51
|
Luong P, Dube DH. Dismantling the bacterial glycocalyx: Chemical tools to probe, perturb, and image bacterial glycans. Bioorg Med Chem 2021; 42:116268. [PMID: 34130219 DOI: 10.1016/j.bmc.2021.116268] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
The bacterial glycocalyx is a quintessential drug target comprised of structurally distinct glycans. Bacterial glycans bear unusual monosaccharide building blocks whose proper construction is critical for bacterial fitness, survival, and colonization in the human host. Despite their appeal as therapeutic targets, bacterial glycans are difficult to study due to the presence of rare bacterial monosaccharides that are linked and modified in atypical manners. Their structural complexity ultimately hampers their analytical characterization. This review highlights recent advances in bacterial chemical glycobiology and focuses on the development of chemical tools to probe, perturb, and image bacterial glycans and their biosynthesis. Current technologies have enabled the study of bacterial glycosylation machinery even in the absence of detailed structural information.
Collapse
Affiliation(s)
- Phuong Luong
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA.
| |
Collapse
|
52
|
Carbone DA, Pellone P, Lubritto C, Ciniglia C. Evaluation of Microalgae Antiviral Activity and Their Bioactive Compounds. Antibiotics (Basel) 2021; 10:746. [PMID: 34202941 PMCID: PMC8234452 DOI: 10.3390/antibiotics10060746] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
During the last year, science has been focusing on the research of antivirally active compounds overall after the SARS-CoV-2 pandemic, which caused a great amount of deaths and the downfall of the economy in 2020. Photosynthetic organisms such as microalgae are known to be a reservoir of bioactive secondary metabolites; this feature, coupled with the possibility of achieving very high biomass levels without excessive energetic expenses, make microalgae worthy of attention in the search for new molecules with antiviral effects. In this work, the antiviral effects of microalgae against some common human or animal viruses were considered, focusing our attention on some possible effects against SARS-CoV-2. We summed up the data from the literature on microalgae antiviral compounds, from the most common ones, such as lectins, polysaccharides and photosynthetic pigments, to the less known ones, such as unidentified proteins. We have discussed the effects of a microalgae-based genetic engineering approach against some viral diseases. We have illustrated the potential antiviral benefits of a diet enriched in microalgae.
Collapse
Affiliation(s)
- Dora Allegra Carbone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
| | - Paola Pellone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Carmine Lubritto
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
- National Institute of Nuclear Physics, Complesso Universitario di Monte S, 80126 Naples, Italy
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
| |
Collapse
|
53
|
Mani-López E, Palou E, López-Malo A. Legume proteins, peptides, water extracts, and crude protein extracts as antifungals for food applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
54
|
Hoyos P, Perona A, Juanes O, Rumbero Á, Hernáiz MJ. Synthesis of Glycodendrimers with Antiviral and Antibacterial Activity. Chemistry 2021; 27:7593-7624. [PMID: 33533096 DOI: 10.1002/chem.202005065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Indexed: 12/27/2022]
Abstract
Glycodendrimers are an important class of synthetic macromolecules that can be used to mimic many structural and functional features of cell-surface glycoconjugates. Their carbohydrate moieties perform key important functions in bacterial and viral infections, often regulated by carbohydrate-protein interactions. Several studies have shown that the molecular structure, valency and spatial organisation of carbohydrate epitopes in glycoconjugates are key factors in the specificity and avidity of carbohydrate-protein interactions. Choosing the right glycodendrimers almost always helps to interfere with such interactions and blocks bacterial or viral adhesion and entry into host cells as an effective strategy to inhibit bacterial or viral infections. Herein, the state of the art in the design and synthesis of glycodendrimers employed for the development of anti-adhesion therapy against bacterial and viral infections is described.
Collapse
Affiliation(s)
- Pilar Hoyos
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Almudena Perona
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Olga Juanes
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Ángel Rumbero
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - María J Hernáiz
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
55
|
Moradi A, El-Shetehy M, Gamir J, Austerlitz T, Dahlin P, Wieczorek K, Künzler M, Mauch F. Expression of a Fungal Lectin in Arabidopsis Enhances Plant Growth and Resistance Toward Microbial Pathogens and a Plant-Parasitic Nematode. FRONTIERS IN PLANT SCIENCE 2021; 12:657451. [PMID: 33897746 PMCID: PMC8063123 DOI: 10.3389/fpls.2021.657451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/12/2021] [Indexed: 05/16/2023]
Abstract
Coprinopsis cinerea lectin 2 (CCL2) is a fucoside-binding lectin from the basidiomycete C. cinerea that is toxic to the bacterivorous nematode Caenorhabditis elegans as well as animal-parasitic and fungivorous nematodes. We expressed CCL2 in Arabidopsis to assess its protective potential toward plant-parasitic nematodes. Our results demonstrate that expression of CCL2 enhances host resistance against the cyst nematode Heterodera schachtii. Surprisingly, CCL2-expressing plants were also more resistant to fungal pathogens including Botrytis cinerea, and the phytopathogenic bacterium Pseudomonas syringae. In addition, CCL2 expression positively affected plant growth indicating that CCL2 has the potential to improve two important agricultural parameters namely biomass production and general disease resistance. The mechanism of the CCL2-mediated enhancement of plant disease resistance depended on fucoside-binding by CCL2 as transgenic plants expressing a mutant version of CCL2 (Y92A), compromised in fucoside-binding, exhibited wild type (WT) disease susceptibility. The protective effect of CCL2 did not seem to be direct as the lectin showed no growth-inhibition toward B. cinerea in in vitro assays. We detected, however, a significantly enhanced transcriptional induction of plant defense genes in CCL2- but not CCL2-Y92A-expressing lines in response to infection with B. cinerea compared to WT plants. This study demonstrates a potential of fungal defense lectins in plant protection beyond their use as toxins.
