51
|
Dogan M, Mandáková T, Guo X, Lysak MA. Idahoa and Subularia: Hidden polyploid origins of two enigmatic genera of crucifers. AMERICAN JOURNAL OF BOTANY 2022; 109:1273-1289. [PMID: 35912547 DOI: 10.1002/ajb2.16042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
PREMISE The monotypic Idahoa (I. scapigera) and the bispecific Subularia (S. aquatica and S. monticola) belong to Brassicaceae with unclear phylogenetic relationships and no tribal assignment. To fill this knowledge gap, we investigated these species and their closest relatives by combining cytogenomic and phylogenomic methods. METHODS We used whole plastome sequences in maximum likelihood and Bayesian inference analyses. We tested the phylogenetic informativeness of shared genomic repeats. We combined nuclear gene tree reconciliation and comparative chromosome painting (CCP) to examine the occurrence of past whole-genome duplications (WGDs). RESULTS The plastid data set corroborated the sister relationship between Idahoa and Subularia within the crucifer Lineage V but failed to resolve consistent topologies using both inference methods. The shared repetitive sequences provided conflicting pwhylogenetic signals. CCP analysis unexpectedly revealed that Idahoa (2n = 16) has a diploidized mesotetraploid genome, whereas two Subularia species (2n = 28 and 30) have diploidized mesoctoploid genomes. Several ancient allopolyploidy events have also been detected in closely related taxa (Chamira circaeoides, Cremolobeae, Eudemeae, and Notothlaspideae). CONCLUSIONS Our results suggest that the contentious phylogenetic placement of Idahoa and Subularia is best explained by two WGDs involving one or more shared parental genomes. The newly identified mesopolyploid genomes highlight the challenges of studying plant clades with complex polyploidy histories and provide a better framework for understanding genome evolution in the crucifer family.
Collapse
Affiliation(s)
- Mert Dogan
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Terezie Mandáková
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Xinyi Guo
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Martin A Lysak
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| |
Collapse
|
52
|
Sianta SA, Kay KM. Phylogenomic analysis does not support a classic but controversial hypothesis of progenitor-derivative origins for the serpentine endemic Clarkia franciscana. Evolution 2022; 76:1246-1259. [PMID: 35403214 PMCID: PMC9322428 DOI: 10.1111/evo.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 01/21/2023]
Abstract
Budding speciation involves isolation of marginal populations at the periphery of a species range and is thought to be a prominent mode of speciation in organisms with low dispersal and/or strong local adaptation among populations. Budding speciation is typically evidenced by abutting, asymmetric ranges of ecologically divergent sister species and low genetic diversity in putative budded species. Yet these indirect patterns may be unreliable, instead caused by postspeciation processes such as range or demographic shifts. Nested phylogenetic relationships provide the most conclusive evidence of budding speciation. A putative case of budding speciation in the serpentine endemic Clarkia franciscana and two closely related widespread congeners was studied by Harlan Lewis, Peter Raven, Leslie Gottlieb, and others over a 20-year period, yet the origin of C. franciscana remains controversial. Here, we reinvestigate this system with phylogenomic analyses to determine whether C. franciscana is a recently derived budded species, phylogenetically nested within one of the other two putative progenitor species. In contrast to the hypothesized pattern of relatedness among the three Clarkia species, we find no evidence for recent budding speciation. Instead, the data suggest the three species diverged simultaneously. We urge caution in using contemporary range patterns to infer geographic modes of speciation.
