.1093/jxb/erz036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/16/2019] [Indexed: 05/12/2023]
Abstract
Abscission is a process that allows plants to shed tissues or organs via cell separation, and occurs throughout the life cycle. Removal of leaves through the use of chemical defoliants is very important for mechanical harvesting of cotton (Gossypium hirsutum). However, our knowledge of the molecular mechanisms of the defoliation response involved is limited. In this study, RNA-seq was conducted in order to profile the differentially expressed genes (DEGs) between cultivars X50 (sensitive to chemical defoliants) and X33 (relatively insensitive) at different time points after treatment with thidiazuron and ethephon (TE). A total of 2434 DEGs were identified between the two cultivars across the different time-points. Functional categories according to GO and KEGG analyses revealed that plant hormone signal transduction and zeatin biosynthesis were involved in the response to TE. Cytokinin oxidase/dehydrogenase (CKX) genes and ethylene-related genes were up-regulated following TE treatment, and were associated with increased level of ethylene, especially in cultivar X50. Down-regulation of GhCKX3 resulted in delayed defoliation and a reduced ethylene response. The results show that crosstalk between cytokinin and ethylene regulates cotton defoliation, and provide new insights into the molecular mechanisms underlying the mode of action of defoliants in cotton.
Collapse
Affiliation(s)
- Jiao Xu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Lin Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Heng Sun
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Nusireti Wusiman
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Baoqi Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yu Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Dawei Zhang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Haijiang Xu
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
- Correspondence: or
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- Correspondence: or
| |
Collapse
|
57
|
Poret M, Chandrasekar B, van der Hoorn RAL, Déchaumet S, Bouchereau A, Kim TH, Lee BR, Macquart F, Hara-Nishimura I, Avice JC. A Genotypic Comparison Reveals That the Improvement in Nitrogen Remobilization Efficiency in Oilseed Rape Leaves Is Related to Specific Patterns of Senescence-Associated Protease Activities and Phytohormones. FRONTIERS IN PLANT SCIENCE 2019; 10:46. [PMID: 30778361 PMCID: PMC6369165 DOI: 10.3389/fpls.2019.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/14/2019] [Indexed: 05/24/2023]
Abstract
Oilseed rape (Brassica napus L.) is an oleoproteaginous crop characterized by low N use efficiency (NUE) that is mainly related to a weak Nitrogen Remobilization Efficiency (NRE) during the sequential leaf senescence of the vegetative stages. Based on the hypothesis that proteolysis efficiency is crucial for the improvement of leafNRE, our objective was to characterize key senescence-associated proteolytic mechanisms of two genotypes (Ténor and Samouraï) previously identified with contrasting NREs. To reach this goal, biochemical changes, protease activities and phytohormone patterns were studied in mature leaves undergoing senescence in two genotypes with contrasting NRE cultivated in a greenhouse under limiting or ample nitrate supply. The genotype with the higher NRE (Ténor) possessed enhanced senescence processes in response to nitrate limitation, and this led to greater degradation of soluble proteins compared to the other genotype (Samouraï). This efficient proteolysis is associated with (i) an increase in serine and cysteine protease (CP) activities and (ii) the appearance of new CP activities (RD21-like, SAG12-like, RD19-like, cathepsin-B, XBCP3-like and aleurain-like proteases) during senescence induced by N limitation. Compared to Samouraï, Ténor has a higher hormonal ratio ([salicylic acid] + [abscisic acid])/([cytokinins]) that promotes senescence, particularly under low N conditions, and this is correlated with the stronger protein degradation and serine/CP activities observed during senescence. Short statement: The improvement in N recycling during leaf senescence in a genotype of Brassica napus L. characterized by a high nitrogen remobilization efficiency is related to a high phytohormonal ratio ([salicylic acid] + [abscisic acid])/([cytokinins]) that promotes leaf senescence and is correlated with an increase or the induction of specific serine and cysteine protease activities.
Collapse
Affiliation(s)
- Marine Poret
- Université de Caen Normandie, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., FED 4277 Normandie Végétal, Caen, France
| | - Balakumaran Chandrasekar
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Sylvain Déchaumet
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Alain Bouchereau
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Bok-Rye Lee
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Flavien Macquart
- Université de Caen Normandie, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., FED 4277 Normandie Végétal, Caen, France
| | - Ikuko Hara-Nishimura
- Laboratory of Plant Cell Biology, Faculty of Science and Engineering, Konan University Okamoto, Kobe, Japan
| | - Jean-Christophe Avice
- Université de Caen Normandie, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., FED 4277 Normandie Végétal, Caen, France
| |
Collapse
|
58
|
Abstract
Plant leaf senescence is the final process of leaf development that involves the mobilization of nutrients from old leaves to newly growing tissues. Leaf senescence involves a coordinated action at the cellular and organism levels under the control of a highly regulated genetic program. However, leaf senescence is also influenced by multiple internal and environmental signals that are integrated into the age information. Among these internal factors, the simple gaseous phytohormone ethylene is well-known to be an important endogenous modulator of plant leaf senescence and fruit ripening. Ethylene and its biosynthetic precursor ACC (1-aminocyclopropane-l-carboxylic acid) as well as inhibitors of ethylene biosynthesis aminoethoxyvinylglycine (AVG) and action (AgNO3) or the inhibitor of ethylene perception 1-MCP (1-methylcyclopropene) have been widely used by the research community of plant leaf senescence. However, until now, no systemically experimental method about the usage of ethylene in studying the molecular mechanisms of leaf senescence in Arabidopsis is available. Here, we provide detailed methods for exogenous application of ethylene and its inhibitors in studying Arabidopsis leaf senescence, which has been successfully used in our laboratory.
Collapse
Affiliation(s)
- Zhonghai Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center of Life Sciences, Peking University, Beijing, China
| | - Hongwei Guo
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center of Life Sciences, Peking University, Beijing, China. .,Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China.
| |
Collapse
|
59
|
Zhang C, Teng XD, Zheng QQ, Zhao YY, Lu JY, Wang Y, Guo H, Yang ZN. Ethylene signaling is critical for synergid cell functional specification and pollen tube attraction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:176-187. [PMID: 30003612 DOI: 10.1111/tpj.14027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/03/2018] [Indexed: 05/23/2023]
Abstract
ETHYLENE INSENSITIVE 3 (EIN3) is a key regulator of ethylene signaling, and EIN3-BINDING F-BOX1 (EBF1) and EBF2 are responsible for EIN3 degradation. Previous reports have shown that the ebf1 ebf2 double homozygous mutant cannot be identified. In this study, the genetic analysis revealed that the ebf1 ebf2 female gametophyte is defective. The pollination experiment showed that ebf1 ebf2 ovules failed to attract pollen tubes. In female gametophyte/ovule, the synergid cell is responsible for pollen tube attraction. Observation of the pEIN3::EIN3-GFP transgenic lines showed that EIN3 signal was over-accumulated at the micropylar end of ebf1 ebf2 female gametophyte. The overexpression of stabilized EIN3 in synergid cell led to the defect of pollen tube guidance. These results suggested that the over-accumulated EIN3 in ebf1 ebf2 synergid cell blocks its pollen tube attraction which leads to the failure of ebf1 ebf2 homozygous plant. We identified that EIN3 directly activated the expression of a sugar transporter, SENESCENCE-ASSOCIATED GENE29 (SAG29/SWEET15). Overexpression of SAG29 in synergid cells blocked pollen tube attraction, suggesting that SAG29 might play a role in ethylene signaling to repel pollen tube entry. Taken together, our study reveals that strict control of ethylene signaling is critical for the synergid cell function during plant reproduction.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Xiao-Dong Teng
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Quan-Quan Zheng
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yan-Yun Zhao
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jie-Yang Lu
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yichuan Wang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 508055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 508055, China
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| |
Collapse
|
60
|
Rai KK, Rai N, Rai SP. Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L plants by regulating bio-physical processes and DNA methylation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:72-88. [PMID: 29763836 DOI: 10.1016/j.plaphy.2018.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/03/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Salicylic acid (SA) and sodium nitroprusside (SNP, NO donor) modulates plant growth and development processes and recent findings have also revealed their involvement in the regulation of epigenetic factors under stress condition. In the present study, some of these factors were comparatively studied in hyacinth bean plants subjected to high temperature (HT) environment (40-42 °C) with and without exogenous application of SA and SNP under field condition. Exogenous application of SA and SNP substantially modulated the growth and biophysical process of hyacinth bean plants under HT environment. Exogenous application of SA and SNP also remarkably regulated the activities of antioxidant enzymes, modulated mRNA level of certain enzymes, improves plant water relation, enhance photosynthesis and thereby increasing plant defence under HT. Coupled restriction enzyme digestion-random amplification (CRED-RA) technique revealed that many methylation changes were "dose dependent" and HT significantly increased DNA damages as evidenced by both increase and decrease in bands profiles, methylation and de-methylation pattern. Thus, the result of the present study clearly shows that exogenous SA and SNP regulates DNA methylation pattern, modulates stress-responsive genes and can impart transient HT tolerance by synchronizing growth and physiological acclimatization of plants, thus narrowing the gaps between physio-biochemical and molecular events in addressing HT tolerance.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini, Shahanshahpur, Varanasi, 221305, Uttar Pradesh, India; Laboratory of Morphogenesis, Centre of Advance Study in Botany, Department of Botany, Faculty of Science, Banaras Hindu University (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Nagendra Rai
- Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini, Shahanshahpur, Varanasi, 221305, Uttar Pradesh, India
| | - Shashi Pandey Rai
- Laboratory of Morphogenesis, Centre of Advance Study in Botany, Department of Botany, Faculty of Science, Banaras Hindu University (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
61
|
Bresson J, Bieker S, Riester L, Doll J, Zentgraf U. A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:769-786. [PMID: 28992225 DOI: 10.1093/jxb/erx246] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Leaf senescence is not a chaotic breakdown but a dynamic process following a precise timetable. It enables plants to economize with their resources and control their own viability and integrity. The onset as well as the progression of leaf senescence are co-ordinated by a complex genetic network that continuously integrates developmental and environmental signals such as biotic and abiotic stresses. Therefore, studying senescence requires an integrative and multi-scale analysis of the dynamic changes occurring in plant physiology and metabolism. In addition to providing an automated and standardized method to quantify leaf senescence at the macroscopic scale, we also propose an analytic framework to investigate senescence at physiological, biochemical, and molecular levels throughout the plant life cycle. We have developed protocols and suggested methods for studying different key processes involved in senescence, including photosynthetic capacities, membrane degradation, redox status, and genetic regulation. All methods presented in this review were conducted on Arabidopsis thaliana Columbia-0 and results are compared with senescence-related mutants. This guideline includes experimental design, protocols, recommendations, and the automated tools for leaf senescence analyses that could also be applied to other species.
