51
|
Abstract
In this review, we discuss the current status and future challenges for fully elucidating the fungal tree of life. In the last 15 years, advances in genomic technologies have revolutionized fungal systematics, ushering the field into the phylogenomic era. This has made the unthinkable possible, namely access to the entire genetic record of all known extant taxa. We first review the current status of the fungal tree and highlight areas where additional effort will be required. We then review the analytical challenges imposed by the volume of data and discuss methods to recover the most accurate species tree given the sea of gene trees. Highly resolved and deeply sampled trees are being leveraged in novel ways to study fungal radiations, species delimitation, and metabolic evolution. Finally, we discuss the critical issue of incorporating the unnamed and uncultured dark matter taxa that represent the vast majority of fungal diversity.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA;
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science and Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA;
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA;
| |
Collapse
|
52
|
Weidner E, Sokolova YY, Overstreet RM. Microsporidia Can Acquire Lamin-like Intermediate Filaments and Cell Adhesion Catenin-cadherin Complexes from the Host (?). J Eukaryot Microbiol 2020; 67:583-592. [PMID: 32498127 DOI: 10.1111/jeu.12811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 01/16/2023]
Abstract
On their spore surfaces, Microsporidia often develop a canopy of filaments with characteristics of intermediate filaments (IF), as we demonstrated in previous studies on Thelohania sp., Ameson michaelis, and Spraguea lophii. Genomic studies indicate that among invertebrates, lamins that may localize in the cytoplasm or nucleus, are the only known IF type. These IFs can bind to the substrate containing cell adhesion molecules (CAMs) cadherins, associated with β and γ catenins. The objects of this study were to determine whether microsporidia have CAMs with the attached IFs on their envelopes and to find out if these proteins are provided by the host. An examination was made for localization of lamins and CAMs on the spores of the mentioned above species and Anncaliia algerae, plus in the host animals. Then, we determined whether the spores of A. michaelis and A. algerae could bind vertebrate nuclear lamin onto the spore surface. We also tested transgenic Drosophila melanogaster stocks bearing cadherin-GFP to see whether developing A. algerae parasites in these hosts could acquire host CAMs. The tests were positive for all these experiments. We hypothesize that microsporidia are able to acquire host lamin IFs and cell adhesion catenin-cadherin complexes from the host.
Collapse
Affiliation(s)
- Earl Weidner
- Louisiana State University, Baton Rouge, Louisiana, USA
| | - Yuliya Y Sokolova
- Institute of Cytology, St. Petersburg, Russia.,The George Washington University, Washington, District of Columbia, USA
| | - Robin M Overstreet
- Gulf Coast Research Laboratory, University of Southern Mississippi, Ocean Springs, Mississippi, USA
| |
Collapse
|
53
|
Trzebny A, Slodkowicz-Kowalska A, Becnel JJ, Sanscrainte N, Dabert M. A new method of metabarcoding Microsporidia and their hosts reveals high levels of microsporidian infections in mosquitoes (Culicidae). Mol Ecol Resour 2020; 20:1486-1504. [PMID: 32516485 PMCID: PMC7818484 DOI: 10.1111/1755-0998.13205] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
DNA metabarcoding offers new perspectives, especially with regard to the high‐throughput identification and diagnostics of pathogens. Microsporidia are an example of widely distributed, opportunistic and pathogenic microorganisms in which molecular identification is important for both environmental research and clinical diagnostics. We have developed a method for parallel detection of both microsporidian infection and the host species. We designed new primer sets: one specific for the classical Microsporidia (targeting the hypervariable V5 region of small subunit [ssu] rDNA), and a second one targeting a shortened fragment of the COI gene (standard metazoan DNA‐barcode); both markers are well suited for next generation sequencing. Analysis of the ssu rDNA data set representing 607 microsporidian species (120 genera) indicated that the V5 region enables identification of >98% species in the data set (596/607). To test the method, we used microsporidians that infect mosquitoes in natural populations. Using mini‐COI data, all field‐collected mosquitoes were unambiguously assigned to seven species; among them almost 60% of specimens were positive for at least 11 different microsporidian species, including a new microsporidian ssu rDNA sequence (Microsporidium sp. PL01). Phylogenetic analysis showed that this species belongs to one of the two main clades in the Terresporidia. We found a high rate of microsporidian co‐infections (9.4%). The numbers of sequence reads for the operational taxonomic units suggest that the occurrence of Nosema spp. in co‐infections could benefit them; however, this observation should be retested using a more intensive host sampling. Our results show that DNA barcoding is a rapid and cost‐effective method for deciphering sample diversity in greater resolution, including the hidden biodiversity that may be overlooked using classical methodology.