Collapse
Affiliation(s)
- Aboubakr Moradi
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mohamed El-Shetehy
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Jordi Gamir
- Department Ciències Agràries i del Medi Natural (ESTCE), Universitat Jaume I, Castellón de la Plana, Spain
| | - Tina Austerlitz
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Paul Dahlin
- Agroscope, Research Division, Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Krzysztof Wieczorek
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zürich, Zurich, Switzerland
| | - Felix Mauch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
56
|
Pancu DF, Scurtu A, Macasoi IG, Marti D, Mioc M, Soica C, Coricovac D, Horhat D, Poenaru M, Dehelean C. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity-A Pharmaco-Toxicological Screening. Antibiotics (Basel) 2021; 10:401. [PMID: 33917092 PMCID: PMC8067816 DOI: 10.3390/antibiotics10040401] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Antibiotics are considered as a cornerstone of modern medicine and their discovery offers the resolution to the infectious diseases problem. However, the excessive use of antibiotics worldwide has generated a critical public health issue and the bacterial resistance correlated with antibiotics inefficiency is still unsolved. Finding novel therapeutic approaches to overcome bacterial resistance is imperative, and natural compounds with antibacterial effects could be considered a promising option. The role played by antibiotics in tumorigenesis and their interrelation with the microbiota are still debatable and are far from being elucidated. Thus, the present manuscript offers a global perspective on antibiotics in terms of evolution from a historical perspective with an emphasis on the main classes of antibiotics and their adverse effects. It also highlights the connection between antibiotics and microbiota, focusing on the dual role played by antibiotics in tumorigenesis. In addition, using the natural compounds with antibacterial properties as potential alternatives for the classical antibiotic therapy is discussed.
Collapse
Affiliation(s)
- Daniel Florin Pancu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 1, 300041 Timisoara, Romania; (D.F.P.); (D.H.); (M.P.)
| | - Alexandra Scurtu
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.M.); (C.S.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Ioana Gabriela Macasoi
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.M.); (C.S.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Daniela Marti
- Faculty of Medicine, Western University Vasile Goldis Arad, 94 Revolutiei Blvd., 310025 Arad, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.M.); (C.S.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Codruta Soica
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.M.); (C.S.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.M.); (C.S.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Delia Horhat
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 1, 300041 Timisoara, Romania; (D.F.P.); (D.H.); (M.P.)
| | - Marioara Poenaru
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 1, 300041 Timisoara, Romania; (D.F.P.); (D.H.); (M.P.)
| | - Cristina Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.M.); (C.S.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
57
|
Alavi M, Asare-Addo K, Nokhodchi A. Lectin Protein as a Promising Component to Functionalize Micelles, Liposomes and Lipid NPs against Coronavirus. Biomedicines 2020; 8:E580. [PMID: 33297444 PMCID: PMC7762367 DOI: 10.3390/biomedicines8120580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of a novel strain coronavirus as the causative agent of COVID-19 pneumonia, first identified in Wuhan, China in December 2019, has resulted in considerable focus on virulence abilities of coronavirus. Lectins are natural proteins with the ability to bind specific carbohydrates related to various microorganisms, including viruses, bacteria, fungi and parasites. Lectins have the ability to agglutinate and neutralize these pathogeneses. The delivery of the encapsulated antiviral agents or vaccines across the cell membrane can be possible by functionalized micellar and liposomal formulations. In this mini-review, recent advances and challenges related to important lectins with inhibition activities against coronaviruses are presented to obtain a novel viewpoint of microformulations or nanoformulations by micellar and liposomal cell-binding carriers.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Faculty of Science, Razi University, Kermanshah 67146, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
| | - Ali Nokhodchi
- Pharmaceuics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| |
Collapse
|
58
|
Affiliation(s)
- Yuan Xu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University Singapore
| | - Xue‐Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University Singapore
| |
Collapse
|
59
|
Ogharandukun E, Tewolde W, Damtae E, Wang S, Ivanov A, Kumari N, Nekhai S, Chandran PL. Establishing Rules for Self-Adhesion and Aggregation of N-Glycan Sugars Using Virus Glycan Shields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13769-13783. [PMID: 33186493 PMCID: PMC7798417 DOI: 10.1021/acs.langmuir.0c01953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surfaces of cells and pathogens are covered with short polymers of sugars known as glycans. Complex N-glycans have a core of three mannose sugars with distal repeats of N-acetylglucosamine and galactose sugars terminating with sialic acid (SA). Long-range tough and short-range brittle self-adhesions were observed between SA and mannose residues, respectively, in ill-defined artificial monolayers. We investigated if and how these adhesions translate when the residues are presented in N-glycan architecture with SA at the surface and mannose at the core and with other glycan sugars. Two pseudotyped viruses with complex N-glycan shields were brought together in force spectroscopy (FS). At higher ramp rates, slime-like adhesions were observed between the shields, whereas Velcro-like adhesions were observed at lower rates. The higher approach rates compress the virus as a whole, and the self-adhesion between the surface SA is sampled. At the lower ramp rates, however, the complex glycan shield is penetrated and adhesion from the mannose core is accessed. The slime-like and Velcro-like adhesions were lost when SA and mannose were cleaved, respectively. While virus self-adhesion in forced contact was modulated by glycan penetrability, the self-aggregation of the freely diffusing virus was only determined by the surface sugar. Mannose-terminal viruses self-aggregated in solution, and SA-terminal ones required Ca2+ ions to self-aggregate. Viruses with galactose or N-acetylglucosamine surfaces did not self-aggregate, irrespective of whether or not a mannose core was present below the N-acetylglucosamine surface. Well-defined rules appear to govern the self-adhesion and -aggregation of N-glycosylated surfaces, regardless of whether the sugars are presented in an ill-defined monolayer, or N-glycan, or even polymer architecture.
Collapse
|
60
|
Santos VF, Araújo ACJ, Freitas PR, Silva ALP, Santos ALE, Matias da Rocha BA, Silva RRS, Almeida DV, Garcia W, Coutinho HDM, Teixeira CS. Enhanced antibacterial activity of the gentamicin against multidrug-resistant strains when complexed with Canavalia ensiformis lectin. Microb Pathog 2020; 152:104639. [PMID: 33238197 DOI: 10.1016/j.micpath.2020.104639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
The lectins are carbohydrate-binding proteins that are highly specific to sugar groups associated to other molecules. In addition to interacting with carbohydrates, a number of studies have reported the ability of these proteins to modulate the activity of several antibiotics against multidrug-resistant (MDR) strains. In this study, we report the enhanced antibacterial activity of the gentamicin against MDR strains when complexed with a lectin from Canavalia ensiformis seeds (ConA). Hemagglutination activity test and intrinsic fluorescence spectroscopy revealed that the gentamicin can interact with ConA most likely via the carbohydrate recognition domain (CRD) with binding constant (Kb) value estimated of (0.44 ± 0.04) x 104 M-1. Furthermore, the minimum inhibitory concentrations (MIC) obtained for ConA against all strains studied were not clinically relevant (MIC ≥ 1024 μg/mL). However, when ConA was combined with gentamicin, a significant increase in antibiotic activity was observed against Staphylococcus aureus and Escherichia coli. The present study showed that ConA has an affinity for gentamicin and modulates its activity against MDR strains. These results indicate that ConA improves gentamicin performance and is a promising candidate for structure/function analyses.
