51
|
Karan A, Sharma NS, Darder M, Su Y, Andrabi SM, Shahriar SMS, John JV, Luo Z, DeCoster MA, Zhang YS, Xie J. Copper-Cystine Biohybrid-Embedded Nanofiber Aerogels Show Antibacterial and Angiogenic Properties. ACS OMEGA 2024; 9:9765-9781. [PMID: 38434900 PMCID: PMC10905775 DOI: 10.1021/acsomega.3c10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Copper-cystine-based high aspect ratio structures (CuHARS) possess exceptional physical and chemical properties and exhibit remarkable biodegradability in human physiological conditions. Extensive testing has confirmed the biocompatibility and biodegradability of CuHARS under diverse biological conditions, making them a viable source of essential Cu2+. These ions are vital for catalyzing the production of nitric oxide (NO) from the decomposition of S-nitrosothiols (RSNOs) found in human blood. The ability of CuHARS to act as a Cu2+ donor under specific concentrations has been demonstrated in this study, resulting in the generation of elevated levels of NO. Consequently, this dual function makes CuHARS effective as both a bactericidal agent and a promoter of angiogenesis. In vitro experiments have shown that CuHARS actively promotes the migration and formation of complete lumens by redirecting microvascular endothelial cells. To maximize the benefits of CuHARS, they have been incorporated into biomimetic electrospun poly(ε-caprolactone)/gelatin nanofiber aerogels. Through the regulated release of Cu2+ and NO production, these channeled aerogels not only provide antibacterial support but also promote angiogenesis. Taken together, the inclusion of CuHARS in biomimetic scaffolds could hold great promise in revolutionizing tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Anik Karan
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Navatha Shree Sharma
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Margarita Darder
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid 28049, Spain
| | - Yajuan Su
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Syed Muntazir Andrabi
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - S M Shatil Shahriar
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Johnson V. John
- Terasaki
Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Zeyu Luo
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Mark A. DeCoster
- Biomedical
Engineering, Louisiana Tech University, Ruston, Louisiana 71272, United States
- Institute
for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Yu Shrike Zhang
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Jingwei Xie
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
52
|
Noori A, Hoseinpour M, Kolivand S, Lotfibakhshaiesh N, Ebrahimi-Barough S, Ai J, Azami M. Exploring the various effects of Cu doping in hydroxyapatite nanoparticle. Sci Rep 2024; 14:3421. [PMID: 38341449 PMCID: PMC10858896 DOI: 10.1038/s41598-024-53704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Adding foreign ions to hydroxyapatite (HAp) is a popular approach for improving its properties. This study focuses on the effects of calcium substitution with copper in HAp. Instead of calcium, copper ions were doped into the structure of hydroxyapatite nanoparticles at 1%, 3%, and 5% concentrations. XRD analysis showed that the amount of substituted copper was less than needed to generate a distinct phase, yet its lattice parameters and crystallinity slightly decreased. Further, the results of degradation tests revealed that copper doping in hydroxyapatite doubled calcium ion release in water. The incorporation of copper into the apatite structure also boosted the HAp zeta potential and FBS protein adsorption onto powders. According to antibacterial investigations, a concentration of 200 mg/ml of hydroxyapatite containing 5% copper was sufficient to effectively eradicate E. coli and S. aureus bacteria. Furthermore, copper improved hydroxyapatite biocompatibility. Alkaline phosphatase activity and alizarin red tests showed that copper in hydroxyapatite did not inhibit stem cell differentiation into osteoblasts. Also, the scratch test demonstrated that copper-containing hydroxyapatite extract increased HUVEC cell migration. Overall, our findings demonstrated the utility of incorporating copper into the structure of hydroxyapatite from several perspectives, including the induction of antibacterial characteristics, biocompatibility, and angiogenesis.
Collapse
Affiliation(s)
- Alireza Noori
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hoseinpour
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedighe Kolivand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACWCR, Tehran, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
53
|
Shen Y, Xu Y, Yu Z, Chen G, Chen B, Liao L. Multifunctional Injectable Microspheres Containing "Naturally-Derived" Photothermal Transducer for Synergistic Physical and Chemical Treating of Acute Osteomyelitis through Sequential Immunomodulation. ACS NANO 2024. [PMID: 38335113 DOI: 10.1021/acsnano.3c10697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Osteomyelitis induced by Staphylococcus aureus (S. aureus) is a persistent and deep-seated infection that affects bone tissue. The main challenges in treating osteomyelitis include antibiotic resistance, systemic toxicity, and the need for multiple recurrent surgeries. An ideal therapeutic strategy involves the development of materials that combine physical, chemical, and immunomodulatory synergistic effects. In this work, we prepared injectable microspheres consisting of an interpenetrating network of ionic-cross-linked sodium alginate (SA) and genipin (Gp)-cross-linked gelatin (Gel) incorporated with tannic acid (TA) and copper ions (Cu2+). The Gp-cross-linked Gel acted as a "naturally-derived" photothermal therapy (PTT) agent. The results showed that the microspheres exhibited efficient and rapid bactericidal effects against both S. aureus and Escherichia coli (E. coli) under the irradiation of near-infrared light at 808 nm wavelength; moreover, the release of Cu2+ also induced sustained inhibitory effects against bacteria during the nonirradiation period. The in vitro cell culture results indicated that when combined with PTT, the microspheres could adaptively modulate macrophage M1 and M2 phenotypes in sequence. Additionally, these microspheres were found to enhance the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In vivo studies conducted in a rat femur osteomyelitis model with bone defects showed that under multiple laser irradiation the microspheres effectively controlled bacterial infection, improved the pathological immune microenvironment, and significantly enhanced the repair and regeneration of bone tissues in the affected area.
Collapse
Affiliation(s)
- Yang Shen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yaowen Xu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ziqian Yu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Guo Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liqiong Liao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
54
|
Rajapandi P, Viruthagiri G. Probing analysis of Cu-doping on the structural, optical, morphological and magnetic properties of hematite nanoparticles and their antibacterial activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123471. [PMID: 37839211 DOI: 10.1016/j.saa.2023.123471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
The present study describes the synthesis of pure and Cu doped α-Fe2O3nanoparticles (with various concentrations of Copper 1, 3, 6, and 9 wt%) by conventional chemical precipitation technique and examines their structural, morphological, optical, magnetic, and antibacterial capabilities. The XRD pattern of pure and Cu-doped α-Fe2O3 nanoparticles exhibit rhombohedral structure and the estimated crystalline sizes were ranged from 39 to 58 nm. It is discovered that the estimated density dislocations linked to the agglomeration/cluster formations diminish when interstitial vacancies are filled with copper. The obtained bandgap from Tauc's plot, 2.07 eV of pure α-Fe2O3 is found to less than Cu doped α-Fe2O3 nanoparticles (2.9-3.4 eV), due to the structural changes and the tailing of localised states into deep bandgap energy levels. The intense blue emission bands (410-490 nm) arised due to the movement of trapped electrons from the donor level to the valance band and broad green emission bands (522-560 nm) are due to deep level CuO defect to the Fe2O3. The fundamental stretching of Fe-O vibrations and the presence of Cu in prepared samples were identified in FTIR and Raman spectra. SEM micrograph shows the uniform distribution of spherical nanoparticles with size ranged from 39 to 61 nm, which is in good accord with XRD studies. Further, the magnetic characteristics of the pure and Cu-doped α-Fe2O3 samples were assessed using a vibrating sample magnetometer (VSM); the ensuing hysteresis loop of the Cu-doped α-Fe2O3 displays weaker ferromagnetic behaviour. In the present investigations, the disc diffusion technique has been used to examine the antibacterial activity. Thus, the results of antibacterial activities demonstrated that at concentrations of 200 and 500 μg/ml of pure and Cu-doped α-Fe2O3 NPs, the highest zone of inhibition was found against gram (+ve) positive bacteria and was followed by the gram (-ve) negative bacteria's.
Collapse
Affiliation(s)
- P Rajapandi
- Department of Physics, Annamalai University, Annamalai Nagar -608002, Chidambaram, Tamil Nadu, India
| | - G Viruthagiri
- Department of Physics, Annamalai University, Annamalai Nagar -608002, Chidambaram, Tamil Nadu, India.
| |
Collapse
|
55
|
Feng Y, Su L, Zhang Z, Chen Y, Younis MR, Chen D, Xu J, Dong C, Que Y, Fan C, Jiao Y, Zhu H, Chang J, Dong Z, Yang C. pH-Responsive Wound Dressing Based on Biodegradable CuP Nanozymes for Treating Infected and Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:95-110. [PMID: 38157482 DOI: 10.1021/acsami.3c12997] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nanozymes, emerging nanomaterials for wound healing, exhibit enzyme-like activity to modulate the levels of reactive oxygen species (ROS) at wound sites. Yet, the solo regulation of endogenous ROS by nanozymes often falls short, particularly in chronic refractory wounds with complex and variable pathological microenvironments. In this study, we report the development of a multifunctional wound dressing integrating a conventional alginate (Alg) hydrogel with a newly developed biodegradable copper hydrogen phosphate (CuP) nanozyme, which possesses good near-infrared (NIR) photothermal conversion capabilities, sustained Cu ion release ability, and pH-responsive peroxidase/catalase-mimetic catalytic activity. When examining acute infected wounds characterized by a low pH environment, the engineered Alg/CuP composite hydrogels demonstrated high bacterial eradication efficacy against both planktonic bacteria and biofilms, attributed to the combined action of catalytically generated hydroxyl radicals and the sustained release of Cu ions. In contrast, when applied to chronic diabetic wounds, which typically have a high pH environment, these composite hydrogels exhibit significant angiogenic performance. This is driven by the provision of catalytically generated dissolved oxygen and a beneficial supplement of Cu ions released from the degradable CuP nanozyme. Further, a mild thermal effect induced by NIR irradiation amplifies the catalytic activities and bioactivity of Cu ions, thereby enhancing the healing process of both infected and diabetic wounds. Our study validates that the synergistic integration of photothermal effects, catalytic activity, and released Cu ions can concurrently yield high antibacterial efficiency and tissue regenerative activity, rendering it highly promising for various clinical applications in wound healing.
Collapse
Affiliation(s)
- Yanping Feng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- College of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Lefeng Su
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Zhaowenbin Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yanxin Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Dongmin Chen
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Jinfeng Xu
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Chenle Dong
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yumei Que
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Chen Fan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yiren Jiao
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Hong Zhu
- National Key Clinical Specialty (Wound Healing), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Zhihong Dong
- College of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- National Key Clinical Specialty (Wound Healing), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
56
|
Behzadinasab S, Williams MD, Falkinham Iii JO, Ducker WA. Antimicrobial mechanism of cuprous oxide (Cu 2O) coatings. J Colloid Interface Sci 2023; 652:1867-1877. [PMID: 37688933 DOI: 10.1016/j.jcis.2023.08.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Some very effective antimicrobial coatings exploit copper or cuprous oxide (Cu2O) as the active agent. The aim of this study is to determine which species is the active antimicrobial - dissolved ions, the Cu2O solid, or reactive oxygen species. Copper ions were leached from Cu2O into various solutions and the leachate tested for both dissolved copper and the efficacy in killing Pseudomonas aeruginosa. The concentration of copper species leached from Cu2O into aqueous solution varied greatly with the composition of the aqueous solution. For a range of solution buffers, killing of P. aeruginosa was highly correlated with the concentration of copper in the leachate. Further, 10 µL bacterial suspension droplets were placed on Cu2O coatings, with or without a polymer barrier layer, and tested for bacterial kill. Killing occurred without contact between bacterium and solid, demonstrating that contact with Cu2O is not necessary. We therefore conclude that soluble copper species are the antimicrobial agent, and that the most potent species is Cu+. The solid quickly raises and sustains the concentration of soluble copper species near the bacterium. Killing via soluble copper ions rather than contact should allow copper coatings to kill bacteria even when fouled, which is an important practical consideration.
Collapse
Affiliation(s)
- Saeed Behzadinasab
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Myra D Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | | | - William A Ducker
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
57
|
Agarwalla A, Ahmed W, Al-Marzouqi AH, Rizvi TA, Khan M, Zaneldin E. Characteristics and Key Features of Antimicrobial Materials and Associated Mechanisms for Diverse Applications. Molecules 2023; 28:8041. [PMID: 38138531 PMCID: PMC10745420 DOI: 10.3390/molecules28248041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since the Fourth Industrial Revolution, three-dimensional (3D) printing has become a game changer in manufacturing, particularly in bioengineering, integrating complex medical devices and tools with high precision, short operation times, and low cost. Antimicrobial materials are a promising alternative for combating the emergence of unforeseen illnesses and device-related infections. Natural antimicrobial materials, surface-treated biomaterials, and biomaterials incorporated with antimicrobial materials are extensively used to develop 3D-printed products. This review discusses the antimicrobial mechanisms of different materials by providing examples of the most commonly used antimicrobial materials in bioengineering and brief descriptions of their properties and biomedical applications. This review will help researchers to choose suitable antimicrobial agents for developing high-efficiency biomaterials for potential applications in medical devices, packaging materials, biomedical applications, and many more.