Collapse
Affiliation(s)
- Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Anna Slodkowicz-Kowalska
- Department of Biology and Medical Parasitology, Faculty of Medicine I, University of Medical Sciences, Poznan, Poland
| | - James J Becnel
- USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Neil Sanscrainte
- USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
54
|
Banos S, Gysi DM, Richter-Heitmann T, Glöckner FO, Boersma M, Wiltshire KH, Gerdts G, Wichels A, Reich M. Seasonal Dynamics of Pelagic Mycoplanktonic Communities: Interplay of Taxon Abundance, Temporal Occurrence, and Biotic Interactions. Front Microbiol 2020; 11:1305. [PMID: 32676057 PMCID: PMC7333250 DOI: 10.3389/fmicb.2020.01305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Marine fungi are an important component of pelagic planktonic communities. However, it is not yet clear how individual fungal taxa are integrated in marine processes of the microbial loop and food webs. Most likely, biotic interactions play a major role in shaping the fungal community structure. Thus, the aim of our work was to identify possible biotic interactions of mycoplankton with phytoplankton and zooplankton groups and among fungi, and to investigate whether there is coherence between interactions and the dynamics, abundance and temporal occurrence of individual fungal OTUs. Marine surface water was sampled weekly over the course of 1 year, in the vicinity of the island of Helgoland in the German Bight (North Sea). The mycoplankton community was analyzed using 18S rRNA gene tag-sequencing and the identified dynamics were correlated to environmental data including phytoplankton, zooplankton, and abiotic factors. Finally, co-occurrence patterns of fungal taxa were detected with network analyses based on weighted topological overlaps (wTO). Of all abundant and persistent OTUs, 77% showed no biotic relations suggesting a saprotrophic lifestyle. Of all other fungal OTUs, nearly the half (44%) had at least one significant negative relationship, especially with zooplankton and other fungi, or to a lesser extent with phytoplankton. These findings suggest that mycoplankton OTUs are embedded into marine food web chains via highly complex and manifold relationships such as parasitism, predation, grazing, or allelopathy. Furthermore, about one third of all rare OTUs were part of a dense fungal co-occurrence network probably stabilizing the fungal community against environmental changes and acting as functional guilds or being involved in fungal cross-feeding. Placed in an ecological context, strong antagonistic relationships of the mycoplankton community with other components of the plankton suggest that: (i) there is a top-down control by fungi on zooplankton and phytoplankton; (ii) fungi serve as a food source for zooplankton and thereby transfer nutrients and organic material; (iii) the dynamics of fungi harmful to other plankton groups are controlled by antagonistic fungal taxa.
Collapse
Affiliation(s)
- Stefanos Banos
- Molecular Ecology Group, University of Bremen, Bremen, Germany
| | - Deisy Morselli Gysi
- Department of Computer Science, Interdisciplinary Center of Bioinformatics, University of Leipzig, Leipzig, Germany.,Swarm Intelligence and Complex Systems Group, Faculty of Mathematics and Computer Science, University of Leipzig, Leipzig, Germany.,Center for Complex Networks Research, Northeastern University, Boston, MA, United States
| | | | - Frank Oliver Glöckner
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany.,Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Maarten Boersma
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany.,FB2, University of Bremen, Bremen, Germany
| | - Karen H Wiltshire
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany.,Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Wattenmeerstation, List, Germany
| | - Gunnar Gerdts
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Antje Wichels
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Marlis Reich
- Molecular Ecology Group, University of Bremen, Bremen, Germany
| |
Collapse
|
55
|
Bass D, Del Campo J. Microeukaryotes in animal and plant microbiomes: Ecologies of disease? Eur J Protistol 2020; 76:125719. [PMID: 32736314 DOI: 10.1016/j.ejop.2020.125719] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/28/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
Studies of animal and plant microbiomes are burgeoning, but the majority of these focus on bacteria and rarely include microeukaryotes other than fungi. However, there is growing evidence that microeukaryotes living on and in larger organisms (e.g. plants, animals, macroalgae) are diverse and in many cases abundant. We present here a new combination of 'anti-metazoan' primers: 574*f-UNonMet_DB that amplify a wide diversity of microeukaryotes including some groups that are difficult to amplify using other primer combinations. While many groups of microeukaryotic parasites are recognised, myriad other microeukaryotes are associated with hosts as previously unknown parasites (often genetically divergent so difficult to amplify using standard PCR primers), opportunistic parasites, commensals, and other ecto- and endo-symbionts, across the 'symbiotic continuum'. These fulfil a wide range of roles from pathogenesis to mutually beneficial symbioses, but mostly their roles are unknown and likely fall somewhere along this spectrum, with the potential to switch the nature of their interactions with the host under different conditions. The composition and dynamics of host-associated microbial communities are also increasingly recognised as important moderators of host health. This 'pathobiome' approach to understanding disease is beginning to supercede a one-pathogen-one-disease paradigm, which cannot sufficiently explain many disease scenarios.
Collapse
Affiliation(s)
- David Bass
- Centre for Environment, Aquaculture and Fisheries Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; Biosciences, University of Exeter, Stocker Road, Exeter EX4 4HB, UK.