Collapse
Affiliation(s)
- Valdenice F Santos
- Centro de Ciências Agrárias e Ambientais, Universidade Federal Do Maranhão, Chapadinha, Maranhão, Brazil
| | - Ana C J Araújo
- Departamento de Química Biológica, Universidade Regional Do Cariri, Crato, Ceará, Brazil
| | - Priscilla R Freitas
- Departamento de Química Biológica, Universidade Regional Do Cariri, Crato, Ceará, Brazil
| | - Ana L P Silva
- Centro de Ciências Agrárias e Ambientais, Universidade Federal Do Maranhão, Chapadinha, Maranhão, Brazil
| | - Ana L E Santos
- Centro de Ciências Agrárias e Ambientais, Universidade Federal Do Maranhão, Chapadinha, Maranhão, Brazil
| | | | - Romério R S Silva
- Centro de Ciências Agrárias e Ambientais, Universidade Federal Do Maranhão, Chapadinha, Maranhão, Brazil
| | - Dnane V Almeida
- Centro de Ciências Naturais e Humanas, Universidade Federal Do ABC (UFABC), Santo André, SP, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal Do ABC (UFABC), Santo André, SP, Brazil
| | - Henrique D M Coutinho
- Departamento de Química Biológica, Universidade Regional Do Cariri, Crato, Ceará, Brazil.
| | - Claudener S Teixeira
- Instituto de Formação de Educadores, Universidade Federal Do Cariri, Brejo Santo, Ceará, Brazil.
| |
Collapse
|
61
|
Grahl MVC, Lopes FC, Martinelli AHS, Carlini CR, Fruttero LL. Structure-Function Insights of Jaburetox and Soyuretox: Novel Intrinsically Disordered Polypeptides Derived from Plant Ureases. Molecules 2020; 25:molecules25225338. [PMID: 33207637 PMCID: PMC7696265 DOI: 10.3390/molecules25225338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) do not have a stable 3D structure but still have important biological activities. Jaburetox is a recombinant peptide derived from the jack bean (Canavalia ensiformis) urease and presents entomotoxic and antimicrobial actions. The structure of Jaburetox was elucidated using nuclear magnetic resonance which reveals it is an IDP with small amounts of secondary structure. Different approaches have demonstrated that Jaburetox acquires certain folding upon interaction with lipid membranes, a characteristic commonly found in other IDPs and usually important for their biological functions. Soyuretox, a recombinant peptide derived from the soybean (Glycine max) ubiquitous urease and homologous to Jaburetox, was also characterized for its biological activities and structural properties. Soyuretox is also an IDP, presenting more secondary structure in comparison with Jaburetox and similar entomotoxic and fungitoxic effects. Moreover, Soyuretox was found to be nontoxic to zebra fish, while Jaburetox was innocuous to mice and rats. This profile of toxicity affecting detrimental species without damaging mammals or the environment qualified them to be used in biotechnological applications. Both peptides were employed to develop transgenic crops and these plants were active against insects and nematodes, unveiling their immense potentiality for field applications.
Collapse
Affiliation(s)
- Matheus V. Coste Grahl
- Graduate Program in Medicine and Health Sciences, Brain Institute of Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, Brazil;
| | - Fernanda Cortez Lopes
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Building 43431, Porto Alegre CEP 91501-970, RS, Brazil;
| | - Anne H. Souza Martinelli
- Department of Biophysics & Deparment of Molecular Biology and Biotechnology-Biosciences Institute (IB), Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil;
| | - Celia R. Carlini
- Graduate Program in Medicine and Health Sciences, Brain Institute of Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, Brazil;
- Brain Institute and School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
- Correspondence: (C.R.C.); (L.L.F.); Tel.: +55-51-3320-3485 (C.R.C.); +54-351-535-3850 (L.L.F.)
| | - Leonardo L. Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba CP 5000, Argentina
- Correspondence: (C.R.C.); (L.L.F.); Tel.: +55-51-3320-3485 (C.R.C.); +54-351-535-3850 (L.L.F.)
| |
Collapse
|
62
|
Bhatt A, Arora P, Prajapati SK. Can Algal Derived Bioactive Metabolites Serve as Potential Therapeutics for the Treatment of SARS-CoV-2 Like Viral Infection? Front Microbiol 2020; 11:596374. [PMID: 33262750 PMCID: PMC7686535 DOI: 10.3389/fmicb.2020.596374] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ankita Bhatt
- Environment and Biofuel Research Lab, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pratham Arora
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
63
|
Santos LMM, Silva PM, Moura MC, Carvalho Junior AR, Amorim PK, Procópio TF, Coelho LCBB, Silva LCN, Paiva PMG, Santos NDL, Napoleão TH. Anti-Candida activity of the water-soluble lectin from Moringa oleifera seeds (WSMoL). J Mycol Med 2020; 31:101074. [PMID: 33183973 DOI: 10.1016/j.mycmed.2020.101074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
This work reports the effects of the water-soluble lectin from Moringa oleifera seeds (WSMoL) on growth and survival of Candida species. In addition, cellular alterations linked to the antifungal effect were investigated. The minimal inhibitory (MIC) and fungicidal (MFC) concentrations were determined and 24-h growth curves in absence and presence of lectin were established. Flow cytometry was used to evaluate the induction of apoptosis/necrosis, alterations in mitochondrial membrane potential (ΔΨm), and occurrence of lysosomal damage. WSMoL inhibited the growth of C. albicans, C. glabrata, C. krusei and C. parapsilosis with MIC of 20μg/mL. The lowest MFC (20μg/mL) was detected for C. glabrata and the highest (80μg/mL) for C. albicans and C. parapsilosis. The inhibitory effect started from the ninth to nineteenth hour of incubation depending on the fungal species. Incubation with the lectin at the MIC for 24h increased the number of cells undergoing apoptosis and necrosis. Hyperpolarization of the mitochondrial membrane was detected after 12-h treatment, followed by reduction of ΔΨm or depolarization after 24h. No lysosomal damage was detected in treated cells. In conclusion, WSMoL is a fungistatic and fungicide agent against Candida with differential effects depending on the species.