Collapse
Affiliation(s)
- Aaruci Agarwalla
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.)
| | - Waleed Ahmed
- Engineering Requirements Unit, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali H. Al-Marzouqi
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.)
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mushtaq Khan
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Essam Zaneldin
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
58
|
Reyes-Carmona L, Sepúlveda-Robles OA, Almaguer-Flores A, Bello-Lopez JM, Ramos-Vilchis C, Rodil SE. Antimicrobial activity of silver-copper coating against aerosols containing surrogate respiratory viruses and bacteria. PLoS One 2023; 18:e0294972. [PMID: 38079398 PMCID: PMC10712891 DOI: 10.1371/journal.pone.0294972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
The transmission of bacteria and respiratory viruses through expelled saliva microdroplets and aerosols is a significant concern for healthcare workers, further highlighted during the SARS-CoV-2 pandemic. To address this issue, the development of nanomaterials with antimicrobial properties for use as nanolayers in respiratory protection equipment, such as facemasks or respirators, has emerged as a potential solution. In this study, a silver and copper nanolayer called SakCu® was deposited on one side of a spun-bond polypropylene fabric using the magnetron sputtering technique. The antibacterial and antiviral activity of the AgCu nanolayer was evaluated against droplets falling on the material and aerosols passing through it. The effectiveness of the nanolayer was assessed by measuring viral loads of the enveloped virus SARS-CoV-2 and viability assays using respiratory surrogate viruses, including PaMx54, PaMx60, PaMx61 (ssRNA, Leviviridae), and PhiX174 (ssDNA, Microviridae) as representatives of non-enveloped viruses. Colony forming unit (CFU) determination was employed to evaluate the survival of aerobic and anaerobic bacteria. The results demonstrated a nearly exponential reduction in SARS-CoV-2 viral load, achieving complete viral load reduction after 24 hours of contact incubation with the AgCu nanolayer. Viability assays with the surrogate viruses showed a significant reduction in viral replication between 2-4 hours after contact. The simulated viral filtration system demonstrated inhibition of viral replication ranging from 39% to 64%. The viability assays with PhiX174 exhibited a 2-log reduction in viral replication after 24 hours of contact and a 16.31% inhibition in viral filtration assays. Bacterial growth inhibition varied depending on the species, with reductions ranging from 70% to 92% for aerobic bacteria and over 90% for anaerobic strains. In conclusion, the AgCu nanolayer displayed high bactericidal and antiviral activity in contact and aerosol conditions. Therefore, it holds the potential for incorporation into personal protective equipment to effectively reduce and prevent the transmission of aerosol-borne pathogenic bacteria and respiratory viruses.
Collapse
Affiliation(s)
- Lorena Reyes-Carmona
- Laboratorio de Biointerfases, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
- Programa de Maestría y Doctorado en Ciencias Médicas Odontológicas y de la Salud, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
| | - Omar A. Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), CDMX, México
| | - Argelia Almaguer-Flores
- Laboratorio de Biointerfases, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
| | - Juan Manuel Bello-Lopez
- Dirección de Investigación, Hospital Juárez de México, Magdalena de las Salinas, CDMX, México
| | - Carlos Ramos-Vilchis
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, México
| | - Sandra E. Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, México
| |
Collapse
|
59
|
Binczarski MJ, Zuberek JZ, Samadi P, Cieslak M, Kaminska I, Berlowska J, Pawlaczyk A, Szynkowska-Jozwik MI, Witonska IA. Use of copper-functionalized cotton waste in combined chemical and biological processes for production of valuable chemical compounds. RSC Adv 2023; 13:34681-34692. [PMID: 38035250 PMCID: PMC10682913 DOI: 10.1039/d3ra06071c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Cotton textiles modified with copper compounds have a documented mechanism of antimicrobial action against bacteria, fungi, and viruses. During the COVID-19 pandemic, there was pronounced interest in finding new solutions for textile engineering, using modifiers and bioactive methods of functionalization, including introducing copper nanoparticles and complexes into textile products (e.g. masks, special clothing, surface coverings, or tents). However, copper can be toxic, depending on its form and concentration. Functionalized waste may present a risk to the environment if not managed correctly. Here, we present a model for managing copper-modified cotton textile waste. The process includes pressure and temperature-assisted hydrolysis and use of the hydrolysates as a source of sugars for cultivating yeast and lactic acid bacteria biomass as valuable chemical compounds.
Collapse
Affiliation(s)
- Michal J Binczarski
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | - Justyna Z Zuberek
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | - Payam Samadi
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | - Malgorzata Cieslak
- Lukasiewicz Research Network - Lodz Institute of Technology, Department of Chemical Textile Technologies 19/27 Marii Sklodowska-Curie Street 90-570 Lodz Poland
| | - Irena Kaminska
- Lukasiewicz Research Network - Lodz Institute of Technology, Department of Chemical Textile Technologies 19/27 Marii Sklodowska-Curie Street 90-570 Lodz Poland
| | - Joanna Berlowska
- Lodz University of Technology, Department of Environmental Biotechnology 171/173 Wolczanska Street 90-924 Lodz Poland
| | - Aleksandra Pawlaczyk
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | | | - Izabela A Witonska
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| |
Collapse
|
60
|
Restivo E, Pugliese D, Gallichi-Nottiani D, Sammartino JC, Bloise N, Peluso E, Percivalle E, Janner D, Milanese D, Visai L. Effect of Low Copper Doping on the Optical, Cytocompatible, Antibacterial, and SARS-CoV-2 Trapping Properties of Calcium Phosphate Glasses. ACS OMEGA 2023; 8:42264-42274. [PMID: 38024754 PMCID: PMC10652837 DOI: 10.1021/acsomega.3c04293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Calcium phosphate glasses (CPGs) are acquiring great importance in the biomedical field because of their thermomechanical and bioresorbable properties. In this study, optically transparent copper (1 mol %)-doped calcium phosphate glasses (CPGs_Cu) were prepared through the melt-quenching method, and their biocompatibility and antibacterial and antiviral properties were evaluated and compared with undoped CPGs. Biocompatibility was evaluated on murine fibroblast NIH-3T3 cells as a preliminary study of cytocompatibility. The in vitro tests were performed through indirect and direct cytotoxicity analyses by MTT and Alamar Blue assays and supported by electron microscopy observations. Microbiological analyses were performed against the most common Gram-negative and Gram-positive pathogens that cause nosocomial infections: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and the methicillin-resistant Staphylococcus aureus strain. In addition, the bioglass samples were exposed to SARS-CoV-2 to assess their effects on viral survival. The obtained results assessed the biocompatibility of both bioglass types and their ability to reduce the viral load and trap the virus. In addition, Cu2+-doped bioglass was found to be antibacterial despite its low content (1 mol %) of copper, making this a promising candidate material for biomedical applications, e.g., surgery probes, drug delivery, and photodynamic therapy.
Collapse
Affiliation(s)
- Elisa Restivo
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
| | - Diego Pugliese
- Department
of Applied Science and Technology, UdR INSTM, Politecnico di Torino, Torino10129,Italy
| | | | - José Camilla Sammartino
- Department
of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia27100,Italy
| | - Nora Bloise
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia27100,Italy
| | - Emanuela Peluso
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
| | - Elena Percivalle
- Molecular
Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia27100,Italy
| | - Davide Janner
- Department
of Applied Science and Technology, UdR INSTM, Politecnico di Torino, Torino10129,Italy
| | - Daniel Milanese
- Department
of Engineering and Architecture, UdR INSTM, University of Parma, Parma43121,Italy
| | - Livia Visai
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia27100,Italy
| |
Collapse
|
61
|
Fluksman A, Lafuente A, Braunstein R, Steinberg E, Friedman N, Yekhin Z, Roca AG, Nogues J, Hazan R, Sepulveda B, Benny O. Modular Drug-Loaded Nanocapsules with Metal Dome Layers as a Platform for Obtaining Synergistic Therapeutic Biological Activities. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50330-50343. [PMID: 37861446 PMCID: PMC10623511 DOI: 10.1021/acsami.3c07188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Multifunctional drug-loaded polymer-metal nanocapsules have attracted increasing attention in drug delivery due to their multifunctional potential endowed by drug activity and response to physicochemical stimuli. Current chemical synthesis methods of polymer/metal capsules require specific optimization of the different components to produce particles with precise properties, being particularly complex for Janus structures combining polymers and ferromagnetic and highly reactive metals. With the aim to generate tunable synergistic nanotherapeutic actuation with enhanced drug effects, here we demonstrate a versatile hybrid chemical/physical fabrication strategy to incorporate different functional metals with tailored magnetic, optical, or chemical properties on solid drug-loaded polymer nanoparticles. As archetypical examples, we present poly(lactic-co-glycolic acid) (PLGA) nanoparticles (diameters 100-150 nm) loaded with paclitaxel, indocyanine green, or erythromycin that are half-capped by either Fe, Au, or Cu layers, respectively, with application in three biomedical models. The Fe coating on paclitaxel-loaded nanocapsules permitted efficient magnetic enhancement of the cancer spheroid assembly, with 40% reduction of the cross-section area after 24 h, as well as a higher paclitaxel effect. In addition, the Fe-PLGA nanocapsules enabled external contactless manipulation of multicellular cancer spheroids with a speed of 150 μm/s. The Au-coated and indocyanine green-loaded nanocapsules demonstrated theranostic potential and enhanced anticancer activity in vitro and in vivo due to noninvasive fluorescence imaging with long penetration near-infrared (NIR) light and simultaneous photothermal-photodynamic actuation, showing a 3.5-fold reduction in the tumor volume growth with only 5 min of NIR illumination. Finally, the Cu-coated erythromycin-loaded nanocapsules exhibited enhanced antibacterial activity with a 2.5-fold reduction in the MIC50 concentration with respect to the free or encapsulated drug. Altogether, this technology can extend a nearly unlimited combination of metals, polymers, and drugs, thus enabling the integration of magnetic, optical, and electrochemical properties in drug-loaded nanoparticles to externally control and improve a wide range of biomedical applications.
Collapse
Affiliation(s)
- Arnon Fluksman
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Aritz Lafuente
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Universitat
Autònoma de Barcelona, Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ron Braunstein
- Institute
of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Eliana Steinberg
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Nethanel Friedman
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Zhanna Yekhin
- Department
of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah
Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Alejandro G. Roca
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Josep Nogues
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Ronen Hazan
- Institute
of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Borja Sepulveda
- Instituto
de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Ofra Benny
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
62
|
Gao S, Li J, Lei Q, Chen Y, Huang H, Yan F, Xiao L, Zhang T, Wang L, Wei R, Hu C. Calcium sulfate-Cu 2+ delivery system improves 3D-Printed calcium silicate artificial bone to repair large bone defects. Front Bioeng Biotechnol 2023; 11:1224557. [PMID: 37954016 PMCID: PMC10634439 DOI: 10.3389/fbioe.2023.1224557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023] Open
Abstract
There are still limitations in artificial bone materials used in clinical practice, such as difficulty in repairing large bone defects, the mismatch between the degradation rate and tissue growth, difficulty in vascularization, an inability to address bone defects of various shapes, and risk of infection. To solve these problems, our group designed stereolithography (SLA) 3D-printed calcium silicate artificial bone improved by a calcium sulfate-Cu2+ delivery system. SLA technology endows the scaffold with a three-dimensional tunnel structure to induce cell migration to the center of the bone defect. The calcium sulfate-Cu2+ delivery system was introduced to enhance the osteogenic activity of calcium silicate. Rapid degradation of calcium sulfate (CS) induces early osteogenesis in the three-dimensional tunnel structure. Calcium silicate (CSi) which degrades slowly provides mechanical support and promotes bone formation in bone defect sites for a long time. The gradient degradation of these two components is perfectly matched to the rate of repair in large bone defects. On the other hand, the calcium sulfate delivery system can regularly release Cu2+ in the temporal and spatial dimensions, exerting a long-lasting antimicrobial effect and promoting vascular growth. This powerful 3D-printed calcium silicate artificial bone which has rich osteogenic activity is a promising material for treating large bone defects and has excellent potential for clinical application.