| | - Javier Del Campo
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| |
Collapse
|
56
|
Lacerda ALDF, Proietti MC, Secchi ER, Taylor JD. Diverse groups of fungi are associated with plastics in the surface waters of the Western South Atlantic and the Antarctic Peninsula. Mol Ecol 2020; 29:1903-1918. [DOI: 10.1111/mec.15444] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ana L. d. F. Lacerda
- Instituto de Oceanografia Universidade Federal do Rio Grande-FURG Rio Grande Brazil
| | - Maíra C. Proietti
- Instituto de Oceanografia Universidade Federal do Rio Grande-FURG Rio Grande Brazil
| | - Eduardo R. Secchi
- Instituto de Oceanografia Universidade Federal do Rio Grande-FURG Rio Grande Brazil
| | - Joe D. Taylor
- School of Science, Engineering and Environment University of Salford Manchester UK
| |
Collapse
|
57
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020. [PMID: 31900730 DOI: 10.1007/s00709-019-01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
58
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020; 257:621-753. [PMID: 31900730 PMCID: PMC7203096 DOI: 10.1007/s00709-019-01442-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 05/02/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
59
|
Timofeev S, Tokarev Y, Dolgikh V. Energy metabolism and its evolution in Microsporidia and allied taxa. Parasitol Res 2020; 119:1433-1441. [DOI: 10.1007/s00436-020-06657-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
60
|
The genomic survey of Tc1-like elements in the silkworm microsporidia Nosema bombycis. Acta Parasitol 2020; 65:193-202. [PMID: 31832922 DOI: 10.2478/s11686-019-00153-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/29/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Microsporidia Nosema bombycis is the destructive pathogen in the production of sericulture. The Tc1/mariner elements belong to important component of DNA transposon. METHODS The genomic data of N. bombycis and related Nosema species were screened to identify the Tc1-like elements and analyzed the phylogenetic relationship, based on bioinformational analysis. High-throughput data of transcriptomes and small RNAs were used to evaluate the expressed level and potential rasiRNAs for the Tc1-like elements of N. bombycis. RESULTS Twelve complete Tc1-like elements belonging to DD34,E clade is confirmed in the whole genome of N. bombycis, and divided into two branches. Six of them are sole in N. bombycis and thereby would be the molecular marker to differentiate this species from others Nosema spp. Most of the elements have the transcriptional active and are the source of sRNAs. CONCLUSION Abundant Tc1-like elements in N. bombycis reflect the expansion of transposons for this genomic characters, comparing with others Nosema spp. The finding of distribution, phylogeny and potential functional activity for Tc1Nbs in N. bombycis will help understanding the role of the DNA transposon in genomic evolution of microsporidia.
Collapse
|
61
|
Mbareche H, Veillette M, Bilodeau G, Duchaine C. Comparison of the performance of ITS1 and ITS2 as barcodes in amplicon-based sequencing of bioaerosols. PeerJ 2020; 8:e8523. [PMID: 32110484 PMCID: PMC7032056 DOI: 10.7717/peerj.8523] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
This paper presents the performance of two eukaryotic genomic ribosomal regions, ITS1 and ITS2, in describing fungal diversity in aerosol samples using amplicon-based High-Throughput Sequencing (HTS). Composting sites, biomethanization facilities, and dairy farms, all affected by the presence of fungi, were visited to collect air samples. The amplicon-based HTS approach is a target enrichment method that relies on the amplification of a specific target using particular primers before sequencing. Thus, the results are highly dependent on the quality of amplification. For this reason, the authors of this paper used a shotgun metagenomic approach to compare its outcome with the amplicon-based method. Indeed, shotgun metagenomic does not rely on any amplification prior to sequencing, because all genes are sequenced without a specific target. In addition, culture methods were added to the analyses in biomethanization and dairy farms samples to validate their contribution to fungal diversity of aerosols. The results obtained are unequivocal towards ITS1 outperformance to ITS2 in terms of richness, and taxonomic coverage. The differential abundance analysis did demonstrate that some taxa were exclusively detected only by ITS2, and vice-versa for ITS1. However, the shotgun metagenomic approach showed a taxonomic profile more resembling to ITS1 than ITS2. Based on these results, neither of the barcodes evaluated is perfect in terms of distinguishing all species. Using both barcodes offers a broader view of the fungal aerosol population. However, with the actual knowledge, the authors strongly recommend using ITS1 as a universal fungal barcode for quick general analyses of diversity and when limited financial resources are available, primarily due its ability to capture taxonomic profiles similar to those obtained using the shotgun metagenomic. The culture comparison with amplicon-based sequencing showed the complementarity of both approaches in describing the most abundant taxa.
Collapse
Affiliation(s)
- Hamza Mbareche
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, Canada
| | - Marc Veillette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| | - Guillaume Bilodeau
- Canadian Food Inspection Agency, Pathogen Identification Research Lab, Ottawa, Canada
| | - Caroline Duchaine
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, Canada
| |
Collapse
|
62
|
Wadi L, Reinke AW. Evolution of microsporidia: An extremely successful group of eukaryotic intracellular parasites. PLoS Pathog 2020; 16:e1008276. [PMID: 32053705 PMCID: PMC7017984 DOI: 10.1371/journal.ppat.1008276] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lina Wadi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
63
|
Campo J, Bass D, Keeling PJ. The eukaryome: Diversity and role of microeukaryotic organisms associated with animal hosts. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13490] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Javier Campo
- Marine Biology and Ecology Department Rosenstiel School of Marine and Atmospheric Science University of Miami Miami FL USA
| | - David Bass
- Department of Life Sciences The Natural History Museum London UK
- CEFAS Weymouth UK
| | | |
Collapse
|
64
|
Chambouvet A, Monier A, Maguire F, Itoïz S, del Campo J, Elies P, Edvardsen B, Eikreim W, Richards TA. Intracellular Infection of Diverse Diatoms by an Evolutionary Distinct Relative of the Fungi. Curr Biol 2019; 29:4093-4101.e4. [DOI: 10.1016/j.cub.2019.09.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/12/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022]
|
65
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev Camb Philos Soc 2019; 94:2101-2137. [PMID: 31659870 PMCID: PMC6899921 DOI: 10.1111/brv.12550] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