Collapse
Affiliation(s)
- Shelley A. Sianta
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCalifornia95060,Current Address: Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesota55108
| | - Kathleen M. Kay
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCalifornia95060
| |
Collapse
|
53
|
Lagomarsino LP, Frankel L, Uribe-Convers S, Antonelli A, Muchhala N. Increased resolution in the face of conflict: phylogenomics of the Neotropical bellflowers (Campanulaceae: Lobelioideae), a rapid plant radiation. ANNALS OF BOTANY 2022; 129:723-736. [PMID: 35363863 PMCID: PMC9113290 DOI: 10.1093/aob/mcac046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/24/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS The centropogonid clade (Lobelioideae: Campanulaceae) is an Andean-centred rapid radiation characterized by repeated convergent evolution of morphological traits, including fruit type and pollination syndromes. While previous studies have resolved relationships of lineages with fleshy fruits into subclades, relationships among capsular species remain unresolved. This lack of resolution has impeded reclassification of non-monophyletic genera, whose current taxonomy relies heavily on traits that have undergone convergent evolution. METHODS Targeted sequence capture using a probe-set recently developed for the centropogonid clade was used to obtain phylogenomic data from DNA extracted from both silica-dried and herbarium leaf tissue. These data were used to infer relationships among species using concatenated and partitioned species tree methods, and to quantify gene tree discordance. KEY RESULTS While silica-dried leaf tissue resulted in longer assembled sequence data, the inclusion of herbarium samples improved taxonomic representation. Relationships among baccate lineages are similar to those inferred in previous studies, although they differ for lineages within and among capsular clades. We improve the phylogenetic resolution of Siphocampylus, which forms ten groups of closely related species which we informally name. Two subclades of Siphocampylus and two individual species are rogue taxa whose placement differs widely across analyses. Gene tree discordance (including cytonuclear discordance) is rampant. CONCLUSIONS This first phylogenomic study of the centropogonid clade considerably improves our understanding of relationships in this rapid radiation. Differences across analyses and the possibility of additional lineage discoveries still hamper a solid and stable reclassification. Rapid morphological innovation corresponds with a high degree of phylogenomic complexity, including cytonuclear discordance, nuclear gene tree conflict and well-supported differences between analyses based on different nuclear loci. Together, these results point to a potential role of hemiplasy underlying repeated convergent evolution. This hallmark of rapid radiations is probably present in many other species-rich Andean plant radiations.
Collapse
Affiliation(s)
- Laura P Lagomarsino
- Shirley C. Tucker Herbarium, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Lauren Frankel
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Simon Uribe-Convers
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
- Invitae Corporation, San Francisco, CA, USA
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, TW9 3AE, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
- Department of Plant Science, University of Oxford, Oxford, UK
| | - Nathan Muchhala
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| |
Collapse
|
54
|
Wang Y, Ruhsam M, Milne R, Graham SW, Li J, Tao T, Zhang Y, Mao K. Incomplete lineage sorting and local extinction shaped the complex evolutionary history of the Paleogene relict conifer genus, Chamaecyparis (Cupressaceae). Mol Phylogenet Evol 2022; 172:107485. [PMID: 35452840 DOI: 10.1016/j.ympev.2022.107485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022]
Abstract
Inferring accurate biogeographic history of plant taxa with an East Asia (EA)-North America (NA) is usually hindered by conflicting phylogenies and a poor fossil record. The current distribution of Chamaecyparis (false cypress; Cupressaceae) with four species in EA, and one each in western and eastern NA, and its relatively rich fossil record, make it an excellent model for studying the EA-NA disjunction. Here we reconstruct phylogenomic relationships within Chamaecyparis using > 1400 homologous nuclear and 61 plastid genes. Our phylogenomic analyses using concatenated and coalescent approaches revealed strong cytonuclear discordance and conflicting topologies between nuclear gene trees. Incomplete lineage sorting (ILS) and hybridization are possible explanations of conflict; however, our coalescent analyses and simulations suggest that ILS is the major contributor to the observed phylogenetic discrepancies. Based on a well-resolved species tree and four fossil calibrations, the crown lineage of Chamaecyparis is estimated to have originated in the upper Cretaceous, followed by diversification events in the early and middle Paleogene. Ancestral area reconstructions suggest that Chamaecyparis had an ancestral range spanning both EA and NA. Fossil records further indicate that this genus is a relict of the "boreotropical" flora, and that local extinctions of European species were caused by global cooling. Overall, our results unravel a complex evolutionary history of a Paleogene relict conifer genus, which may have involved ILS, hybridization and the extinction of local species.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Richard Milne
- Institute of Molecular Plant Science, School of Biological Science, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Tongzhou Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yujiao Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China; College of Science, Tibet University, Lhasa 850000, Xizang Autonomous Region, PR China.