Collapse
Affiliation(s)
- Shijie Gao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiawen Li
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingjian Lei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Chen
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huayi Huang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tie Zhang
- Wuhan QISIDA Technology Development Co., Ltd., Wuhan, Hubei, China
| | - Linlong Wang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Renxiong Wei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chao Hu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
63
|
Mitchell AL, Lee SH, McEnroe DJ, Null EL, Sternquist DA, Hufziger KA, Rice BJ, Scrimshire A, Bingham PA, Gross TM. Antimicrobial Fe 2O 3-CuO-P 2O 5 glasses. Sci Rep 2023; 13:17472. [PMID: 37838823 PMCID: PMC10576775 DOI: 10.1038/s41598-023-44743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Glasses with high antimicrobial efficacy were developed in the Fe2O3-CuO-P2O5 ternary system to mitigate fomite-mediated transmission of infectious diseases in high-risk settings such as hospitals, daycares, and nursing homes. Binary CuO-P2O5 glasses were not durable enough for use as high touch point articles, so Fe2O3 was added to the compositions to increase the chemical durability. The amount of Cu leachate decreased by at least 3 orders of magnitude when Fe2O3 was increased from 0 to 13.1 mol%. At the highest Fe2O3 contents and corresponding highest durability, the glass was no longer able to pass a test of antimicrobial efficacy with < 3 log kill compared to > 5 log kill for all other compositions. Ab-initio molecular dynamics simulations showed increasing bridging oxygen species at the expense of non-bridging oxygen species with the increase in Fe2O3 content, showing that the glasses exhibited increased chemical durability because they were more interconnected and structurally bound. Experimental results with glasses at fixed CuO and decreasing Fe2O3 confirmed that Fe2O3 content (not CuO) controlled the Cu release rate and, thus, the antimicrobial efficacy of the glasses. The significance of the oxidation state of the leached Cu was overwhelmed by the importance of the amount of Cu leachate.
Collapse
Affiliation(s)
| | - Sung Hoon Lee
- Corning Technology Center Korea, Corning Precision Materials Co., Ltd., 212 Tangjeong-ro, Asan, Chungcheongnam-do, 31454, Republic of Korea
| | - David J McEnroe
- Corning Incorporated, 1 Riverfront Plaza, Corning, NY, 14831, USA
| | - Eric L Null
- Corning Incorporated, 1 Riverfront Plaza, Corning, NY, 14831, USA
| | | | | | - Brian J Rice
- Corning Incorporated, 1 Riverfront Plaza, Corning, NY, 14831, USA
| | - Alex Scrimshire
- Materials and Engineering Research Institute, Sheffield Hallam University, City Campus, Sheffield, S1 1WB, UK
| | - Paul A Bingham
- Materials and Engineering Research Institute, Sheffield Hallam University, City Campus, Sheffield, S1 1WB, UK
| | - Timothy M Gross
- Corning Incorporated, 1 Riverfront Plaza, Corning, NY, 14831, USA
| |
Collapse
|
64
|
Aguila-Rosas J, Ramos D, Quirino-Barreda CT, Flores-Aguilar JA, Obeso JL, Guzmán-Vargas A, Ibarra IA, Lima E. Copper(II)-MOFs for bio-applications. Chem Commun (Camb) 2023; 59:11753-11766. [PMID: 37703047 DOI: 10.1039/d3cc03146b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The recent development and implementation of copper-based metal-organic frameworks in biological applications are reviewed. The advantages of the presence of copper in MOFs for relevant applications such as drug delivery, cancer treatment, sensing, and antimicrobial are highlighted. Advanced composites such as MOF-polymers are playing critical roles in developing materials for specific applications.
Collapse
Affiliation(s)
- Javier Aguila-Rosas
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Dalia Ramos
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Carlos T Quirino-Barreda
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Juan Andrés Flores-Aguilar
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| | - Juan L Obeso
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación 11500, Miguel Hidalgo, CDMX, Mexico
| | - Ariel Guzmán-Vargas
- ESIQIE - Instituto Politécnico Nacional, Avenida IPN UPALM Edificio 7, Zacatenco, 07738 México D.F, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
65
|
Štular D, de Velde NV, Drinčić A, Kogovšek P, Filipić A, Fric K, Simončič B, Tomšič B, Chouhan RS, Bohm S, Kr. Verma S, Panda PK, Jerman I. Boosting Copper Biocidal Activity by Silver Decoration and Few-Layer Graphene in Coatings on Textile Fibers. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300113. [PMID: 37829680 PMCID: PMC10566802 DOI: 10.1002/gch2.202300113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/26/2023] [Indexed: 10/14/2023]
Abstract
The outbreak of the Coronavirus disease 2019 (COVID-19) pandemic has highlighted the importance of developing antiviral surface coatings that are capable of repelling pathogens and neutralizing them through self-sanitizing properties. In this study, a novel coating design based on few-layer graphene (FLG) is proposed and silver-decorated micro copper flakes (CuMF) that exhibit both antibacterial and antiviral properties. The role of sacrificial anode surfaces and intrinsic graphene defects in enhancing the release of metal ions from CuMF embedded in water-based binders is investigated. In silico analysis is conducted to better understand the molecular interactions of pathogen-repelling species with bacterial or bacteriophage proteins. The results show that the optimal amount of CuMF/FLG in the coating leads to a significant reduction in bacterial growth, with reductions of 3.17 and 9.81 log for Staphylococcus aureus and Escherichia coli, respectively. The same coating also showed high antiviral efficacy, reducing bacteriophage phi6 by 5.53 log. The antiviral efficiency of the coating is find to be doubled compared to either micro copper flakes or few-layer graphene alone. This novel coating design is versatile and can be applied to various substrates, such as personal protective clothing and face masks, to provide biocidal activity against both bacterial and viral pathogens.
Collapse
Affiliation(s)
- Danaja Štular
- National Institute of ChemistryHajdrihova 19Ljubljana1001Slovenia
| | | | - Ana Drinčić
- National Institute of ChemistryHajdrihova 19Ljubljana1001Slovenia
| | - Polona Kogovšek
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Arijana Filipić
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Katja Fric
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Barbara Simončič
- Faculty of Natural Sciences and EngineeringUniversity of LjubljanaAškerčeva 12Ljubljana1000Slovenia
| | - Brigita Tomšič
- Faculty of Natural Sciences and EngineeringUniversity of LjubljanaAškerčeva 12Ljubljana1000Slovenia
| | - Raghuraj S. Chouhan
- Institute “Jožef Stefan”Department of Environmental SciencesJamova 39Ljubljana1000Slovenia
| | - Sivasambu Bohm
- Imperial College LondonSouth Kensington CampusLondonSW7 2AZUK
| | - Suresh Kr. Verma
- Ångströmlaboratoriet Lägerhyddsv1 Box 530Uppsala75121Sweden
- School of BiotechnologyKIIT UniversityBhubaneswar751024India
| | | | - Ivan Jerman
- National Institute of ChemistryHajdrihova 19Ljubljana1001Slovenia
| |
Collapse
|
66
|
Xu Y, Xu C, Yang K, Ma L, Li G, Shi Y, Feng X, Tan L, Duan D, Luo Z, Yang C. Copper Ion-Modified Germanium Phosphorus Nanosheets Integrated with an Electroactive and Biodegradable Hydrogel for Neuro-Vascularized Bone Regeneration. Adv Healthc Mater 2023; 12:e2301151. [PMID: 37421228 DOI: 10.1002/adhm.202301151] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/21/2023] [Indexed: 07/10/2023]
Abstract
Severe bone defects accompanied by vascular and peripheral nerve injuries represent a huge orthopedic challenge and are often accompanied by the risk of infection. Thus, biomaterials with antibacterial and neurovascular regeneration properties are highly desirable. Here, a newly designed biohybrid biodegradable hydrogel (GelMA) containing copper ion-modified germanium-phosphorus (GeP) nanosheets, which act as neuro-vascular regeneration and antibacterial agents, is designed. The copper ion modification process serves to improve the stability of the GeP nanosheets and offers a platform for the sustained release of bioactive ions. Study findings show that GelMA/GeP@Cu has effective antibacterial properties. The integrated hydrogel can significantly boost the osteogenic differentiation of bone marrow mesenchymal stem cells, facilitate angiogenesis in human umbilical vein endothelial cells, and up-regulate neural differentiation-related proteins in neural stem cells in vitro. In vivo, in the rat calvarial bone defect mode, the GelMA/GeP@Cu hydrogel is found to enhance angiogenesis and neurogenesis, eventually contributing to bone regeneration. These findings indicate that in the field of bone tissue engineering, GelMA/GeP@Cu can serve as a valuable biomaterial for neuro-vascularized bone regeneration and infection prevention.
Collapse
Affiliation(s)
- Yan Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunsong Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Deyu Duan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
67
|
Khalil AM, Hashem AH, Kamel S. Bimetallic hydrogels based on chitosan and carrageenan as promising materials for biological applications. Biotechnol J 2023; 18:e2300093. [PMID: 37291073 DOI: 10.1002/biot.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
In this study, novel crosslinked hydrogels based on chitosan (CS) and carrageenan (CRG) loaded with silver and/or copper nanoparticles (Ag/CuNPs) were prepared through a freeze-drying (thawing) process to be applied in biological applications comprising wound dressing. These hydrogels showed porous interconnected structures. The influence of the used nanoparticles (NPs) on the antibacterial properties of the CS/CRG hydrogels was explored. Antimicrobial results revealed that both CS/CRG/CuNPs, CS/CRG/AgNPs, and CS/CRG/Ag-CuNPs exhibited promising antibacterial and antifungal activity against Escherichia coli, Pseudomonas aeruginosa, Streptococcus mutans, Staphylococcus aureus, Bacillus subtilis, and Candida albicans. Moreover, CS/CRG/AgNPs, CS/CRG/CuNPs, and CS/CRG/Ag-CuNPs hydrogels showed potential antioxidant activity to be 57%, 78%, and 89%, respectively. Furthermore, cytotoxicity results against Vero normal cell line confirmed that all designed hydrogels are safe upon usage. The bimetallic CS/CRG hydrogels showed notably enhanced antibacterial properties among the as-prepared hydrogels allowing them to be a successful material upon being employed in wound dressing applications.
Collapse
Affiliation(s)
- Ahmed M Khalil
- Photochemistry Department, National Research Centre, Giza, Dokki, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
68
|
Ouyang L, Wang N, Irudayaraj J, Majima T. Virus on surfaces: Chemical mechanism, influence factors, disinfection strategies, and implications for virus repelling surface design. Adv Colloid Interface Sci 2023; 320:103006. [PMID: 37778249 DOI: 10.1016/j.cis.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
While SARS-CoV-2 is generally under control, the question of variants and infections still persists. Fundamental information on how the virus interacts with inanimate surfaces commonly found in our daily life and when in contact with the skin will be helpful in developing strategies to inhibit the spread of the virus. Here in, a critically important review of current understanding of the interaction between virus and surface is summarized from chemistry point-of-view. The Derjaguin-Landau-Verwey-Overbeek and extended Derjaguin-Landau-Verwey-Overbeek theories to model virus attachments on surfaces are introduced, along with the interaction type and strength, and quantification of each component. The virus survival and transfer are affected by a combination of biological, physical, and chemical parameters, as well as environmental parameters. The surface properties for virus and virus survival on typical surfaces such as metals, plastics, and glass are summarized. Attention is also paid to the transfer of virus to/from surfaces and skin. Typical virus disinfection strategies utilizing heat, light, chemicals, and ozone are discussed together with their disinfection mechanism. In the last section, design principles for virus repelling surface chemistry such as surperhydrophobic or surperhydrophilic surfaces are also introduced, to demonstrate how the integration of surface property control and advanced material fabrication can lead to the development of functional surfaces for mitigating the effect of viral infection upon contact.
Collapse
Affiliation(s)
- Lei Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joseph Irudayaraj
- Department of Bioengineering, College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Tetsuro Majima
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
69
|
Zangiabadi S, Chamoun KP, Nguyen K, Tang Y, Sweeney G, Abdul-Sater AA. Copper infused fabric attenuates inflammation in macrophages. PLoS One 2023; 18:e0287741. [PMID: 37713400 PMCID: PMC10503751 DOI: 10.1371/journal.pone.0287741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/12/2023] [Indexed: 09/17/2023] Open
Abstract
While inflammation is an important immune response for protection from infections, excessive or prolonged inflammation can lead to a variety of debilitating diseases including skin disease, diabetes, heart disease, stroke, autoimmune diseases and cancer. Inflammation is a graded response that is typically initiated when resident macrophages sense the presence of pathogens or damage in the tissue and produce inflammatory cytokines and chemokines to kill the pathogen, clear debris and dead tissue, and initiate tissue repair. Here we show that copper-infused fabrics can prevent inflammation by blocking the production of inflammatory cytokines from macrophages after being exposed to LPS, a component of bacterial cell wall. Mechanistically, we show that copper-infused fabrics can significantly reduce the NF-κB and IRF3 activation in LPS-stimulated macrophages. Given the importance of excessive inflammation in diabetes, we show that copper can reduce insulin resistance mediated by inflammatory cytokines in muscle cells. Our data show that copper infused fabrics may be useful to reduce excessive inflammation in macrophages and improve insulin sensitivity in skeletal muscles.