The fungal kingdom comprises a hyperdiverse clade of heterotrophic eukaryotes characterized by the presence of a chitinous cell wall, the loss of phagotrophic capabilities and cell organizations that range from completely unicellular monopolar organisms to highly complex syncitial filaments that may form macroscopic structures. Fungi emerged as a 'Third Kingdom', embracing organisms that were outside the classical dichotomy of animals versus vegetals. The taxonomy of this group has a turbulent history that is only now starting to be settled with the advent of genomics and phylogenomics. We here review the current status of the phylogeny and taxonomy of fungi, providing an overview of the main defined groups. Based on current knowledge, nine phylum-level clades can be defined: Opisthosporidia, Chytridiomycota, Neocallimastigomycota, Blastocladiomycota, Zoopagomycota, Mucoromycota, Glomeromycota, Basidiomycota and Ascomycota. For each group, we discuss their main traits and their diversity, focusing on the evolutionary relationships among the main fungal clades. We also explore the diversity and phylogeny of several groups of uncertain affinities and the main phylogenetic and taxonomical controversies and hypotheses in the field.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Health and Experimental Sciences DepartmentUniversitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
66
|
Jamy M, Foster R, Barbera P, Czech L, Kozlov A, Stamatakis A, Bending G, Hilton S, Bass D, Burki F. Long‐read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity. Mol Ecol Resour 2019; 20:429-443. [DOI: 10.1111/1755-0998.13117] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/11/2019] [Accepted: 10/31/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Mahwash Jamy
- Science for Life Laboratory Program in Systematic Biology Uppsala University Uppsala Sweden
| | - Rachel Foster
- Department of Life Sciences Natural History Museum London UK
| | - Pierre Barbera
- Computational Molecular Evolution Group Heidelberg Institute for Theoretical Studies Heidelberg Germany
| | - Lucas Czech
- Computational Molecular Evolution Group Heidelberg Institute for Theoretical Studies Heidelberg Germany
| | - Alexey Kozlov
- Computational Molecular Evolution Group Heidelberg Institute for Theoretical Studies Heidelberg Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group Heidelberg Institute for Theoretical Studies Heidelberg Germany
- Institute of Theoretical Informatics Karlsruhe Institute of Technology Karlsruhe Germany
| | - Gary Bending
- School of Life Sciences The University of Warwick Coventry UK
| | - Sally Hilton
- School of Life Sciences The University of Warwick Coventry UK
| | - David Bass
- Department of Life Sciences Natural History Museum London UK
- Centre for Environment Fisheries and Aquaculture Science (Cefas) Weymouth UK
| | - Fabien Burki
- Science for Life Laboratory Program in Systematic Biology Uppsala University Uppsala Sweden
| |
Collapse
|
67
|
Draft Genome Sequence of Tubulinosema ratisbonensis, a Microsporidian Species Infecting the Model Organism Drosophila melanogaster. Microbiol Resour Announc 2019; 8:8/31/e00077-19. [PMID: 31371528 PMCID: PMC6675976 DOI: 10.1128/mra.00077-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present the draft genome sequence of Tubulinosema ratisbonensis, a microsporidium species infecting Drosophila melanogaster A total of 3,013 protein-encoding genes and an array of transposable elements were identified. This work represents a necessary step to develop a novel model of host-parasite relationships using the highly tractable genetic model D. melanogaster.
Collapse
|
68
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc 2019; 94:1443-1476. [PMID: 31021528 PMCID: PMC6850671 DOI: 10.1111/brv.12510] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). Throughout this review we use an evolutionary and comparative-genomics perspective to understand fungal ecological diversity. Finally, we highlight the importance of genome-enabled inferences to envision plausible narratives and scenarios for important transitions.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREA, Pg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
69
|
Major P, Sendra KM, Dean P, Williams TA, Watson AK, Thwaites DT, Embley TM, Hirt RP. A new family of cell surface located purine transporters in Microsporidia and related fungal endoparasites. eLife 2019; 8:e47037. [PMID: 31355745 PMCID: PMC6699826 DOI: 10.7554/elife.47037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023] Open
Abstract
Plasma membrane-located transport proteins are key adaptations for obligate intracellular Microsporidia parasites, because they can use them to steal host metabolites the parasites need to grow and replicate. However, despite their importance, the functions and substrate specificities of most Microsporidia transporters are unknown. Here, we provide functional data for a family of transporters conserved in all microsporidian genomes and also in the genomes of related endoparasites. The universal retention among otherwise highly reduced genomes indicates an important role for these transporters for intracellular parasites. Using Trachipleistophora hominis, a Microsporidia isolated from an HIV/AIDS patient, as our experimental model, we show that the proteins are ATP and GTP transporters located on the surface of parasites during their intracellular growth and replication. Our work identifies a new route for the acquisition of essential energy and nucleotides for a major group of intracellular parasites that infect most animal species including humans.
Collapse
Affiliation(s)
- Peter Major
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Kacper M Sendra
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Paul Dean
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Tom A Williams
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Andrew K Watson
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - David T Thwaites
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|
70
|
Higes M, García-Palencia P, Urbieta A, Nanetti A, Martín-Hernández R. Nosema apis and Nosema ceranae Tissue Tropism in Worker Honey Bees ( Apis mellifera). Vet Pathol 2019; 57:132-138. [PMID: 31342871 DOI: 10.1177/0300985819864302] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The microsporidia Nosema apis and Nosema ceranae are major honey bee pathogens that possess different characteristics in terms of the signs they produce, as well as disease development and transmission. Although the ventricular epithelium is generally considered the target tissue, indirect observations led to speculation that N. ceranae may also target other structures, possibly explaining at least some of the differences between these 2 species. To investigate the tropism of Nosema for honey bee tissues, we performed controlled laboratory infections by orally administering doses of 50 000 or 100 000 fresh mature spores of either species. The fat body was isolated from the infected bees, as well as organs from the digestive (esophagus, ventriculus, ileum, rectum), excretory (Malpighian tubules), circulatory (aorta, heart), respiratory (thoracic tracheas), exocrine (hypopharyngeal, mandibular and labial, cephalic, thoracic salivary glands), and sensory/nervous (brain, eyes and associated nerve structures, thoracic nerve ganglia) systems. Tissues were examined by light and electron microscopy at 7, 10, and 15 days postinfection. Both Nosema species were found to infect epithelial cells and clusters of regenerative cells in the ventriculus, and while the ileum and rectum contained spores of the microsporidia in the lumen, these structures did not show overt lesions. No stages of the parasites or cellular lesions were detected in the other organs tested, confirming the high tropism of both species for the ventricular epithelium cells. Thus, these direct histopathological observations indicate that neither of these 2 Nosema species exhibit tropism for honey bee organs other than the ventriculus.