Collapse
Affiliation(s)
- Justine Bresson
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Stefan Bieker
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Lena Riester
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Jasmin Doll
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Ulrike Zentgraf
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| |
Collapse
|
62
|
Li Z, Woo HR, Guo H. Genetic redundancy of senescence-associated transcription factors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:811-823. [PMID: 29309664 DOI: 10.1093/jxb/erx345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/29/2017] [Indexed: 05/25/2023]
Abstract
Leaf senescence is a genetically programmed process that constitutes the last stage of leaf development, and involves massive changes in gene expression. As a result of the intensive efforts that have been made to elucidate the molecular genetic mechanisms underlying leaf senescence, 184 genes that alter leaf senescence phenotypes when mutated or overexpressed have been identified in Arabidopsis thaliana over the past two decades. Concurrently, experimental evidence on functional redundancy within senescence-associated genes (SAGs) has increased. In this review, we focus on transcription factors that play regulatory roles in Arabidopsis leaf senescence, and describe the relationships among gene duplication, gene expression level, and senescence phenotypes. Previous findings and our re-analysis demonstrate the widespread existence of duplicate SAG pairs and a correlation between gene expression levels in duplicate genes and senescence-related phenotypic severity of the corresponding mutants. We also highlight effective and powerful tools that are available for functional analyses of redundant SAGs. We propose that the study of duplicate SAG pairs offers a unique opportunity to understand the regulation of leaf senescence and can guide the investigation of the functions of redundant SAGs via reverse genetic approaches.
Collapse
Affiliation(s)
- Zhonghai Li
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hongwei Guo
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China
| |
Collapse
|
63
|
Yang J, Udvardi M. Senescence and nitrogen use efficiency in perennial grasses for forage and biofuel production. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:855-865. [PMID: 29444307 DOI: 10.1093/jxb/erx241] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Organ senescence is an important developmental process in plants that enables recycling of nutrients, such as nitrogen, to maximize reproductive success. Nitrogen is the mineral nutrient required in greatest amount by plants, although soil-N limits plant productivity in many natural and agricultural systems, especially systems that receive little or no fertilizer-N. Use of industrial N-fertilizers in agriculture increased crop yields several fold over the past century, although at substantial cost to fossil energy reserves and the environment. Therefore, it is important to optimize nitrogen use efficiency (NUE) in agricultural systems. Organ senescence contributes to NUE in plants and manipulation of senescence in plant breeding programs is a promising approach to improve NUE in agriculture. Much of what we know about plant senescence comes from research on annual plants, which provide most of the food for humans. Relatively little work has been done on senescence in perennial plants, especially perennial grasses, which provide much of the forage for grazing animals and promise to supply much of the biomass required by the future biofuel industry. Here, we review briefly what is known about senescence from studies of annual plants, before presenting current knowledge about senescence in perennial grasses and its relationship to yield, quality, and NUE. While higher yield is a common target, desired N-content diverges between forage and biofuel crops. We discuss how senescence programs might be altered to produce high-yielding, stress-tolerant perennial grasses with high-N (protein) for forage or low-N for biofuels in systems optimized for NUE.
Collapse
Affiliation(s)
- Jiading Yang
- Noble Research Institute, Ardmore, OK, USA
- Bioenergy Sciences Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Michael Udvardi
- Noble Research Institute, Ardmore, OK, USA
- Bioenergy Sciences Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
64
|
Wang M, Zhang T, Peng H, Luo S, Tan J, Jiang K, Heng Y, Zhang X, Guo X, Zheng J, Cheng Z. Rice Premature Leaf Senescence 2, Encoding a Glycosyltransferase (GT), Is Involved in Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2018; 9:560. [PMID: 29755498 PMCID: PMC5932172 DOI: 10.3389/fpls.2018.00560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/10/2018] [Indexed: 05/06/2023]
Abstract
Premature leaf senescence (PLS), which has a significant impact on yield, is caused by various underlying mechanisms. Glycosyltransferases, which function in glycosyl transfer from activated nucleotides to aglycones, are involved in diverse biological processes, but their roles in rice leaf senescence remain elusive. Here, we isolated and characterized a leaf senescence-related gene from the Premature Leaf Senescent mutant (pls2). The mutant phenotype began with leaf yellowing at tillering and resulted in PLS during the reproductive stage. Leaf senescence was associated with an increase in hydrogen peroxide (H2O2) content accompanied with pronounced decreases in net photosynthetic rate, stomatal conductance, and transpiration rate. Map-based cloning revealed that a mutation in LOC_Os03g15840 (PLS2), a putative glycosyltransferase- encoding gene, was responsible for the defective phenotype. PLS2 expression was detected in all tissues surveyed, but predominantly in leaf mesophyll cells. Subcellular localization of the PLS2 was in the endoplasmic reticulum. The pls2 mutant accumulated higher levels of sucrose together with decreased expression of sucrose metabolizing genes compared with wild type. These data suggested that the PLS2 allele is essential for normal leaf senescence and its mutation resulted in PLS.
Collapse
Affiliation(s)
- Min Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Zhang
- Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Hao Peng
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Sheng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juejie Tan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaifeng Jiang
- Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Yueqin Heng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiakui Zheng
- Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang, China
- *Correspondence: Jiakui Zheng, Zhijun Cheng,
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jiakui Zheng, Zhijun Cheng,
| |
Collapse
|
65
|
El Mannai Y, Akabane K, Hiratsu K, Satoh-Nagasawa N, Wabiko H. The NAC Transcription Factor Gene OsY37 (ONAC011) Promotes Leaf Senescence and Accelerates Heading Time in Rice. Int J Mol Sci 2017; 18:E2165. [PMID: 29039754 PMCID: PMC5666846 DOI: 10.3390/ijms18102165] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/17/2022] Open
Abstract
Leaf senescence is an important physiological process involving the degradation of a number of metabolites and their remobilization to new reproductive and storage organs. NAC (NAM, ATAF, and CUC) transcription factors are reported as important regulators of the senescence process. Here, we describe the identification and functional characterization of the NAC transcription factor gene, OsY37 (Oryza sativa Yellow37, ONAC011) obtained from Oryza sativa cv. indica, and japonica. We created transgenic plants expressing the OsY37 gene under the control of a strong and constitutive CaMV35S promoter. The resulting transgenic plants overexpressing OsY37 gene showed early heading and precocious senescence phenotype of flag leaves compared with wild-type plants. By contrast, blocking the function of this gene via RNAi (RNA interference) and CRES-T (Chimeric Repressor Silencing Technology) technology, delayed both heading time and leaf senescence. Furthermore, knockdown of OsY37 expression caused dwarfism and high accumulation of chlorophyll during the vegetative phase. Irrespective of early or delayed senescence, transgenic plants showed reduced grain yields. Our results indicate that OsY37 acts as a positive regulator of heading and senescence during the reproductive phase in rice. In addition, OsY37 may be involved in plant development and grain yield.
Collapse
Affiliation(s)
- Yousra El Mannai
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan.
| | - Kenta Akabane
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan.
| | - Keiichiro Hiratsu
- Department of Applied Chemistry, National Defense Academy of Japan, Yokosuka 239-8686, Japan.
| | - Namiko Satoh-Nagasawa
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan.
| | - Hiroetsu Wabiko
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan.
| |
Collapse
|
66
|
Wu L, Li M, Tian L, Wang S, Wu L, Ku L, Zhang J, Song X, Liu H, Chen Y. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention. PLoS One 2017; 12:e0185838. [PMID: 28973044 PMCID: PMC5626513 DOI: 10.1371/journal.pone.0185838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022] Open
Abstract
In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention.
Collapse
Affiliation(s)
- Liancheng Wu
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Mingna Li
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Lei Tian
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Shunxi Wang
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Liuji Wu
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Lixia Ku
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Jun Zhang
- 3Cereal Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory of Maize Biology, Zhengzhou, China
| | - Xiaoheng Song
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Haiping Liu
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Yanhui Chen
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- * E-mail:
| |
Collapse
|
67
|
Chen Y, Wang Y, Huang J, Zheng C, Cai C, Wang Q, Wu CA. Salt and methyl jasmonate aggravate growth inhibition and senescence in Arabidopsis seedlings via the JA signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 261:1-9. [PMID: 28554688 DOI: 10.1016/j.plantsci.2017.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/05/2017] [Accepted: 05/09/2017] [Indexed: 05/22/2023]
Abstract
Numerous studies have demonstrated the function of salinity or jasmonic acid (JA) in plant growth and senescence. This study evaluated how the combination of salinity and methyl jasmonate (MeJA) (SaM) worked as a novel stress and then regulated plant growth in Arabidopsis. Firstly, we found that compared with MeJA or NaCl treatment alone, SaM would significantly intensified plant growth inhibition and senescence in wild-type (WT) seedlings, and these phenotypes could be partially compromised after SaM stress in JA-insensitive mutants. Meanwhile, genes involved in JA signaling and Senescence Associated Gene 13 (SAG13) were dramatically increased by SaM stress than that by MeJA or NaCl alone in WT. Moreover, a group of secondary metabolite - indolic glucosinolates (IGs) showed obvious over-accumulation after SaM treatment than that after each single one in WT, and the seedlings treated with IGs' metabolites performed similar inhibited growth and chlorotic leaves phenotypes compared with those caused by SaM stress. All these indicated the toxicity of IGs and their metabolites would prevent the growth progress of plants. Therefore, we concluded that SaM worked as a novel stress and intensified plant growth inhibition and senescence, which was dependent on JA-dependent and -independent signaling pathways.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Yan Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Congxi Cai
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qiaomei Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chang-Ai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China.
| |
Collapse
|
68
|
Lu G, Casaretto JA, Ying S, Mahmood K, Liu F, Bi YM, Rothstein SJ. Overexpression of OsGATA12 regulates chlorophyll content, delays plant senescence and improves rice yield under high density planting. PLANT MOLECULAR BIOLOGY 2017; 94:215-227. [PMID: 28342018 DOI: 10.1007/s11103-017-0604-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 03/15/2017] [Indexed: 05/19/2023]
Abstract
Agronomic traits controlling the formation, architecture and physiology of source and sink organs are main determinants of rice productivity. Semi-dwarf rice varieties with low tiller formation but high seed production per panicle and dark green and thick leaves with prolonged source activity are among the desirable traits to further increase the yield potential of rice. Here, we report the functional characterization of a zinc finger transcription factor, OsGATA12, whose overexpression causes increased leaf greenness, reduction of leaf and tiller number, and affects yield parameters. Reduced tillering allowed testing the transgenic plants under high density which resulted in significantly increased yield per area and higher harvest index compared to wild-type. We show that delayed senescence of transgenic plants and the corresponding longer stay-green phenotype is mainly due to increased chlorophyll and chloroplast number. Further, our work postulates that the increased greenness observed in the transgenic plants is due to more chlorophyll synthesis but most significantly to decreased chlorophyll degradation, which is supported by the reduced expression of genes involved in the chlorophyll degradation pathway. In particular we show evidence for the down-regulation of the STAY GREEN RICE gene and in vivo repression of its promoter by OsGATA12, which suggests a transcriptional repression function for a GATA transcription factor for prolonging the onset of senescence in cereals.