Collapse
Affiliation(s)
- Safoura Zangiabadi
- School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Canada
| | - Khalil P. Chamoun
- School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Canada
| | - Khang Nguyen
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Yitian Tang
- School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Ali A. Abdul-Sater
- School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Canada
| |
Collapse
|
70
|
Al Kayal T, Giuntoli G, Cavallo A, Pisani A, Mazzetti P, Fonnesu R, Rosellini A, Pistello M, D’Acunto M, Soldani G, Losi P. Incorporation of Copper Nanoparticles on Electrospun Polyurethane Membrane Fibers by a Spray Method. Molecules 2023; 28:5981. [PMID: 37630233 PMCID: PMC10458218 DOI: 10.3390/molecules28165981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Electrospinning is an easy and versatile technique to obtain nanofibrous membranes with nanosized fibers, high porosity, and pore interconnectivity. Metal nanoparticles (e.g., Ag, Cu, ZnO) exhibit excellent biocide properties due to their size, shape, release of metal ions, or reactive oxygen species production, and thus are often used as antimicrobial agents. In this study, a combined electrospinning/spray technique was employed to fabricate electrospun polyurethane membranes loaded with copper nanoparticles at different surface densities (10, 20, 25, or 30 μg/cm2). This method allows particle deposition onto the surface of the membranes without the use of chemical agents. SEM images showed that polyurethane fibers own homogeneous thickness (around 650 nm), and that spray-deposited copper nanoparticles are evenly distributed. STEM-EDX demonstrated that copper nanoparticles are deposited onto the surface of the fibers and are not covered by polyurethane. Moreover, a uniaxial rupture test showed that particles are firmly anchored to the electrospun fibers. Antibacterial tests against model microorganisms Escherichia coli indicated that the prepared electrospun membranes possess good bactericidal effect. Finally, the antiviral activity against SARS-CoV-2 was about 90% after 1 h of direct contact. The obtained results suggested that the electrospun membranes possess antimicrobial activities and can be used in medical and industrial applications.
Collapse
Affiliation(s)
- Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Giulia Giuntoli
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Aida Cavallo
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Anissa Pisani
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Paola Mazzetti
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy; (P.M.); (R.F.); (A.R.); (M.P.)
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Rossella Fonnesu
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy; (P.M.); (R.F.); (A.R.); (M.P.)
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Alfredo Rosellini
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy; (P.M.); (R.F.); (A.R.); (M.P.)
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Mauro Pistello
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy; (P.M.); (R.F.); (A.R.); (M.P.)
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Mario D’Acunto
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy;
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Paola Losi
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| |
Collapse
|
71
|
Popova AD, Sheveyko AN, Kuptsov KA, Advakhova DY, Karyagina AS, Gromov AV, Krivozubov MS, Orlova PA, Volkov AV, Slukin PV, Ignatov SG, Shubina IZ, Ilnitskaya AS, Gloushankova NA, Timoshenko RV, Erofeev AS, Shtansky DV. Osteoconductive, Osteogenic, and Antipathogenic Plasma Electrolytic Oxidation Coatings on Titanium Implants with BMP-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37274-37289. [PMID: 37499236 DOI: 10.1021/acsami.3c08954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We report a one-pot plasma electrolytic oxidation (PEO) strategy for forming a multi-element oxide layer on the titanium surface using complex electrolytes containing Na2HPO4, Ca(OH)2, (NH2)2CO, Na2SiO3, CuSO4, and KOH compounds. For even better bone implant ingrowth, PEO coatings were additionally loaded with bone morphogenetic protein-2 (BMP-2). The samples were tested in vivo in a mouse craniotomy model. Tests for bactericidal and fungicidal activity were carried out using clinically isolated multi-drug-resistant Escherichia coli (E. coli) K261, E. coli U20, methicillin-resistant Staphylococcus aureus (S. aureus) CSA154 bacterial strains, and Neurospora crassa (N. crassa) and Candida albicans (C. albicans) D2528/20 fungi. The PEO-Cu coating effectively inactivated both Gram-positive and Gram-negative bacteria at low concentrations of Cu2+ ions: minimal bactericidal concentration for E. coli and N. crassa (99.9999%) and minimal inhibitory concentration (99.0%) for S. aureus were 5 ppm. For all studied bacterial and fungal strains, PEO-Cu coating completely prevented the formation of bacterial and fungal biofilms. PEO and PEO-Cu coatings demonstrated bone remodeling and moderate osteoconductivity in vivo, while BMP-2 significantly enhanced osteoconduction and osteogenesis. The obtained results are encouraging and indicate that Ti-based materials with PEO coatings loaded with BMP-2 can be widely used in customized medicine as implants for orthopedics and cranio-maxillofacial surgery.
Collapse
Affiliation(s)
- Anastasiya D Popova
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | | | | | - Darya Yu Advakhova
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Anna S Karyagina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gori 1, Str. 40, Moscow 119992, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
| | - Alexander V Gromov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
| | - Mikhail S Krivozubov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
| | - Polina A Orlova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
| | - Alexey V Volkov
- The Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - Pavel V Slukin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia, National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Sergei G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia, National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Irina Zh Shubina
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Alla S Ilnitskaya
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Natalia A Gloushankova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Roman V Timoshenko
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Alexander S Erofeev
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| |
Collapse
|
72
|
Xu J, Lu Y, Pan X, Zhan D, Wang Q, Zhang N. Antibacterial performance of a porous Cu-bearing titanium alloy by laser additive manufacturing. Front Bioeng Biotechnol 2023; 11:1226745. [PMID: 37600307 PMCID: PMC10435858 DOI: 10.3389/fbioe.2023.1226745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is the most common species that causes peri-implantitis. It forms an irreversible dense biofilm and causes inflammation. A novel 3D-printed porous TC4-6Cu alloy was fabricated using selective laser melting (SLM) technology for the dental implant, which is anticipated to inhibit biofilm formation. We attempted to investigate the antibacterial ability and antibacterial mechanism of the 3D-printed porous TC4-6Cu alloy against P. gingivalis. This work used scanning electron microscopy (SEM) and laser confocal microscopy (CLSM) to detect the antimicrobial ability of the alloy against sessile P. gingivalis. The results indicated that the 3D-printed porous TC4-6Cu alloy could cause bacterial fragmentation and deformation. Plate antimicrobial counting experiments showed that the antibacterial rates of the alloy against adherent bacteria and planktonic bacteria after 24 h were 98.05% and 73.92%, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Cu2+ were tested to appraise the antibacterial property of the alloy against planktonic P. gingivalis. The relationship between the antibacterial mechanism of the alloy with oxidative stress was evaluated through ROS fluorescence intensity and protein leakage concentration. The results revealed that the alloy significantly eliminated adherent bacteria and inhibited biofilm formation. Moreover, 3D-printed porous TC4-6Cu alloy demonstrated significant bactericidal ability by inducing the production of reactive oxygen species (ROS), which could result in protein leakage from the bacterial cell membrane. This research may open a new perspective on the development and biomedical applications for dental implantation.
Collapse
Affiliation(s)
- Jiawei Xu
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yanjin Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Xiyun Pan
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Desong Zhan
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ning Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
73
|
Ahmed AS, Müller DW, Bruyere S, Holtsch A, Müller F, Barrirero J, Brix K, Migot S, Kautenburger R, Jacobs K, Pierson JF, Mücklich F. Surface Modification of Brass via Ultrashort Pulsed Direct Laser Interference Patterning and Its Effect on Bacteria-Substrate Interaction. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37467050 DOI: 10.1021/acsami.3c04801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In recent decades, antibiotic resistance has become a crucial challenge for human health. One potential solution to this problem is the use of antibacterial surfaces, i.e., copper and copper alloys. This study investigates the antibacterial properties of brass that underwent topographic surface functionalization via ultrashort pulsed direct laser interference patterning. Periodic line-like patterns in the scale range of single bacterial cells were created on brass with a 37% zinc content to enhance the contact area for rod-shaped Escherichia coli (E. coli). Although the topography facilitates attachment of bacteria to the surface, reduced killing rates for E. coli are observed. In parallel, a high-resolution methodical approach was employed to explore the impact of laser-induced topographical and chemical modifications on the antibacterial properties. The findings reveal the underlying role of the chemical modification concerning the antimicrobial efficiency of the Cu-based alloy within the superficial layers of a few hundred nanometers. Overall, this study provides valuable insight into the effect of alloy composition on targeted laser processing for antimicrobial Cu-surfaces, which facilitates the thorough development and optimization of the process concerning antimicrobial applications.
Collapse
Affiliation(s)
- Aisha Saddiqa Ahmed
- Chair of Functional Materials, Department of Material Science and Engineering, Saarland University, Saarbrücken 66123, Germany
- Université de Lorraine, CNRS, IJL, Nancy F-54000, France
| | - Daniel Wyn Müller
- Chair of Functional Materials, Department of Material Science and Engineering, Saarland University, Saarbrücken 66123, Germany
| | | | - Anne Holtsch
- Experimental Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | - Frank Müller
- Experimental Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | - Jenifer Barrirero
- Chair of Functional Materials, Department of Material Science and Engineering, Saarland University, Saarbrücken 66123, Germany
| | - Kristina Brix
- Department of Inorganic Solid-State Chemistry, Elemental Analysis, Saarland University, Saarbrücken 66123, Germany
| | - Sylvie Migot
- Université de Lorraine, CNRS, IJL, Nancy F-54000, France
| | - Ralf Kautenburger
- Department of Inorganic Solid-State Chemistry, Elemental Analysis, Saarland University, Saarbrücken 66123, Germany
| | - Karin Jacobs
- Experimental Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | | | - Frank Mücklich
- Chair of Functional Materials, Department of Material Science and Engineering, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
74
|
Hammami I, Gavinho SR, Jakka SK, Valente MA, Graça MPF, Pádua AS, Silva JC, Sá-Nogueira I, Borges JP. Antibacterial Biomaterial Based on Bioglass Modified with Copper for Implants Coating. J Funct Biomater 2023; 14:369. [PMID: 37504864 PMCID: PMC10381177 DOI: 10.3390/jfb14070369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Biofilm-related implant infections pose a substantial threat to patients, leading to inflammation in the surrounding tissue, and often resulting in implant loss and the necessity for additional surgeries. Overcoming this implantology challenge is crucial to ensure the success and durability of implants. This study shows the development of antibacterial materials for implant coatings by incorporating copper into 45S5 Bioglass®. By combining the regenerative properties of Bioglass® with the antimicrobial effects of copper, this material has the potential to prevent infections, enhance osseointegration and improve the long-term success of implants. Bioglasses modified with various concentrations of CuO (from 0 to 8 mol%) were prepared with the melt-quenching technique. Structural analysis using Raman and FTIR spectroscopies did not reveal significant alterations in the bioglasses structure with the addition of Cu. The antibacterial activity of the samples was assessed against Gram-positive and Gram-negative bacteria, and the results demonstrated significant inhibition of bacterial growth for the bioglass with 0.5 mol% of CuO. Cell viability studies indicated that the samples modified with up to 4 mol% of CuO maintained good cytocompatibility with the Saos-2 cell line at extract concentrations up to 25 mg/mL. Furthermore, the bioactivity assessment demonstrated the formation of a calcium phosphate (CaP)-rich layer on the surfaces of all bioglasses within 24 h. Our findings show that the inclusion of copper in the bioglass offers a significant enhancement in its potential as a coating material for implants, resulting in notable advancements in both antibacterial efficacy and osteointegration properties.