Collapse
Affiliation(s)
- Mariano Higes
- Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Honey Bee Pathology Laboratory, Marchamalo, Guadalajara, Spain
| | - Pilar García-Palencia
- Department of Veterinary Medicine and Surgery, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Urbieta
- Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Honey Bee Pathology Laboratory, Marchamalo, Guadalajara, Spain
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - Raquel Martín-Hernández
- Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Honey Bee Pathology Laboratory, Marchamalo, Guadalajara, Spain.,Fundación Parque Científico y Tecnológico de Albacete, Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT), Albacete, Spain
| |
Collapse
|
71
|
Richardson E, Dacks JB. Microbial Eukaryotes in Oil Sands Environments: Heterotrophs in the Spotlight. Microorganisms 2019; 7:microorganisms7060178. [PMID: 31248111 PMCID: PMC6617064 DOI: 10.3390/microorganisms7060178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/17/2022] Open
Abstract
Hydrocarbon extraction and exploitation is a global, trillion-dollar industry. However, for decades it has also been known that fossil fuel usage is environmentally detrimental; the burning of hydrocarbons results in climate change, and environmental damage during extraction and transport can also occur. Substantial global efforts into mitigating this environmental disruption are underway. The global petroleum industry is moving more and more into exploiting unconventional oil reserves, such as oil sands and shale oil. The Albertan oil sands are one example of unconventional oil reserves; this mixture of sand and heavy bitumen lying under the boreal forest of Northern Alberta represent one of the world’s largest hydrocarbon reserves, but extraction also requires the disturbance of a delicate northern ecosystem. Considerable effort is being made by various stakeholders to mitigate environmental impact and reclaim anthropogenically disturbed environments associated with oil sand extraction. In this review, we discuss the eukaryotic microbial communities associated with the boreal ecosystem and how this is affected by hydrocarbon extraction, with a particular emphasis on the reclamation of tailings ponds, where oil sands extraction waste is stored. Microbial eukaryotes, or protists, are an essential part of every global ecosystem, but our understanding of how they affect reclamation is limited due to our fledgling understanding of these organisms in anthropogenically hydrocarbon-associated environments and the difficulties of studying them. We advocate for an environmental DNA sequencing-based approach to determine the microbial communities of oil sands associated environments, and the importance of studying the heterotrophic components of these environments to gain a full understanding of how these environments operate and thus how they can be integrated with the natural watersheds of the region.
Collapse
Affiliation(s)
- Elisabeth Richardson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
72
|
Urbieta-Magro A, Higes M, Meana A, Gómez-Moracho T, Rodríguez-García C, Barrios L, Martín-Hernández R. The levels of natural Nosema spp. infection in Apis mellifera iberiensis brood stages. Int J Parasitol 2019; 49:657-667. [PMID: 31170411 DOI: 10.1016/j.ijpara.2019.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Nosema ceranae is the most prevalent endoparasite of Apis mellifera iberiensis and it is a major health problem for bees worldwide. The infective capacity of N. ceranae has been demonstrated experimentally in honey bee brood, however no data are available about its prevalence in brood under natural conditions. Thus, brood combs from 10 different hives were analyzed over two consecutive years, taking samples before and after winter. A total of 1433 larvae/pupae were analyzed individually and N. ceranae (3.53%) was the microsporidian most frequently detected, as opposed to Nosema apis (0.42%) which was more frequently detected in conjunction with N. ceranae (0.71%). The active multiplication of both microsporidians was confirmed by the expression (real-time-PCR) of the N. ceranae polar tube protein 3 gene and/or the N. apis RNA polymerase II gene in 24% of the brood samples positive for Nosema spp. Both genes are related to microsporidian multiplication. As such, N. ceranae multiplication was confirmed in 1.06% of the samples, while N. apis multiplication was only observed in co-infections with N. ceranae (0.07%). Brood cells were analyzed for the presence of Nosema spp., as those are the immediate environment where the brood stages develop. The brood samples infected by Nosema spp. were in brood cells in which that microsporidians were not detected, while brood cells positive for N. ceranae hosted brood stages that were not apparently infected, indicating that this is unlikely to be the main pathway of infection. Finally, the colonies with brood infected by N. ceranae showed higher levels (numbers) of infected adult bees, although the differences were not significant before (P = 0.260), during (P = 0.055) or after (P = 0.056) brood sampling. These results show that N. ceranae is a bee parasite ubiquitous to all members of the colony, irrespective of the age of the bee. It is also of veterinary interest and should be considered when studying the epidemiology of the disease.