Collapse
Affiliation(s)
- Guangwen Lu
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - José A Casaretto
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada.
| | - Shan Ying
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - Kashif Mahmood
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - Fang Liu
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
69
|
Chen M, Yan T, Shen Q, Lu X, Pan Q, Huang Y, Tang Y, Fu X, Liu M, Jiang W, Lv Z, Shi P, Ma YN, Hao X, Zhang L, Li L, Tang K. GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. THE NEW PHYTOLOGIST 2017; 214:304-316. [PMID: 28001315 DOI: 10.1111/nph.14373] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/01/2016] [Indexed: 05/03/2023]
Abstract
Artemisinin is a type of sesquiterpene lactone well known as an antimalarial drug, and is specifically produced in glandular trichomes of Artemisia annua. However, the regulatory network for the artemisinin biosynthetic pathway remains poorly understood. Exploration of trichome-specific transcription factors would facilitate the elucidation of regulatory mechanism of artemisinin biosynthesis. The WRKY transcription factor GLANDULAR TRICHOME-SPECIFIC WRKY 1 (AaGSW1) was cloned and analysed in A. annua. AaGSW1 exhibited similar expression patterns to the trichome-specific genes of the artemisinin biosynthetic pathway and AP2/ERF transcription factor AaORA. A β-glucuronidase (GUS) staining assay further demonstrated that AaGSW1 is a glandular trichome-specific transcription factor. AaGSW1 positively regulates CYP71AV1 and AaORA expression by directly binding to the W-box motifs in their promoters. Overexpression of AaGSW1 in A. annua significantly improves artemisinin and dihydroartemisinic acid contents; moreover, AaGSW1 can be directly regulated by AaMYC2 and AabZIP1, which are positive regulators of jasmonate (JA)- and abscisic acid (ABA)-mediated artemisinin biosynthetic pathways, respectively. These results demonstrate that AaGSW1 is a glandular trichome-specific WRKY transcription factor and a positive regulator in the artemisinin biosynthetic pathway. Moreover, we propose that two trifurcate feed-forward pathways involving AaGSW1, CYP71AV1 and AaMYC2/AabZIP1 function in the JA/ABA response in A. annua.
Collapse
Affiliation(s)
- Minghui Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingxiang Yan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China
| | - Qifang Pan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youran Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yueli Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meng Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weimin Jiang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zongyou Lv
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pu Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya-Nan Ma
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolong Hao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lida Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
70
|
Costa MCD, Artur MAS, Maia J, Jonkheer E, Derks MFL, Nijveen H, Williams B, Mundree SG, Jiménez-Gómez JM, Hesselink T, Schijlen EGWM, Ligterink W, Oliver MJ, Farrant JM, Hilhorst HWM. A footprint of desiccation tolerance in the genome of Xerophyta viscosa. NATURE PLANTS 2017; 3:17038. [PMID: 28346448 DOI: 10.1038/nplants.2017.38] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/20/2017] [Indexed: 05/18/2023]
Abstract
Desiccation tolerance is common in seeds and various other organisms, but only a few angiosperm species possess vegetative desiccation tolerance. These 'resurrection species' may serve as ideal models for the ultimate design of crops with enhanced drought tolerance. To understand the molecular and genetic mechanisms enabling vegetative desiccation tolerance, we produced a high-quality whole-genome sequence for the resurrection plant Xerophyta viscosa and assessed transcriptome changes during its dehydration. Data revealed induction of transcripts typically associated with desiccation tolerance in seeds and involvement of orthologues of ABI3 and ABI5, both key regulators of seed maturation. Dehydration resulted in both increased, but predominantly reduced, transcript abundance of genomic 'clusters of desiccation-associated genes' (CoDAGs), reflecting the cessation of growth that allows for the expression of desiccation tolerance. Vegetative desiccation tolerance in X. viscosa was found to be uncoupled from drought-induced senescence. We provide strong support for the hypothesis that vegetative desiccation tolerance arose by redirection of genetic information from desiccation-tolerant seeds.
Collapse
Affiliation(s)
- Maria-Cecília D Costa
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, 7701 Cape Town, South Africa
| | - Mariana A S Artur
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Julio Maia
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Eef Jonkheer
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Martijn F L Derks
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Harm Nijveen
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, PO Box 2434, Queensland 4001, Brisbane, Australia
| | - Sagadevan G Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, PO Box 2434, Queensland 4001, Brisbane, Australia
| | - José M Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Thamara Hesselink
- Bioscience, Wageningen Plant Research International, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Elio G W M Schijlen
- Bioscience, Wageningen Plant Research International, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Melvin J Oliver
- USDA-ARS-MWA-PGRU, 205 Curtis Hall, University of Missouri, Columbia, Missouri 65211, USA
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, 7701 Cape Town, South Africa
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
71
|
Guo J, Ling H, Ma J, Chen Y, Su Y, Lin Q, Gao S, Wang H, Que Y, Xu L. A sugarcane R2R3-MYB transcription factor gene is alternatively spliced during drought stress. Sci Rep 2017; 7:41922. [PMID: 28167824 PMCID: PMC5294458 DOI: 10.1038/srep41922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/30/2016] [Indexed: 11/28/2022] Open
Abstract
MYB transcription factors of the R2R3-MYB family have been shown to play important roles in many plant processes. A sugarcane R2R3-MYB gene (ScMYB2) and its two alternative forms of transcript (ScMYB2S1 and ScMYB2S2) were identified in this study. The deduced protein of ScMYB2S1 is a typical plant R2R3-MYB protein, while ScMYB2S2 encodes a truncated protein. Real-time qPCR analysis revealed that ScMYB2S1 is suppressed under PEG-simulated drought stress in sugarcane, while ScMYB2S2 is induced at later treatment stage. A senescence symptom was observed when ScMYB2S1 was injected into tobacco leaves mediated by Agrobacterium, but no symptom for ScMYB2S2. Further investigation showed that the expression levels of 4 senescence-associated genes, NtPR-1a, NtNYC1, NtCAT3 and NtABRE, were markedly induced in tobacco leaves after ScMYB2S1-injection, while they were not sensitive to ScMYB2S2-injection. Moreover, MDA and proline were also investigated after injection. Similarly, MDA and proline levels were induced by ABA and ScMYB2S1, while inhibited by ScMYB2S2. We propose that ScMYB2, by alternatively splicing two transcripts (ScMYB2S1 and ScMYB2S2), is involved in an ABA-mediated leaf senescence signaling pathway and play positive role in respond to drought-induced senescence in sugarcane. The results of this study provide information for further research in sugarcane stress processes.
Collapse
Affiliation(s)
- Jinlong Guo
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hui Ling
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jingjing Ma
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yun Chen
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yachun Su
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qingliang Lin
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shiwu Gao
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hengbo Wang
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Youxiong Que
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Liping Xu
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
72
|
Li Z, Zhao Y, Liu X, Jiang Z, Peng J, Jin J, Guo H, Luo J. Construction of the Leaf Senescence Database and Functional Assessment of Senescence-Associated Genes. Methods Mol Biol 2017; 1533:315-333. [PMID: 27987180 DOI: 10.1007/978-1-4939-6658-5_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leaf senescence is the last phase of plant development and a highly coordinated process regulated by a large number of senescence-associated genes (SAGs). By broad literature survey, we constructed a leaf senescence database (LSD) in 2011 and updated it to Version 2.0 in 2014 ( http://www.eplantsenescence.org/ and http://psd.cbi.pku.edu.cn/ ) which contains a total of 5357 genes and 324 mutants from 44 species. These SAGs were retrieved based on genetic, genomic, proteomic, physiological, or other experimental evidence and were classified into different categories according to their functions in leaf senescence or morphological phenotype of mutants. To provide comprehensive information for SAGs, we made extensive annotation by both manual and computational approaches. In addition, we predicted putative orthologues of the SAGs in other species. LSD has a user-friendly interface to allow users to make text queries or BLAST searches and to download SAGs sequences for local analysis. Functional analyses of putative SAGs reveal that WRKY75, AZF2, NAC16, and WRKY26 are positive regulators of leaf senescence, while MKP2 and CTR1 perform negative regulation to leaf senescence. This database has been served as a valuable resource for basic research on the function of SAGs and evolution of plant leaf senescence, as well as for the exploration of genetic traits in agronomically important plants.
Collapse
Affiliation(s)
- Zhonghai Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yi Zhao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences and Center for Bioinformatics, Peking University, Beijing, 100871, China
| | - Xiaochuan Liu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Current Address: Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers University, New Brunswick, NJ, 07103, USA
| | - Zhiqiang Jiang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences and Center for Bioinformatics, Peking University, Beijing, 100871, China.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave, Boston, MA, 02115, USA
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jinpu Jin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences and Center for Bioinformatics, Peking University, Beijing, 100871, China
| | - Hongwei Guo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Jingchu Luo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences and Center for Bioinformatics, Peking University, Beijing, 100871, China.
| |
Collapse
|
73
|
Wu XY, Hu WJ, Luo H, Xia Y, Zhao Y, Wang LD, Zhang LM, Luo JC, Jing HC. Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor). PLANT MOLECULAR BIOLOGY 2016; 92:555-580. [PMID: 27586543 DOI: 10.1007/s11103-016-0532-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/19/2016] [Indexed: 05/04/2023]
Abstract
This piece of the submission is being sent via mail. Leaf senescence is essential for the nutrient economy of crops and is executed by so-called senescence-associated genes (SAGs). Here we explored the monocot C4 model crop Sorghum bicolor for a holistic picture of SAG profiles by RNA-seq. Leaf samples were collected at four stages during developmental senescence, and in total, 3396 SAGs were identified, predominantly enriched in GO categories of metabolic processes and catalytic activities. These genes were enriched in 13 KEGG pathways, wherein flavonoid and phenylpropanoid biosynthesis and phenylalanine metabolism were overrepresented. Seven regions on Chromosomes 1, 4, 5 and 7 contained SAG 'hotspots' of duplicated genes or members of cupin superfamily involved in manganese ion binding and nutrient reservoir activity. Forty-eight expression clusters were identified, and the candidate orthologues of the known important senescence transcription factors such as ORE1, EIN3 and WRKY53 showed "SAG" expression patterns, implicating their possible roles in regulating sorghum leaf senescence. Comparison of developmental senescence with salt- and dark- induced senescence allowed for the identification of 507 common SAGs, 1996 developmental specific SAGs as well as 176 potential markers for monitoring senescence in sorghum. Taken together, these data provide valuable resources for comparative genomics analyses of leaf senescence and potential targets for the manipulation of genetic improvement of Sorghum bicolor.