Collapse
Affiliation(s)
- Imen Hammami
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal
| | | | - Suresh Kumar Jakka
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal
| | | | | | - Ana Sofia Pádua
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Jorge Carvalho Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
75
|
Lejeune B, Zhang X, Sun S, Hines J, Jinn KW, Reilly AN, Clark HA, Lewis LH. Enhancing Biocidal Capability in Cuprite Coatings. ACS Biomater Sci Eng 2023; 9:4178-4186. [PMID: 37267510 PMCID: PMC10620754 DOI: 10.1021/acsbiomaterials.2c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
The SARS-CoV-2 global pandemic has reinvigorated interest in the creation and widespread deployment of durable, cost-effective, and environmentally benign antipathogenic coatings for high-touch public surfaces. While the contact-kill capability and mechanism of metallic copper and its alloys are well established, the biocidal activity of the refractory oxide forms remains poorly understood. In this study, commercial cuprous oxide (Cu2O, cuprite) powder was rapidly nanostructured using high-energy cryomechanical processing. Coatings made from these processed powders demonstrated a passive "contact-kill" response to Escherichia coli (E. coli) bacteria that was 4× (400%) faster than coatings made from unprocessed powder. No viable bacteria (>99.999% (5-log10) reduction) were detected in bioassays performed after two hours of exposure of E. coli to coatings of processed cuprous oxide, while a greater than 99% bacterial reduction was achieved within 30 min of exposure. Further, these coatings were hydrophobic and no external energy input was required to activate their contact-kill capability. The upregulated antibacterial response of the processed powders is positively correlated with extensive induced crystallographic disorder and microstrain in the Cu2O lattice accompanied by color changes that are consistent with an increased semiconducting bandgap energy. It is deduced that cryomilling creates well-crystallized nanoscale regions enmeshed within the highly lattice-defective particle matrix. Increasing the relative proportion of lattice-defective cuprous oxide exposed to the environment at the coating surface is anticipated to further enhance the antipathogenic capability of this abundant, inexpensive, robust, and easily handled material for wider application in contact-kill surfaces.
Collapse
Affiliation(s)
- Brian
T. Lejeune
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Xiaoyu Zhang
- Department
of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Su Sun
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Julia Hines
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Kevin W. Jinn
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Ashlyn Neal Reilly
- Department
of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Heather A. Clark
- Department
of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- Department
of Chemistry, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Laura H. Lewis
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- Department
of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- The
George J. Kostas Research Institute for Homeland Security, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| |
Collapse
|
76
|
Božić Cvijan B, Korać Jačić J, Bajčetić M. The Impact of Copper Ions on the Activity of Antibiotic Drugs. Molecules 2023; 28:5133. [PMID: 37446795 DOI: 10.3390/molecules28135133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
Copper (Cu) is an essential trace metal and its concentration in body plasma is tightly regulated. An increase in Cu concentration in body fluids is observed in numerous pathological conditions, including infections caused by microorganisms. Evidence shows that Cu ions can impact the activity of antibiotics by increasing efficiency or diminishing/neutralizing antibiotic activity, forming complexes which may lead to antibiotic structure degradation. Herein, we represent the evidence available on Cu-antibiotic interactions and their possible impact on antimicrobial therapy efficiency. So far, in vitro studies described interactions between Cu ions and the majority of antibiotics in clinical use: penicillins, cephalosporins, carbapenems, macrolides, aminoglycosides, tetracyclines, fluoroquinolones, isoniazid, metronidazole. In vitro-described degradation or lower antimicrobial activity of amoxicillin, ampicillin, cefaclor, ceftriaxone, and meropenem in the presence of Cu ions suggest caution when using prescribed antibiotics in patients with altered Cu levels. On the other hand, several Cu-dependent compounds with antibacterial activity including the drug-resistant bacteria were discovered, such as thiosemicarbazones, disulfiram, dithiocarbamates, 8-hydroxiquinoline, phenanthrolines, pyrithione. Having in mind that the development of new antibiotics is already marked as inadequate and does not meet global needs, the potential of Cu-antibiotic interactions to change the efficiency of antimicrobial therapy requires further investigation.
Collapse
Affiliation(s)
- Bojana Božić Cvijan
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Korać Jačić
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Milica Bajčetić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinical Pharmacology Unit, University Children's Hospital, 11000 Belgrade, Serbia
| |
Collapse
|
77
|
Ramos-Zúñiga J, Bruna N, Pérez-Donoso JM. Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses. Int J Mol Sci 2023; 24:10503. [PMID: 37445681 DOI: 10.3390/ijms241310503] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Copper is a metal historically used to prevent infections. One of the most relevant challenges in modern society are infectious disease outbreaks, where copper-based technologies can play a significant role. Currently, copper nanoparticles and surfaces are the most common antimicrobial copper-based technologies. Despite the widespread use of copper on nanoparticles and surfaces, the toxicity mechanism(s) explaining their unique antimicrobial properties are not entirely known. In general, toxicity effects described in bacteria and fungi involve the rupture of membranes, accumulation of ions inside the cell, protein inactivation, and DNA damage. A few studies have associated Cu-toxicity with ROS production and genetic material degradation in viruses. Therefore, understanding the mechanisms of the toxicity of copper nanoparticles and surfaces will contribute to developing and implementing efficient antimicrobial technologies to combat old and new infectious agents that can lead to disease outbreaks such as COVID-19. This review summarizes the current knowledge regarding the microbial toxicity of copper nanoparticles and surfaces and the gaps in this knowledge. In addition, we discuss potential applications derived from discovering new elements of copper toxicity, such as using different molecules or modifications to potentiate toxicity or antimicrobial specificity.
Collapse
Affiliation(s)
- Javiera Ramos-Zúñiga
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Nicolás Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - José M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| |
Collapse
|
78
|
Sharifi E, Yousefiasl S, Trovato M, Sartorius R, Esmaeili Y, Goodarzi H, Ghomi M, Bigham A, Moghaddam FD, Heidarifard M, Pourmotabed S, Nazarzadeh Zare E, Paiva-Santos AC, Rabiee N, Wang X, Tay FR. Nanostructures for prevention, diagnosis, and treatment of viral respiratory infections: from influenza virus to SARS-CoV-2 variants. J Nanobiotechnology 2023; 21:199. [PMID: 37344894 PMCID: PMC10283343 DOI: 10.1186/s12951-023-01938-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Viruses are a major cause of mortality and socio-economic downfall despite the plethora of biopharmaceuticals designed for their eradication. Conventional antiviral therapies are often ineffective. Live-attenuated vaccines can pose a safety risk due to the possibility of pathogen reversion, whereas inactivated viral vaccines and subunit vaccines do not generate robust and sustained immune responses. Recent studies have demonstrated the potential of strategies that combine nanotechnology concepts with the diagnosis, prevention, and treatment of viral infectious diseases. The present review provides a comprehensive introduction to the different strains of viruses involved in respiratory diseases and presents an overview of recent advances in the diagnosis and treatment of viral infections based on nanotechnology concepts and applications. Discussions in diagnostic/therapeutic nanotechnology-based approaches will be focused on H1N1 influenza, respiratory syncytial virus, human parainfluenza virus type 3 infections, as well as COVID-19 infections caused by the SARS-CoV-2 virus Delta variant and new emerging Omicron variant.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran.
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Yasaman Esmaeili
- School of Advanced Technologies in Medicine, Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Hamid Goodarzi
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Ashkan Bigham
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Maryam Heidarifard
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Samiramis Pourmotabed
- Department of Emergency Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | | | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
79
|
Wu N, Gao H, Wang X, Pei X. Surface Modification of Titanium Implants by Metal Ions and Nanoparticles for Biomedical Application. ACS Biomater Sci Eng 2023; 9:2970-2990. [PMID: 37184344 DOI: 10.1021/acsbiomaterials.2c00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Implant surface modification can improve osseointegration and reduce peri-implant inflammation. Implant surfaces are modified with metals because of their excellent mechanical properties and significant functions. Metal surface modification is divided into metal ions and nanoparticle surface modification. These two methods function by adding a finishing metal to the surface of the implant, and both play a role in promoting osteogenic, angiogenic, and antibacterial properties. Based on this, the nanostructural surface changes confer stronger antibacterial and cellular affinity to the implant surface. The current paper reviews the forms, mechanisms, and applications of nanoparticles and metal ion modifications to provide a foundation for the surface modification of implants.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
80
|
Cao Z, Ma X, Zou A, Shi Z, Xiang S, Xu J, Cai L, Huang J, Sun X. Chitin nanocrystals supported copper: a new nanomaterial with high activity with P. syringae pv. Tabaci. PEST MANAGEMENT SCIENCE 2023; 79:2017-2028. [PMID: 36708071 DOI: 10.1002/ps.7377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The application of chemical pesticides in control of plant bacterial disease may cause potential environmental pollution. Herein, based on the resistance-inducing ability and the special rod-like structure with high aspect ratio of bio-derived chitin nanocrystals (ChNC), a new Cu composite rod-like nanoparticle was fabricated (ChNC@Cu). The antibacterial activity of the composite nanoparticle was systematically studied, and its safety was evaluated. RESULTS TEM, FTIR, ICP and other characterization methods proved that ChNC@Cu is a nano rod-like structure, with a Cu2+ loading capacity of 2.63%. In vitro experiments showed that the inhibition rate of ChNC@Cu to P. syringae pv. tabaci was more than 95% when the copper content was 41.6 μg mL-1 . In vivo experiments showed that ChNC@Cu had a good protective effect on P. syringae pv. tabaci of tobacco. In addition, ChNC@Cu exhibited stronger antibacterial activity than Thiodiazole copper (TC) at the same copper content. The study on the antibacterial mechanism of ChNC@Cu proved that ChNC@Cu caused bacterial death by destroying the bacterial cell membrane structure and damaging the DNA bacteria. And ChNC@Cu is highly safe for plants and can promote seed germination and plant growth. CONCLUSION The special rod-like structure of ChNC can enrich Cu2+ to form ChNC@Cu. ChNC@Cu has a good protective effect on bacterial infection of tobacco, and achieves a great antibacterial activity at low Cu2+ concentration, which indicated that ChNC@Cu has induced resistance and antibacterial effect. As a novel green nanofungicide, ChNC@Cu has high potential application value in control of agricultural bacterial diseases. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Cao
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Aihong Zou
- College of Plant Protection, Southwest University, Chongqing, China
| | - Zhenxu Shi
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Shunyu Xiang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jingyun Xu
- Energy College of Science, The Pennsylvania State University, State College, USA
| | - Lin Cai
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jin Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| |
Collapse
|
81
|
Alasvand N, Behnamghader A, Milan PB, Simorgh S, Mobasheri A, Mozafari M. Tissue-engineered small-diameter vascular grafts containing novel copper-doped bioactive glass biomaterials to promote angiogenic activity and endothelial regeneration. Mater Today Bio 2023; 20:100647. [PMID: 37273797 PMCID: PMC10232732 DOI: 10.1016/j.mtbio.2023.100647] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
Small-diameter vascular grafts frequently fail because of obstruction and infection. Despite the wide range of commercially available vascular grafts, the anatomical uniqueness of defect sites demands patient-specific designs. This study aims to increase the success rate of implantation by fabricating bilayer vascular grafts containing bioactive glasses (BGs) and modifying their composition by removing hemostatic ions to make them blood-compatible and to enhance their antibacterial and angiogenesis properties. The porous vascular graft tubes were 3D printed using polycaprolactone, polyglycerol sebacate, and the modified BGs. The polycaprolactone sheath was then wrapped around the 3D-printed layer using the electrospinning technique to prevent blood leakage. The results demonstrated that the incorporation of modified BGs into the polymeric matrix not only improved the mechanical properties of the vascular graft but also significantly enhanced its antibacterial activity against both gram-negative and gram-positive strains. In addition, no hemolysis or platelet activity was detected after incorporating modified BGs into the vascular grafts. Copper-releasing vascular grafts significantly enhanced endothelial cell proliferation, motility, and VEGF secretion. Additionally, In vivo angiogenesis (CD31 immunofluorescent staining) and gene expression experiments showed that copper-releasing vascular grafts considerably promoted the formation of new blood vessels, low-grade inflammation (decreased expression of IL-1β and TNF-α), and high-level angiogenesis (increased expression of angiogenic growth factors including VEGF, PDGF-BB, and HEBGF). These observations indicate that the use of BGs with suitable compositional modifications in vascular grafts may promote the clinical success of patient-specific vascular prostheses by accelerating tissue regeneration without any coagulation problems.
Collapse
Affiliation(s)
- Neda Alasvand
- Bioengineering Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Aliasghar Behnamghader
- Bioengineering Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Peiman B. Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Simorgh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
| | - Masoud Mozafari
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
82
|
Park E, Choi SY, Kim J, Hildebrandt N, Lee JS, Nam JM. Nanotechnologies for the Diagnosis and Treatment of SARS-CoV-2 and Its Variants. SMALL METHODS 2023:e2300034. [PMID: 37189215 DOI: 10.1002/smtd.202300034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease 2019 (COVID-19) pandemic, has caused well over 750 million infections and 6.8 million deaths. Rapid diagnosis and isolation of infected patients are the primary aims of the concerned authorities to minimize the casualties. The endeavor to mitigate the pandemic has been impeded by the emergence of newly identified genomic variants of SARS-CoV-2. Some of these variants are considered as serious threats because of their higher transmissibility and potential immune evasion, leading to reduced vaccine efficiency. Nanotechnology can play an important role in advancing both diagnosis and therapy of COVID-19. In this review, nanotechnology-based diagnostic and therapeutic strategies against SARS-CoV-2 and its variants are introduced. The biological features and functions of the virus, the mechanism of infection, and currently used approaches for diagnosis, vaccination, and therapy are discussed. Then, nanomaterial-based nucleic acid- and antigen-targeting diagnostic methods and viral activity suppression approaches that have a strong potential to advance both diagnostics and therapeutics toward control and containment of the COVID-19 pandemic are focused upon.
