51
|
Liu D, Zou Z, Li G, Pan P, Liang G. Long Noncoding RNA NEAT1 Suppresses Proliferation and Promotes Apoptosis of Glioma Cells Via Downregulating MiR-92b. Cancer Control 2020; 27:1073274819897977. [PMID: 31933377 PMCID: PMC6961147 DOI: 10.1177/1073274819897977] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The mechanisms underlying the proliferation and apoptosis of glioma cells remain unelucidated. A recent study has revealed that microRNA-92b (miR-92b) inhibits apoptosis of glioma cells via downregulating DKK3. Notably, long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) is predicted to have a possible interaction with miR-92b. OBJECTIVE This study aimed to identify whether NEAT1 affects glioma cell proliferation and apoptosis via regulating miR-92b. METHODS The expression of NEAT1 was compared between glioma tissues and adjacent tissues as well as between glioma cells and normal astrocytes using quantitative real-time polymerase chain reaction. Glioma cell proliferation was determined by using the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and glioma cell apoptosis was determined by using the flow cytometry. RESULTS The expression of NEAT1 was low in glioma tissues and cells compared to the normal ones. Overexpression of NEAT1 inhibited proliferation and promoted apoptosis of glioma cell lines (U-87 MG and U251). The interaction between NEAT1 and miR-92b was confirmed using RNA immunoprecipitation, RNA pull-down assay, and luciferase reporter assay. Importantly, the tumor suppressor function of overexpressing NEAT1 was achieved by downregulating miR-92b and subsequently upregulating DKK3. CONCLUSION Our findings indicated that NEAT1 acts as a tumor suppressor in glioma cells, which provides a novel target in overcoming glioma growth.
Collapse
Affiliation(s)
- Dongdong Liu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenhe District, Shenyang, Liaoning Province, China.,Dalian Medical University, Dalian, China
| | - Zheng Zou
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenhe District, Shenyang, Liaoning Province, China.,General Hospital of Northern Theater Command Base, Jinzhou Medical University, Shenyang, China
| | - Gen Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenhe District, Shenyang, Liaoning Province, China.,Dalian Medical University, Dalian, China
| | - Pengyu Pan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenhe District, Shenyang, Liaoning Province, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenhe District, Shenyang, Liaoning Province, China
| |
Collapse
|
52
|
Long noncoding RNA HOTAIRM1 in human cancers. Clin Chim Acta 2020; 511:255-259. [PMID: 33058847 DOI: 10.1016/j.cca.2020.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a group of RNAs over 200 nucleotides in length involved in diverse processes in tumor cells including proliferation, invasion and apoptosis. Given these facts, it is hardly accidental that variations in the expression of some lncRNAs have been found to be closely related to carcinogenesis and tumor growth and metastasis. HOTAIRM1, first discovered as an important factor for granulocytic differentiation in NB4 promyelocytic leukemia, has been shown to be a salient cancer-related lncRNA abnormally expressed in a variety of tumors. In this review, we summarize current evidence on the critical role of HOTAIRM1 in human malignancy, its potential mechanism of action and future use in the development of effective therapeutics.
Collapse
|
53
|
Shin TJ, Lee KH, Cho JY. Epigenetic Mechanisms of LncRNAs Binding to Protein in Carcinogenesis. Cancers (Basel) 2020; 12:E2925. [PMID: 33050646 PMCID: PMC7599656 DOI: 10.3390/cancers12102925] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Epigenetic dysregulation is an important feature for cancer initiation and progression. Long non-coding RNAs (lncRNAs) are transcripts that stably present as RNA forms with no translated protein and have lengths larger than 200 nucleotides. LncRNA can epigenetically regulate either oncogenes or tumor suppressor genes. Nowadays, the combined research of lncRNA plus protein analysis is gaining more attention. LncRNA controls gene expression directly by binding to transcription factors of target genes and indirectly by complexing with other proteins to bind to target proteins and cause protein degradation, reduced protein stability, or interference with the binding of other proteins. Various studies have indicated that lncRNA contributes to cancer development by modulating genes epigenetically and studies have been done to determine which proteins are combined with lncRNA and contribute to cancer development. In this review, we look in depth at the epigenetic regulatory function of lncRNAs that are capable of complexing with other proteins in cancer development.
Collapse
Affiliation(s)
| | | | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (T.-J.S.); (K.-H.L.)
| |
Collapse
|
54
|
Zhang Y, Zhang J, Mao L, Li X. Long noncoding RNA HCG11 inhibited growth and invasion in cervical cancer by sponging miR-942-5p and targeting GFI1. Cancer Med 2020; 9:7062-7071. [PMID: 32794340 PMCID: PMC7541137 DOI: 10.1002/cam4.3203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) act as essential regulators in cancer tumorigenesis. Our study aimed to explore the underlying mechanism of lncRNA human leukocyte antigen complex group 11 (HCG11) in cervical cancer (CC) progression. Long noncoding RNA HCG11 was downregulated in CC. Functional assays demonstrated that lncRNA HCG11 inhibited CC cell proliferation and invasion. Then, we confirmed that lncRNA HCG11 could directly bind to miR-942-5p. Moreover, inhibition of miR-942-5p suppressed the growth and invasion of CC cells, and growth factor-independent transcription repressor 1 (GFI1) gene was the target gene of miR-942-5p. Long noncoding RNA HCG11 increased the expression of GFI1 and suppressed cell proliferation and invasion by acting as a miR-942-5p sponge. Finally, the overexpression of lncRNA HCG11 suppressed the proliferation and metastasis of CC cells in vivo.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jun Zhang
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lin Mao
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xing Li
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
55
|
Bai HL, Kang CM, Sun ZQ, Li XH, Dai XY, Huang RY, Zhao JJ, Bei YR, Huang XZ, Lu ZF, Wu SG, Lu JB, Ping BH, Wang Q, Hu YW. TTDA inhibited apoptosis by regulating the p53-Bax/Bcl2 axis in glioma. Exp Neurol 2020; 331:113380. [PMID: 32540359 DOI: 10.1016/j.expneurol.2020.113380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
The trichothiodystrophy group A protein (TTDA) functions in nucleotide excision repair and basal transcription. TTDA plays a role in cancers and serves as a prognostic and predictive factor in high-grade serous ovarian cancer; however, its role in human glioma remains unknown. Here, we found that TTDA was overexpressed in glioma tissues. In vitro experiments revealed that TTDA overexpression inhibited apoptosis of glioma cells and promoted cell growth, whereas knockdown of TTDA had the opposite effect. Increased TTDA expression significantly decreased the Bax/Bcl2 ratio and the level of cleaved-caspase3. TTDA interacted with the p53 gene at the -1959 bp and -1530 bp region and regulated its transcription, leading to inhibition of the p53-Bax/Bcl2 mitochondrial apoptosis pathway in glioma cells. These results indicate that TTDA is an upstream regulator of p53-mediated apoptosis and acts as an oncogene, suggesting its value as a potential molecular target for the diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Huan-Lan Bai
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chun-Min Kang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Zhen-Qing Sun
- Department of neurosurgery Ward 6, Guangdong 999 Brain Hospital, Guangzhou 510510, China
| | - Xue-Heng Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao-Yan Dai
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Rui-Ying Huang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing-Jing Zhao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yan-Rou Bei
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xian-Zhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Zhi-Feng Lu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shao-Guo Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou 510420, China
| | - Jing-Bo Lu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Bao-Hong Ping
- Hui Qiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Laboratory Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510000, China.