Collapse
Affiliation(s)
- Almudena Urbieta-Magro
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Guadalajara, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Guadalajara, Spain
| | - Aránzazu Meana
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | - Tamara Gómez-Moracho
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Guadalajara, Spain
| | - Cristina Rodríguez-García
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Guadalajara, Spain
| | - Laura Barrios
- Statistics Department, Computing Center SGAI-CSIC, Madrid, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Guadalajara, Spain; Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla - La Mancha, Spain.
| |
Collapse
|
73
|
Powell MJ, Letcher PM. Ultrastructure of early stages of Rozella allomycis (Cryptomycota) infection of its host, Allomyces macrogynus (Blastocladiomycota). Fungal Biol 2019; 123:109-116. [PMID: 30709516 DOI: 10.1016/j.funbio.2018.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/28/2018] [Accepted: 11/13/2018] [Indexed: 01/02/2023]
Abstract
This study reconstructs early stages of Rozella allomycis endoparasitic infection of its host, Allomyces macrogynus. Young thalli of A. macrogynus were inoculated with suspensions of R. allomycis zoospores and allowed to develop for 120 h. Infected thalli at intervals were fixed for electron microscopy and observed. Zoospores were attracted to host thalli, encysted on their surfaces, and penetrated their walls with an infection tube. The parasite cyst discharged its protoplast through an infection tube, which invaginated the host plasma membrane. The host plasma membrane then surrounded the parasite protoplast and formed a compartment confining it inside host cytoplasm. The earliest host-parasite interface within host cytoplasm consisted of two membranes, the outer layer the host plasma membrane and the inner layer the parasite plasma membrane. At first a wide space separated the two membranes and no material was observed within this space. Later, as the endoparasite thallus expanded within the compartment, the two membranes became closely appressed. As the endoparasite thallus continued to enlarge, the interface developed into three membrane layers. Thus, host plasma membrane surrounded the parasite protoplast initially without the parasite having to pierce the host plasma membrane for entry. Significantly, host-derived membrane was at the interface throughout development.
Collapse
Affiliation(s)
- Martha J Powell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA.
| | - Peter M Letcher
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA.
| |
Collapse
|
74
|
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJ, Lara E, Le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EA, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q. Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. J Eukaryot Microbiol 2019; 66:4-119. [PMID: 30257078 PMCID: PMC6492006 DOI: 10.1111/jeu.12691] [Citation(s) in RCA: 668] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
Abstract
This revision of the classification of eukaryotes follows that of Adl et al., 2012 [J. Euk. Microbiol. 59(5)] and retains an emphasis on protists. Changes since have improved the resolution of many nodes in phylogenetic analyses. For some clades even families are being clearly resolved. As we had predicted, environmental sampling in the intervening years has massively increased the genetic information at hand. Consequently, we have discovered novel clades, exciting new genera and uncovered a massive species level diversity beyond the morphological species descriptions. Several clades known from environmental samples only have now found their home. Sampling soils, deeper marine waters and the deep sea will continue to fill us with surprises. The main changes in this revision are the confirmation that eukaryotes form at least two domains, the loss of monophyly in the Excavata, robust support for the Haptista and Cryptista. We provide suggested primer sets for DNA sequences from environmental samples that are effective for each clade. We have provided a guide to trophic functional guilds in an appendix, to facilitate the interpretation of environmental samples, and a standardized taxonomic guide for East Asian users.
Collapse
Affiliation(s)
- Sina M. Adl
- Department of Soil SciencesCollege of Agriculture and Bioresources, University of SaskatchewanSaskatoonS7N 5A8SKCanada
| | - David Bass
- Department of Life SciencesThe Natural History MuseumCromwell RoadLondonSW7 5BDUnited Kingdom
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS)Barrack Road, The NotheWeymouthDorsetDT4 8UBUnited Kingdom
| | - Christopher E. Lane
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode Island02881USA
| | - Julius Lukeš
- Institute of Parasitology, Biology CentreCzech Academy of SciencesČeské Budějovice37005Czechia
- Faculty of ScienceUniversity of South BohemiaČeské Budějovice37005Czechia
| | - Conrad L. Schoch
- National Institute for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaMaryland20892USA
| | - Alexey Smirnov
- Department of Invertebrate ZoologyFaculty of BiologySaint Petersburg State UniversitySaint Petersburg199034Russia
| | - Sabine Agatha
- Department of BiosciencesUniversity of SalzburgHellbrunnerstrasse 34SalzburgA‐5020Austria
| | - Cedric Berney
- CNRS, UMR 7144 (AD2M), Groupe Evolution des Protistes et Ecosystèmes PélagiquesStation Biologique de RoscoffPlace Georges TeissierRoscoff29680France
| | - Matthew W. Brown
- Department of Biological SciencesMississippi State UniversityStarkville39762MississippiUSA
- Institute for Genomics, Biocomputing & BiotechnologyMississippi State UniversityStarkville39762MississippiUSA
| | - Fabien Burki
- Department of Organismal BiologyProgram in Systematic BiologyScience for Life LaboratoryUppsala UniversityUppsala75236Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal ChemistryUppsala UniversityBMC Box 574UppsalaSE‐75123Sweden
| | - Ivan Čepička
- Department of ZoologyFaculty of ScienceCharles UniversityVinicna 7Prague128 44Czechia
| | - Lyudmila Chistyakova
- Core Facility Centre for Culture Collection of MicroorganismsSaint Petersburg State UniversitySaint Petersburg198504Russia
| | - Javier del Campo