Collapse
Affiliation(s)
- Xiao-Yuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wei-Juan Hu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Yan Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Yi Zhao
- College of Life Sciences and State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, People's Republic of China
| | - Li-Dong Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Li-Min Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Jing-Chu Luo
- College of Life Sciences and State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, People's Republic of China.
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
74
|
Matoušek J, Kocábek T, Patzak J, Bříza J, Siglová K, Mishra AK, Duraisamy GS, Týcová A, Ono E, Krofta K. The "putative" role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.). PLANT MOLECULAR BIOLOGY 2016; 92:263-77. [PMID: 27392499 DOI: 10.1007/s11103-016-0510-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/02/2016] [Indexed: 05/20/2023]
Abstract
Lupulin glands localized in female hop (Humulus lupulus L.) cones are valuable source of bitter acids, essential oils and polyphenols. These compounds are used in brewing industry and are important for biomedical applications. In this study we describe the potential effect of transcription factors from WRKY family in the activation of the final steps of lupulin biosynthesis. In particular, lupulin gland-specific transcription factor HlWRKY1 that shows significant similarity to AtWRKY75, has ability to activate the set of promoters driving key genes of xanthohumol and bitter acids biosynthesis such as chalcone synthase H1, valerophenone synthase, prenyltransferase 1, 1L and 2 and O-methyltransferase-1. When combined with co-factor HlWDR1 and silencing suppressor p19, HlWRKY1 is able to enhance transient expression of gus gene driven by Omt1 and Chs_H1 promoters to significant level as compared to 35S promoter of CaMV in Nicotiana. benthamiana. Transformation of hop with dual Agrobacterium vector bearing HlWRKY1/HlWDR1 led to ectopic overexpression of these transgenes and further activation of lupulin-specific genes expression in hop leaves. It was further showed that (1) HlWRKY1 is endowed with promoter autoactivation; (2) It is regulated by post-transcriptional gene silencing (PTGS) mechanism; (3) It is stimulated by kinase co-expression. Since HlWRKY1 promotes expression of lupulin-specific HlMyb3 gene therefore it can constitute a significant component in hop lupulin regulation network. Putative involvement of HlWRKY1 in the regulation of lupulin biosynthesis may suggest the original physiological function of lupulin components in hop as flower and seed protective compounds.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 438 46, Žatec, Czech Republic
| | - Jindřich Bříza
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Kristýna Siglová
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Ganesh Selvaraj Duraisamy
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Anna Týcová
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center (SIC) Ltd., 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503, Japan
| | - Karel Krofta
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 438 46, Žatec, Czech Republic
| |
Collapse
|
75
|
Gao S, Gao J, Zhu X, Song Y, Li Z, Ren G, Zhou X, Kuai B. ABF2, ABF3, and ABF4 Promote ABA-Mediated Chlorophyll Degradation and Leaf Senescence by Transcriptional Activation of Chlorophyll Catabolic Genes and Senescence-Associated Genes in Arabidopsis. MOLECULAR PLANT 2016; 9:1272-1285. [PMID: 27373216 DOI: 10.1016/j.molp.2016.06.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 05/17/2023]
Abstract
Chlorophyll (Chl) degradation is an integral process of leaf senescence, and NYE1/SGR1 has been demonstrated as a key regulator of Chl catabolism in diverse plant species. In this study, using yeast one-hybrid screening, we identified three abscisic acid (ABA)-responsive element (ABRE)-binding transcription factors, ABF2 (AREB1), ABF3, and ABF4 (AREB2), as the putative binding proteins of the NYE1 promoter. Through the transactivation analysis, electrophoretic mobility shift assay, and chromatin immunoprecipitation, we demonstrated that ABF2, ABF3, and ABF4 directly bound to and activated the NYE1 promoter in vitro and in vivo. ABA is a positive regulator of leaf senescence, and exogenously applied ABA can accelerate Chl degradation. The triple mutant of the ABFs, abf2abf3abf4, as well as two ABA-insensitive mutants, abi1-1 and snrk2.2/2.3/2.6, exhibited stay-green phenotypes after ABA treatment, along with decreased induction of NYE1 and NYE2 expression. In contrast, overexpression of ABF4 accelerated Chl degradation upon ABA treatment. Interestingly, ABF2/3/4 could also activate the expression of two Chl catabolic enzyme genes, PAO and NYC1, by directly binding to their promoters. In addition, abf2abf3abf4 exhibited a functional stay-green phenotype, and senescence-associated genes (SAGs), such as SAG29 (SWEET15), might be directly regulated by the ABFs. Taken together, our results suggest that ABF2, ABF3, and ABF4 likely act as key regulators in mediating ABA-triggered Chl degradation and leaf senescence in general in Arabidopsis.
Collapse
Affiliation(s)
- Shan Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiong Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoyu Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yi Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhongpeng Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
76
|
Li S, Gao J, Yao L, Ren G, Zhu X, Gao S, Qiu K, Zhou X, Kuai B. The role of ANAC072 in the regulation of chlorophyll degradation during age- and dark-induced leaf senescence. PLANT CELL REPORTS 2016; 35:1729-41. [PMID: 27154758 DOI: 10.1007/s00299-016-1991-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/19/2016] [Indexed: 05/02/2023]
Abstract
ANAC072 positively regulates both age- and dark-induced leaf senescence through activating the transcription of NYE1. Leaf senescence is integral to plant development, which is age-dependent and strictly regulated by internal and environmental signals. Although a number of senescence-related mutants and senescence-associated genes (SAGs) have been identified and characterized in the past decades, the general regulatory network of leaf senescence is still far from being elucidated. Here, we report the role of ANAC072, an SAG identified through bioinformatics analysis, in the regulation of chlorophyll degradation during natural and dark-induced leaf senescence. The expression of ANAC072 was increased with advancing leaf senescence in Arabidopsis. Leaf degreening was significantly delayed under normal or dark-induced conditions in anac072-1, a knockout mutant of ANAC072, with a higher chlorophyll level detected. In contrast, an overexpression mutant, anac072-2, with ANAC072 transcription markedly upregulated, showed an early leaf-yellowing phenotype. Consistently, senescent leaves of the loss-of-function mutant anac072-1 exhibited delays in the decrease of photosynthesis efficiency of photosystem II (F v/F m ratio) and the increase of plasma membrane ion leakage rate as compared with corresponding leaves of wild-type Col-0 plants, whereas the overexpression mutant anac072-2 showed opposite changes. Our data suggest that ANAC072 plays a positive role during natural and dark-induced leaf senescence. In addition, the transcript level of NYE1, a key regulatory gene in chlorophyll degradation, relied on the function of ANAC072. Combining these analyses with electrophoretic mobility shift assay and chromatin immunoprecipitation, we demonstrated that ANAC072 directly bound to the NYE1 promoter in vitro and in vivo, so ANAC072 may promote chlorophyll degradation by directly upregulating the expression of NYE1.
Collapse
Affiliation(s)
- Shou Li
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Jiong Gao
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Lingya Yao
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xiaoyu Zhu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Shan Gao
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Kai Qiu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xin Zhou
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
77
|
Li Y, Chang Y, Zhao C, Yang H, Ren D. Expression of the inactive ZmMEK1 induces salicylic acid accumulation and salicylic acid-dependent leaf senescence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:724-36. [PMID: 26822341 DOI: 10.1111/jipb.12465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/28/2016] [Indexed: 05/18/2023]
Abstract
Leaf senescence is the final leaf developmental process that is regulated by both intracellular factors and environmental conditions. The mitogen-activated protein kinase (MAPK) signaling cascades have been shown to play important roles in regulating leaf senescence; however, the component(s) downstream of the MAPK cascades in regulating leaf senescence are not fully understood. Here we showed that the transcriptions of ZmMEK1, ZmSIMK1, and ZmMPK3 were induced during dark-induced maize leaf senescence. Furthermore, in-gel kinase analysis revealed the 42 kDa MAPK was activated. ZmMEK1 interacted with ZmSIMK1 in yeast and maize mesophyll protoplasts and ZmSIMK1 was activated by ZmMEK1 in vitro. Expression of a dominant negative mutant of ZmMEK1 in Arabidopsis transgenic plants induced salicylic acid (SA) accumulation and SA-dependent leaf senescence. ZmMEK1 interacted with Arabidopsis MPK4 in yeast and activated MPK4 in vitro. SA treatment accelerated dark-induced maize leaf senescence. Moreover, blockage of MAPK signaling increased endogenous SA accumulation in maize leaves. These findings suggest that ZmMEK1-ZmSIMK1 cascade and its modulating SA levels play important roles in regulating leaf senescence.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Chang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chongchong Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
78
|
Yang J, Worley E, Ma Q, Li J, Torres‐Jerez I, Li G, Zhao PX, Xu Y, Tang Y, Udvardi M. Nitrogen remobilization and conservation, and underlying senescence-associated gene expression in the perennial switchgrass Panicum virgatum. THE NEW PHYTOLOGIST 2016; 211:75-89. [PMID: 26935010 PMCID: PMC6680227 DOI: 10.1111/nph.13898] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/14/2016] [Indexed: 05/19/2023]
Abstract
Improving nitrogen (N) remobilization from aboveground to underground organs during yearly shoot senescence is an important goal for sustainable production of switchgrass (Panicum virgatum) as a biofuel crop. Little is known about the genetic control of senescence and N use efficiency in perennial grasses such as switchgrass, which limits our ability to improve the process. Switchgrass aboveground organs (leaves, stems and inflorescences) and underground organs (crowns and roots) were harvested every month over a 3-yr period. Transcriptome analysis was performed to identify genes differentially expressed in various organs during development. Total N content in aboveground organs increased from spring until the end of summer, then decreased concomitant with senescence, while N content in underground organs exhibited an increase roughly matching the decrease in shoot N during fall. Hundreds of senescence-associated genes were identified in leaves and stems. Functional grouping indicated that regulation of transcription and protein degradation play important roles in shoot senescence. Coexpression networks predict important roles for five switchgrass NAC (NAM, ATAF1,2, CUC2) transcription factors (TFs) and other TF family members in orchestrating metabolism of carbohydrates, N and lipids, protein modification/degradation, and transport processes during senescence. This study establishes a molecular basis for understanding and enhancing N remobilization and conservation in switchgrass.