| |
Collapse
|
56
|
Xue BZ, Xiang W, Zhang Q, Wang YH, Wang HF, Yi DY, Xiong NX, Jiang XB, Zhao HY, Fu P. Roles of long non-coding RNAs in the hallmarks of glioma. Oncol Lett 2020; 20:83. [PMID: 32863916 PMCID: PMC7436925 DOI: 10.3892/ol.2020.11944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Glioma is one of the most common types of tumor of the central nervous system. Due to the aggressiveness and invasiveness of high-level gliomas, the survival time of patients with these tumors is short, at ~15 months, even after combined treatment with surgery, radiotherapy and/or chemotherapy. Recently, a number of studies have demonstrated that long non-coding RNA (lncRNAs) serve crucial roles in the multistep development of human gliomas. Gliomas acquire numerous biological abilities during multistep development that collectively constitute the hallmarks of glioma. Thus, in this review, the roles of lncRNAs associated with glioma hallmarks and the current and future prospects for their development are summarized.
Collapse
Affiliation(s)
- Bing-Zhou Xue
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yi-Hao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hao-Fei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Nan-Xiang Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
57
|
He Y, Wei L, Zhang S, Liu H, Fang F, Li Y. LncRNA PLAC2 Positively Regulates CDK2 to Promote Ovarian Carcinoma Cell Proliferation. Cancer Manag Res 2020; 12:5713-5720. [PMID: 32765074 PMCID: PMC7367733 DOI: 10.2147/cmar.s242781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/17/2020] [Indexed: 12/18/2022] Open
Abstract
Background PLAC2 has been reported to participate in glioma, but its role in ovarian carcinoma (OC) is unclear. This study investigated the role of lncRNA PLAC2 in OC. Methods A 5-year follow-up study of 64 patients was carried out in Weihai Municipal Hospital after the admission of patients. A total of 64 OC patients were selected from 178 OC patients admitted in the aforementioned hospital from August 2011 to January 2014. Cell transfections, cell cycle analysis, cell proliferation assay and Western blot were carried out during the research. Results The expression levels of PLAC2 and CDK2 were both upregulated in OC and they were positively correlated. During the 5-year follow-up, patients with high levels of PLAC2 and CDK2 showed significantly lower overall survival rate. In OC cells, overexpression of PLAC2 resulted in upregulated, while silencing of PLAC2 resulted in downregulated expression of CDK2. Cell proliferation assay showed that overexpression of PLAC2 resulted in increased, while silencing of PLAC2 resulted in decreased proliferation rate of OC cells. In addition, overexpression of CDK2 attenuated the effects of silencing of PLAC2. Conclusion PLAC2 positively regulates CDK2 to promote OC cell proliferation.
Collapse
Affiliation(s)
- Yuanqi He
- Department of Gynaecology and Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong Province, 264200, People's Republic of China
| | - Liqun Wei
- Department of Gynaecology and Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong Province, 264200, People's Republic of China
| | - Shihong Zhang
- Department of Gynaecology and Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong Province, 264200, People's Republic of China.,Department of Gynaecology and Obstetrics, Affiliated Hospital of Beihua University, Jilin City, Jilin Province 132000, People's Republic of China
| | - Haining Liu
- Department of Gynaecology and Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong Province, 264200, People's Republic of China
| | - Fang Fang
- Department of Gynaecology and Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong Province, 264200, People's Republic of China
| | - Yue Li
- Department of Gynaecology and Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong Province, 264200, People's Republic of China
| |
Collapse
|
58
|
Zhang Z, Ao P, Han H, Zhang Q, Chen Y, Han J, Huang Q, Huang H, Zhuo D. LncRNA PLAC2 upregulates miR-663 to downregulate TGF-β1 and suppress bladder cancer cell migration and invasion. BMC Urol 2020; 20:94. [PMID: 32650766 PMCID: PMC7350696 DOI: 10.1186/s12894-020-00663-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 06/26/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The roles of lncRNA PLAC2 in bladder cancer (BC) were explored. METHODS The expression of PLAC2 in two types of tissue of BC patients was detected by RT-qPCR and the expression data were compared by paired t test. The 56 patients were staged according to the AJCC criteria, and 12, 15, 15 and 14 cases were classified into stage I-IV, respectively. The expression of TGF-β1 and miR-663 in BC tissues were also detected by RT-qPCR experiments. RESULTS Our data showed that the expression levels of PLAC2 were significantly lower in BC tissues than that in non-cancer tissues. The expression of PLAC2 was not affect by clinical stages and low expression levels of PLAC2 predicted lower survival rate. The expression of PLAC2 was positively correlated with miR-663 and inversely correlated with TGF-β1 in BC tissues. In BC cells, downregulated TGF-β1 and upregulated miR-663 were observed after the overexpression of PLAC2. Overexpression of PLAC2 also resulted in suppressed invasion and migration of BC cells. Overexpression of miR-663 resulted in downregulated TGF-β1 but did not affect the expression of PLAC2. Overexpression of TGF-β1 reduced the inhibitory effects of overexpression of PLAC2 and miR-663 on cell migration and invasion. CONCLUSION PLAC2 can upregulate miR-663 to downregulate TGF-β1 and suppress BC cell migration and invasion.
Collapse
Affiliation(s)
- Zhenxing Zhang
- Department of Urology, The first affiliated hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu City, Anhui Province, 241001, P. R. China
| | - Ping Ao
- Department of Urology, The first affiliated hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu City, Anhui Province, 241001, P. R. China
| | - Hui Han
- Department of Urology, The first affiliated hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu City, Anhui Province, 241001, P. R. China
| | - Qi Zhang
- Department of Urology, The first affiliated hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu City, Anhui Province, 241001, P. R. China
| | - Yang Chen
- Department of Urology, The first affiliated hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu City, Anhui Province, 241001, P. R. China
| | - Jie Han
- Department of Urology, The first affiliated hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu City, Anhui Province, 241001, P. R. China
| | - Qunlian Huang
- Department of Urology, The first affiliated hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu City, Anhui Province, 241001, P. R. China
| | - Houbao Huang
- Department of Urology, The first affiliated hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu City, Anhui Province, 241001, P. R. China
| | - Dong Zhuo
- Department of Urology, The first affiliated hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu City, Anhui Province, 241001, P. R. China.