Collapse
Affiliation(s)
- L M M Santos
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - P M Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - M C Moura
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - P K Amorim
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - T F Procópio
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - L C B B Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - L C N Silva
- Universidade CEUMA, São Luís, Maranhão, Brazil
| | - P M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - N D L Santos
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - T H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
64
|
Soleimanipour S, Kian M, Hamedeyazdan S, Movahhedin N, Ghaderi F, Soraya H. The Effects of Hydroalcoholic Extract of
Arum orientale
on CLP-Induced Sepsis in Rats. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Sepsis is a lethal clinical syndrome that results from dysregulated systemic inflammatory response of the body due to the invasion of pathogens, especially bacteria. Despite advances in medical care and therapy, sepsis is still one of the major causes of death in intensive care units and no decisive medical treatment is available against that. Studies have suggested that some Arum species have anti-bacterial properties. The present study investigated the effects of hydroalcoholic extract of Arum orientale, on cecal ligation and puncture (CLP) induced sepsis in rats. Methods: CLP method was used for induction of sepsis in rats. Hydroalcoholic extract of A. orientale was injected intraperitoneally with doses of 80 and 640 mg/Kg body weight at times of 0, 1, 3, 6 and 24 h after the surgery. Antibacterial activity, hemodynamic parameters, myeloperoxidase (MPO) activity and survival rate were measured after 72 h. Results: Hydroalcoholic extract of A. orientale showed antibacterial activities as potent as gentamycin against Escherichia coli. Administration of the extract with a dose of 80 mg/Kg body weight increased significantly hemodynamic parameters such as mean arterial pressure (p<0.05)and decreased optical density (OD) (p<0.05) of blood. The extract also increased serum MPO activity (p<0.01) and reduced survival rate to 20%. Conclusion: This study for the first time showed that hydroalcoholic extract of A. oriental acts as a double edge sword in the treatment of CLP-induced sepsis. This extract showed antibacterial properties and also improved hemodynamic parameters but decreased survival rate, that might be through pro-inflammatory effects.
Collapse
Affiliation(s)
- Setare Soleimanipour
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Kian
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Hamedeyazdan
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Movahhedin
- Department of Pharmacognosy, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Faranak Ghaderi
- Department of Drug and Food Control, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
65
|
Tsaneva M, Van Damme EJM. 130 years of Plant Lectin Research. Glycoconj J 2020; 37:533-551. [PMID: 32860551 PMCID: PMC7455784 DOI: 10.1007/s10719-020-09942-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Lectins are proteins with diverse molecular structures that share the ability to recognize and bind specifically and reversibly to carbohydrate structures without changing the carbohydrate moiety. The history of lectins started with the discovery of ricin about 130 years ago but since then our understanding of lectins has dramatically changed. Over the years the research focus was shifted from 'the characterization of carbohydrate-binding proteins' to 'understanding the biological function of lectins'. Nowadays plant lectins attract a lot of attention especially because of their potential for crop improvement and biomedical research, as well as their application as tools in glycobiology. The present review aims to give an overview of plant lectins and their applications, and how the field evolved in the last decades.
Collapse
Affiliation(s)
- Mariya Tsaneva
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
66
|
Bagheri M, Nikolenko H, Arasteh S, Rezaei N, Behzadi M, Dathe M, Hancock REW. Bacterial Aggregation Triggered by Fibril Forming Tryptophan-Rich Sequences: Effects of Peptide Side Chain and Membrane Phospholipids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26852-26867. [PMID: 32422035 DOI: 10.1021/acsami.0c04336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The influence of side chain residue and phospholipid characteristics of the cytoplasmic membrane upon the fibrillation and bacterial aggregation of arginine (Arg) and tryptophan (Trp) rich antimicrobial peptides (AMPs) has not been well described to date. Here, we utilized the structural advantages of HHC-10 and 4HarHHC-10 (Har, l-homoarginine) that are highly active Trp-rich AMPs and investigated their fibril formation and activity behavior against bacteria. The peptides revealed time-dependent self-assembly of polyproline II (PPII) α-helices, but by comparison, 4HarHHC-10 tended to form higher ordered fibrils due to relatively strong cation-π stacking of Trp with Har residue. Both peptides rapidly killed S. aureus and E. coli at their MICs and caused aggregation of bacteria at higher concentrations. This bacterial aggregation was accompanied by the formation of morphologically distinct electron-dense nanostructures, likely including but not limited to peptides alone. Both HHC-10-derived peptides caused blebs and buds in the E. coli membrane that are rich in POPE phospholipid that promotes negative curvature. However, the main population of S. aureus cells retained their cocci structure upon treatment with HHC peptides even at concentration higher than the MICs. In contrast, the cell aggregation was not induced by HHC fibrils that were most likely stabilized through intra-/intermolecular cation-π stacking. It is proposed that masking of these interactions might have resulted in diminished membrane association/insertion of the HHC nanostructures. The peptides caused aggregation of POPC/POPG (1/3) and POPE/POPG (3/1) liposomes. Nonetheless, disaggregation of the former vesicles was observed at ratios of lipid to peptide of greater than 6 and 24 for HHC-10 and 4HarHHC-10, respectively. Collectively, our results revealed dose-dependent bacterial aggregation mediated by Trp-rich AMPs that was profoundly influenced by the degree of peptide's self-association and the composition and intrinsic curvature of the cytoplasmic membrane lipids.
Collapse
Affiliation(s)
- Mojtaba Bagheri
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Heike Nikolenko
- Peptide-Lipid Interaction, Department of Chemical Biology, Leibniz Institute of Molecular Pharmacology, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Shima Arasteh
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Nakisa Rezaei
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Malihe Behzadi
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Margitta Dathe
- Peptide-Lipid Interaction, Department of Chemical Biology, Leibniz Institute of Molecular Pharmacology, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
67
|
Freitas e Silva KS, C. Silva L, Gonçales RA, Neves BJ, Soares CM, Pereira M. Setting New Routes for Antifungal Drug Discovery Against Pathogenic Fungi. Curr Pharm Des 2020; 26:1509-1520. [DOI: 10.2174/1381612826666200317125956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/11/2020] [Indexed: 01/08/2023]
Abstract
:Fungal diseases are life-threatening to human health and responsible for millions of deaths around the world. Fungal pathogens lead to a high number of morbidity and mortality. Current antifungal treatment comprises drugs, such as azoles, echinocandins, and polyenes and the cure is not guaranteed. In addition, such drugs are related to severe side effects and the treatment lasts for an extended period. Thus, setting new routes for the discovery of effective and safe antifungal drugs should be a priority within the health care system. The discovery of alternative and efficient antifungal drugs showing fewer side effects is time-consuming and remains a challenge. Natural products can be a source of antifungals and used in combinatorial therapy. The most important natural products are antifungal peptides, antifungal lectins, antifungal plants, and fungi secondary metabolites. Several proteins, enzymes, and metabolic pathways could be targets for the discovery of efficient inhibitor compounds and recently, heat shock proteins, calcineurin, salinomycin, the trehalose biosynthetic pathway, and the glyoxylate cycle have been investigated in several fungal species. HSP protein inhibitors and echinocandins have been shown to have a fungicidal effect against azole-resistant fungi strains. Transcriptomic and proteomic approaches have advanced antifungal drug discovery and pointed to new important specific-pathogen targets. Certain enzymes, such as those from the glyoxylate cycle, have been a target of antifungal compounds in several fungi species. Natural and synthetic compounds inhibited the activity of such enzymes and reduced the ability of fungal cells to transit from mycelium to yeast, proving to be promisor antifungal agents. Finally, computational biology has developed effective approaches, setting new routes for early antifungal drug discovery since normal approaches take several years from discovery to clinical use. Thus, the development of new antifungal strategies might reduce the therapeutic time and increase the quality of life of patients.