| |
Collapse
|
55
|
Zhang Q, Zhao L, Folk RA, Zhao JL, Zamora NA, Yang SX, Soltis DE, Soltis PS, Gao LM, Peng H, Yu XQ. Phylotranscriptomics of Theaceae: generic-level relationships, reticulation and whole-genome duplication. ANNALS OF BOTANY 2022; 129:457-471. [PMID: 35037017 PMCID: PMC8944729 DOI: 10.1093/aob/mcac007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/16/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Theaceae, with three tribes, nine genera and more than 200 species, are of great economic and ecological importance. Recent phylogenetic analyses based on plastomic data resolved the relationships among the three tribes and the intergeneric relationships within two of those tribes. However, generic-level relationships within the largest tribe, Theeae, were not fully resolved. The role of putative whole-genome duplication (WGD) events in the family and possible hybridization events among genera within Theeae also remain to be tested further. METHODS Transcriptomes or low-depth whole-genome sequencing of 57 species of Theaceae, as well as additional plastome sequence data, were generated. Using a dataset of low-copy nuclear genes, we reconstructed phylogenetic relationships using concatenated, species tree and phylogenetic network approaches. We further conducted molecular dating analyses and inferred possible WGD events by examining the distribution of the number of synonymous substitutions per synonymous site (Ks) for paralogues in each species. For plastid protein-coding sequences , phylogenies were reconstructed for comparison with the results obtained from analysis of the nuclear dataset. RESULTS Based on the 610 low-copy nuclear genes (858 606 bp in length) investigated, Stewartieae was resolved as sister to the other two tribes. Within Theeae, the Apterosperma-Laplacea clade grouped with Pyrenaria, leaving Camellia and Polyspora as sister. The estimated ages within Theaceae were largely consistent with previous studies based mainly on plastome data. Two reticulation events within Camellia and one between the common ancestor of Gordonia and Schima were found. All members of the tea family shared two WGD events, an older At-γ and a recent Ad-β; both events were also shared with the outgroups (Diapensiaceae, Pentaphylacaceae, Styracaceae and Symplocaceae). CONCLUSIONS Our analyses using low-copy nuclear genes improved understanding of phylogenetic relationships at the tribal and generic levels previously proposed based on plastome data, but the phylogenetic position of the Apterosperma-Laplacea clade needs more attention. There is no evidence for extensive intergeneric hybridization within Theeae or for a Theaceae-specific WGD event. Land bridges (e.g. the Bering land bridge) during the Late Oligocene may have permitted the intercontinental plant movements that facilitated the putative ancient introgression between the common ancestor of Gordonia and Schima.
Collapse
Affiliation(s)
- Qiong Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, MS, USA
| | - Jian-Li Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
| | - Nelson A Zamora
- National Herbarium of Costa Rica (CR), Natural History Department of National Museum of Costa Rica, San José, Costa Rica
| | - Shi-Xiong Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Lijiang Forest Ecosystem National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, China
| | | | | |
Collapse
|
56
|
Guo M, Pang X, Xu Y, Jiang W, Liao B, Yu J, Xu J, Song J, Chen S. Plastid genome data provide new insights into the phylogeny and evolution of the genus Epimedium. J Adv Res 2022; 36:175-185. [PMID: 35127172 PMCID: PMC8799909 DOI: 10.1016/j.jare.2021.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/14/2021] [Accepted: 06/26/2021] [Indexed: 10/25/2022] Open
|
57
|
Wu H, Yang JB, Liu JX, Li DZ, Ma PF. Organelle Phylogenomics and Extensive Conflicting Phylogenetic Signals in the Monocot Order Poales. FRONTIERS IN PLANT SCIENCE 2022; 12:824672. [PMID: 35173754 PMCID: PMC8841755 DOI: 10.3389/fpls.2021.824672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The Poales is one of the largest orders of flowering plants with significant economic and ecological values. Reconstructing the phylogeny of the Poales is important for understanding its evolutionary history that forms the basis for biological studies. However, due to sparse taxon sampling and limited molecular data, previous studies have resulted in a variety of contradictory topologies. In particular, there are three nodes surrounded by incongruence: the phylogenetic ambiguity near the root of the Poales tree, the sister family of Poaceae, and the delimitation of the xyrid clade. We conducted a comprehensive sampling and reconstructed the phylogenetic tree using plastid and mitochondrial genomic data from 91 to 66 taxa, respectively, representing all the 16 families of Poales. Our analyses support the finding of Bromeliaceae and Typhaceae as the earliest diverging groups within the Poales while having phylogenetic relationships with the polytomy. The clade of Ecdeiocoleaceae and Joinvilleaceae is recovered as the sister group of Poaceae. The three families, Mayacaceae, Eriocaulaceae, and Xyridaceae, of the xyrid assembly diverged successively along the backbone of the Poales phylogeny, and thus this assembly is paraphyletic. Surprisingly, we find substantial phylogenetic conflicts within the plastid genomes of the Poales, as well as among the plastid, mitochondrial, and nuclear data. These conflicts suggest that the Poales could have a complicated evolutionary history, such as rapid radiation and polyploidy, particularly allopolyploidy through hybridization. In sum, our study presents a new perspicacity into the complex phylogenetic relationships and the underlying phylogenetic conflicts within the Poales.