| |
Collapse
|
59
|
Ghafouri-Fard S, Dashti S, Taheri M, Omrani MD. TINCR: An lncRNA with dual functions in the carcinogenesis process. Noncoding RNA Res 2020; 5:109-115. [PMID: 32695943 PMCID: PMC7358216 DOI: 10.1016/j.ncrna.2020.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have prominent roles in the pathogenesis of human cancers. Several studies have shown oncogenic or tumor suppressor roles of lncRNAs in different human tissues. Thus, these transcripts have been regarded as putative targets in treatment of cancer. The lncRNA terminal differentiation-induced non-coding RNA (TINCR) has an especial position in this regard, as it exerts different opposite roles in the pathogenesis of different human cancers. While it is up-regulated in gastric, esophageal, bladder and breast cancer; it is down-regulated in glioma, retinoblastoma and prostate cancer. Notably, data regarding expression profile of this lncRNA in a number of human cancers such as colon cancer, squamous cell carcinoma, non-small cell lung cancer (NSCLC) and hepatocellular carcinoma (HCC) are controversial. Expression level of this lncRNA has been associated with clinical outcome in patients with gastric cancer, colorectal cancer, NSCLC and head and neck squamous cell carcinoma. Moreover, Kaplan-Meier analyses have shown correlation between expression levels of TINCR and patients survival in patients with lung cancer and HCC. A number of cellular pathways such as Wnt/β-catenin, ERK1/2‐SP3 and MAPK signaling pathways have been identified as targets of this lncRNA in different cancers. Moreover, the rs8113645, rs2288947 and rs8105637 within this lncRNA have been associated with risk of gastric and colorectal cancer. In conclusion, although the role of TINCR in the carcinogenesis is essential, based on the conflicting data regarding the direction of effect of this lncRNA, therapeutic targeting of this lncRNA is a complicated issue which should be considered in a tissue-specific or even individualized manner.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Genomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
60
|
Zhou X, Lv L, Zhang Z, Wei S, Zheng T. LINC00294 negatively modulates cell proliferation in glioma through a neurofilament medium-mediated pathway via interacting with miR-1278. J Gene Med 2020; 22:e3235. [PMID: 32450002 DOI: 10.1002/jgm.3235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Accumulating long noncoding RNAs (lncRNAs) have been recognized to participate in glioma development. Nevertheless, knowledge of the role of linc00294 in glioma remains incomplete. METHODS Bioinformatics analysis predicted the differential expression of LINC00294 and neurofilament medium (NEFM) in tumors and normal tissues, as well as the binding between LINC00294 and miR-1278, miR-1278 and NEFM. Luciferase and RNA immunoprecipitation assays were used for the verification of interactions. The potential role of LINC00294 in glioma development was investigated using functional assays, singly and in parallel with its interplay with miR-1278 and NEFM. Cell counting kit-8 and EdU assays were applied to measure cellular proliferation, whereas the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method was employed to detect apoptosis. RESULTS A new lncRNA, LINC00294, was highly expressed in normal brain tissues. However, it was markedly down-regulated in GBM tissues and glioma cell lines. Overexpression of LINC00294 abates glioma cell proliferation but induces apoptosis. Meanwhile, tumor suppressor NEFM was revealed to be distinctly diminished in cancerous conditions and enhanced in glioma cells by LINC00294 up-regulation. Interactions of miR-1278 with LINC00294 or NEFM occur, and the expression of NEFM is up-regulated by LINC00294 through their competition with respect to binding to miR-1278. Finally, the rescue assays further confirmed that LINC00294 inhibits glioma cell proliferation by absorbing miR-1278 to enhance NEFM. CONCLUSIONS Collectively, our observations demonstrate the tumor-suppressive function of LINC00294 in glioma development by sponging miR-1278 and promoting NEFM, suggesting a potential use in therapy for glioma.
Collapse
Affiliation(s)
- Xiaokun Zhou
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Liang Lv
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Zhongyi Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shuyang Wei
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Tong Zheng
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
61
|
Sun X, Yu L, Shi Y, Guo W. LncRNA PLAC 2 Is Downregulated in Osteosarcoma and Regulates Cancer Cell Proliferation Through miR-93. Cancer Manag Res 2020; 12:3623-3629. [PMID: 32547199 PMCID: PMC7248352 DOI: 10.2147/cmar.s238295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction PLAC 2 is a tumor-suppressive lncRNA in glioma, while its roles in other types of cancer remain unclear. This study was carried out to explore the potential involvement of PLAC 2 in osteosarcoma (OS). Methods Expression levels of PLAC 2 in OS and paired non-tumor tissues from OS patients were determined by RT-qPCR. A follow-up study was performed to analyze the prognostic value of PLAC 2 for OS. Interactions between PLAC 2 and miR-93 were assessed by cell transfection, followed by RT-qPCR. Cell proliferation assay was performed to analyze cell proliferation. Results Our results showed that PLAC 2 was downregulated in OS tissues, and the high expression levels of PLAC 2 were associated with favorable overall survival of OS patients. MiR-93 was upregulated in OS tissues and its expression was inversely correlated with the expression of PLAC 2. In OS cells, overexpression of PLAC 2 resulted in downregulated miR-93, while overexpression of miR-93 did not affect the expression of PLAC 2. Overexpression of PLAC 2 led to decreased proliferation rate of OS cells, while overexpression of miR-93 showed opposite roles and reduced the overexpressing effects of PLAC 2. Conclusion PLAC 2 is downregulated in OS and regulates cancer cell proliferation through miR-93.
Collapse
Affiliation(s)
- Xiangran Sun
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Ling Yu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Yubo Shi
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| |
Collapse
|
62
|
Zhao L, Li X, Su J, Wang Gong F, Lu J, Wei Y. STAT1 determines aggressiveness of glioblastoma both in vivo and in vitro through wnt/β-catenin signalling pathway. Cell Biochem Funct 2020; 38:630-641. [PMID: 32390230 DOI: 10.1002/cbf.3518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/08/2020] [Indexed: 12/27/2022]
Abstract
Glioblastoma is one of the most malignant tumors and causes the high mortality in cancer patients. Currently, there is no highly efficient therapy against glioblastoma. Therefore, searching for a new molecular target to anti-glioblastoma therapy is urgent and necessary. In this study, we elucidated the role of Signal transducer and activator of transcription 1 (STAT1) in proliferation, migration and apoptosis of glioblastoma cells. We found that STAT1 downregulation could weaken the aggressiveness of glioblastoma cells. Besides, the glioblastoma growth in vivo was also inhibited with the STAT1 downregulation by shRNA as well as by pharmacological stimulation withSTAT1inhibitors. This negative regulation of tumor growth was accompanied by the inhibition in epithelial-mesenchymal transition (EMT), whereas the STAT1 overexpression promoted EMT. Furthermore, the involvement of wnt/β-catenin was observed in STAT1 downregulation mediated weakness in glioblastoma aggressiveness since application of activator wnt agonist 1 could counteract the inhibitory effect induced by STAT1 downregulation. Collectively, this work provided the evidence to support the conclusion that STAT1 can regulate the glioblastoma growth and migration, potentially serving as a therapeutic target against glioblastoma. SIGNIFICANCE OF THE STUDY: Glioblastoma is one of the most malignant tumors with very high mortality. Until now, there is no efficient therapy against glioblastoma. In this study, we found downregulation of Signal transducer and activator of transcription 1 (STAT1) could weaken the aggressiveness of glioblastoma cells through inhibition in epithelial-mesenchymal transition, mediated through wnt/β-catenin signalling pathway. Thus, this work supported the regulatory role of STAT1 in glioblastoma growth and migration. This potentially serves as a new therapeutic target against glioblastoma.