Collapse
Affiliation(s)
- Kleber S. Freitas e Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lívia C. Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Relber A. Gonçales
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bruno J. Neves
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-510, Brazil
| | - Célia M.A. Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
68
|
El-Araby MM, El-Shatoury EH, Soliman MM, Shaaban HF. Characterization and antimicrobial activity of lectins purified from three Egyptian leguminous seeds. AMB Express 2020; 10:90. [PMID: 32415415 PMCID: PMC7229064 DOI: 10.1186/s13568-020-01024-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Lectins are carbohydrate-binding proteins that play vital roles in many biological processes. In this study, lectins from three Egyptian cultivars (fava bean, lentil, and pea) were isolated by precipitation with different concentrations of ammonium sulfate. The purification process was performed by affinity chromatography using mannose agarose. The highest concentration of purified lectins (1.48 mg/g) was recorded in pea at 90% saturation. SDS-PAGE of the purified lectins revealed bands of low molecular weights (14 to 18 kDa). The complete amino acid sequences of purified lectins were assessed using mass spectrometry (MS), which indicated the presence of the peptides favin, p54, and psl in fava bean, lentil, and pea, respectively. The lectins showed antimicrobial activity. The highest inhibition zone (35 mm) was measured with lectin purified from lentil against Staphylococcus aureus ATCC 6538, followed by pea lectin (33.4 mm) against Pseudomonas aeruginosa ATCC 10145. To the best of our knowledge, the legume lectins in this study are the first lectins to exhibit antifungal activity against Candida albicans, with the maximum inhibition zone (25.1 mm) observed with purified lectins of fava bean. Additionally, the first scanning electron microscope (SEM) images showing agglutination and clumping of microbial cells exposed to tested lectins are provided. These findings proved that Egyptian legume lectins are distinct from other lectins reported in previous studies and demonstrated their potential as antimicrobial agents against human pathogenic microorganisms.
Collapse
|
69
|
Singh RS, Walia AK, Kennedy JF. Mushroom lectins in biomedical research and development. Int J Biol Macromol 2020; 151:1340-1350. [DOI: 10.1016/j.ijbiomac.2019.10.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
70
|
Del Rio M, de la Canal L, Regente M. Plant Antifungal Lectins: Mechanism of Action and Targets on Human Pathogenic Fungi. Curr Protein Pept Sci 2020; 21:284-294. [DOI: 10.2174/1389203720666190906164448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/25/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
Lectins are proteins characterized by their ability to specifically bind different carbohydrate motifs. This feature is associated with their endogenous biological function as well as with multiple applications. Plants are important natural sources of these proteins; however, only a reduced group was shown to display antifungal activity. Although it is hypothesized that the target of lectins is the fungal cell wall, the mechanism through which they exert the antifungal action is poorly understood. This topic is relevant to improve treatment against pathogens of importance for human health. In this context, mechanisms pointing to essential attributes for virulence instead of the viability of the pathogen emerge as a promising approach. This review provides the current knowledge on the action mechanism of plant antifungal lectins and their putative use for the development of novel active principles against fungal infections.
Collapse
Affiliation(s)
- Marianela Del Rio
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, 7600 Mar del Plata, Argentina
| | - Laura de la Canal
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, 7600 Mar del Plata, Argentina
| | - Mariana Regente
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, 7600 Mar del Plata, Argentina
| |
Collapse
|
71
|
da Silva TA, Oliveira-Brito PKM, de Oliveira Thomaz SM, Roque-Barreira MC. ArtinM: Purification and Evaluation of Biological Activities. Methods Mol Biol 2020; 2132:349-358. [PMID: 32306342 DOI: 10.1007/978-1-0716-0430-4_34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The immunomodulatory activity of plant lectins has been evaluated because of their high selectivity for glycans linked to receptors on innate and adaptative immune cells. ArtinM is a mannosyl-binding lectin, obtained from the seeds of Artocarpus heterophyllus, that induces the differentiation of CD4+ T cells and macrophages by interacting with CD3 and TLR2/CD14, respectively. This ArtinM property ultimately favors the combat of intracellular pathogens, opening new perspectives on the lectins application as immunomodulatory agents. The current section describes protocols for purification and evaluation of ArtinM biological activity. The purification is based on the ArtinM-D-mannose affinity. The effect of inducing IL-12 production by murine macrophages cell line is adopted to evaluate the ArtinM biological activity.
Collapse
Affiliation(s)
- Thiago Aparecido da Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Patrícia Kellen Martins Oliveira-Brito
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Sandra Maria de Oliveira Thomaz
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Cristina Roque-Barreira
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto School of Medicine University of São Paulo (FMRP/USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
72
|
Bhatt A, Arora P, Prajapati SK. Can Algal Derived Bioactive Metabolites Serve as Potential Therapeutics for the Treatment of SARS-CoV-2 Like Viral Infection? Front Microbiol 2020. [PMID: 33262750 DOI: 10.3389/fmicb2020596374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Affiliation(s)
- Ankita Bhatt
- Environment and Biofuel Research Lab, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pratham Arora
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
73
|
de Souza Feitosa Lima IM, Zagmignan A, Santos DM, Maia HS, Dos Santos Silva L, da Silva Cutrim B, Vieira SL, Bezerra Filho CM, de Sousa EM, Napoleão TH, Krogfelt KA, Løbner-Olesen A, Paiva PMG, Nascimento da Silva LC. Schinus terebinthifolia leaf lectin (SteLL) has anti-infective action and modulates the response of Staphylococcus aureus-infected macrophages. Sci Rep 2019; 9:18159. [PMID: 31796807 PMCID: PMC6890730 DOI: 10.1038/s41598-019-54616-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is recognized as an important pathogen causing a wide spectrum of diseases. Here we examined the antimicrobial effects of the lectin isolated from leaves of Schinus terebinthifolia Raddi (SteLL) against S. aureus using in vitro assays and an infection model based on Galleria mellonella larvae. The actions of SteLL on mice macrophages and S. aureus-infected macrophages were also evaluated. SteLL at 16 µg/mL (8 × MIC) increased cell mass and DNA content of S. aureus in relation to untreated bacteria, suggesting that SteLL impairs cell division. Unlike ciprofloxacin, SteLL did not induce the expression of recA, crucial for DNA repair through SOS response. The antimicrobial action of SteLL was partially inhibited by 50 mM N-acetylglucosamine. SteLL reduced staphyloxathin production and increased ciprofloxacin activity towards S. aureus. This lectin also improved the survival of G. mellonella larvae infected with S. aureus. Furthermore, SteLL induced the release of cytokines (IL-6, IL-10, IL-17A, and TNF-α), nitric oxide and superoxide anion by macrophagens. The lectin improved the bactericidal action of macrophages towards S. aureus; while the expression of IL-17A and IFN-γ was downregulated in infected macrophages. These evidences suggest SteLL as important lead molecule in the development of anti-infective agents against S. aureus.