Collapse
Affiliation(s)
- Jiading Yang
- Plant Biology Divisionthe Samuel Roberts Noble FoundationArdmoreOK73401USA
- BioEnergy Sciences Center (BESC)Oak Ridge National LaboratoryOak RidgeTN37831USA
| | - Eric Worley
- Plant Biology Divisionthe Samuel Roberts Noble FoundationArdmoreOK73401USA
- BioEnergy Sciences Center (BESC)Oak Ridge National LaboratoryOak RidgeTN37831USA
| | - Qin Ma
- Department of Plant ScienceSouth Dakota State UniversityBrookingsSD57007USA
| | - Jun Li
- Plant Biology Divisionthe Samuel Roberts Noble FoundationArdmoreOK73401USA
| | - Ivone Torres‐Jerez
- Plant Biology Divisionthe Samuel Roberts Noble FoundationArdmoreOK73401USA
| | - Gaoyang Li
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGA30602USA
| | - Patrick X. Zhao
- Plant Biology Divisionthe Samuel Roberts Noble FoundationArdmoreOK73401USA
| | - Ying Xu
- BioEnergy Sciences Center (BESC)Oak Ridge National LaboratoryOak RidgeTN37831USA
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGA30602USA
| | - Yuhong Tang
- Plant Biology Divisionthe Samuel Roberts Noble FoundationArdmoreOK73401USA
- BioEnergy Sciences Center (BESC)Oak Ridge National LaboratoryOak RidgeTN37831USA
| | - Michael Udvardi
- Plant Biology Divisionthe Samuel Roberts Noble FoundationArdmoreOK73401USA
- BioEnergy Sciences Center (BESC)Oak Ridge National LaboratoryOak RidgeTN37831USA
| |
Collapse
|
79
|
Moschen S, Higgins J, Di Rienzo JA, Heinz RA, Paniego N, Fernandez P. Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower. BMC Bioinformatics 2016; 17 Suppl 5:174. [PMID: 27295368 PMCID: PMC4905614 DOI: 10.1186/s12859-016-1045-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background In recent years, high throughput technologies have led to an increase of datasets from omics disciplines allowing the understanding of the complex regulatory networks associated with biological processes. Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables, which has a strong impact on crop yield. Transcription factors (TFs) are key proteins in the regulation of gene expression, regulating different signaling pathways; their function is crucial for triggering and/or regulating different aspects of the leaf senescence process. The study of TF interactions and their integration with metabolic profiles under different developmental conditions, especially for a non-model organism such as sunflower, will open new insights into the details of gene regulation of leaf senescence. Results Weighted Gene Correlation Network Analysis (WGCNA) and BioSignature Discoverer (BioSD, Gnosis Data Analysis, Heraklion, Greece) were used to integrate transcriptomic and metabolomic data. WGCNA allowed the detection of 10 metabolites and 13 TFs whereas BioSD allowed the detection of 1 metabolite and 6 TFs as potential biomarkers. The comparative analysis demonstrated that three transcription factors were detected through both methodologies, highlighting them as potentially robust biomarkers associated with leaf senescence in sunflower. Conclusions The complementary use of network and BioSignature Discoverer analysis of transcriptomic and metabolomic data provided a useful tool for identifying candidate genes and metabolites which may have a role during the triggering and development of the leaf senescence process. The WGCNA tool allowed us to design and test a hypothetical network in order to infer relationships across selected transcription factor and metabolite candidate biomarkers involved in leaf senescence, whereas BioSignature Discoverer selected transcripts and metabolites which discriminate between different ages of sunflower plants. The methodology presented here would help to elucidate and predict novel networks and potential biomarkers of leaf senescence in sunflower. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1045-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastián Moschen
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Janet Higgins
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Julio A Di Rienzo
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ruth A Heinz
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Norma Paniego
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Fernandez
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina. .,Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| |
Collapse
|
80
|
Zou Y, Chintamanani S, He P, Fukushige H, Yu L, Shao M, Zhu L, Hildebrand DF, Tang X, Zhou JM. A gain-of-function mutation in Msl10 triggers cell death and wound-induced hyperaccumulation of jasmonic acid in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:600-9. [PMID: 26356550 DOI: 10.1111/jipb.12427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/09/2015] [Indexed: 05/02/2023]
Abstract
Jasmonates (JAs) are rapidly induced after wounding and act as key regulators for wound induced signaling pathway. However, what perceives the wound signal and how that triggers JA biosynthesis remains poorly understood. To identify components involved in Arabidopsis wound and JA signaling pathway, we screened for mutants with abnormal expression of a luciferase reporter, which is under the control of a wound-responsive promoter of an ethylene response factor (ERF) transcription factor gene, RAP2.6 (Related to APetala 2.6). The rea1 (RAP2.6 expresser in shoot apex) mutant constitutively expressed the RAP2.6-LUC reporter gene in young leaves. Along with the typical JA phenotypes including shorter petioles, loss of apical dominance, accumulation of anthocyanin pigments and constitutive expression of JA response gene, rea1 plants also displayed cell death and accumulated high levels of JA in response to wounding. The phenotype of rea1 mutant is caused by a gain-of-function mutation in the C-terminus of a mechanosensitive ion channel MscS-like 10 (MSL10). MSL10 is localized in the plasma membrane and is expressed predominantly in root tip, shoot apex and vascular tissues. These results suggest that MSL10 is involved in the wound-triggered early signal transduction pathway and possibly in regulating the positive feedback synthesis of JA.
Collapse
Affiliation(s)
- Yan Zou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | | | - Ping He
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, Texas, 77840, USA
| | - Hirotada Fukushige
- Department of Agronomy, Agricultural Sciences Center-Noth, University of Kentucky, Lexington, Kentucky, 40546-0091, USA
| | - Liping Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meiyu Shao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - David F Hildebrand
- Department of Agronomy, Agricultural Sciences Center-Noth, University of Kentucky, Lexington, Kentucky, 40546-0091, USA
| | - Xiaoyan Tang
- School of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
81
|
Zhang H, Zhao M, Song Q, Zhao L, Wang G, Zhou C. Identification and function analyses of senescence-associated WRKYs in wheat. Biochem Biophys Res Commun 2016; 474:761-767. [PMID: 27166153 DOI: 10.1016/j.bbrc.2016.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/28/2022]
Abstract
Leaf senescence is a positive, highly regulated, complex process, and transcription factors play important roles in the regulation of this process. We identified and characterized 116 WRKYs from the wheat genome database. Thirteen TaWRKYs were confirmed as senescence-associated genes. We focused on TaWRKY7, which is up-regulated in the natural leaf senescence process. TaWRKY7 is expressed in different tissues of wheat and is localized in the nucleus. It shows transcriptional activation activity in yeast cells. The ectopic over-expression of TaWRKY7 in Arabidopsis (Arabidopsis thaliana) significantly promoted early leaf senescence under darkness treatment and prevented leaf moisture losses. TaWRKY7 played important roles in the senescence process and was involved in abiotic stress responses. Our transcriptomic and genetic studies on WRKYs suggest that WRKY transcription factors are a type of vital regulator in leaf senescence in wheat (Triticum aestivum L.).
Collapse
Affiliation(s)
- Haoshan Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024 PR China
| | - Mingming Zhao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024 PR China
| | - Qiuhang Song
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024 PR China
| | - Lifeng Zhao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024 PR China
| | - Geng Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024 PR China
| | - Chunjiang Zhou
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024 PR China.
| |
Collapse
|
82
|
Wu X, Ding D, Shi C, Xue Y, Zhang Z, Tang G, Tang J. microRNA-dependent gene regulatory networks in maize leaf senescence. BMC PLANT BIOLOGY 2016; 16:73. [PMID: 27000050 PMCID: PMC4802599 DOI: 10.1186/s12870-016-0755-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/14/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Maize grain yield depends mainly on the photosynthetic efficiency of functional leaves, which is controlled by an array of gene networks and other factors, including environmental conditions. MicroRNAs (miRNAs) are small RNA molecules that play important roles in plant developmental regulation. A few senescence-associated miRNAs (SA-miRNAs) have been identified as important participants in regulating leaf senescence by modulating the expression levels of their target genes. RESULTS To elucidate miRNA roles in leaf senescence and their underlying molecular mechanisms in maize, a stay-green line, Yu87-1, and an early leaf senescence line, Early leaf senescence-1 (ELS-1), were selected as experimental materials for the differential expression of candidate miRNAs. Four small RNA libraries were constructed from ear leaves at 20 and 30 days after pollination and sequenced by Illumina deep sequencing technology. Altogether, 81 miRNAs were detected in both lines. Of these, 16 miRNAs of nine families were differentially expressed between ELS-1 andYu87-1. The phenotypic and chlorophyll content analyses of both lines identified these 16 differentially expressed miRNAs as candidate SA-miRNAs. CONCLUSIONS In this study, 16 candidate SA-miRNAs of ELS-1 were identified through small RNA deep sequencing technology. Degradome sequencing results indicated that these candidate SA-miRNAs may regulate leaf senescence through their target genes, mainly transcription factors, and potentially control chlorophyll degradation pathways. The results highlight the regulatory roles of miRNAs during leaf senescence in maize.
Collapse
Affiliation(s)
- Xiangyuan Wu
- />National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Dong Ding
- />National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Chaonan Shi
- />National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Yadong Xue
- />National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Zhanhui Zhang
- />National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Guiliang Tang
- />National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
- />Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931 USA
| | - Jihua Tang
- />National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
- />Hubei Collaborative Innovation Center for the Grain Industry, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
83
|
Zou Z, Yang L, Wang D, Huang Q, Mo Y, Xie G. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.). PLoS One 2016; 11:e0148243. [PMID: 26849139 PMCID: PMC4743969 DOI: 10.1371/journal.pone.0148243] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/16/2016] [Indexed: 11/25/2022] Open
Abstract
WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.
Collapse
Affiliation(s)
- Zhi Zou
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Lifu Yang
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Danhua Wang
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Qixing Huang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P. R. China
| | - Yeyong Mo
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Guishui Xie
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| |
Collapse
|
84
|
Vylíčilová H, Husičková A, Spíchal L, Srovnal J, Doležal K, Plíhal O, Plíhalová L. C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus. PHYTOCHEMISTRY 2016; 122:22-33. [PMID: 26706318 DOI: 10.1016/j.phytochem.2015.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/29/2015] [Accepted: 12/02/2015] [Indexed: 05/04/2023]
Abstract
Cytokinins are plant hormones with biological functions ranging from coordination of plant growth and development to the regulation of senescence. A series of 2-chloro-N(6)-(halogenobenzylamino)purine ribosides was prepared and tested for cytokinin activity in detached wheat leaf senescence, tobacco callus and Amaranthus bioassays. The synthetic compounds showed significant activity, especially in delaying senescence in detached wheat leaves. They were also tested in bacterial receptor bioassays using both monocot and dicot members of the cytokinin receptor family. Most of the derivatives did not trigger cytokinin signaling via the AHK3 and AHK4 receptors from Arabidopsis thaliana in the bacterial assay, but some of them specifically activated the ZmHK1 receptor from Zea mays and were also more active than the aromatic cytokinin BAP in an ARR5::GUS cytokinin bioassay using transgenic Arabidopsis plants. Whole transcript expression analysis was performed using an Arabidopsis model to gather information about the reprogramming of gene transcription when senescent leaves were treated with selected C2-substituted aromatic cytokinin ribosides. Genome-wide expression profiling revealed that the synthetic halogenated derivatives induced the expression of genes related to cytokinin signaling and metabolism. They also prompted both up- and down-regulation of a unique combination of genes coding for components of the photosystem II (PSII) reaction center, light-harvesting complex II (LHCII), and the oxygen-evolving complex, as well as several stress factors responsible for regulating photosynthesis and chlorophyll degradation. Chlorophyll content and fluorescence analyses demonstrated that treatment with the halogenated derivatives increased the efficiency of PSII photochemistry and the abundance of LHCII relative to DMSO- and BAP-treated controls. These findings demonstrate that it is possible to manipulate and fine-tune leaf longevity using synthetic aromatic cytokinin analogs.