Collapse
Affiliation(s)
- Li Zhao
- Department of Neurology, Xuzhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, China
| | - Xiangquan Li
- Department of Intensive Care Unit, Xuzhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, China
| | - Jing Su
- Department of Gastroenterology, Xuzhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, China
| | - Fenfei Wang Gong
- Department of NeuroIogy, The Xinhua Hospital of Ili Kazak Autonomous Prefecture, Ili, Xinjiang, China
| | - Junjie Lu
- Department of Neurology, Xuzhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, China
| | - Yuzhen Wei
- Department of Neurosurgery, Jiming No. 1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
63
|
Abstract
Glioma is the most malignant primary brain cancer which frequently occurred in adults. In recent years, long-non coding RNAs (lncRNAs) have been demonstrated to play pivotal roles in human cancers. However, the role of most lncRNAs in gliomagenesis has not been probed. Presently, through TCGA, a novel lncRNA LINC01198 was found to be up-regulated and associated with clinical outcomes in glioblastoma multiforme (GBM). In our study, LINC01198 was proved to be up-regulated in glioma cell lines, and silenced LINC01198 curbed glioma cell proliferation and accelerated cell apoptosis. Importantly, we corroborated that LINC01198 activated the PI3 K/AKT pathway to aggravate glioma progression by targeting PIK3 CA and PTEN. Subsequently, LINC01198 was validated to localize in both cytoplasm and nucleus of glioma cells. Through mechanistic exploration, we illustrated that LINC01198 increased PIK3CA expression by sponging miR-129-5p in the cytoplasm. Furthermore, PTEN was transcriptionally repressed by REST/RCOR1/HDAC2 complex. More importantly, LINC01198 accelerated the assembly of REST/RCOR1/HDAC2 complex and recruited such complex to PTEN promoter so as to impair PTEN expression in glioma. Finally, we further verified that LINC01198 hindered glioma tumour growth in vivo through AKT-dependent manner. Jointly, LINC01198 activates PI3 K/AKT signalling to exert oncogenic function in gliomagenesis by regulating PIK3CA and PTEN, which highlights a new approach for glioma treatment.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| |
Collapse
|
64
|
Mao D, Hu C, Zhang J, Feng C, Zhang Z, Wang J, Man Z, Zhu Z, Wang Y, Zhao H, Zhu X, Ouyang J, Dong X, Zhao X. Long Noncoding RNA GM16343 Promotes IL-36β to Regulate Tumor Microenvironment by CD8 +T cells. Technol Cancer Res Treat 2020; 18:1533033819883633. [PMID: 31684829 PMCID: PMC6831968 DOI: 10.1177/1533033819883633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: To investigate the effect of long noncoding RNA GM16343 on interleukin 36β promotion of
CD8+T cells in tumor microenvironment regulation. Methods: The differentially expressed long noncoding RNA in interleukin 36β-stimulated mouse
CD8+T cells was screened by gene chip technology, and the significant
differentially expressed long noncoding RNAs were verified by real-time polymerase chain
reaction. The lentiviral vector that overexpresses or knockdown GM16343 was constructed,
transfected into CD8+T cells, and stimulated with interleukin 36β, and the
amount of interferon γ secreted was detected by enzyme-linked immunosorbent assay. A
mouse subcutaneous xenograft model that stably express interleukin 36β was established,
and the tumor size and mouse survival time were observed by stimulation with
CD8+T cells overexpression or knockdown of GM16343. Results: A total of 12 long noncoding RNAs with significant differences were screened by gene
chip analysis. Real-time polymerase chain reaction showed that the difference in GM16343
was larger, and the difference between the groups was observed to be the most
significant. Compared to control group, CD8+T cells overexpressing GM16343
increased the secretion of interferon γ, and the tumor diameter of the mice after
stimulation showed significant reduction, and the survival time showed significant
prolongation. Compared to control group, the CD8+T cells after GM16343 were
knocked down. The interferon γ secretion was decreased, and no significant change in
tumor diameter and survival time was observed. Conclusion: Interleukin 36β may enhance antitumor immune response of CD8+T cells by
regulating GM16343.
Collapse
Affiliation(s)
- Deli Mao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenrui Hu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianglei Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Feng
- Soochow University Institutes for Translational Medicine, Suzhou, China
| | - Zhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhongsong Man
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhongwei Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunliang Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Ouyang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqiang Dong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
65
|
Furlan SN, Singh K, Lopez C, Tkachev V, Hunt DJ, Hibbard J, Betz KM, Blazar BR, Trapnell C, Kean LS. IL-2 enhances ex vivo-expanded regulatory T-cell persistence after adoptive transfer. Blood Adv 2020; 4:1594-1605. [PMID: 32311015 PMCID: PMC7189290 DOI: 10.1182/bloodadvances.2019001248] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/03/2020] [Indexed: 01/28/2023] Open
Abstract
As regulatory T cell (Treg) adoptive therapy continues to develop clinically, there is a need to determine which immunomodulatory agents pair most compatibly with Tregs to enable persistence and stabilize suppressor function. Prior work has shown that mechanistic target of rapamycin inhibition can increase the stability of thymic Tregs. In this study, we investigated the transcriptomic signatures of ex vivo-expanded Tregs after adoptive transfer in the setting of clinically relevant immunosuppression using a nonhuman primate (NHP) model as a prelude to future transplant studies. Here, we found that adding interleukin-2 (IL-2) to rapamycin in vivo supported a logarithmic increase in the half-life of adoptively transferred carboxyfluorescein diacetate succinimidyl ester-labeled, autologous NHP Tregs, effectively doubling the number of cells in the peripheral blood Treg compartment compared with Treg infusion when rapamycin was given alone. Using single-cell transcriptomics, we found that transferred ex vivo-expanded Tregs initially exhibit a gene expression signature consistent with an activated state. Moreover, those cells with the highest levels of activation also expressed genes associated with p53-mediated apoptosis. In contrast, transferred Tregs interrogated at day +20 posttransfer demonstrated a gene signature more similar to published profiles of resting Tregs. Together, these preclinical data further support combining IL-2 and rapamycin in vivo as adjunctive therapy for ex vivo-expanded adoptively transferred Tregs and suggest that the activation status of ex vivo-expanded Tregs is critical to their persistence.