Collapse
Affiliation(s)
| | - Adrielle Zagmignan
- Programas de Pós-Graduação, Universidade Ceuma, São Luís, Maranhão, Brazil
| | | | | | | | | | | | | | | | | | - Karen Angeliki Krogfelt
- Department of Viral and Microbial Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, Section for Functional Genomics, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
74
|
Mishra A, Behura A, Mawatwal S, Kumar A, Naik L, Mohanty SS, Manna D, Dokania P, Mishra A, Patra SK, Dhiman R. Structure-function and application of plant lectins in disease biology and immunity. Food Chem Toxicol 2019; 134:110827. [PMID: 31542433 PMCID: PMC7115788 DOI: 10.1016/j.fct.2019.110827] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Lectins are proteins with a high degree of stereospecificity to recognize various sugar structures and form reversible linkages upon interaction with glyco-conjugate complexes. These are abundantly found in plants, animals and many other species and are known to agglutinate various blood groups of erythrocytes. Further, due to the unique carbohydrate recognition property, lectins have been extensively used in many biological functions that make use of protein-carbohydrate recognition like detection, isolation and characterization of glycoconjugates, histochemistry of cells and tissues, tumor cell recognition and many more. In this review, we have summarized the immunomodulatory effects of plant lectins and their effects against diseases, including antimicrobial action. We found that many plant lectins mediate its microbicidal activity by triggering host immune responses that result in the release of several cytokines followed by activation of effector mechanism. Moreover, certain lectins also enhance the phagocytic activity of macrophages during microbial infections. Lectins along with heat killed microbes can act as vaccine to provide long term protection from deadly microbes. Hence, lectin based therapy can be used as a better substitute to fight microbial diseases efficiently in future.
Collapse
Affiliation(s)
- Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shradha Mawatwal
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Subhashree Subhasmita Mohanty
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Puja Dokania
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342011, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
75
|
Barbosa MS, da Silva Souza B, Silva Sales AC, de Sousa JDL, da Silva FDS, Araújo Mendes MG, da Costa KRL, de Oliveira TM, Daboit TC, de Oliveira JS. Antifungal Proteins from Plant Latex. Curr Protein Pept Sci 2019; 21:497-506. [PMID: 31746293 DOI: 10.2174/1389203720666191119101756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/26/2019] [Accepted: 11/13/2019] [Indexed: 01/29/2023]
Abstract
Latex, a milky fluid found in several plants, is widely used for many purposes, and its proteins have been investigated by researchers. Many studies have shown that latex produced by some plant species is a natural source of biologically active compounds, and many of the hydrolytic enzymes are related to health benefits. Research on the characterization and industrial and pharmaceutical utility of latex has progressed in recent years. Latex proteins are associated with plants' defense mechanisms, against attacks by fungi. In this respect, there are several biotechnological applications of antifungal proteins. Some findings reveal that antifungal proteins inhibit fungi by interrupting the synthesis of fungal cell walls or rupturing the membrane. Moreover, both phytopathogenic and clinical fungal strains are susceptible to latex proteins. The present review describes some important features of proteins isolated from plant latex which presented in vitro antifungal activities: protein classification, function, molecular weight, isoelectric point, as well as the fungal species that are inhibited by them. We also discuss their mechanisms of action.
Collapse
Affiliation(s)
- Mayck Silva Barbosa
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Bruna da Silva Souza
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Ana Clara Silva Sales
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Jhoana D'arc Lopes de Sousa
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | | | - Maria Gabriela Araújo Mendes
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Káritta Raquel Lustoza da Costa
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Taiane Maria de Oliveira
- Research Center on Biodiversity and Biotechnology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Tatiane Caroline Daboit
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Jefferson Soares de Oliveira
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| |
Collapse
|
76
|
dos Santos Silva PM, de Oliveira WF, Albuquerque PBS, dos Santos Correia MT, Coelho LCBB. Insights into anti-pathogenic activities of mannose lectins. Int J Biol Macromol 2019; 140:234-244. [DOI: 10.1016/j.ijbiomac.2019.08.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/14/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
|
77
|
Overview of the role of kinetoplastid surface carbohydrates in infection and host cell invasion: prospects for therapeutic intervention. Parasitology 2019; 146:1743-1754. [PMID: 31603063 PMCID: PMC6939169 DOI: 10.1017/s0031182019001355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kinetoplastid parasites are responsible for serious diseases in humans and livestock such as Chagas disease and sleeping sickness (caused by Trypanosoma cruzi and Trypanosoma brucei, respectively), and the different forms of cutaneous, mucocutaneous and visceral leishmaniasis (produced by Leishmania spp). The limited number of antiparasitic drugs available together with the emergence of resistance underscores the need for new therapeutic agents with novel mechanisms of action. The use of agents binding to surface glycans has been recently suggested as a new approach to antitrypanosomal design and a series of peptidic and non-peptidic carbohydrate-binding agents have been identified as antiparasitics showing efficacy in animal models of sleeping sickness. Here we provide an overview of the nature of surface glycans in three kinetoplastid parasites, T. cruzi, T. brucei and Leishmania. Their role in virulence and host cell invasion is highlighted with the aim of identifying specific glycan-lectin interactions and carbohydrate functions that may be the target of novel carbohydrate-binding agents with therapeutic applications.