- Institut de Ciències del Mar, CSICPasseig Marítim de la Barceloneta, 37‐49Barcelona08003CataloniaSpain
| | - Micah Dunthorn
- Department of EcologyUniversity of KaiserslauternErwin‐Schroedinger StreetKaiserslauternD‐67663Germany
- Department of Eukaryotic MicrobiologyUniversity of Duisburg‐EssenUniversitätsstrasse 5EssenD‐45141Germany
| | - Bente Edvardsen
- Department of BiosciencesUniversity of OsloP.O. Box 1066 BlindernOslo0316Norway
| | - Yana Eglit
- Department of BiologyDalhousie UniversityHalifaxB3H 4R2NSCanada
| | - Laure Guillou
- Sorbonne Université, Université Pierre et Marie Curie ‐ Paris 6, CNRS, UMR 7144 (AD2M)Station Biologique de RoscoffPlace Georges Teissier, CS90074Roscoff29688France
| | - Vladimír Hampl
- Department of ParasitologyFaculty of ScienceCharles University, BIOCEVPrůmyslová 595Vestec252 42Czechia
| | - Aaron A. Heiss
- Department of Invertebrate ZoologyAmerican Museum of Natural HistoryNew York CityNew York10024USA
| | - Mona Hoppenrath
- Senckenberg am Meer, DZMB – German Centre for Marine Biodiversity ResearchWilhelmshaven26382Germany
| | - Timothy Y. James
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichigan48109USA
| | - Anna Karnkowska
- Department of Molecular Phylogenetics and EvolutionUniversity of WarsawWarsaw02‐089Poland
| | - Sergey Karpov
- Department of Invertebrate ZoologyFaculty of BiologySaint Petersburg State UniversitySaint Petersburg199034Russia
- Department of Molecular Phylogenetics and EvolutionUniversity of WarsawWarsaw02‐089Poland
| | - Eunsoo Kim
- Department of Invertebrate ZoologyAmerican Museum of Natural HistoryNew York CityNew York10024USA
| | - Martin Kolisko
- Institute of Parasitology, Biology CentreCzech Academy of SciencesČeské Budějovice37005Czechia
| | - Alexander Kudryavtsev
- Department of Invertebrate ZoologyFaculty of BiologySaint Petersburg State UniversitySaint Petersburg199034Russia
- Laboratory of Parasitic Worms and ProtistologyZoological Institute RASSaint Petersburg199034Russia
| | - Daniel J.G. Lahr
- Department of ZoologyInstitute of BiosciencesUniversity of Sao PauloMatao Travessa 14 Cidade UniversitariaSao Paulo05508‐090Sao PauloBrazil
| | - Enrique Lara
- Laboratory of Soil BiodiversityUniversity of NeuchâtelRue Emile‐Argand 11Neuchâtel2000Switzerland
- Real Jardín Botánico, CSICPlaza de Murillo 2Madrid28014Spain
| | - Line Le Gall
- Institut de Systématique, Évolution, Biodiversité, Muséum National d'Histoire NaturelleSorbonne Universités57 rue Cuvier, CP 39Paris75005France
| | - Denis H. Lynn
- Department of Integrative BiologyUniversity of GuelphSummerlee Science ComplexGuelphONN1G 2W1Canada
- Department of ZoologyUniversity of British Columbia4200‐6270 University Blvd.VancouverBCV6T 1Z4Canada
| | - David G. Mann
- Royal Botanic GardenEdinburghEH3 5LRUnited Kingdom
- Institute for Agrifood Research and TechnologyC/Poble Nou km 5.5Sant Carles de La RàpitaE‐43540Spain
| | - Ramon Massana
- Institut de Ciències del Mar, CSICPasseig Marítim de la Barceloneta, 37‐49Barcelona08003CataloniaSpain
| | - Edward A.D. Mitchell
- Laboratory of Soil BiodiversityUniversity of NeuchâtelRue Emile‐Argand 11Neuchâtel2000Switzerland
- Jardin Botanique de NeuchâtelChemin du Perthuis‐du‐Sault 58Neuchâtel2000Switzerland
| | - Christine Morrow
- Department of Natural SciencesNational Museums Northern Ireland153 Bangor RoadHolywoodBT18 OEUUnited Kingdom
| | - Jong Soo Park
- Department of Oceanography and Kyungpook Institute of OceanographySchool of Earth System SciencesKyungpook National UniversityDaeguKorea
| | - Jan W. Pawlowski
- Department of Genetics and EvolutionUniversity of Geneva1211Geneva 4Switzerland
| | - Martha J. Powell
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabama35487USA
| | - Daniel J. Richter
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra)Passeig Marítim de la Barceloneta 37‐49Barcelona08003CataloniaSpain
| | - Sonja Rueckert
- School of Applied SciencesEdinburgh Napier UniversityEdinburghEH11 4BNUnited Kingdom
| | - Lora Shadwick
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasAR 72701USA
| | - Satoshi Shimano
- Science Research CentreHosei University2‐17‐1 FujimiChiyoda‐kuTokyo102‐8160Japan
| | - Frederick W. Spiegel
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasAR 72701USA
| | - Guifré Torruella
- Laboratoire Evolution et Systématique, Université Paris‐XIOrsay91405France
| | - Noha Youssef
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahoma74074USA
| | - Vasily Zlatogursky
- Department of Invertebrate ZoologyFaculty of BiologySaint Petersburg State UniversitySaint Petersburg199034Russia
- Department of Organismal BiologySystematic Biology ProgramUppsala UniversityUppsalaSE‐752 36Sweden
| | - Qianqian Zhang
- Yantai Institute of Coastal Zone ResearchChinese Academy of ScienceYantai264003China
| |
Collapse
|
75
|
Torruella G, Grau-Bové X, Moreira D, Karpov SA, Burns JA, Sebé-Pedrós A, Völcker E, López-García P. Global transcriptome analysis of the aphelid Paraphelidium tribonemae supports the phagotrophic origin of fungi. Commun Biol 2018; 1:231. [PMID: 30588510 PMCID: PMC6299283 DOI: 10.1038/s42003-018-0235-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Aphelids are little-known phagotrophic parasites of algae whose life cycle and morphology resemble those of the parasitic rozellids (Cryptomycota, Rozellomycota). In previous phylogenetic analyses of RNA polymerase and rRNA genes, aphelids, rozellids and Microsporidia (parasites of animals) formed a clade, named Opisthosporidia, which appeared as the sister group to Fungi. However, the statistical support for the Opisthosporidia was always moderate. Here, we generated full life-cycle transcriptome data for the aphelid species Paraphelidium tribonemae. In-depth multi-gene phylogenomic analyses using several protein datasets place this aphelid as the closest relative of fungi to the exclusion of rozellids and Microsporidia. In contrast with the comparatively reduced Rozella allomycis genome, we infer a rich, free-living-like aphelid proteome, with a metabolism similar to fungi, including cellulases likely involved in algal cell-wall penetration and enzymes involved in chitin biosynthesis. Our results suggest that fungi evolved from complex aphelid-like ancestors that lost phagotrophy and became osmotrophic.