Collapse
Affiliation(s)
- Scott N Furlan
- Fred Hutchinson Cancer Research Center and Department of Pediatrics, University of Washington, Seattle, WA
| | | | - Christina Lopez
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA
| | - Victor Tkachev
- Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Daniel Joel Hunt
- Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - James Hibbard
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA
| | - Kayla M Betz
- Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN; and
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Leslie S Kean
- Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
66
|
Li C, Hu J, Liu P, Li Q, Chen J, Cui Y, Zhou X, Xue B, Zhang X, Gao X, Zu X. A comprehensive evaluation of differentially expressed mRNAs and lncRNAs in cystitis glandularis with gene ontology, KEGG pathway, and ceRNA network analysis. Transl Androl Urol 2020; 9:232-242. [PMID: 32420128 PMCID: PMC7214972 DOI: 10.21037/tau.2020.03.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/21/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Cystitis glandularis (CG) is a proliferative disorder of the urinary bladder characterized by transitional cells that have undergone glandular metaplasia. The underlying mechanism associated with this transformation is poorly understood. METHODS The expression of messenger RNA (mRNA) and long non-coding RNA (lncRNA) from normal bladder mucosa and CG were compared using microarray analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to describe molecular interactions. RESULTS Microarray analysis identified 809 significantly dysregulated mRNAs in CG tissues; 606 were up-regulated and 203 were down-regulated (greater than 2-fold difference in expression from normal tissue, P<0.05). KEGG pathway analysis showed that the mRNAs that co-expressed with lncRNAs were enriched in the cell cycle regulation pathway. Four up-regulated lncRNAs (ENST00000596379, ENST00000463397, NR_001446 and NR_015395) were identified in the coding-non-coding co-expression (CNC) network analysis as being associated with the expression of four mRNAs (SMAD3, ORC1, CCNA2 and CCNB2). NR_015395 was revealed to be a competing endogenous RNA (ceRNA) of miR-133a-3p that targets SMAD3. CONCLUSIONS This is the first work to measure the expression of dysregulated lncRNA and ceRNA in CG and identify the crosstalk between mRNA and lncRNA expression patterns in the pathogenesis of CG.
Collapse
Affiliation(s)
- Chao Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Peihua Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiaqia Li
- Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xu Zhou
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bichen Xue
- Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Xin Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xin Gao
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
67
|
Mao Y, Shen G, Su Z, Du J, Xu F, Yu Y. RAD21 inhibited transcription of tumor suppressor MIR4697HG and led to glioma tumorigenesis. Biomed Pharmacother 2020; 123:109759. [DOI: 10.1016/j.biopha.2019.109759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
|
68
|
Long noncoding RNA SNHG17 induced by YY1 facilitates the glioma progression through targeting miR-506-3p/CTNNB1 axis to activate Wnt/β-catenin signaling pathway. Cancer Cell Int 2020; 20:29. [PMID: 32009853 PMCID: PMC6988207 DOI: 10.1186/s12935-019-1088-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Glioma is one of the most widely diagnosed malignancies worldwide. It has been reported that long noncoding RNAs (lncRNAs) are participators in the tumorgenesis of cancers. Nevertheless, the role and function of lncRNA SNHG17 among glioma is unclear. Methods RT-qPCR revealed SNHG17, YY1, miR-506-3p, CTNNB1 expression among glioma cells. CCK-8, colony formation, EdU, flow cytometry, TUNEL and western blot assays revealed the function of SNHG17 in glioma. RIP uncovered SNHG17, miR-506-3p and CTNNB1 enrichment in RISC complex. Luciferase reporter assays and RNA pull down revealed interaction of miR-506-3p with SNHG17 and CTNNB1. Results SNHG17 expression was up-regulated in glioma tissues and cells. SNHG17 silence attenuated cell proliferation and promoted apoptosis and repressed tumor growth. Moreover, SNHG17 was up-regulated by transcription factor YY1. Mechanistically, SNHG17 activated Wnt/β-catenin signaling pathway in glioma. CTNNB1 was referred to as the mRNA of β-catenin, we validated that SNHG17 bound to miR-506-3p to induce CTNNB1 and activate Wnt/β-catenin signaling pathway. Rescue experiments indicated that CTNNB1 overexpression abolished the inhibitory effects of SNHG7 inhibition on glioma progression. Conclusions The findings that YY1-induced SNHG17 facilitated the glioma progression through targeting miR-506-3p/CTNNB1 axis to activate Wnt/β-catenin signaling pathway offered a brand-new prospects to molecular-targeted treatment for glioma.
Collapse
|
69
|
Song L, Qi Y, Lin M. Long noncoding RNA PLAC2 regulates PTEN in retinoblastoma and participates in the regulation of cancer cell apoptosis. Oncol Lett 2020; 19:2489-2494. [PMID: 32194749 PMCID: PMC7039102 DOI: 10.3892/ol.2020.11314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/12/2019] [Indexed: 12/23/2022] Open
Abstract
Long noncoding RNA placenta-specific 2 (PLAC2) blocks the cancer cell cycle in glioma, suggesting its tumor-suppressive role. The present study aimed to investigate the role of PLAC2 in retinoblastoma (Rb). It was found that PLAC2 was downregulated in Rb tissues and was not affected by the development of Rb. PTEN was also downregulated in Rb and positively correlated with PLAC2. In Rb cells, PLAC2 over-expression resulted in the upregulated expression of PTEN, while PTEN over-expression did not affect PLAC2 expression. PLAC2 and PTEN over-expression caused an increased apoptotic rate of Rb cells. PTEN small interfering RNA silencing led to a decreased apoptotic rate and attenuated the effects of PLAC2 over-expression. Therefore, PLAC2 regulates PTEN in Rb and participates in the regulation of cancer cell apoptosis.
Collapse
Affiliation(s)
- Ling Song
- Department of Ophthalmology, Binzhou Hubin Aier Eye Hospital Limited, Binzhou, Shandong 256613, P.R. China
| | - Yueqin Qi
- Department of Ophthalmology, Binzhou Hubin Aier Eye Hospital Limited, Binzhou, Shandong 256613, P.R. China
| | - Ming Lin
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
70
|
Yang J, Yu D, Liu X, Changyong E, Yu S. LncRNA PCED1B‐AS1 activates the proliferation and restricts the apoptosis of glioma through cooperating with miR‐194‐5p/PCED1B axis. J Cell Biochem 2019; 121:1823-1833. [PMID: 31680313 DOI: 10.1002/jcb.29417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Jinghui Yang
- Department of Hepatobiliary and Pancreatic Surgery China‐Japan Union Hospital of Jilin University Changchun China
| | - Duo Yu
- Department of Radiotherapy Second Hospital of Jilin University Changchun China
| | - Xueshibojie Liu
- Department of Otolaryngology Head and Neck Surgery, Second Hospital of Jilin University Changchun China
| | - E. Changyong
- Department of Hepatobiliary and Pancreatic Surgery China‐Japan Union Hospital of Jilin University Changchun China
| | - Shan Yu
- Department of Neurology China‐Japan Union Hospital of Jilin University Changchun China
| |
Collapse
|
71
|
Han D, Fang Y, Guo Y, Hong W, Tu J, Wei W. The emerging role of long non-coding RNAs in tumor-associated macrophages. J Cancer 2019; 10:6738-6746. [PMID: 31777603 PMCID: PMC6856883 DOI: 10.7150/jca.35770] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/24/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are an important cellular component of the tumor microenvironment (TME) and play an essential role in tumor immunity. Recently, numerous studies have indicated that long non-coding RNAs (lncRNAs) can affect several functions of TAMs. In the present review, we summarize the versatile role of lncRNAs in the polarization, epigenetic modulation, and classic signaling pathways of TAMs, which represent a potential target for tumor diagnosis or treatment.