Collapse
Affiliation(s)
- Hong Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
58
|
Sun QH, Morales-Briones DF, Wang HX, Landis JB, Wen J, Wang HF. Phylogenomic analyses of the East Asian endemic Abelia (Caprifoliaceae) shed insights into the temporal and spatial diversification history with widespread hybridization. ANNALS OF BOTANY 2022; 129:201-216. [PMID: 34950959 PMCID: PMC8796676 DOI: 10.1093/aob/mcab139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/15/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Abelia (Caprifoliaceae) is a small genus with five species, including one artificial hybrid and several natural hybrids. The genus has a discontinuous distribution in Mainland China, Taiwan Island and the Ryukyu Islands, providing a model system to explore the mechanisms of species dispersal in the East Asian flora. However, the current phylogenetic relationships within Abelia remain uncertain. METHODS We reconstructed the phylogenetic relationships within Abelia using nuclear loci generated by target enrichment and plastomes from genome skimming. Divergence time estimation, ancestral area reconstruction and ecological niche modelling (ENM) were used to examine the diversification history of Abelia. KEY RESULTS We found extensive cytonuclear discordance across the genus. By integrating lines of evidence from molecular phylogenies, divergence times and morphology, we propose to merge Abelia macrotera var. zabelioides into A. uniflora. Network analyses suggested that there have been multiple widespread hybridization events among Abelia species. These hybridization events may have contributed to the speciation mechanism and resulted in the high observed morphological diversity. The diversification of Abelia began in the early Eocene, followed by A. chinensis var. ionandra colonizing Taiwan Island during the Middle Miocene. The ENM results suggested an expansion of climatically suitable areas during the Last Glacial Maximum and range contraction during the Last Interglacial. Disjunction between the Himalayan-Hengduan Mountain region and Taiwan Island is probably the consequence of topographical isolation and postglacial contraction. CONCLUSIONS We used genomic data to reconstruct the phylogeny of Abelia and found a clear pattern of reticulate evolution in the group. In addition, our results suggest that shrinkage of postglacial range and the heterogeneity of the terrain have led to the disjunction between Mainland China and Taiwan Island. This study provides important new insights into the speciation process and taxonomy of Abelia.
Collapse
Affiliation(s)
- Qing-Hui Sun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Tropical Crops, Hainan University, Haikou, China
| | - Diego F Morales-Briones
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, 140 Gortner Laboratory, Saint Paul, MN, USA
- Systematics, Biodiversity and Evolution of Plants, Department of Biology I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany
| | - Hong-Xin Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Tropical Crops, Hainan University, Haikou, China
- Zhai Mingguo Academician Work Station, Sanya University, Sanya, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, Washington, DC, USA
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
59
|
Xiao TW, Yan HF, Ge XJ. Plastid phylogenomics of tribe Perseeae (Lauraceae) yields insights into the evolution of East Asian subtropical evergreen broad-leaved forests. BMC PLANT BIOLOGY 2022; 22:32. [PMID: 35027008 PMCID: PMC8756638 DOI: 10.1186/s12870-021-03413-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/17/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND The East Asian subtropical evergreen broad-leaved forests (EBLFs) harbor remarkable biodiversity. However, their historical assembly remains unclear. To gain new insights into the assembly of this biome, we generated a molecular phylogeny of one of its essential plant groups, the tribe Perseeae (Lauraceae). RESULTS Our plastid tree topologies were robust to analyses based on different plastid regions and different strategies for data partitioning, nucleotide substitution saturation, and gap handling. We found that tribe Perseeae comprised six major clades and began to colonize the subtropical EBLFs of East Asia in the early Miocene. The diversification rates of tribe Perseeae accelerated twice in the late Miocene. CONCLUSIONS Our findings suggest that the intensified precipitation in East Asia in the early Miocene may have facilitated range expansions of the subtropical EBLFs and establishment of tribe Perseeae within this biome. By the late Miocene, species assembly and diversification within the EBLFs had become rapid.