Collapse
|
78
|
Inhibition of Paenibacillus larvae by an extracellular protein fraction from a honeybee-borne Brevibacillus laterosporus strain. Microbiol Res 2019; 227:126303. [DOI: 10.1016/j.micres.2019.126303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/11/2019] [Accepted: 07/18/2019] [Indexed: 01/29/2023]
|
79
|
Oliveira WF, Cabrera MP, Santos NRM, Napoleão TH, Paiva PMG, Neves RP, Silva MV, Santos BS, Coelho LCBB, Cabral Filho PE, Fontes A, Correia MTS. Evaluating glucose and mannose profiles in Candida species using quantum dots conjugated with Cramoll lectin as fluorescent nanoprobes. Microbiol Res 2019; 230:126330. [PMID: 31541842 DOI: 10.1016/j.micres.2019.126330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
Glycoconjugates found on cell walls of Candida species are fundamental for their pathogenicity. Laborious techniques have been employed to investigate the sugar composition of these microorganisms. Herein, we prepared a nanotool, based on the fluorescence of quantum dots (QDs) combined with the specificity of Cramoll lectin, to evaluate glucose/mannose profiles on three Candida species. The QDs-Cramoll conjugates presented specificity and bright fluorescence emission. The lectin preserved its biological activity after the conjugation process mediated by adsorption interactions. The labeling of Candida species was analyzed by fluorescence microscopy and quantified by flow cytometry. Morphological analyses of yeasts labeled with QDs-Cramoll conjugates indicated that C. glabrata (2.7 μm) was smaller when compared to C. albicans (4.0 μm) and C. parapsilosis sensu stricto (3.8 μm). Also, C. parapsilosis population was heterogeneous, presenting rod-shaped blastoconidia. More than 90% of cells of the three species were labeled by conjugates. Inhibition and saturation assays indicated that C. parapsilosis had a higher content of exposed glucose/mannose than the other two species. Therefore, QDs-Cramoll conjugates demonstrated to be effective fluorescent nanoprobes for evaluation of glucose/mannose constitution on the cell walls of fungal species frequently involved in candidiasis.
Collapse
Affiliation(s)
- Weslley F Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Mariana P Cabrera
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Natália R M Santos
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Rejane P Neves
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Márcia V Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Luana C B B Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Maria T S Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
80
|
Hasan I, Asaduzzaman AKM, Swarna RR, Fujii Y, Ozeki Y, Uddin MB, Kabir SR. MytiLec-1 Shows Glycan-Dependent Toxicity against Brine Shrimp Artemia and Induces Apoptotic Death of Ehrlich Ascites Carcinoma Cells In Vivo. Mar Drugs 2019; 17:md17090502. [PMID: 31466257 PMCID: PMC6780975 DOI: 10.3390/md17090502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
MytiLec-1, a 17 kDa lectin with β-trefoil folding that was isolated from the Mediterranean mussel (Mytilus galloprovincialis) bound to the disaccharide melibiose, Galα(1,6) Glc, and the trisaccharide globotriose, Galα(1,4) Galβ(1,4) Glc. Toxicity of the lectin was found to be low with an LC50 value of 384.53 μg/mL, determined using the Artemia nauplii lethality assay. A fluorescence assay was carried out to evaluate the glycan-dependent binding of MytiLec-1 to Artemia nauplii. The lectin strongly agglutinated Ehrlich ascites carcinoma (EAC) cells cultured in vivo in Swiss albino mice. When injected intraperitoneally to the mice at doses of 1.0 mg/kg/day and 2.0 mg/kg/day for five consecutive days, MytiLec-1 inhibited 27.62% and 48.57% of cancer cell growth, respectively. Antiproliferative activity of the lectin against U937 and HeLa cells was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in vitro in RPMI-1640 medium. MytiLec-1 internalized into U937 cells and 50 μg/mL of the lectin inhibited their growth of to 62.70% whereas 53.59% cell growth inhibition was observed against EAC cells when incubated for 24 h. Cell morphological study and expression of apoptosis-related genes (p53, Bax, Bcl-X, and NF-κB) showed that the lectin possibly triggered apoptosis in these cells.
Collapse
Affiliation(s)
- Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh.
| | - A K M Asaduzzaman
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Rubaiya Rafique Swarna
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Yuki Fujii
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, School of Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Md Belal Uddin
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh.
| |
Collapse
|
81
|
Singh RS, Walia AK, Kennedy JF. Structural aspects and biomedical applications of microfungal lectins. Int J Biol Macromol 2019; 134:1097-1107. [DOI: 10.1016/j.ijbiomac.2019.05.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022]
|
82
|
Silva RRS, Silva CR, Santos VF, Barbosa CRS, Muniz DF, Santos ALE, Santos MHC, Rocha BAM, Batista KLR, Costa-Júnior LM, Coutinho HDM, Teixeira CS. Parkia platycephala lectin enhances the antibiotic activity against multi-resistant bacterial strains and inhibits the development of Haemonchus contortus. Microb Pathog 2019; 135:103629. [PMID: 31325571 DOI: 10.1016/j.micpath.2019.103629] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 11/24/2022]
Abstract
Lectins have been studied in the past few years as an alternative to inhibit the development of pathogenic bacteria and gastrointestinal nematodes of small ruminants. The development of new antibacterial and anthelmintic compounds is necessary owing to the increase in drug resistance among important pathogens. Therefore, this study aimed to evaluate the capacity of a glucose/mannose-binding lectin from Parkia platycephala seeds (PPL) to inhibit the development of Haemonchus contortus and to modulate antibiotic activity against multi-resistant bacterial strains, thereby confirming its efficacy when used in combination with gentamicin. PPL at the concentration of 1.2 mg/mL did not show inhibitory activity on H. contortus in the egg hatch test or the exsheathment assay. However, it did show significant inhibition of H. contortus larval development with an IC50 of 0.31 mg/mL. The minimum inhibitory concentration (MIC) obtained for PPL against all tested bacterial strains was not clinically relevant (MIC ≥ 1024 μg/mL). However, when PPL was combined with gentamicin, a significant increase in antibiotic activity was observed against S. aureus and E.coli multi-resistant strains. The inhibition of hemagglutinating activity by gentamicin (MIC = 50 mM) revealed that it may be interacting with the carbohydrate-binding site of PPL. It is this interaction between the antibiotic and lectin carbohydrate-binding site that may be responsible for the enhanced activity of gentamicin against multi-resistant strains. It can be concluded that PPL showed selective anthelmintic effect, inhibiting the development of H. contortus larvae and that it increased the effect of the antibiotic gentamicin against multi-resistant bacterial strains, thus constituting a potential therapeutic resource against resistant bacterial strains and H. contortus.