Collapse
Affiliation(s)
- Dafei Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yawei Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wenming Hong
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
72
|
Genome-wide discovery and characterization of long noncoding RNAs in patients with multiple myeloma. BMC Med Genomics 2019; 12:135. [PMID: 31619233 PMCID: PMC6794882 DOI: 10.1186/s12920-019-0577-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are involved in a wide range of biological processes in tumorigenesis. However, the role of lncRNA expression in the biology, prognosis, and molecular classification of human multiple myeloma (MM) remains unclear, especially the biological functions of the vast majority of lncRNAs. Recently, lncRNAs have been identified in neoplastic hematologic disorders. Evidence has accumulated on the molecular mechanisms of action of lncRNAs, providing insight into their functional roles in tumorigenesis. This study aimed to characterize potential lncRNAs in patients with MM. Methods In this study, the whole-transcriptome strand-specific RNA sequencing of samples from three newly diagnosed patients with MM was performed. The whole transcriptome, including lncRNAs, microRNAs, and mRNAs, was analyzed. Using these data, MM lncRNAs were systematically analyzed, and the lncRNAs involved in the occurrence of MM were identified. Results The results revealed that MM lncRNAs had distinctive characteristics different from those of other malignant tumors. Further, the functions of a set of lncRNAs preferentially expressed in MM were verified, and several lncRNAs were identified as competing endogenous RNAs. More importantly, the aberrant expression of certain lncRNAs, including maternally expressed gene3, colon cancer–associated transcript1, and coiled-coil domain-containing 26, as well as some novel lncRNAs involved in the occurrence of MM was established. Further, lncRNAs were related to some microRNAs, regulated each other, and participated in MM development. Conclusions Genome-wide screening and functional analysis enabled the identification of a set of lncRNAs involved in the occurrence of MM. The interaction exists among microRNAs and lncRNAs.
Collapse
|
73
|
LncRNA PLAC 2 downregulated miR-21 in non-small cell lung cancer and predicted survival. BMC Pulm Med 2019; 19:172. [PMID: 31500623 PMCID: PMC6734259 DOI: 10.1186/s12890-019-0931-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
Background LncRNA PLAC2 has been characterized as a tumor suppressive lncRNA in glioma. We investigated the role of PLAC2 in non-small cell lung cancer (NSCLC). Methods A total of 187 NSCLC patients were admitted by The First Hospital of Jilin University from December 2010 to December 2014. All the patients were diagnosed by histopathological approaches. Transient cell transfections, RT-qPCR, invasion, and migration ability measurement, were applied for the experiments. Results PLAC2 was down-regulated, while miR-21 was up-regulated in NSCLC tissues compared to non-cancer tissues. Low PLAC2 levels in NSCLC tissues were associated with poor survival of NSCLC patients. PLAC2 and miR-21 were inversely correlated, and PLAC 2 over-expression in NSCLC cells resulted in the down-regulation of miR-21. However, miR-21 over-expression did not significantly affect PLAC2 expression. In addition, PLAC2 over-expression resulted in decreased migration and invasion rates of NSCLC cells. MiR-21 over-expression played the opposite role and attenuated the effects of PLAC2 over-expression. Conclusions In conclusion, lncRNA PLAC2 down-regulated miR-21 in NSCLC and inhibited cancer cell migration and invasion.
Collapse
|
74
|
Non-coding RNAs: Regulators of glioma cell epithelial-mesenchymal transformation. Pathol Res Pract 2019; 215:152539. [DOI: 10.1016/j.prp.2019.152539] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/29/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
|
75
|
Zhang L, Wang H, Xu M, Chen F, Li W, Hu H, Yuan Q, Su Y, Liu X, Wuri J, Yan T. Long noncoding RNA HAS2-AS1 promotes tumor progression in glioblastoma via functioning as a competing endogenous RNA. J Cell Biochem 2019; 121:661-671. [PMID: 31385362 DOI: 10.1002/jcb.29313] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/15/2019] [Indexed: 12/25/2022]
Abstract
Glioblastoma multiforme (GBM) is a refractory tumor with poor prognosis and requires more effective treatment regimens. It has been confirmed that long noncoding RNAs (lncRNAs) substantially regulate various human disease including GBM. However, the biological roles and its underlying molecular mechanisms still need to be further investigated. In this study, the biological function and potential molecular mechanism of lncHAS2-AS1 in GBM were explored. It was discovered that HAS2-AS1 was elevated in glioma tissues and correlated with the prognosis of patients with glioma. Reduction of HAS2-AS1 suppressed the migration and invasion in vitro and in vivo. The transcription factor STAT1 could raise HAS2-AS1 by binding to its promoter region. Besides, HAS2-AS1 could adjust PRPS1 via sponging miR-608 in a direct manner. On the whole, the results of this study evidence that HAS2-AS1 is an oncogene and a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Liqun Zhang
- Department of Neurology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Hong Wang
- Department of Neurology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Meijie Xu
- Department of Neurology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurology, Xiqing Hospital, Tianjin, China
| | - Fangyu Chen
- Department of Neurology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurology, Langfang Hospital of Traditional Chinese Medicine, Langfang, Hebei Province, China
| | - Wenkui Li
- Department of Neurology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Haotian Hu
- Department of Neurology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Quan Yuan
- Department of Neurology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Yue Su
- Department of Neurology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xiaoxuan Liu
- Department of Neurology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Jimusi Wuri
- Department of Neurology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Tao Yan
- Department of Neurology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
76
|
Zheng Y, Lv P, Wang S, Cai Q, Zhang B, Huo F. LncRNA PLAC2 upregulates p53 to induce hepatocellular carcinoma cell apoptosis. Gene 2019; 712:143944. [PMID: 31233763 DOI: 10.1016/j.gene.2019.143944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/25/2019] [Accepted: 06/20/2019] [Indexed: 01/07/2023]
Abstract
It is known that lncRNA PLAC2 can inhibit glioma. This study explored the function of PLAC2 in hepatocellular carcinoma (HCC). Our data showed that PLAC2 expression in HCC was not affect by HCV and HBV infection, while PLAC2 levels were significantly lower in HCC tissues comparing to non-cancer tissues. Low PLAC2 levels in HCC tissues were associated with low overall 5-year survival rate. P53 mRNA was also downregulated in HCC and positively correlated with PLAC2. PLAC2 overexpression caused upregulated p53 and increase cancer cell apoptosis. P53 overexpression failed to affect PLAC2. In addition, p53 silencing reduced the effects of PLAC2 overexpression. Therefore, PLAC2 upregulated p53 to mediate cancer cell apoptosis.