Collapse
Affiliation(s)
- Tian-Wen Xiao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
60
|
Hsieh CL, Yu CC, Huang YL, Chung KF. Mahonia vs. Berberis Unloaded: Generic Delimitation and Infrafamilial Classification of Berberidaceae Based on Plastid Phylogenomics. FRONTIERS IN PLANT SCIENCE 2022; 12:720171. [PMID: 35069611 PMCID: PMC8770955 DOI: 10.3389/fpls.2021.720171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/15/2021] [Indexed: 05/12/2023]
Abstract
The early-diverging eudicot family Berberidaceae is composed of a morphologically diverse assemblage of disjunctly distributed genera long praised for their great horticultural and medicinal values. However, despite century-long studies, generic delimitation of Berberidaceae remains controversial and its tribal classification has never been formally proposed under a rigorous phylogenetic context. Currently, the number of accepted genera in Berberidaceae ranges consecutively from 13 to 19, depending on whether to define Berberis, Jeffersonia, and Podophyllum broadly, or to segregate these three genera further and recognize Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Dysosma, Diphylleia, and Sinopodophyllum, respectively. To resolve Berberidaceae's taxonomic disputes, we newly assembled 23 plastomes and, together with 85 plastomes from the GenBank, completed the generic sampling of the family. With 4 problematic and 14 redundant plastome sequences excluded, robust phylogenomic relationships were reconstructed based on 93 plastomes representing all 19 genera of Berberidaceae and three outgroups. Maximum likelihood phylogenomic relationships corroborated with divergence time estimation support the recognition of three subfamilies Berberidoideae, Nandinoideae, and Podophylloideae, with tribes Berberideae and Ranzanieae, Leonticeae and Nandineae, and Podophylleae, Achlydeae, Bongardieae tr. nov., Epimedieae, and Jeffersonieae tr. nov. in the former three subfamilies, respectively. By applying specifically stated criteria, our phylogenomic data also support the classification of 19 genera, recognizing Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Diphylleia, Dysosma, and Sinopodophyllum that are morphologically and evolutionarily distinct from Berberis, Jeffersonia, and Podophyllum, respectively. Comparison of plastome structures across Berberidaceae confirms inverted repeat expansion in the tribe Berberideae and reveals substantial length variation in accD gene caused by repeated sequences in Berberidoideae. Comparison of plastome tree with previous studies and nuclear ribosomal DNA (nrDNA) phylogeny also reveals considerable conflicts at different phylogenetic levels, suggesting that incomplete lineage sorting and/or hybridization had occurred throughout the evolutionary history of Berberidaceae and that Alloberberis and Moranothamnus could have resulted from reciprocal hybridization between Berberis and Mahonia in ancient times prior to the radiations of the latter two genera.
Collapse
Affiliation(s)
- Chia-Lun Hsieh
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Chieh Yu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Yu-Lan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuo-Fang Chung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
61
|
Morales-Briones DF, Gehrke B, Huang CH, Liston A, Ma H, Marx HE, Tank DC, Yang Y. Analysis of Paralogs in Target Enrichment Data Pinpoints Multiple Ancient Polyploidy Events in Alchemilla s.l. (Rosaceae). Syst Biol 2021; 71:190-207. [PMID: 33978764 PMCID: PMC8677558 DOI: 10.1093/sysbio/syab032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Target enrichment is becoming increasingly popular for phylogenomic studies. Although baits for enrichment are typically designed to target single-copy genes, paralogs are often recovered with increased sequencing depth, sometimes from a significant proportion of loci, especially in groups experiencing whole-genome duplication (WGD) events. Common approaches for processing paralogs in target enrichment data sets include random selection, manual pruning, and mainly, the removal of entire genes that show any evidence of paralogy. These approaches are prone to errors in orthology inference or removing large numbers of genes. By removing entire genes, valuable information that could be used to detect and place WGD events is discarded. Here, we used an automated approach for orthology inference in a target enrichment data set of 68 species of Alchemilla s.l. (Rosaceae), a widely distributed clade of plants primarily from temperate climate regions. Previous molecular phylogenetic studies and chromosome numbers both suggested ancient WGDs in the group. However, both the phylogenetic location and putative parental lineages of these WGD events remain unknown. By taking paralogs into consideration and inferring orthologs from target enrichment data, we identified four nodes in the backbone of Alchemilla s.l. with an elevated proportion of gene duplication. Furthermore, using a gene-tree reconciliation approach, we established the autopolyploid origin of the entire Alchemilla s.l. and the nested allopolyploid origin of four major clades within the group. Here, we showed the utility of automated tree-based orthology inference methods, previously designed for genomic or transcriptomic data sets, to study complex scenarios of polyploidy and reticulate evolution from target enrichment data sets.[Alchemilla; allopolyploidy; autopolyploidy; gene tree discordance; orthology inference; paralogs; Rosaceae; target enrichment; whole genome duplication.].