Collapse
Affiliation(s)
- Romerio R S Silva
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Chapadinha, Maranhão, Brazil
| | - Carolina R Silva
- Departamento de Patologia, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Valdenice F Santos
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Chapadinha, Maranhão, Brazil
| | - Cristina R S Barbosa
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Debora F Muniz
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Ana L E Santos
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Chapadinha, Maranhão, Brazil
| | - Maria H C Santos
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Chapadinha, Maranhão, Brazil
| | - Bruno A M Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Ceará, Brazil
| | - Karla L R Batista
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Chapadinha, Maranhão, Brazil
| | - Livio M Costa-Júnior
- Departamento de Patologia, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Henrique D M Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Claudener S Teixeira
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Chapadinha, Maranhão, Brazil.
| |
Collapse
|
83
|
da Silva PM, da Silva BR, de Oliveira Silva JN, de Moura MC, Soares T, Feitosa APS, Brayner FA, Alves LC, Paiva PMG, Damborg P, Ingmer H, Napoleão TH. Punica granatum sarcotesta lectin (PgTeL) has antibacterial activity and synergistic effects with antibiotics against β-lactamase-producing Escherichia coli. Int J Biol Macromol 2019; 135:931-939. [PMID: 31170488 DOI: 10.1016/j.ijbiomac.2019.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/30/2019] [Accepted: 06/03/2019] [Indexed: 12/23/2022]
Abstract
The sarcotesta of Punica granatum fruit contains an antimicrobial lectin called PgTeL. In this work, we evaluated the antibacterial activity of PgTeL against five drug-resistant Escherichia coli isolates able to produce β-lactamases. Minimum inhibitory (MIC) and bactericidal (MBC) concentrations were determined by broth dilution. Morphometric and viability analyses were performed by flow cytometry, and ultrastructural changes were evaluated by scanning electron microscopy. Potential synergistic effects of PgTeL with antibiotics and anti-biofilm effect were also evaluated. PgTeL showed antibacterial activity against all isolates with MIC and MBC values ranging from 12.5 to 50.0 μg/mL and from 25.0 to 100.0 μg/mL, respectively. For most isolates, PgTeL postponed the growth start by at least ten hours. At the MIC, the lectin caused alterations in size, shape and structure of bacterial cells. The combination PgTeL-ceftazidime showed a synergistic effect for all isolates. Synergy was also detected with ampicillin (one isolate), carbenicillin (one isolate), cefotaxime (one isolate), cephalexin (four isolates) and cefuroxime (three isolates). PgTeL exhibited anti-biofilm activity against all isolates, causing ≥50% inhibition of biofilms at or above 6.25 μg/mL. The antibacterial effect of PgTeL and its synergy with antibiotics indicate that this fruit-derived molecule may have potential for future treatment of multidrug-resistant infections.
Collapse
Affiliation(s)
| | | | | | - Maiara Celine de Moura
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Tatiana Soares
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Recife, Brazil
| | - Ana Paula Sampaio Feitosa
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Parasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Brazil
| | - Fábio André Brayner
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Parasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Brazil
| | - Luiz Carlos Alves
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Parasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Brazil
| | | | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
84
|
Cavada BS, Osterne VJS, Pinto-Junior VR, Nascimento KS. ConBr, the Lectin from Canavalia brasiliensis Mart. Seeds: Forty Years of Research. Curr Protein Pept Sci 2019; 20:600-613. [DOI: 10.2174/1389203720666190104123210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/30/2018] [Accepted: 12/29/2018] [Indexed: 12/16/2022]
Abstract
Lectins are defined as proteins or glycoproteins capable of specific and reversible binding to
carbohydrates. Inside this group of proteins, the most well-studied lectins belong to the Leguminosae
family, and inside this family, the Diocleinae subtribe includes the most characterized lectin Concanavalin
A (ConA), as well as ConBr, the lectin from Canavalia brasiliensis, the subject of this review.
Since 1979, several studies have been published in the literature regarding this lectin, from its isolation
and characterization to its several biological activities. This year, 2019, will mark 40 years since researchers
have begun to study ConBr and 100 years since the discovery of ConA, making 2019 a momentous
year for lectinology. Owing to the abundance of studies involving ConBr, this review will
focus on ConBr’s purification, physicochemical properties, functional and structural analyses, biological
activities and biotechnological applications. This will give researchers a broad glimpse into the
potential of this lectin, as well as it characteristics, as we look ahead to its expanding applications in
glycomics and biotechnology.
Collapse
Affiliation(s)
- Benildo Sousa Cavada
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Ceara, Brazil
| | | | - Vanir Reis Pinto-Junior
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Ceara, Brazil
| | - Kyria Santiago Nascimento
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Ceara, Brazil
| |
Collapse
|
85
|
Fina Martin J, Palomino MM, Cutine AM, Modenutti CP, Fernández Do Porto DA, Allievi MC, Zanini SH, Mariño KV, Barquero AA, Ruzal SM. Exploring lectin-like activity of the S-layer protein of Lactobacillus acidophilus ATCC 4356. Appl Microbiol Biotechnol 2019; 103:4839-4857. [PMID: 31053916 DOI: 10.1007/s00253-019-09795-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023]
Abstract
The surface layer (S-layer) protein of Lactobacillus acidophilus is a crystalline array of self-assembling, proteinaceous subunits non-covalently bound to the outmost bacterial cell wall envelope and is involved in the adherence of bacteria to host cells. We have previously described that the S-layer protein of L. acidophilus possesses anti-viral and anti-bacterial properties. In this work, we extracted and purified S-layer proteins from L. acidophilus ATCC 4356 cells to study their interaction with cell wall components from prokaryotic (i.e., peptidoglycan and lipoteichoic acids) and eukaryotic origin (i.e., mucin and chitin), as well as with viruses, bacteria, yeast, and blood cells. Using chimeric S-layer fused to green fluorescent protein (GFP) from different parts of the protein, we analyzed their binding capacity. Our results show that the C-terminal part of the S-layer protein presents lectin-like activity, interacting with different glycoepitopes. We further demonstrate that lipoteichoic acid (LTA) serves as an anchor for the S-layer protein. Finally, a structure for the C-terminal part of S-layer and possible binding sites were predicted by a homology-based model.
Collapse
Affiliation(s)
- Joaquina Fina Martin
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Mercedes Palomino
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anabella M Cutine
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Carlos P Modenutti
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dario A Fernández Do Porto
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana C Allievi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofia H Zanini
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Andrea A Barquero
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra M Ruzal
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|