Collapse
Affiliation(s)
- Yujian Zheng
- Department of Hepatobiliary Surgery, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province 510010, China.
| | - Pengxiang Lv
- Department of Hepatobiliary Surgery, The 1st People's Hospital of Baiyin, Baiyin, Gansu Province 730900, China
| | - Shaoping Wang
- Department of Hepatobiliary Surgery, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province 510010, China
| | - Qing Cai
- Department of Hepatobiliary Surgery, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province 510010, China
| | - Bao Zhang
- Department of Hepatobiliary Surgery, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province 510010, China
| | - Feng Huo
- Department of Hepatobiliary Surgery, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province 510010, China
| |
Collapse
|
77
|
The binding of lncRNA RP11-732M18.3 with 14-3-3 β/α accelerates p21 degradation and promotes glioma growth. EBioMedicine 2019; 45:58-69. [PMID: 31202814 PMCID: PMC6642068 DOI: 10.1016/j.ebiom.2019.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been identified as regulators of a number of developmental and tumorigenic processes. However, the functions of most lncRNAs in glioma remain unknown and the mechanisms governing the proliferation of tumor cells remain poorly defined. Methods Both in vitro and in vivo assays were performed to investigate the roles of lncRNAs in the pathophysiology of gliomas. lncRNA arrays were used to identify differentially expressed lncRNAs. Subcutaneous tumor formation and a brain orthotopic tumor model in nude mice were used to investigate the functions of lncRNAs in vivo. The in vitro functions of lncRNAs were analyzed by fluorescence-activated cell sorting, colony formation, and western blot analyses. RNA fluorescence in situ hybridization and immunoprecipitation were used to explore the underlying mechanisms. Findings Here, we describe the newly discovered noncoding RNA RP11-732M18.3, which is highly overexpressed in glioma cells and interacts with 14-3-3β/α to promote glioma growth, acting as an oncogene. Overexpression of lncRNA RP11-732 M18.3 was associated with the proliferation of glioma cells and tumor growth in vitro and in vivo. Remarkably, lncRNA RP11-732M18.3 promoted cell proliferation and G1/S cell cycle transition. lncRNA RP11-732M18.3 is predominately localized in the cytoplasm. Mechanistically, the interaction of lncRNA RP11-732M18.3 with 14-3-3β/α increases the degradation of the p21 protein. lncRNA RP11-732M18.3 promoted the recruitment of ubiquitin-conjugating enzyme E2 E1 to 14-3-3β/α and the binding of 14-3-3β/α with ubiquitin-conjugating enzyme E2 E1 (UBE2E1) promoted the degradation of p21. Interpretation Overall these data demonstrated that lncRNA RP11-732M18.3 regulates glioma growth through a newly described lncRNA-protein interaction mechanism. The inhibition of lncRNA RP11-732M18.3 could provide a novel therapeutic target for glioma treatment.
Collapse
|
78
|
Fu Y, Liu X, Zhang F, Jiang S, Liu J, Luo Y. Bortezomib-inducible long non-coding RNA myocardial infarction associated transcript is an oncogene in multiple myeloma that suppresses miR-29b. Cell Death Dis 2019; 10:319. [PMID: 30967527 PMCID: PMC6456577 DOI: 10.1038/s41419-019-1551-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023]
Abstract
Clinical outcomes of patients with multiple myeloma (MM) have almost doubled the overall survival over the last decade owing to the use of proteasome inhibitor such as bortezomib (BTZ). However, some patients with MM develop primary resistance to BTZ, whereas others develop resistance after treatment. In this study, we investigated relationships between BTZ resistance and dysfunction of long non-coding RNAs (lncRNAs) in patients with MM. Bone marrow samples were collected from patients with MM and healthy donors for lncRNA microarray and survival analyses. To investigate functions and underlying mechanisms of lncRNA-mediated BTZ resistance in MM, we performed CCK-8 assays, flow cytometry analyses, dual luciferase report gene assays, and RNA pulldown assays with samples from nude mice carrying tumor xenografts and in clinical samples. Differentially expressed lncRNA myocardial infarction associated transcripts (MIAT) were highly expressed in patients with MM compared with healthy controls, and were predictive of poor survival outcomes. Moreover, MIAT expression was significantly increased in BTZ-resistant patients with MM compared with newly diagnosed patients with MM, and was identified as a BTZ-inducible lncRNA. Specifically, BTZ upregulated MIAT expression through increased stat1 phosphorylation. Silencing of MIAT inhibited MM cell growth and sensitized MM cells to BTZ by negatively regulating miR-29b. Our data demonstrated the utility of MIAT as a tool for overcoming BTZ resistance in patients with MM.
Collapse
Affiliation(s)
- Yunfeng Fu
- The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiao Liu
- The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Fangrong Zhang
- The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Siyi Jiang
- The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jing Liu
- The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Yanwei Luo
- The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
79
|
Chen F, Qi S, Zhang X, Wu J, yang X, Wang R. lncRNA PLAC2 activated by H3K27 acetylation promotes cell proliferation and invasion via the activation of Wnt/β‑catenin pathway in oral squamous cell carcinoma. Int J Oncol 2019; 54:1183-1194. [PMID: 30720068 PMCID: PMC6411352 DOI: 10.3892/ijo.2019.4707] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
As a new group of important effector molecules involved in multiple cancer types, including breast cancer, lung cancer and oral squamous cell carcinoma, long noncoding RNAs (lncRNAs) have attracted considerable attention recently. However, the underlying cause that induces the dysregulated lncRNAs in cancer remains poorly understood. In the present study, the regulatory model of the lncRNA placenta‑specific protein 2 (PLAC2) upregulation in oral squamous cell carcinoma (OSCC) was investigated and its biological functions in OSCC malignant progression was identified. A reverse transcription‑quantitative polymerase chain reaction assay identified that PLAC2 is upregulated in OSCC cell lines and primary tissue samples. Furthermore, bioinformatic analysis followed by chromatin immunoprecipitation verified an enriched histone H3 on lysine 27 (H3K27) acetylation (H3K27ac) at the promoter region of the PLAC2 gene. Knockdown of cAMP‑response element binding protein‑binding protein (CBP) significantly reduced the enrichment level of H3K27ac, and thereby induced a decreased expression of PLAC2. Functionally, overexpression of PLAC2 promotes OSCC cell proliferation, migration and invasion, whereas knockdown of PLAC2 exerted an opposite effect. Furthermore, the Wnt/β‑catenin signaling pathway was activated by PLAC2 and mediated the PLAC2‑induced malignant progress of OSCC. In conclusion, the present results indicated that lncRNA PLAC2 is transcriptionally activated by H3K27ac modification at the promoter region in OSCC, and promotes cell growth and metastasis via activating Wnt/β‑catenin signaling pathway. Therefore, PLAC2 may serve as a promising biomarker for OSCC prognosis and therapy.
Collapse
Affiliation(s)
- Fubo Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Xu Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Jinjin Wu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Xi yang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology
- National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Raorao Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| |
Collapse
|
80
|
Yao B, Zhang M, Leng X, Zhao D. Proteomic analysis of the effects of antler extract on chondrocyte proliferation, differentiation and apoptosis. Mol Biol Rep 2019; 46:1635-1648. [DOI: 10.1007/s11033-019-04612-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/17/2019] [Indexed: 01/09/2023]
|
81
|
The Chinese Medicinal Formulation Guzhi Zengsheng Zhitongwan Modulates Chondrocyte Structure, Dynamics, and Metabolism by Controlling Multiple Functional Proteins. BIOMED RESEARCH INTERNATIONAL 2019; 2018:9847286. [PMID: 30596102 PMCID: PMC6282133 DOI: 10.1155/2018/9847286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
Traditional Chinese medicine is one of the oldest medical systems in the world and has its unique principles and theories in the prevention and treatment of human diseases, which are achieved through the interactions of different types of materia medica in the form of Chinese medicinal formulations. GZZSZTW, a classical and effective Chinese medicinal formulation, was designed and created by professor Bailing Liu who is the only national medical master professor in the clinical research field of traditional Chinese medicine and skeletal diseases. GZZSZTW has been widely used in clinical settings for several decades for the treatment of joint diseases. However, the underlying molecular mechanisms are still largely unknown. In the present study, we performed quantitative proteomic analysis to investigate the effects of GZZSZTW on mouse primary chondrocytes using state-of-the-art iTRAQ technology. We demonstrated that the Chinese medicinal formulation GZZSZTW modulates chondrocyte structure, dynamics, and metabolism by controlling multiple functional proteins that are involved in the cellular processes of DNA replication and transcription, protein synthesis and degradation, cytoskeleton dynamics, and signal transduction. Thus, this study has expanded the current knowledge of the molecular mechanism of GZZSZTW treatment on chondrocytes. It has also shed new light on possible strategies to further prevent and treat cartilage-related diseases using traditional Chinese medicinal formulations.