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108, USA
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID 83844, USA
| | - Berit Gehrke
- University Gardens, University Museum, University of Bergen, Mildeveien 240, 5259 Hjellestad, Norway
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331, USA
| | - Hong Ma
- Department of Biology, the Huck Institute of the Life Sciences, the Pennsylvania State University, 510D Mueller Laboratory, University Park, PA 16802 USA
| | - Hannah E Marx
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - David C Tank
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID 83844, USA
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| |
Collapse
|
62
|
Chen S, Milne R, Zhou R, Meng K, Yin Q, Guo W, Ma Y, Mao K, Xu K, Kim YD, Do TV, Liao W, Fan Q. When tropical and subtropical congeners met: Multiple ancient hybridization events within Eriobotrya in the Yunnan-Guizhou Plateau, a tropical-subtropical transition area in China. Mol Ecol 2021; 31:1543-1561. [PMID: 34910340 DOI: 10.1111/mec.16325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023]
Abstract
Global climate changes during the Miocene may have created ample opportunities for hybridization between members of tropical and subtropical biomes at the boundary between these zones. Yet, very few studies have explored this possibility. The Yunnan-Guizhou Plateau (YGP) in Southwest China is a biodiversity hotspot for vascular plants, located in a transitional area between the floristic regions of tropical Southeast Asia and subtropical East Asia. The genus Eriobotrya (Rosaceae) comprises both tropical and subtropical taxa, with 12 species recorded in the YGP, making it a suitable basis for testing the hypothesis of between-biome hybridization. Therefore, we surveyed the evolutionary history of Eriobotrya by examining three chloroplast regions and five nuclear genes for 817 individuals (47 populations) of 23 Eriobotrya species (including 19 populations of 12 species in the YGP), plus genome re-sequencing of 33 representative samples. We concluded that: (1) phylogenetic positions for 16 species exhibited strong cytonuclear conflicts, most probably due to ancient hybridization; (2) the YGP is a hotspot for hybridization, with 11 species showing clear evidence of chloroplast capture; and (3) Eriobotrya probably originated in tropical Asia during the Eocene. From the Miocene onwards, the intensification of the Eastern Asia monsoon and global cooling may have shifted the tropical-subtropical boundary and caused secondary contact between species, thus providing ample opportunity for hybridization and diversification of Eriobotrya, especially in the YGP. Our study highlights the significant role that paleoclimate changes probably played in driving hybridization and generating rich species diversity in climate transition zones.
Collapse
Affiliation(s)
- Sufang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Richard Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kaikai Meng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qianyi Yin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Guo
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongpeng Ma
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Kewang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Young-Dong Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon City, South Korea
| | - Truong Van Do
- Vietnam National Museum of Nature, Vietnam Academy of Science & Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science & Technology, Hanoi, Vietnam
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
63
|
Bedoya AM, Leaché AD, Olmstead RG. Andean uplift, drainage basin formation, and the evolution of plants living in fast-flowing aquatic ecosystems in northern South America. THE NEW PHYTOLOGIST 2021; 232:2175-2190. [PMID: 34318482 DOI: 10.1111/nph.17649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Northern South America is a geologically dynamic and species-rich region. Fossil and stratigraphic data show that mountain uplift in the tropical Andes reconfigured river drainages. These landscape changes shaped the evolution of the flora in the region, yet the impacts on aquatic taxa have been overlooked. We explore the role of landscape change on the evolution of plants living strictly in rivers across drainage basins in northern South America by conducting population structure, phylogenetic inference, and divergence-dating analyses for two species in the genus Marathrum (Podostemaceae). Mountain uplift and drainage basin formation isolated populations of M. utile and M. foeniculaceum in northern South America and created barriers to gene flow across river drainages. Sympatric species hybridize and the hybrids show the phenotype of one parental line. We propose that the pattern of divergence of populations reflects the formation of river drainages, which was not complete until < 4.1 million yr ago (Ma). Our study provides a clear picture of the role of landscape change on the evolution of plants living strictly in rivers in northern South America. By shifting the focus to aquatic taxa, we provide a novel perspective on the processes shaping the evolution of the Neotropical flora.