Collapse
Affiliation(s)
- Hana Vylíčilová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Alexandra Husičková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hněvotínská 5, CZ-77900 Olomouc, Czech Republic
| | - Karel Doležal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Ondřej Plíhal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Molecular Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic.
| | - Lucie Plíhalová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| |
Collapse
|
85
|
Wehner G, Balko C, Humbeck K, Zyprian E, Ordon F. Expression profiling of genes involved in drought stress and leaf senescence in juvenile barley. BMC PLANT BIOLOGY 2016; 16:3. [PMID: 26733420 PMCID: PMC4702385 DOI: 10.1186/s12870-015-0701-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/22/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Drought stress in juvenile stages of crop development and premature leaf senescence induced by drought stress have an impact on biomass production and yield formation of barley (Hordeum vulgare L.). Therefore, in order to get information of regulatory processes involved in the adaptation to drought stress and leaf senescence expression analyses of candidate genes were conducted on a set of 156 barley genotypes in early developmental stages, and expression quantitative trait loci (eQTL) were identified by a genome wide association study. RESULTS Significant effects of genotype and treatment were detected for leaf colour measured at BBCH 25 as an indicator of leaf senescence and for the expression level of the genes analysed. Furthermore, significant correlations were detected within the group of genes involved in drought stress (r = 0.84) and those acting in leaf senescence (r = 0.64), as well as between leaf senescence genes and the leaf colour (r = 0.34). Based on these expression data and 3,212 polymorphic single nucleotide polymorphisms (SNP) with a minor allele frequency >5% derived from the Illumina 9 k iSelect SNP Chip, eight cis eQTL and seven trans eQTL were found. Out of these an eQTL located on chromosome 3H at 142.1 cM is of special interest harbouring two drought stress genes (GAD3 and P5CS2) and one leaf senescence gene (Contig7437), as well as an eQTL on chromosome 5H at 44.5 cM in which two genes (TRIUR3 and AVP1) were identified to be associated to drought stress tolerance in a previous study. CONCLUSION With respect to the expression of genes involved in drought stress and early leaf senescence, genotypic differences exist in barley. Major eQTL for the expression of these genes are located on barley chromosome 3H and 5H. Respective markers may be used in future barley breeding programmes for improving tolerance to drought stress and leaf senescence.
Collapse
Affiliation(s)
- Gwendolin Wehner
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Rudolf-Schick-Platz 3, 18190, Sanitz, Germany.
- Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle, Germany.
| | - Christiane Balko
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Rudolf-Schick-Platz 3, 18190, Sanitz, Germany.
| | - Klaus Humbeck
- Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle, Germany.
- Martin-Luther-University Halle-Wittenberg, Institute of Biology, Weinbergweg 10, 06120, Halle, Germany.
| | - Eva Zyprian
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding, Geilweilerhof, 76833, Siebeldingen, Germany.
| | - Frank Ordon
- Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle, Germany.
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany.
| |
Collapse
|
86
|
Jagadish KSV, Kavi Kishor PB, Bahuguna RN, von Wirén N, Sreenivasulu N. Staying Alive or Going to Die During Terminal Senescence-An Enigma Surrounding Yield Stability. FRONTIERS IN PLANT SCIENCE 2015; 6:1070. [PMID: 26648957 PMCID: PMC4663250 DOI: 10.3389/fpls.2015.01070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/16/2015] [Indexed: 05/02/2023]
Abstract
Breeding programs with the aim to enhance yield productivity under abiotic stress conditions during the reproductive stage of crops is a top priority in the era of climate change. However, the choice of exploring stay-green or senescence phenotypes, which represent an opposing physiological bearing, are explored in cereal breeding programs for enhanced yield stability to a different extent. Thus, the consideration of stay-green or senescence phenotypes is still an ongoing debate and has not been comprehensively addressed. In this review, we provide arguments for designing a target phenotype to mitigate abiotic stresses during pre- and post-anthesis in cereals with a focus on hormonal balances regulating stay-green phenotype versus remobilization. The two major hypothesis for grain yield improvement are (i) the importance of the stay-green trait to elevate grain number under pre-anthesis and anthesis stress and (ii) fine tuning the regulatory and molecular physiological mechanisms to accelerate nutrient remobilization to optimize grain quality and seed weight under post-anthesis stress. We highlight why a cautious balance in the phenotype design is essential. While stay-green phenotypes promise to be ideal for developing stress-tolerant lines during pre-anthesis and fertilization to enhance grain number and yield per se, fine-tuning efficient remobilizing behavior during seed filling might optimize grain weight, grain quality and nutrient efficiency. The proposed model provides novel and focused directions for cereal stress breeding programs to ensure better seed-set and efficient grain-filling in cereals under terminal drought and heat stress exposure.
Collapse
Affiliation(s)
| | | | | | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nese Sreenivasulu
- International Rice Research Institute, Metro Manila, Philippines
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
87
|
Rinerson CI, Scully ED, Palmer NA, Donze-Reiner T, Rabara RC, Tripathi P, Shen QJ, Sattler SE, Rohila JS, Sarath G, Rushton PJ. The WRKY transcription factor family and senescence in switchgrass. BMC Genomics 2015; 16:912. [PMID: 26552372 PMCID: PMC4640240 DOI: 10.1186/s12864-015-2057-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. METHODS All potential WRKY genes present in the version 1.0 of the switchgrass genome were identified and curated using manual and bioinformatic methods. Expression profiles of WRKY genes in switchgrass flag leaf RNA-Seq datasets were analyzed using clustering and network analyses tools to identify both WRKY and WRKY-associated gene co-expression networks during leaf development and senescence onset. RESULTS We identified 240 switchgrass WRKY genes including members of the RW5 and RW6 families of resistance proteins. Weighted gene co-expression network analysis of the flag leaf transcriptomes across development readily separated clusters of co-expressed genes into thirteen modules. A visualization highlighted separation of modules associated with the early and senescence-onset phases of flag leaf growth. The senescence-associated module contained 3000 genes including 23 WRKYs. Putative promoter regions of senescence-associated WRKY genes contained several cis-element-like sequences suggestive of responsiveness to both senescence and stress signaling pathways. A phylogenetic comparison of senescence-associated WRKY genes from switchgrass flag leaf with senescence-associated WRKY genes from other plants revealed notable hotspots in Group I, IIb, and IIe of the phylogenetic tree. CONCLUSIONS We have identified and named 240 WRKY genes in the switchgrass genome. Twenty three of these genes show elevated mRNA levels during the onset of flag leaf senescence. Eleven of the WRKY genes were found in hotspots of related senescence-associated genes from multiple species and thus represent promising targets for future switchgrass genetic improvement. Overall, individual WRKY gene expression profiles could be readily linked to developmental stages of flag leaves.
Collapse
Affiliation(s)
- Charles I Rinerson
- Texas A&M AgriLife Research and Extension Center, Dallas, TX, 75252, USA.
| | - Erin D Scully
- Grain, Forage and Bioenergy Research Unit USDA-ARS UNL, Lincoln, NE, 68583-0937, USA.
| | - Nathan A Palmer
- Grain, Forage and Bioenergy Research Unit USDA-ARS UNL, Lincoln, NE, 68583-0937, USA.
| | - Teresa Donze-Reiner
- Department of Biology, West Chester University of Pennsylvania, West Chester, PA, 19382, USA.
| | - Roel C Rabara
- Texas A&M AgriLife Research and Extension Center, Dallas, TX, 75252, USA.
| | - Prateek Tripathi
- Molecular and Computational Biology Section, Dana & David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
| | - Scott E Sattler
- Grain, Forage and Bioenergy Research Unit USDA-ARS UNL, Lincoln, NE, 68583-0937, USA.
| | - Jai S Rohila
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit USDA-ARS UNL, Lincoln, NE, 68583-0937, USA.
| | - Paul J Rushton
- Texas A&M AgriLife Research and Extension Center, Dallas, TX, 75252, USA.
- Current address: 22nd Century Group Inc., Clarence, 14031, New York.
| |
Collapse
|
88
|
Huo X, Wang C, Teng Y, Liu X. Identification of miRNAs associated with dark-induced senescence in Arabidopsis. BMC PLANT BIOLOGY 2015; 15:266. [PMID: 26530097 PMCID: PMC4632659 DOI: 10.1186/s12870-015-0656-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/28/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND microRNAs (miRNAs) are endogenous small (~21 nucleotide) single-stranded non-coding RNAs that typically function by guiding cleavage of target genes. To find the miRNAs that may be involved in dark-induced leaf senescence, we identified miRNAs by microarray platform using Arabidopsis thaliana leaves from both whole darkened plants (DPs) and individually darkened leaves (IDLs). RESULTS We found that the expressions of 137 miRNAs (P < 0.01, signal intensity >0) were significantly changed both in DP and IDL leaves. Among them, the expression levels of 44 miRNAs were relative higher than others (P < 0.01, signal intensity > 500). Of these differentially expressed miRNAs, 6 miRNAs (miR319a, 319c, miR159, miR164a, miR164c and miR390a) have been previously reported to be involved in dark-induced leaf senescence, and the remaining 38 miRNAs have not been implicated in leaf senescence before. Target genes of all 44 miRNAs were predicted, and some of them, such as NAC1, At3g28690, At2g17640 and At2g45160, were found in the Leaf Senescence Database (LSD). GO and KEGG analysis of 137 miRNAs showed that the predicted target genes were significantly enriched in transcription regulation, development-related biological processes and metabolic pathways. Expression levels of some of the corresponding miRNA targets (At1g73440, At2g03220 and At5g54810) were analysed and found to be significantly different in DP/IDL than that in WT. CONCLUSIONS A microarray analysis about dark-induced miRNAs involved in leaf senescence are present here. Further expression analysis revealed that some new founding miRNAs maybe regulate leaf senescence in Arabidopsis, and the findings highlight the important role of miRNAs in dark-induced leaf senescence.