Collapse
Affiliation(s)
- Eunhye Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - So Young Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jieun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jin Seok Lee
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
83
|
Raja FNS, Worthington T, Martin RA. The antimicrobial efficacy of copper, cobalt, zinc and silver nanoparticles: alone and in combination. Biomed Mater 2023; 18. [PMID: 37158047 DOI: 10.1088/1748-605x/acd03f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
With the advent of nanotechnology, there has been an extensive interest in the antimicrobial potential of metals. The rapid and widespread development of antimicrobial-resistant and multidrug-resistant bacteria has prompted recent research into developing novel or alternative antimicrobial agents. In this study, the antimicrobial efficacy of metallic copper, cobalt, silver and zinc nanoparticles was assessed againstEscherichia coli(NCTC 10538),S. aureus(ATCC 6538) along with three clinical isolates ofStaphylococcus epidermidis(A37, A57 and A91) and three clinical isolates ofE. coli(Strains 1, 2 and 3) recovered from bone marrow transplant patients and patients with cystitis respectively. Antimicrobial sensitivity assays, including agar diffusion and broth macro-dilution to determine minimum inhibitory and bactericidal concentrations (MIC/MBC) and time-kill/synergy assays, were used to assess the antimicrobial efficacy of the agents. The panel of test microorganisms, including antibiotic-resistant strains, demonstrated a broad range of sensitivity to the metals investigated. MICs of the type culture strains were in the range of 0.625-5.0 mg ml-1. While copper and cobalt exhibited no difference in sensitivity between Gram-positive and Gram-negative microorganisms, silver and zinc showed strain specificity. A significant decrease (p< 0.001) in the bacterial density ofE. coliandS. aureuswas demonstrated by silver, copper and zinc in as little as two hours. Furthermore, combining metal nanoparticles reduced the time required to achieve a complete kill.
Collapse
Affiliation(s)
- Farah N S Raja
- College of Health and Life Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Tony Worthington
- College of Health and Life Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Richard A Martin
- College of Engineering and Physical Sciences, and Aston Advanced Materials Research Centre, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
84
|
Guerrero-Arguero I, Khan SR, Henry BM, Garcia-Vilanova A, Chiem K, Ye C, Shrestha S, Knight D, Cristner M, Hill S, Waldman WJ, Dutta PK, Torrelles JB, Martinez-Sobrido L, Nagy AM. Mitigation of SARS-CoV-2 by Using Transition Metal Nanozeolites and Quaternary Ammonium Compounds as Antiviral Agents in Suspensions and Soft Fabric Materials. Int J Nanomedicine 2023; 18:2307-2324. [PMID: 37163142 PMCID: PMC10164392 DOI: 10.2147/ijn.s396669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/05/2023] [Indexed: 05/11/2023] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic has demonstrated the need for novel, affordable, and efficient reagents to help reduce viral transmission, especially in high-risk environments including medical treatment facilities, close quarters, and austere settings. We examined transition-metal nanozeolite suspensions and quaternary ammonium compounds as an antiviral surface coating for various textile materials. Methods Zeolites are crystalline porous aluminosilicate materials, with the ability of ion-exchanging different cations. Nanozeolites (30 nm) were synthesized and then ion-exchanged with silver, zinc and copper ions. Benzalkonium nitrate (BZN) was examined as the quaternary ammonium ion (quat). Suspensions of these materials were tested for antiviral activity towards SARS-CoV-2 using plaque assay and immunostaining. Suspensions of the nanozeolite and quat were deposited on polyester and cotton fabrics and the ability of these textiles towards neutralizing SARS-CoV-2 was examined. Results We hypothesized that transition metal ion containing zeolites, particularly silver and zinc (AM30) and silver and copper (AV30), would be effective in reducing the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Additionally, AM30 and AV30 antiviral potency was tested when combined with a quaternary ammonium carrier, BZN. Our results indicate that exposure of SARS-CoV-2 to AM30 and/or AV30 suspensions reduced viral loads with time and exhibited dose-dependence. Antiviral activities of the combination of zeolite and BZN compositions were significantly enhanced. When used in textiles, AM30 and AV30-coated cotton and polyester fabrics alone or in combination with BZN exhibited significant antiviral properties, which were maintained even after various stress tests, including washes, SARS-CoV-2-repeated exposures, or treatments with soil-like materials. Conclusion This study shows the efficacy of transition metal nanozeolite formulations as novel antiviral agents and establishes that nanozeolite with silver and zinc ions (AM30) and nanozeolite with silver and copper ions (AV30) when combined with benzalkonium nitrate (BZN) quickly and continuously inactivate SARS-CoV-2 in suspension and on fabric materials.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Siddiqur Rahman Khan
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Brandon M Henry
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Andreu Garcia-Vilanova
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Kevin Chiem
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chengjin Ye
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Deborah Knight
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Mark Cristner
- Chief Scientist’s Office of Science and Technology, 59 Medical Wing, Joint Base San Antonio-Lackland, San Antonio, TX, USA
| | - Shauna Hill
- Chief Scientist’s Office of Science and Technology, 59 Medical Wing, Joint Base San Antonio-Lackland, San Antonio, TX, USA
| | - W James Waldman
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Prabir K Dutta
- ZeoVation Inc., Columbus, OH, USA
- Department of Chemistry, The Ohio State University, Columbus, OH, USA
| | - Jordi B Torrelles
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Amber M Nagy
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- Chief Scientist’s Office of Science and Technology, 59 Medical Wing, Joint Base San Antonio-Lackland, San Antonio, TX, USA
| |
Collapse
|
85
|
Jeong SB, Shin JH, Kim SW, Seo SC, Jung JH. Performance evaluation of an electrostatic precipitator with a copper plate using an aerosolized SARS-CoV-2 surrogate (bacteriophage phi 6). ENVIRONMENTAL TECHNOLOGY & INNOVATION 2023; 30:103124. [PMID: 36987524 PMCID: PMC10035800 DOI: 10.1016/j.eti.2023.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/29/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has reminded us of the importance of developing technologies to reduce and control bioaerosols in built environments. For bioaerosol control, the interaction between researchers and biomaterials is essential, and considering the characteristics of target pathogens is strongly required. Herein, we used enveloped viral aerosols, bacteriophage phi 6, for evaluating the performance of an electrostatic precipitator (ESP) with a copper-collecting plate (Cu-plate). In particular, bacteriophage phi 6 is an accessible enveloped virus that can be operated in biosafety level (BSL)-1 as a promising surrogate for SARS-CoV-2 with structural and morphological similarities. ESP with Cu-plate showed >91% of particle removal efficiency for viral aerosols at 77 cm/s of airflow face velocity. Moreover, the Cu-plate presented a potent antiviral performance of 5.4-relative log reduction within <15 min of contact. We believe that the evaluation of ESP performance using an aerosolized enveloped virus and plaque assay is invaluable. Our results provide essential information for the development of bioaerosol control technologies that will lead the post-corona era.
Collapse
Affiliation(s)
- Sang Bin Jeong
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Jae Hak Shin
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Sam Woong Kim
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Sung Chul Seo
- Department of Nano, Chemical and Biological Engineering, Seokyeong University, Seoul 02713, Republic of Korea
| | - Jae Hee Jung
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
86
|
Li X, Cong Y, Ovais M, Cardoso MB, Hameed S, Chen R, Chen M, Wang L. Copper-based nanoparticles against microbial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1888. [PMID: 37037205 DOI: 10.1002/wnan.1888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/12/2023]
Abstract
Drug-resistant bacteria and highly infectious viruses are among the major global threats affecting the human health. There is an immediate need for novel strategies to tackle this challenge. Copper-based nanoparticles (CBNPs) have exhibited a broad antimicrobial capacity and are receiving increasing attention in this context. In this review, we describe the functionalization of CBNPs, elucidate their antibacterial and antiviral activity as well as applications, and briefly review their toxicity, biodistribution, and persistence. The limitations of the current study and potential solutions are also shortly discussed. The review will guide the rational design of functional nanomaterials for antimicrobial application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Xiumin Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Mateus Borba Cardoso
- The Soft and Biological Matter Division, Brazilian Synchrotron Light Laboratory, Institute of Chemistry, University of Campinas, CEP 13083-970 Campinas, São Paulo, CP, 6154, Brazil
| | - Saima Hameed
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Chen
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100083, China
| | - Mingli Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
87
|
Phakatkar AH, Yurkiv V, Ghildiyal P, Wang Y, Amiri A, Sorokina LV, Zachariah MR, Shokuhfar T, Shahbazian-Yassar R. In Situ Microscopic Studies on the Interaction of Multi-Principal Element Nanoparticles and Bacteria. ACS NANO 2023; 17:5880-5893. [PMID: 36921123 DOI: 10.1021/acsnano.2c12799] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multi-principal element nanoparticles are an emerging class of materials with potential applications in medicine and biology. However, it is not known how such nanoparticles interact with bacteria at nanoscale. In the present work, we evaluated the interaction of multi-principal elemental alloy (FeNiCu) nanoparticles with Escherichia coli (E. coli) bacteria using the in situ graphene liquid cell (GLC) scanning transmission electron microscopy (STEM) approach. The imaging revealed the details of bacteria wall damage in the vicinity of nanoparticles. The chemical mappings of S, P, O, N, C, and Cl elements confirmed the cytoplasmic leakage of the bacteria. Our results show that there is selective release of metal ions from the nanoparticles. The release of copper ions was much higher than that for nickel while the iron release was the lowest. In addition, the binding affinity of bacterial cell membrane protein functional groups with Cu, Ni, and Fe cations is found to be the driving force behind the selective metal cations' release from the multi-principal element nanoparticles. The protein functional groups driven dissolution of multielement nanoparticles was evaluated using the density functional theory (DFT) computational method, which confirmed that the energy required to remove Cu atoms from the nanoparticle surface was the least in comparison with those for Ni and Fe atoms. The DFT results support the experimental data, indicating that the energy to dissolve metal atoms exposed to oxidation and/or the to presence of oxygen atoms at the surface of the nanoparticle catalyzes metal removal from the multielement nanoparticle. The study shows the potential of compositional design of multi-principal element nanoparticles for the controlled release of metal ions to develop antibacterial strategies. In addition, GLC-STEM is a promising approach for understanding the nanoscale interaction of metallic nanoparticles with biological structures.
Collapse
Affiliation(s)
- Abhijit H Phakatkar
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Vitaliy Yurkiv
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Pankaj Ghildiyal
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Yujie Wang
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Azadeh Amiri
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Lioudmila V Sorokina
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Michael R Zachariah
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Tolou Shokuhfar
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Reza Shahbazian-Yassar
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
88
|
Liu J, Shen J, Wang Y, Dong C, Liu J, Yi Y, Liu H, Bao Y, Hui A, Wang A. MoS 2/PDA@Cu composite as a peroxidase-mimicking enzyme with high-effect antibacterial and anticancer activity. Biomater Sci 2023; 11:2898-2911. [PMID: 36883448 DOI: 10.1039/d2bm01935c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Since nanozymes were proposed, their applications have become more and more extensive. As a research hotspot in recent years, MoS2 also shows many enzyme-like properties. However, as a novel peroxidase, MoS2 has the disadvantage of a low maximum reaction rate. In this study, the MoS2/PDA@Cu nanozyme was synthesized by a wet chemical method. The modification of PDA on the surface of MoS2 achieved the uniform growth of small-sized Cu Nps. The obtained MoS2/PDA@Cu nanozyme displayed excellent peroxidase-like activity and antibacterial properties. The minimum inhibitory concentration (MIC) of the MoS2/PDA@Cu nanozyme against S. aureus reached 25 μg mL-1. Furthermore, it showed a more pronounced inhibitory effect on bacterial growth with the addition of H2O2. The maximum reaction rate (Vmax) of the MoS2/PDA@Cu nanozyme is 29.33 × 10-8 M s-1, which is significantly higher as compared to that of HRP. It also exhibited excellent biocompatibility, hemocompatibility and potential anticancer properties. When the concentration of the nanozyme was 160 μg mL-1, the viabilities of 4T1 cells and Hep G2 cells were 45.07% and 32.35%, respectively. This work indicates that surface regulation and electronic transmission control are good strategies for improving peroxidase-like activity.