Collapse
Affiliation(s)
- Ana M Bedoya
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, 98195, USA
| | - Adam D Leaché
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, 98195, USA
| | - Richard G Olmstead
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
64
|
Rose JP, Kriebel R, Kahan L, DiNicola A, González-Gallegos JG, Celep F, Lemmon EM, Lemmon AR, Sytsma KJ, Drew BT. Sage Insights Into the Phylogeny of Salvia: Dealing With Sources of Discordance Within and Across Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:767478. [PMID: 34899789 PMCID: PMC8652245 DOI: 10.3389/fpls.2021.767478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Next-generation sequencing technologies have facilitated new phylogenomic approaches to help clarify previously intractable relationships while simultaneously highlighting the pervasive nature of incongruence within and among genomes that can complicate definitive taxonomic conclusions. Salvia L., with ∼1,000 species, makes up nearly 15% of the species diversity in the mint family and has attracted great interest from biologists across subdisciplines. Despite the great progress that has been achieved in discerning the placement of Salvia within Lamiaceae and in clarifying its infrageneric relationships through plastid, nuclear ribosomal, and nuclear single-copy genes, the incomplete resolution has left open major questions regarding the phylogenetic relationships among and within the subgenera, as well as to what extent the infrageneric relationships differ across genomes. We expanded a previously published anchored hybrid enrichment dataset of 35 exemplars of Salvia to 179 terminals. We also reconstructed nearly complete plastomes for these samples from off-target reads. We used these data to examine the concordance and discordance among the nuclear loci and between the nuclear and plastid genomes in detail, elucidating both broad-scale and species-level relationships within Salvia. We found that despite the widespread gene tree discordance, nuclear phylogenies reconstructed using concatenated, coalescent, and network-based approaches recover a common backbone topology. Moreover, all subgenera, except for Audibertia, are strongly supported as monophyletic in all analyses. The plastome genealogy is largely resolved and is congruent with the nuclear backbone. However, multiple analyses suggest that incomplete lineage sorting does not fully explain the gene tree discordance. Instead, horizontal gene flow has been important in both the deep and more recent history of Salvia. Our results provide a robust species tree of Salvia across phylogenetic scales and genomes. Future comparative analyses in the genus will need to account for the impacts of hybridization/introgression and incomplete lineage sorting in topology and divergence time estimation.
Collapse
Affiliation(s)
- Jeffrey P. Rose
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
- Department of Botany, University of Wisconsin–Madison, Madison, WI, United States
| | - Ricardo Kriebel
- Department of Botany, University of Wisconsin–Madison, Madison, WI, United States
| | - Larissa Kahan
- Department of Botany, University of Wisconsin–Madison, Madison, WI, United States
| | - Alexa DiNicola
- Department of Botany, University of Wisconsin–Madison, Madison, WI, United States
| | | | - Ferhat Celep
- Department of Biology, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, Turkey
| | - Emily M. Lemmon
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Alan R. Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, United States
| | - Kenneth J. Sytsma
- Department of Botany, University of Wisconsin–Madison, Madison, WI, United States
| | - Bryan T. Drew
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| |
Collapse
|
65
|
Liston A, Weitemier KA, Letelier L, Podani J, Zong Y, Liu L, Dickinson TA. Phylogeny of Crataegus (Rosaceae) based on 257 nuclear loci and chloroplast genomes: evaluating the impact of hybridization. PeerJ 2021; 9:e12418. [PMID: 34754629 PMCID: PMC8555502 DOI: 10.7717/peerj.12418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022] Open
Abstract
Background Hawthorn species (Crataegus L.; Rosaceae tribe Maleae) form a well-defined clade comprising five subgeneric groups readily distinguished using either molecular or morphological data. While multiple subsidiary groups (taxonomic sections, series) are recognized within some subgenera, the number of and relationships among species in these groups are subject to disagreement. Gametophytic apomixis and polyploidy are prevalent in the genus, and disagreement concerns whether and how apomictic genotypes should be recognized taxonomically. Recent studies suggest that many polyploids arise from hybridization between members of different infrageneric groups. Methods We used target capture and high throughput sequencing to obtain nucleotide sequences for 257 nuclear loci and nearly complete chloroplast genomes from a sample of hawthorns representing all five currently recognized subgenera. Our sample is structured to include two examples of intersubgeneric hybrids and their putative diploid and tetraploid parents. We queried the alignment of nuclear loci directly for evidence of hybridization, and compared individual gene trees with each other, and with both the maximum likelihood plastome tree and the nuclear concatenated and multilocus coalescent-based trees. Tree comparisons provided a promising, if challenging (because of the number of comparisons involved) method for visualizing variation in tree topology. We found it useful to deploy comparisons based not only on tree-tree distances but also on a metric of tree-tree concordance that uses extrinsic information about the relatedness of the terminals in comparing tree topologies. Results We obtained well-supported phylogenies from plastome sequences and from a minimum of 244 low copy-number nuclear loci. These are consistent with a previous morphology-based subgeneric classification of the genus. Despite the high heterogeneity of individual gene trees, we corroborate earlier evidence for the importance of hybridization in the evolution of Crataegus. Hybridization between subgenus Americanae and subgenus Sanguineae was documented for the origin of Sanguineae tetraploids, but not for a tetraploid Americanae species. This is also the first application of target capture probes designed with apple genome sequence. We successfully assembled 95% of 257 loci in Crataegus, indicating their potential utility across the genera of the apple tribe.