Collapse
Affiliation(s)
- Guifré Torruella
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, 08003 Barcelona, Catalonia Spain
| | - David Moreira
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Sergey A. Karpov
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
- Zoological Institute, Russian Academy of Sciences and St. Petersburg State University, St. Petersburg, Russian Federation 199134
| | - John A. Burns
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, 10024-5192 NY USA
| | | | | | - Purificación López-García
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| |
Collapse
|
76
|
Letcher PM, Powell MJ. A taxonomic summary and revision of Rozella ( Cryptomycota). IMA Fungus 2018; 9:383-399. [PMID: 30622888 PMCID: PMC6317583 DOI: 10.5598/imafungus.2018.09.02.09] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/08/2018] [Indexed: 11/02/2022] Open
Abstract
Rozella is a genus of endoparasites of a broad range of hosts. Most species are known by their morphology and host specificity, while only three have been examined ultrastructurally and had portions of their genome sequenced. Determined in molecular phylogenies to be the earliest diverging lineage in kingdom Fungi, Rozella currently nests among an abundance of environmental sequences in phylum Cryptomycota, superphylum Opisthosporidia. Here we briefly summarize a history of Rozella, provide descriptions of all species, and include a key to the species of Rozella.
Collapse
Affiliation(s)
- Peter M Letcher
- Department of Biological Sciences, The University of Alabama, 1332 SEC, Box 870344, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Martha J Powell
- Department of Biological Sciences, The University of Alabama, 1332 SEC, Box 870344, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| |
Collapse
|
77
|
Filling gaps in the microsporidian tree: rDNA phylogeny of Chytridiopsis typographi (Microsporidia: Chytridiopsida). Parasitol Res 2018; 118:169-180. [DOI: 10.1007/s00436-018-6130-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
|
78
|
Galindo LJ, Torruella G, Moreira D, Timpano H, Paskerova G, Smirnov A, Nassonova E, López-García P. Evolutionary Genomics of Metchnikovella incurvata (Metchnikovellidae): An Early Branching Microsporidium. Genome Biol Evol 2018; 10:2736-2748. [PMID: 30239727 PMCID: PMC6190962 DOI: 10.1093/gbe/evy205] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2018] [Indexed: 01/30/2023] Open
Abstract
Metchnikovellids are highly specialized hyperparasites, which infect and reproduce inside gregarines (Apicomplexa) inhabiting marine invertebrates. Their phylogenetic affiliation was under constant discussion until recently, when analysis of the first near-complete metchnikovellid genome, that of Amphiamblys sp., placed it in a basal position with respect to most Microsporidia. Microsporidia are a highly diversified lineage of extremely reduced parasites related to Rozellida (Rozellosporidia = Rozellomycota = Cryptomycota) within the Holomycota clade of Opisthokonta. By sequencing DNA from a single-isolated infected gregarine cell we obtained an almost complete genome of a second metchnikovellid species, and the first one of a taxonomically described and well-documented species, Metchnikovella incurvata. Our phylogenomic analyses show that, despite being considerably divergent from each other, M. incurvata forms a monophyletic group with Amphiamplys sp., and confirm that metchnikovellids are one of the deep branches of Microsporidia. Comparative genomic analysis demonstrates that, like most Microsporidia, metchnikovellids lack mitochondrial genes involved in energy transduction and are thus incapable of synthesizing their own ATP via mitochondrial oxidative phosphorylation. They also lack the horizontally acquired ATP transporters widespread in most Microsporidia. We hypothesize that a family of mitochondrial carrier proteins evolved to transport ATP from the host into the metchnikovellid cell. We observe the progressive reduction of genes involved in DNA repair pathways along the evolutionary path of Microsporidia, which might explain, at least partly, the extremely high evolutionary rate of the most derived species. Our data also suggest that genome reduction and acquisition of novel genes co-occurred during the adaptation of Microsporidia to their hosts.
Collapse
Affiliation(s)
- Luis Javier Galindo
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Guifré Torruella
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Hélène Timpano
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Gita Paskerova
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia
| | - Elena Nassonova
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia.,Laboratory of Cytology of Unicellular Organisms, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
79
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|