Collapse
Affiliation(s)
- Junli Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science& Technology, Xi'an, 710021, PR China.
| | - Jiahao Shen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science& Technology, Xi'an, 710021, PR China.
| | - Yile Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science& Technology, Xi'an, 710021, PR China.
| | - Chenfeng Dong
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science& Technology, Xi'an, 710021, PR China.
| | - Jin Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science& Technology, Xi'an, 710021, PR China.
| | - Yunxiao Yi
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science& Technology, Xi'an, 710021, PR China.
| | - Hui Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science& Technology, Xi'an, 710021, PR China.
| | - Yan Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - AiPing Hui
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
89
|
Tejeda C, Villegas M, Steuer P, Ulloa F, Iranzo EC, Reyes-Jara A, Salgado M. Experimental evidence of the anti-bacterial activity pathway of copper ion treatment on Mycobacterium avium subsp. paratuberculosis. Braz J Microbiol 2023; 54:407-413. [PMID: 36572823 PMCID: PMC9943822 DOI: 10.1007/s42770-022-00897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
Copper causes significant damage to the integrity of many bacteria, mainly at the DNA level, through its redox states, as well as its reactive oxygen species (ROS) generating capacity at the cellular level. But whether these mechanisms also apply to Mycobacterium avium subsp. paratuberculosis (MAP) is unknown. In the present study, we have evaluated whether copper ions produce damage at the DNA level of MAP, either through their redox states or through ROS production. MAP-spiked PBS was first supplemented with different copper chelators (2) and ROS antioxidants (3), followed by treatment with copper ions at 942 ppm. MAP DNA integrity (qPCR, magnetic phage separation) was then evaluated. We found that bathocuproine (BCS), as a chelator, and D-mannitol, as an antioxidant of hydroxyl radicals, had a significant protective effect (P < 0.05) on DNA molecules, and that EDTA, as a chelator, and D-mannitol, as an antioxidant had a significant positive effect (P < 0.05) on the viability of this pathogen in contrast to the control and other chelators and anti-oxidants used. In light of the reported findings, it may be concluded that copper ions within MAP cells are directly related to MAP DNA damage.
Collapse
Affiliation(s)
- Carlos Tejeda
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Valdivia, Chile
| | - Marcela Villegas
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Steuer
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Ulloa
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Valdivia, Chile
| | - Esperanza C Iranzo
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Angelica Reyes-Jara
- Laboratorio de Microbiología Y Probióticos, Instituto de Nutrición Y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Miguel Salgado
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
90
|
Biological mechanism of cell oxidative stress and death during short-term exposure to nano CuO. Sci Rep 2023; 13:2326. [PMID: 36759527 PMCID: PMC9911756 DOI: 10.1038/s41598-023-28958-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
It is well known that copper oxide nanoparticles (CuO NPs) are heavily toxic on in vitro systems. In human alveolar epithelial cells, the mechanism of toxicity is mostly related to oxidative insults, coming from intracellularly dissolved copper ions, finally leading to apoptotic or autophagic cell death. Our hypothesis is based on possible early oxidative events coming from specific NP surface reactivity able to undermine the cell integrity and to drive cell to death, independently from Lysosomal-Enhanced Trojan Horse mechanism. Two types of CuO NPs, with different oxidative potential, were selected and tested on A549 cells for 1 h and 3 h at 10, 25, 50 and 100 µg/ml. Cells were then analyzed for viability and oxidative change of the proteome. Oxidative by-products were localized by immunocytochemistry and cell-NP interactions characterized by confocal and electron microscopy techniques. The results show that CuO NPs induced oxidative changes soon after 1 h exposure as revealed by the increase in protein carbonylation and reduced-protein-thiol oxidation. In parallel, cell viability significantly decreased, as shown by MTT assay. Such effects were higher for CuO NPs with more crystalline defects and with higher ROS production than for fully crystalline NPs. At these exposure times, although NPs efficiently interacted with cell surface and were taken up by small endocytic vesicles, no ion dissolution was visible inside the lysosomal compartment and no effects were produced by extracellularly dissolved copper ions. In conclusion, a specific NP surface-dependent oxidative cell injury was demonstrated. More detailed studies are required to understand which targets precociously react with CuO NPs, but these results introduce new paradigms for the toxicity of the metal-based NPs, beyond the Lysosomal-Enhanced Trojan horse-related mechanism, and open-up new opportunities to investigate the interactions and effects at the bio-interface for designing safer as well as more effective CuO-based biocides.
Collapse
|
91
|
Saha DC, Boegel SJ, Tanvir S, Nogueira CL, Aucoin MG, Anderson WA, Jahed H. Antiviral and Antibacterial Cold Spray Coating Application on Rubber Substrate, Disruption in Disease Transmission Chain. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2023; 32:818-830. [PMID: 37521526 PMCID: PMC9911180 DOI: 10.1007/s11666-023-01553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 08/01/2023]
Abstract
The objective of this study was to prepare a copper-coated rubber surface using cold spray technology with improved virucidal and antimicrobial properties to fight against highly transmissible viruses and bacteria. A successful cold spray coating was produced using irregular-shaped pure Cu powder on an escalator handrail rubber. The powder particles and the deposited coatings (single and double pass) were characterized in terms of particle morphology and size distribution, coating surface and coat/substrate cross-section properties. The bonding between powder and rubber surfaces was purely mechanical interlocking. The Cu powder penetration depth within the rubber surface increases with a number of depositions pass. The virucidal properties of the coated surface were tested utilizing surrogates for SARS-CoV-2: HCoV-229E, a seasonal human coronavirus, and baculovirus, a high-titer enveloped insect cell virus. A double-pass coated surface showed significant baculovirus inactivation relative to a bare rubber control surface after 2-h (approximately 1.7-log) and 4-h (approximately 6.2-log), while a 4-h exposure reduced HCoV-229E titer to below the limit of detection. A similar microbial test was performed using E. coli, showing a 4-log microbial reduction after 2-h exposure relative to the bare rubber. These promising results open a new application for cold spray in the health sector. Supplementary Information The online version contains supplementary material available at 10.1007/s11666-023-01553-x.
Collapse
Affiliation(s)
- D. C. Saha
- Fatigue and Stress Analysis Laboratory, Department of Mechanical & Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - S. J. Boegel
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - S. Tanvir
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - C. L. Nogueira
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - M. G. Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - W. A. Anderson
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - H. Jahed
- Fatigue and Stress Analysis Laboratory, Department of Mechanical & Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
92
|
Zhang S, Sadhasivam DR, Soundarajan S, Shanmugavel P, Raji A, Xu M. In vitro and in vivo investigation of chrysin chelated copper complex as biocompatible materials for bone tissue engineering applications. 3 Biotech 2023; 13:45. [PMID: 36643401 PMCID: PMC9837365 DOI: 10.1007/s13205-022-03449-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Flavonoid metal complexes have interesting properties and are widely explored for bone regeneration owing to their potent biological activity. In the present study, we investigated the biocompatibility and osteogenic properties of the Copper(II)-chrysin complex (C/Cu). The biocompatibility of C/Cu was assessed in vitro with human osteoblastic cells and in vivo using chick embryo and zebrafish models. The C/Cu complex was found to be cytofriendly with good biocompatibility. The osteogenic property of C/Cu was studied at cellular and molecular levels. C/Cu promoted mineralization in osteoblastic cultures by increasing ALP activity. At the molecular level, C/Cu significantly promoted the mRNA levels of osteoblast differentiation marker genes such as runt-related transcription factor 2 (Runx2), Type 1 collagen and ALP. In addition to this, secretory proteins, osteonectin (ON) and osteocalcin (OC) levels were also stimulated. We have also identified that C/Cu exhibited enhanced osteogenic properties and antibacterial activity compared with Chrysin. Thus, C/Cu can be used as an osteogenic agent in bone tissue engineering.
Collapse
Affiliation(s)
- Shikai Zhang
- The third department of Orthopedic, Shanghai Kaiyuan Orthopedic Hospital, Shanghai, 200129 China
| | - Deepa Rani Sadhasivam
- PG & Research Department of Zoology, Ethiraj College for Women, Chennai, Tamil Nadu India
| | - Sangeetha Soundarajan
- PG & Research Department of Zoology, Pachaiyappa’s College for Women, Chennai, Tamil Nadu India
| | | | - Amutha Raji
- Department of Biotechnology, Periyar university, Salem, Tamil Nadu India
| | - Min Xu
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433 China
| |
Collapse
|
93
|
Ryu DK, Adhikari M, Choi DH, Jun KJ, Kim DH, Kim CR, Kang MK, Park DH. Copper-Based Compounds against Erwinia amylovora: Response Parameter Analysis and Suppression of Fire Blight in Apple. THE PLANT PATHOLOGY JOURNAL 2023; 39:52-61. [PMID: 36760049 PMCID: PMC9929174 DOI: 10.5423/ppj.oa.07.2022.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/28/2022] [Accepted: 11/23/2022] [Indexed: 06/18/2023]
Abstract
Fire blight, caused by Erwinia amylovora, is one of the major bacterial disease of apple and pear, causing enormous economic losses worldwide. Several control measures against E. amylovora have been reported till date, however, none of them have proved to be effective significantly against the pathogen. In this study, mechanisms of the copper-based control agents (CBCAs): copper oxychloride (COCHL), copper oxide (COX), copper hydroxide (CHY), copper sulfate basic (CSB), and tribasic copper sulfate (TCS) and their disease severity reduction efficacy against E. amylovora were analyzed. Bis-1,3-dibutylbarbituric acid trimethine oxonol, carboxyl fluorescein diacetate succinimidyl ester, and 5-cyano-2,3-ditolyl tetrazolium chloride staining were used to check the damage of membrane potential, cytoplasmic pHin, and respiration of CBCAs-treated E. amylovora, respectively. High disturbance in the membrane potential of E. amylovora was found under COX and COCHL treatments. Similarly, higher significant changes in the inner cytoplasmic pHin were observed under COX, COCHL, and TCS treatment. CHY and COCHL-treated E. amylovora showed a significant reduction in respiration. In vitro bioassay results revealed that CHY, CSB, and TCS at 2,000 ppm reduced the severity of fire blight both in pre- and post-treatment of CBCAs in immature apple fruits and seedlings. Overall, the most effective CBCAs against E. amylovora could be CHY at 2,000 ppm as its showed inhibition mechanisms and disease severity reduction.
Collapse
Affiliation(s)
- Duck Kyu Ryu
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341,
Korea
| | - Mahesh Adhikari
- Applied Biology Program, Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341,
Korea
| | - Dong Hyuk Choi
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341,
Korea
| | - Kyung Jin Jun
- Crop Protection R&D Center, Farmhannong Ltd., Nonsan 33010,
Korea
| | - Do Hyoung Kim
- Crop Protection R&D Center, Farmhannong Ltd., Nonsan 33010,
Korea
| | - Chae Ryeong Kim
- Crop Protection R&D Center, Farmhannong Ltd., Nonsan 33010,
Korea
| | - Min Kyu Kang
- Crop Protection R&D Center, Farmhannong Ltd., Nonsan 33010,
Korea
| | - Duck Hwan Park
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341,
Korea
- Applied Biology Program, Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
94
|
Martín Vilardell A, Cantillo Alzamora V, Bauso LV, Madrid C, Krakhmalev P, Albu M, Yadroitsava I, Yadroitsev I, Garcia-Giralt N. Effect of Heat Treatment on Osteoblast Performance and Bactericidal Behavior of Ti6Al4V(ELI)-3at.%Cu Fabricated by Laser Powder Bed Fusion. J Funct Biomater 2023; 14:jfb14020063. [PMID: 36826862 PMCID: PMC9962850 DOI: 10.3390/jfb14020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Cu addition to alloys for biomedical applications has been of great interest to reduce bacterial growth. In situ-alloyed Ti6Al4V(ELI)-3at.%Cu was successfully manufactured by laser powder bed fusion (L-PBF). Even so, post-heat treatments are required to avoid distortions and/or achieve required/desired mechanical and fatigue properties. The present study is focused on the investigation of microstructural changes in L-PBF Ti6Al4V(ELI)-3at.%Cu after stress relieving and annealing treatments, as well as their influence on osteoblast and bactericidal behavior. After the stress relieving treatment, a homogenously distributed β phase and CuTi2 intermetallic precipitates were observed over the α' matrix. The annealing treatment led to the increase in amount and size of both types of precipitates, but also to phase redistribution along α lamellas. Although microstructural changes were not statistically significant, such increase in β and CuTi2 content resulted in an increase in osteoblast proliferation after 14 days of cell culture. A significant bactericidal behavior of L-PBF Ti6Al4V(ELI)-3at.%Cu by means of ion release was found after the annealing treatment, provably due to the easier release of Cu ions from β phase. Biofilm formation was inhibited in all on Cu-alloyed specimens with stress relieving but also annealing treatment.