Collapse
|
82
|
Li X, Zhang H, Wu X. Long noncoding RNA DLX6-AS1 accelerates the glioma carcinogenesis by competing endogenous sponging miR-197-5p to relieve E2F1. Gene 2018; 686:1-7. [PMID: 30366080 DOI: 10.1016/j.gene.2018.10.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) participate in numerous of human cancer tumorigenesis. Nevertheless, the in-depth molecular mechanism that lncRNAs regulate the gliomagenesis is still ambiguous. In this research, our study invests energy in the biologic roles of lncRNA DLX6-AS1 on the glioma tumorigenesis. Here, we demonstrated that DLX6-AS1 expression was both high-expressed in the glioma cells and tissue, and the overexpression of DLX6-AS1 was clinically correlated with the poor outcome of glioma patients. In the cellular functional assays, silenced DLX6-AS1 expression by siRNAs inhibited the proliferation, invasion and tumor growth in vitro and in vivo, while the enhanced DLX6-AS1 expression by plasmids promotes them. The bioinformatics predictive tools, luciferase reporter assay and correlation analysis found that miR-197-5p could both target the 3'-UTR of DLX6-AS1 as well as E2F1 gene, constructing DLX6-AS1-miR-197-5p-E2F1 axis. Moreover, receiver operating characteristic (ROC) curve analysis revealed that lncRNA DLX6-AS1 has valuable diagnostic value clinical diagnose for the glioma patients (AUC = 0.736). Overall, our finding supports that DLX6-AS1 accelerates the glioma carcinogenesis by competing endogenous sponging miR-197-5p to relieve E2F1, acting as a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430062, China
| | - Huibo Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430062, China
| | - Xiaofei Wu
- Department of Neurology, Chinese People's Liberation Army, Wuhan General Hospital, Wuhan, Hubei 430070, China.
| |
Collapse
|
83
|
Quan Y, Song K, Zhang Y, Zhu C, Shen Z, Wu S, Luo W, Tan B, Yang Z, Wang X. Roseburia intestinalis-derived flagellin is a negative regulator of intestinal inflammation. Biochem Biophys Res Commun 2018; 501:791-799. [PMID: 29772233 DOI: 10.1016/j.bbrc.2018.05.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/13/2018] [Indexed: 01/26/2023]
Abstract
Our previous study showed that the Roseburia intestinalis (R. intestinalis), one of the dominant intestinal bacterial microbiota, was significantly decreased in Crohn's disease patients and protected colon epithelial cells from inflammatory damage. However, the roles of lncRNAs in R. intestinalis flagellin-mediated anti-inflammation remain unclear. In this study, we investigate global lncRNA expression profiles using microarray analysis of ulcerative colitis samples from DSS/Flagellin-challenged mice and identified a Flagellin-induced upregulated lncRNA (HIF1A-AS2). Flagellin induced HIF1A-AS2 expression in a dose- and time-dependent manner via p38-stat1 activation. Selective pharmacological inhibitors of Stat1 and p38, and genetic knockdown of these genes abolished Flagellin-induced HIF1A-AS2 expression. In addition, luciferase reporter assay showed that Flagellin activated HIF1A-AS2 promotor via increasing stat1 phosphorylation. Silencing of HIF1A-AS2 abolished Flagellin-mediated anti-inflammatory effects, evaluating by upregulation of cytokines expression, including TNF-α, IL-1β, IL-6 and IL-12, but not TNFβ. In addition, knockdown of HIF1A-AS2 significantly increased p65 and Jnk phosphorylation, and sufficiently abolished Flagellin-mediated anti-inflammatory affects in vivo. Our study provides new insights into the mechanisms that lncRNAs regulate flagellin-mediated alleviation of colonic inflammation. It is indicated that HIF1A-AS2 may be a modulator of intestinal inflammation and represent a novel target for future therapeutics.
Collapse
Affiliation(s)
- Yongsheng Quan
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Kerui Song
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Changxin Zhu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Zhaohua Shen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Shuai Wu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Bei Tan
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Zhenyu Yang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China.
| |
Collapse
|
84
|
Guo E, Liang C, He X, Song G, Liu H, Lv Z, Guan J, Yang D, Zheng J. Long Noncoding RNA LINC00958 Accelerates Gliomagenesis Through Regulating miR-203/CDK2. DNA Cell Biol 2018; 37:465-472. [PMID: 29570358 DOI: 10.1089/dna.2018.4163] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Erkun Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chaohui Liang
- Department of Neurosurgery, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xin He
- Department of Neurosurgery, Armed Police General Hospital, Beijing, China
| | - Guozhi Song
- Department of Neurosurgery, Central Hospital of Handan City, Handan, China
| | - Hongjiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhongqiang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianchao Guan
- Department of Surgery, People's Hospital of Nanhe, Hebei, China
| | - Dezhen Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiapeng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
85
|
Molecular Determinants of Malignant Brain Cancers: From Intracellular Alterations to Invasion Mediated by Extracellular Vesicles. Int J Mol Sci 2017; 18:ijms18122774. [PMID: 29261132 PMCID: PMC5751372 DOI: 10.3390/ijms18122774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma cells invade the surrounding brain parenchyma, by migrating along the blood vessels, thus promoting cancer growth. The biological bases of these activities are grounded in profound alterations of the metabolism and the structural organization of the cells, which consequently acquire the ability to modify the surrounding microenvironment, by altering the extracellular matrix and affecting the properties of the other cells present in the brain, such as normal glial-, endothelial- and immune-cells. Most of the effects on the surrounding environment are probably exerted through the release of a variety of extracellular vesicles (EVs), which contain many different classes of molecules, from genetic material to defined species of lipids and enzymes. EV-associated molecules can be either released into the extracellular matrix (ECM) and/or transferred to neighboring cells: as a consequence, both deep modifications of the recipient cell phenotype and digestion of ECM components are obtained, thus causing cancer propagation, as well as a general brain dysfunction. In this review, we first analyze the main intracellular and extracellular transformations required for glioma cell invasion into the brain parenchyma; then we discuss how these events may be attributed, at least in part, to EVs that, like the pawns of a dramatic chess game with cancer, open the way to the tumor cells themselves.
Collapse
|