Collapse
Affiliation(s)
- Xiaoying Huo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, P. R. China.
| | - Chao Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, P. R. China.
| | - Yibo Teng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, P. R. China.
| | - Xunyan Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, P. R. China.
| |
Collapse
|
89
|
Foster AJ, Pelletier G, Tanguay P, Séguin A. Transcriptome Analysis of Poplar during Leaf Spot Infection with Sphaerulina spp. PLoS One 2015; 10:e0138162. [PMID: 26378446 PMCID: PMC4575021 DOI: 10.1371/journal.pone.0138162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
Diseases of poplar caused by the native fungal pathogen Sphaerulina musiva and related species are of growing concern, particularly with the increasing interest in intensive poplar plantations to meet growing energy demands. Sphaerulina musiva is able to cause infection on leaves, resulting in defoliation and canker formation on stems. To gain a greater understanding of the different responses of poplar species to infection caused by the naturally co-evolved Sphaerulina species, RNA-seq was conducted on leaves of Populus deltoides, P. balsamifera and P. tremuloides infected with S. musiva, S. populicola and a new undescribed species, Ston1, respectively. The experiment was designed to contain the pathogen in a laboratory environment, while replicating disease development in commercial plantations. Following inoculation, trees were monitored for disease symptoms, pathogen growth and host responses. Genes involved in phenylpropanoid, terpenoid and flavonoid biosynthesis were generally upregulated in P. balsamifera and P. tremuloides, while cell wall modification appears to play an important role in the defense of P. deltoides. Poplar defensive genes were expressed early in P. balsamifera and P. tremuloides, but their expression was delayed in P. deltoides, which correlated with the rate of disease symptoms development. Also, severe infection in P. balsamifera led to leaf abscission. This data gives an insight into the large differences in timing and expression of genes between poplar species being attacked by their associated Sphaerulina pathogen.
Collapse
Affiliation(s)
- Adam J. Foster
- Canadian Forest Service, Natural Resources Canada, Laurentian Forestry Centre, Québec, Canada
| | - Gervais Pelletier
- Canadian Forest Service, Natural Resources Canada, Laurentian Forestry Centre, Québec, Canada
| | - Philippe Tanguay
- Canadian Forest Service, Natural Resources Canada, Laurentian Forestry Centre, Québec, Canada
| | - Armand Séguin
- Canadian Forest Service, Natural Resources Canada, Laurentian Forestry Centre, Québec, Canada
- * E-mail:
| |
Collapse
|
90
|
Shankar A, Agrawal N, Sharma M, Pandey A, Pandey GK. Role of Protein Tyrosine Phosphatases in Plants. Curr Genomics 2015; 16:224-36. [PMID: 26962298 PMCID: PMC4765517 DOI: 10.2174/1389202916666150424234300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/19/2015] [Accepted: 04/24/2015] [Indexed: 01/01/2023] Open
Abstract
Reversible protein phosphorylation is a crucial regulatory mechanism that controls many biological processes in eukaryotes. In plants, phosphorylation events primarily occur on serine (Ser) and threonine (Thr) residues, while in certain cases, it was also discovered on tyrosine (Tyr) residues. In contrary to plants, extensive reports on Tyr phosphorylation regulating a large numbers of biological processes exist in animals. Despite of such prodigious function in animals, Tyr phosphorylation is a least studied mechanism of protein regulation in plants. Recently, various chemical analytical procedures have strengthened the view that Tyr phosphorylation is equally prevalent in plants as in animals. However, regardless of Tyr phosphorylation events occuring in plants, no evidence could be found for the existence of gene encoding for Tyr phosphorylation i.e. the typical Tyr kinases. Various methodologies have suggested that plant responses to stress signals and developmental processes involved modifications in protein Tyr phosphorylation. Correspondingly, various reports have established the role of PTPs (Protein Tyrosine Phosphatases) in the dephosphorylation and inactivation of mitogen activated protein kinases (MAPKs) hence, in the regulation of MAPK signaling cascade. Besides this, many dual specificity protein phosphatases (DSPs) are also known to bind starch and regulate starch metabolism through reversible phosphorylation. Here, we are emphasizing the significant progress on protein Tyr phosphatases to understand the role of these enzymes in the regulation of post-translational modification in plant physiology and development.
Collapse
Affiliation(s)
| | | | | | | | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
91
|
Brusslan JA, Bonora G, Rus-Canterbury AM, Tariq F, Jaroszewicz A, Pellegrini M. A Genome-Wide Chronological Study of Gene Expression and Two Histone Modifications, H3K4me3 and H3K9ac, during Developmental Leaf Senescence. PLANT PHYSIOLOGY 2015; 168:1246-61. [PMID: 25802367 PMCID: PMC4528724 DOI: 10.1104/pp.114.252999] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/20/2015] [Indexed: 05/19/2023]
Abstract
The genome-wide abundance of two histone modifications, H3K4me3 and H3K9ac (both associated with actively expressed genes), was monitored in Arabidopsis (Arabidopsis thaliana) leaves at different time points during developmental senescence along with expression in the form of RNA sequencing data. H3K9ac and H3K4me3 marks were highly convergent at all stages of leaf aging, but H3K4me3 marks covered nearly 2 times the gene area as H3K9ac marks. Genes with the greatest fold change in expression displayed the largest positively correlated percentage change in coverage for both marks. Most senescence up-regulated genes were premarked by H3K4me3 and H3K9ac but at levels below the whole-genome average, and for these genes, gene expression increased without a significant increase in either histone mark. However, for a subset of genes showing increased or decreased expression, the respective gain or loss of H3K4me3 marks was found to closely match the temporal changes in mRNA abundance; 22% of genes that increased expression during senescence showed accompanying changes in H3K4me3 modification, and they include numerous regulatory genes, which may act as primary response genes.
Collapse
Affiliation(s)
- Judy A Brusslan
- Department of Biological Sciences, California State University, Long Beach, California 90840-9502 (J.A.B., A.M.R.-C., F.T.); andDepartment of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (G.B., A.J., M.P.)
| | - Giancarlo Bonora
- Department of Biological Sciences, California State University, Long Beach, California 90840-9502 (J.A.B., A.M.R.-C., F.T.); andDepartment of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (G.B., A.J., M.P.)
| | - Ana M Rus-Canterbury
- Department of Biological Sciences, California State University, Long Beach, California 90840-9502 (J.A.B., A.M.R.-C., F.T.); andDepartment of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (G.B., A.J., M.P.)
| | - Fayha Tariq
- Department of Biological Sciences, California State University, Long Beach, California 90840-9502 (J.A.B., A.M.R.-C., F.T.); andDepartment of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (G.B., A.J., M.P.)
| | - Artur Jaroszewicz
- Department of Biological Sciences, California State University, Long Beach, California 90840-9502 (J.A.B., A.M.R.-C., F.T.); andDepartment of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (G.B., A.J., M.P.)
| | - Matteo Pellegrini
- Department of Biological Sciences, California State University, Long Beach, California 90840-9502 (J.A.B., A.M.R.-C., F.T.); andDepartment of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (G.B., A.J., M.P.)
| |
Collapse
|
92
|
Mucha S, Walther D, Müller TM, Hincha DK, Glawischnig E. Substantial reprogramming of the Eutrema salsugineum (Thellungiella salsuginea) transcriptome in response to UV and silver nitrate challenge. BMC PLANT BIOLOGY 2015; 15:137. [PMID: 26063239 PMCID: PMC4464140 DOI: 10.1186/s12870-015-0506-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/24/2015] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cruciferous plants synthesize a large variety of tryptophan-derived phytoalexins in response to pathogen infection, UV irradiation, or high dosages of heavy metals. The major phytoalexins of Eutrema salsugineum (Thellungiella salsuginea), which has recently been established as an extremophile model plant, are probably derivatives of indole glucosinolates, in contrast to Arabidopsis, which synthesizes characteristic camalexin from the glucosinolate precursor indole-3-acetaldoxime. RESULTS The transcriptional response of E. salsugineum to UV irradiation and AgNO3 was monitored by RNAseq and microarray analysis. Most transcripts (respectively 70% and 78%) were significantly differentially regulated and a large overlap between the two treatments was observed (54% of total). While core genes of the biosynthesis of aliphatic glucosinolates were repressed, tryptophan and indole glucosinolate biosynthetic genes, as well as defence-related WRKY transcription factors, were consistently upregulated. The putative Eutrema WRKY33 ortholog was functionally tested and shown to complement camalexin deficiency in Atwrky33 mutant. CONCLUSIONS In E. salsugineum, UV irradiation or heavy metal application resulted in substantial transcriptional reprogramming. Consistently induced genes of indole glucosinolate biosynthesis and modification will serve as candidate genes for the biosynthesis of Eutrema-specific phytoalexins.
Collapse
MESH Headings
- Biosynthetic Pathways/genetics
- Brassicaceae/drug effects
- Brassicaceae/genetics
- Brassicaceae/radiation effects
- Cellular Reprogramming/drug effects
- Cellular Reprogramming/radiation effects
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Gene Knockout Techniques
- Glucosinolates/biosynthesis
- Indoles/metabolism
- Metals, Heavy/toxicity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Sesquiterpenes/metabolism
- Silver Nitrate/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Stress, Physiological/radiation effects
- Thiazoles/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/radiation effects
- Transcriptome/drug effects
- Transcriptome/genetics
- Transcriptome/radiation effects
- Tryptophan/biosynthesis
- Ultraviolet Rays
- Phytoalexins
Collapse
Affiliation(s)
- Stefanie Mucha
- Lehrstuhl für Genetik, Technische Universität München, D-85354, Freising, Germany.
| | - Dirk Walther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Germany.
| | - Teresa M Müller
- Lehrstuhl für Genetik, Technische Universität München, D-85354, Freising, Germany.
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Germany.
| | - Erich Glawischnig
- Lehrstuhl für Genetik, Technische Universität München, D-85354, Freising, Germany.
| |
Collapse
|
93
|
Kim J, Chang C, Tucker ML. To grow old: regulatory role of ethylene and jasmonic acid in senescence. FRONTIERS IN PLANT SCIENCE 2015; 6:20. [PMID: 25688252 PMCID: PMC4310285 DOI: 10.3389/fpls.2015.00020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/10/2015] [Indexed: 05/18/2023]
Abstract
Senescence, the final stage in the development of an organ or whole plant, is a genetically programmed process controlled by developmental and environmental signals. Age-related signals underlie the onset of senescence in specific organs (leaf, flower, and fruit) as well as the whole plant (monocarpic senescence). Rudimentary to most senescence processes is the plant hormone ethylene, a small gaseous molecule critical to diverse processes throughout the life of the plant. The role of ethylene in senescence was discovered almost 100 years ago, but the molecular mechanisms by which ethylene regulates senescence have been deciphered more recently primarily through genetic and molecular studies in Arabidopsis. Jasmonic acid (JA), another plant hormone, is emerging as a key player in the control of senescence. The regulatory network of ethylene and JA involves the integration of transcription factors, microRNAs, and other hormones. In this review, we summarize the current understanding of ethylene's role in senescence, and discuss the interplay of ethylene with JA in the regulation of senescence.