Collapse
Affiliation(s)
- Anna Martín Vilardell
- Department of Engineering and Physics, Karlstad University, 651 88 Karlstad, Sweden
- Correspondence: (A.M.V.); (P.K.)
| | - Vanesa Cantillo Alzamora
- IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), CIBERFES, ISCIII, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Luana Vittoria Bauso
- IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), CIBERFES, ISCIII, Doctor Aiguader 88, 08003 Barcelona, Spain
- Department of Clinical and Experimental Medicine, University of Messina, Consolare Valeria 1, 98125 Messina, Italy
| | - Cristina Madrid
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Pavel Krakhmalev
- Department of Engineering and Physics, Karlstad University, 651 88 Karlstad, Sweden
- Correspondence: (A.M.V.); (P.K.)
| | - Mihaela Albu
- Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| | - Ina Yadroitsava
- Department of Mechanical Engineering and Mechatronics, Central University of Technology, Bloemfontein 9300, South Africa
| | - Igor Yadroitsev
- Department of Mechanical Engineering and Mechatronics, Central University of Technology, Bloemfontein 9300, South Africa
| | - Natalia Garcia-Giralt
- IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), CIBERFES, ISCIII, Doctor Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
95
|
Effects of Ageing in Disinfectant Solution on the Corrosion Resistance and Antimicrobial Behavior of Copper Alloys. Molecules 2023; 28:molecules28030981. [PMID: 36770646 PMCID: PMC9921941 DOI: 10.3390/molecules28030981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
This work studies two copper-based alloys as potential antimicrobial weapons for sectors where surface hygiene is essential. Effects of different alloying elements addition at the same Cu content (92.5% by weight) on the corrosion resistance and the antibacterial performance of two copper alloys were studied in an aerated disinfectant solution (0.25% v/v Aniosurf Premium (D)) by electrochemical corrosion, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS) and antibacterial tests. Results showed that the nature of the alloying elements had a clear influence on the corrosion resistance and antibacterial performance. Electrochemical impedance results and surface analyses demonstrate the presence of organic compounds bound on the substrate and that a film covers part of the total active surface and may act as a protective barrier by preventing the interaction between metal and solution, decreasing the antimicrobial performance of copper-based materials. Low zinc and silicon contents in copper alloys allows for better aging behavior in D solution while maintaining good antibacterial performance. The XPS and ToF-SIMS results indicated that artificial aging in disinfectant enhanced Cu enrichment in the organic film formed, which could effectively stimulate the release of Cu ions from the surface.
Collapse
|
96
|
Ye L, He X, Obeng E, Wang D, Zheng D, Shen T, Shen J, Hu R, Deng H. The CuO and AgO co-modified ZnO nanocomposites for promoting wound healing in Staphylococcus aureus infection. Mater Today Bio 2023; 18:100552. [PMID: 36819756 PMCID: PMC9936377 DOI: 10.1016/j.mtbio.2023.100552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
Bacterial has become a common pathogen of humans owing to their drug-resistant effects and evasion of the host immune system, with their ability to form biofilm and induce severe infections, a condition which has become a primary public health concern globally. Herein, we report on CuO@AgO/ZnO NPs antibacterial activity enhanced by near-infrared (NIR) light which was effective in the elimination of Staphylococcus aureus and the Pseudomonas aeruginosa. The CuO@AgO/ZnO NPs under NIR significantly eradicated S. aureus and its biofilm and P. aeruginosa in vitro, and subsequently exhibited such phenomenon in vivo, eliminating bacteria and healing wound. This demonstrated the combined intrinsic antibacterial potency of the Cu and Ag components of the CuO@AgO/ZnO NPs was enhanced tremendously to achieve such outcomes in vitro and in vivo. Considering the above advantages and facile preparation methods, the CuO@AgO/ZnO NPs synthesized in this work may prove as an important antibacterial agent in bacterial-related infection therapeutics and for biomedical-related purposes.
Collapse
Affiliation(s)
- Lisong Ye
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Enoch Obeng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Danyan Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Dongyang Zheng
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tianxi Shen
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China,Corresponding author. School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Rongdang Hu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China,Corresponding author.
| | - Hui Deng
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China,Corresponding author.
| |
Collapse
|
97
|
Lee MS, Hussein HR, Chang SW, Chang CY, Lin YY, Chien Y, Yang YP, Kiew LV, Chen CY, Chiou SH, Chang CC. Nature-Inspired Surface Structures Design for Antimicrobial Applications. Int J Mol Sci 2023; 24:1348. [PMID: 36674860 PMCID: PMC9865960 DOI: 10.3390/ijms24021348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Surface contamination by microorganisms such as viruses and bacteria may simultaneously aggravate the biofouling of surfaces and infection of wounds and promote cross-species transmission and the rapid evolution of microbes in emerging diseases. In addition, natural surface structures with unique anti-biofouling properties may be used as guide templates for the development of functional antimicrobial surfaces. Further, these structure-related antimicrobial surfaces can be categorized into microbicidal and anti-biofouling surfaces. This review introduces the recent advances in the development of microbicidal and anti-biofouling surfaces inspired by natural structures and discusses the related antimicrobial mechanisms, surface topography design, material application, manufacturing techniques, and antimicrobial efficiencies.
Collapse
Grants
- 110VACS-003 Establishment of Regenerative Medicine and Cell Therapy Platform of Veterans General Hospital system
- 110VACS-007 Establishment of epidemic prevention and research platform in the veterans medical system for the control of emerging infectious diseases
- MOHW108-TDU-B-211-133001 Ministry of Health and Welfare
- MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1 VGH, TSGH, NDMC, AS Joint Research Program
- VTA108-V1-5-3 VGH, TSGH, NDMC, AS Joint Research Program
- VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- NSTC 111-2321-B-A49-007 National Science and Technology Council, Taiwan
- NSTC 111-2112-M-A49-025 National Science and Technology Council, Taiwan
- MOST 108-2320-B-010-019-MY3 National Science and Technology Council, Taiwan
- MOST 109-2327-B-010-007 National Science and Technology Council, Taiwan
- MOST 109-2327-B-016-002 National Science and Technology Council, Taiwan
- NSTC 111-2927-I-A49-004 National Science and Technology Council, Taiwan
- IIRG003B-19FNW Universiti Malaya and the Ministry of Higher Education, Malaysia
Collapse
Affiliation(s)
- Meng-Shiue Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hussein Reda Hussein
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Egypt
| | - Sheng-Wen Chang
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City 320317, Taiwan
- Department of French Language and Literature, National Central University, Taoyuan City 320317, Taiwan
| | - Chia-Yu Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Lik-Voon Kiew
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ching-Yun Chen
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City 320317, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2 B), National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
98
|
Bassam SN, Salimijazi H, Labbaf S, Amya M, Ehsani P, Mehrbod P. Antibacterial and Virucidal Evaluation of Ultrafine Wire Arc Sprayed German Silver Coatings. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2023; 32:959-969. [PMID: 37521527 PMCID: PMC9810382 DOI: 10.1007/s11666-022-01528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 08/01/2023]
Abstract
Copper and its alloys are known as antimicrobial agents that can be used in public places; however, pure copper has a low wear resistance and tends to lose its gloss relatively fast and stainless steel is still more desirable because of its mechanical properties and stable appearance. In this research, German silver coatings, a copper-nickel alloy, are studied as a superior alternative for pure copper coatings. German silver coating on mild steel substrates and stainless steel with two different surface roughnesses was prepared and placed into water bath up to 6 months to investigate the corrosion and exposure effects on the antibacterial behavior. A range of techniques was used to study the microstructure, surface morphology and mechanical properties such as microhardness, coating bonding adhesion, surface roughness and wettability of the coating. Colony count method was used to measure the antibacterial properties, and samples were tested against influenza A virus to evaluate the virucidal activity. The coating thickness was around 130 µm and contained 15% pores and oxides with splats forming inside the coating structure. Inside each splat, columnar grains could be seen with an average of 700 nm width and 4 µm length. The bonding strength of the coating was about 15 MPa, the hardness of coatings was about 180 HV, and the average surface roughness of the as-sprayed samples was about 10 µm. German silver coatings can destroy both Staphylococcus aureus and Escherichia coli by more than 90% after 6 h of exposure time, and it also has a high-level of virucidal activity against influenza A virus after 2 h exposure time. Antibacterial behavior did not show any significant changes after 6 months of immersing samples in water bath. Thus, thermally sprayed German silver coatings exhibited silvery color for a long period of time, while its antimicrobial efficiency was comparable to pure copper coatings. Supplementary Information The online version contains supplementary material available at 10.1007/s11666-022-01528-4.
Collapse
Affiliation(s)
- Seyed Navid Bassam
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| | - Hamidreza Salimijazi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| | - Melika Amya
- Bacteriology Department, Molecular Biology Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Ehsani
- Bacteriology Department, Molecular Biology Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
99
|
ZHOU H, XIE C, WANG Z, CHEN Y, YE D, GUO A, XIE W, XING J, WANG C, ZHENG M. Preparation, characterization and antioxidant activity of polysaccharides copper from Qingzhuan dark tea. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hongfu ZHOU
- Hubei University of Science and Technology, China; Hubei Industrial Technology Research Institute of Intelligent Health, China
| | - Chen XIE
- Hubei University of Science and Technology, China; Hubei Industrial Technology Research Institute of Intelligent Health, China
| | - Ziyao WANG
- Hubei University of Science and Technology, China; Hubei Industrial Technology Research Institute of Intelligent Health, China
| | - Yong CHEN
- Hubei University of Science and Technology, China; Hubei Industrial Technology Research Institute of Intelligent Health, China
| | - Dan YE
- Hubei University of Science and Technology, China; Hubei Industrial Technology Research Institute of Intelligent Health, China
| | - Anran GUO
- Hubei University of Science and Technology, China; Hubei Industrial Technology Research Institute of Intelligent Health, China
| | - Wenjing XIE
- Hubei University of Science and Technology, China; Hubei Industrial Technology Research Institute of Intelligent Health, China
| | - Jun XING
- Hubei University of Science and Technology, China; Hubei Industrial Technology Research Institute of Intelligent Health, China
| | - Cai WANG
- Hubei University of Science and Technology, China; Hubei Industrial Technology Research Institute of Intelligent Health, China
| | - Min ZHENG
- Hubei University of Science and Technology, China; Hubei Industrial Technology Research Institute of Intelligent Health, China
| |
Collapse
|
100
|
The impact of agarose immobilization on the activity of lytic Pseudomonas aeruginosa phages combined with chemicals. Appl Microbiol Biotechnol 2023; 107:897-913. [PMID: 36625915 PMCID: PMC9842590 DOI: 10.1007/s00253-022-12349-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/25/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023]
Abstract
The implementation of non-traditional antibacterials is currently one of the most intensively explored areas of modern medical and biological sciences. One of the most promising alternative strategies to combat bacterial infections is the application of lytic phages combined with established and new antibacterials. The presented study investigates the potential of agarose-based biocomposites containing lytic Pseudomonas phages (KT28, KTN4, and LUZ19), cupric ions (Cu2+), strawberry furanone (HDMF), and gentamicin (GE) as antibacterials and anti-virulent compounds for novel wound dressings. Phages (KT28, KTN4, LUZ19, and triple-phage cocktail) alone and in combination with a triple-chemical mixture (Cu + GE + HDMF) when applied as the liquid formulation caused a significant bacterial count reduction and biofilm production inhibition of clinical P. aeruginosa strains. The immobilization in the agarose scaffold significantly impaired the bioavailability and diffusion of phage particles, depending on virion morphology and targeted receptor specificity. The antibacterial potential of chemicals was also reduced by the agarose scaffold. Moreover, the Cu + GE + HDMF mixture impaired the lytic activity of phages depending on viral particles' susceptibility to cupric ion toxicity. Therefore, three administration types were tested and the optimal turned out to be the one separating antibacterials both physically and temporally. Taken together, the additive effect of phages combined with chemicals makes biocomposite a good solution for designing new wound dressings. Nevertheless, the phage utilization should involve an application of aqueous cocktails directly onto the wound, followed by chemicals immobilized in hydrogel dressings which allow for taking advantage of the antibacterial and anti-virulent effects of all components. KEY POINTS: • The immobilization in the agarose impairs the bioavailability of phage particles and the Cu + GE + HDMF mixture. • The cupric ions are toxic to phages and are sequestrated on phage particles and agarose matrix. • The elaborated TIME-SHIFT administration effectively separates antibacterials both physically and temporally.
Collapse
|