Collapse
Affiliation(s)
- Joonyup Kim
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- *Correspondence: Joonyup Kim and Mark L. Tucker, Soybean Genomics and Improvement Laboratory, United States Department of Agriculture–Agricultural Research Service, 10300 Baltimore Avenue, Building 006, Room 212, BARC-WEST, Beltsville, MD 20705, USA e-mail: ;
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Mark L. Tucker
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, MD, USA
- *Correspondence: Joonyup Kim and Mark L. Tucker, Soybean Genomics and Improvement Laboratory, United States Department of Agriculture–Agricultural Research Service, 10300 Baltimore Avenue, Building 006, Room 212, BARC-WEST, Beltsville, MD 20705, USA e-mail: ;
| |
Collapse
|
94
|
Xie Y, Huhn K, Brandt R, Potschin M, Bieker S, Straub D, Doll J, Drechsler T, Zentgraf U, Wenkel S. REVOLUTA and WRKY53 connect early and late leaf development in Arabidopsis. Development 2014; 141:4772-83. [PMID: 25395454 PMCID: PMC4299279 DOI: 10.1242/dev.117689] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As sessile organisms, plants have to continuously adjust growth and development to ever-changing environmental conditions. At the end of the growing season, annual plants induce leaf senescence to reallocate nutrients and energy-rich substances from the leaves to the maturing seeds. Thus, leaf senescence is a means with which to increase reproductive success and is therefore tightly coupled to the developmental age of the plant. However, senescence can also be induced in response to sub-optimal growth conditions as an exit strategy, which is accompanied by severely reduced yield. Here, we show that class III homeodomain leucine zipper (HD-ZIPIII) transcription factors, which are known to be involved in basic pattern formation, have an additional role in controlling the onset of leaf senescence in Arabidopsis. Several potential direct downstream genes of the HD-ZIPIII protein REVOLUTA (REV) have known roles in environment-controlled physiological processes. We report that REV acts as a redox-sensitive transcription factor, and directly and positively regulates the expression of WRKY53, a master regulator of age-induced leaf senescence. HD-ZIPIII proteins are required for the full induction of WRKY53 in response to oxidative stress, and mutations in HD-ZIPIII genes strongly delay the onset of senescence. Thus, a crosstalk between early and late stages of leaf development appears to contribute to reproductive success.
Collapse
Affiliation(s)
- Yakun Xie
- Center for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany
| | - Kerstin Huhn
- Center for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany
| | - Ronny Brandt
- Center for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany
| | - Maren Potschin
- Center for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany
| | - Stefan Bieker
- Center for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany
| | - Daniel Straub
- Center for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Jasmin Doll
- Center for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany
| | - Thomas Drechsler
- Center for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany
| | - Ulrike Zentgraf
- Center for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany
| | - Stephan Wenkel
- Center for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| |
Collapse
|
95
|
Borrell AK, Mullet JE, George-Jaeggli B, van Oosterom EJ, Hammer GL, Klein PE, Jordan DR. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6251-63. [PMID: 25381433 PMCID: PMC4223986 DOI: 10.1093/jxb/eru232] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield, grain mass, and lodging resistance. Stay-green has been mapped to a number of key chromosomal regions, including Stg1, Stg2, Stg3, and Stg4, but the functions of these individual quantitative trait loci (QTLs) remain unclear. The objective of this study was to show how positive effects of Stg QTLs on grain yield under drought can be explained as emergent consequences of their effects on temporal and spatial water-use patterns that result from changes in leaf-area dynamics. A set of four Stg near-isogenic lines (NILs) and their recurrent parent were grown in a range of field and semicontrolled experiments in southeast Queensland, Australia. These studies showed that the four Stg QTLs regulate canopy size by: (1) reducing tillering via increased size of lower leaves, (2) constraining the size of the upper leaves; and (3) in some cases, decreasing the number of leaves per culm. In addition, they variously affect leaf anatomy and root growth. The multiple pathways by which Stg QTLs modulate canopy development can result in considerable developmental plasticity. The reduction in canopy size associated with Stg QTLs reduced pre-flowering water demand, thereby increasing water availability during grain filling and, ultimately, grain yield. The generic physiological mechanisms underlying the stay-green trait suggest that similar Stg QTLs could enhance post-anthesis drought adaptation in other major cereals such as maize, wheat, and rice.
Collapse
Affiliation(s)
- Andrew K Borrell
- University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Hermitage Research Facility, Warwick, QLD 4370, Australia
| | - John E Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Barbara George-Jaeggli
- Department of Agriculture, Fisheries and Forestry Queensland (DAFFQ), Hermitage Research Facility, Warwick, QLD 4370, Australia
| | | | - Graeme L Hammer
- University of Queensland, QAAFI, Brisbane, QLD 4072, Australia
| | - Patricia E Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - David R Jordan
- University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Hermitage Research Facility, Warwick, QLD 4370, Australia
| |
Collapse
|
96
|
Palmer NA, Donze-Reiner T, Horvath D, Heng-Moss T, Waters B, Tobias C, Sarath G. Switchgrass (Panicum virgatum L) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics. Funct Integr Genomics 2014; 15:1-16. [PMID: 25173486 DOI: 10.1007/s10142-014-0393-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/04/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022]
Abstract
Switchgrass flag leaves can be expected to be a source of carbon to the plant, and its senescence is likely to impact the remobilization of nutrients from the shoots to the rhizomes. However, many genes have not been assigned a function in specific stages of leaf development. Here, we characterized gene expression in flag leaves over their development. By merging changes in leaf chlorophyll and the expression of genes for chlorophyll biosynthesis and degradation, a four-phase molecular roadmap for switchgrass flag leaf ontogeny was developed. Genes associated with early leaf development were up-regulated in phase 1. Phase 2 leaves had increased expression of genes for chlorophyll biosynthesis and those needed for full leaf function. Phase 3 coincided with the most active phase for leaf C and N assimilation. Phase 4 was associated with the onset of senescence, as observed by declining leaf chlorophyll content, a significant up-regulation in transcripts coding for enzymes involved with chlorophyll degradation, and in a large number of senescence-associated genes. Of considerable interest were switchgrass NAC transcription factors with significantly higher expression in senescing flag leaves. Two of these transcription factors were closely related to a wheat NAC gene that impacts mineral remobilization. The third switchgrass NAC factor was orthologous to an Arabidopsis gene with a known role in leaf senescence. Other genes coding for nitrogen and mineral utilization, including ureide, ammonium, nitrate, and molybdenum transporters, shared expression profiles that were significantly co-regulated with the expression profiles of the three NAC transcription factors. These data provide a good starting point to link shoot senescence to the onset of dormancy in field-grown switchgrass.
Collapse
Affiliation(s)
- Nathan A Palmer
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583-0937, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Penfold CA, Buchanan-Wollaston V. Modelling transcriptional networks in leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3859-73. [PMID: 24600015 DOI: 10.1093/jxb/eru054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The process of leaf senescence is induced by an extensive range of developmental and environmental signals and controlled by multiple, cross-linking pathways, many of which overlap with plant stress-response signals. Elucidation of this complex regulation requires a step beyond a traditional one-gene-at-a-time analysis. Application of a more global analysis using statistical and mathematical tools of systems biology is an approach that is being applied to address this problem. A variety of modelling methods applicable to the analysis of current and future senescence data are reviewed and discussed using some senescence-specific examples. Network modelling with a senescence transcriptome time course followed by testing predictions with gene-expression data illustrates the application of systems biology tools.
Collapse
Affiliation(s)
| | - Vicky Buchanan-Wollaston
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
98
|
León J, Castillo MC, Coego A, Lozano-Juste J, Mir R. Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:907-21. [PMID: 24371253 DOI: 10.1093/jxb/ert454] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The extensive support for abscisic acid (ABA) involvement in the complex regulatory networks controlling stress responses and development in plants contrasts with the relatively recent role assigned to nitric oxide (NO). Because treatment with exogenous ABA leads to enhanced production of NO, it has been widely considered that NO participates downstream of ABA in controlling processes such as stomata movement, seed dormancy, and germination. However, data on leaf senescence and responses to stress suggest that the functional interaction between ABA and NO is more complex than previously thought, including not only cooperation but also antagonism. The functional relationship is probably determined by several factors including the time- and place-dependent pattern of accumulation of both molecules, the threshold levels, and the regulatory factors important for perception. These factors will determine the actions exerted by each regulator. Here, several examples of well-documented functional interactions between NO and ABA are analysed in light of the most recent reported data on seed dormancy and germination, stomata movements, leaf senescence, and responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- José León
- Plant Development and Hormone Action, Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Spain
| | | | | | | | | |
Collapse
|
99
|
Bakshi M, Oelmüller R. WRKY transcription factors: Jack of many trades in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e27700. [PMID: 24492469 PMCID: PMC4091213 DOI: 10.4161/psb.27700] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 05/18/2023]
Abstract
WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes.
Collapse
Affiliation(s)
- Madhunita Bakshi
- Amity Institute of Microbial Technology; Amity University; Noida, UP, India
- Institute of Plant Physiology; Friedrich-Schiller-University Jena; Jena, Germany
| | - Ralf Oelmüller
- Institute of Plant Physiology; Friedrich-Schiller-University Jena; Jena, Germany
| |
Collapse
|
100
|
Koyama T. The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. FRONTIERS IN PLANT SCIENCE 2014; 5:650. [PMID: 25505475 PMCID: PMC4243489 DOI: 10.3389/fpls.2014.00650] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/03/2014] [Indexed: 05/18/2023]
Abstract
Leaf senescence is the last stage of leaf development and is accompanied by cell death. In contrast to senescence in individual organisms that leads to death, leaf senescence is associated with dynamic processes that include the translocation of nutrients from old leaves to newly developing or storage tissues within the same plant. The onset of leaf senescence is largely regulated by age and internal and external stimuli, which include the plant hormone ethylene. Earlier studies have documented the important role of ethylene in the regulation of leaf senescence. The production of ethylene coincides with the onset of leaf senescence, whereas the application of ethylene to plants induces precocious leaf senescence. Recently, many studies have described the components of ethylene signaling and biosynthetic pathways that are involved in modulating the onset of leaf senescence. Particularly, transcription factors (TFs) integrate ethylene signals with those from environmental and developmental factors to accelerate or delay leaf senescence. This review aims to discuss the regulatory cascade involving ethylene and TFs in the regulation of onset of leaf senescence.
Collapse
Affiliation(s)
- Tomotsugu Koyama
- *Correspondence: Tomotsugu Koyama, Bioorganic Research Institute – Suntory Foundation for Life Sciences, Wakayamadai 1-1-1, Shimamoto, Osaka 618-8503, Japan e-mail:
| |
Collapse
|