Collapse
Affiliation(s)
- Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America
| | - Kevin A Weitemier
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America.,Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States of America
| | - Lucas Letelier
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America
| | - János Podani
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Lorand University, Budapest, Hungary
| | - Yu Zong
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America.,College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Lang Liu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Timothy A Dickinson
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
66
|
Li J, Zhang Y, Ruhsam M, Milne RI, Wang Y, Wu D, Jia S, Tao T, Mao K. Seeing through the hedge: Phylogenomics of Thuja (Cupressaceae) reveals prominent incomplete lineage sorting and ancient introgression for Tertiary relict flora. Cladistics 2021; 38:187-203. [PMID: 34551153 DOI: 10.1111/cla.12491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/15/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
The Eastern Asia (EA) - North America (NA) disjunction is a well-known biogeographic pattern of the Tertiary relict flora; however, few studies have investigated the evolutionary history of this disjunction using a phylogenomic approach. Here, we used 2369 single copy nuclear genes and nearly full plastomes to reconstruct the evolutionary history of the small Tertiary relict genus Thuja, which consists of five disjunctly distributed species. The nuclear species tree strongly supported an EA clade Thuja standishii-Thuja sutchuenensis and a "disjunct clade", where western NA species T. plicata is sister to an EA-eastern NA disjunct Thuja occidentalis-Thuja koraiensis group. Our results suggested that the observed topological discordance among the gene trees as well as the cytonuclear discordance is mainly due to incomplete lineage sorting, probably facilitated by the fast diversification of Thuja around the Early Miocene and the large effective population sizes of ancestral lineages. Furthermore, approximately 20% of the T. sutchuenensis nuclear genome is derived from an unknown ancestral lineage of Thuja, which might explain the close resemblance of its cone morphology to that of an ancient fossil species. Overall, our study demonstrates that single genes may not resolve interspecific relationships for disjunct taxa, and that more reliable results will come from hundreds or thousands of loci, revealing a more complex evolutionary history. This will steadily improve our understanding of their origin and evolution.
Collapse
Affiliation(s)
- Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yujiao Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Richard Ian Milne
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Yi Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Dayu Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Shiyu Jia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Tongzhou Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.,College of Science, Tibet University, Lhasa, Xizang Autonomous Region, 850012, China
| |
Collapse
|
67
|
Gichira AW, Chen L, Li Z, Hu G, Saina JK, Gituru RW, Wang Q, Chen J. Plastid phylogenomics and insights into the inter-mountain dispersal of the Eastern African giant senecios (Dendrosenecio, Asteraceae). Mol Phylogenet Evol 2021; 164:107271. [PMID: 34332034 DOI: 10.1016/j.ympev.2021.107271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
Giant senecios (Dendrosenecio, Asteraceae), endemic to the tropical mountains of Eastern Africa, are one of the most conspicuous alpine plant groups in the world. Although the group has received substantial attention from researchers, its infrageneric relationships are contentious, and the speciation history remains poorly understood. In this study, whole chloroplast genome sequences of 46 individuals were used to reconstruct the phylogeny of giant senecios using Maximum Likelihood and Bayesian Inference methods. The divergence times of this emblematic group were estimated using fossil-based calibrations. Additionally, the ancestral areas were inferred, and ecological niche modeling was used to predict their suitable habitats. Phylogenetic analyses yielded two robustly supported clades. One clade included taxa sampled from Tanzania, while the other clade included species from other regions. Giant senecios likely originated from the North of Tanzania approximately 2.3 million years ago (highest posterior density 95%; 0.77-4.40), then rapidly radiated into the Kenyan and Ugandan mountains within the last one million years. The potential routes of dispersal have been proposed based on the inferred ancestral areas, estimated time, and predicted past suitable niches. Plio-Pleistocene climate oscillations and orogeny instigated early divergence of the genus. Whereas in situ radiation of giant senecios was chiefly driven by multiple long-distance dispersal events followed by episodes of vicariance, and allopatric speciation (geographic and/or altitudinal).
Collapse
Affiliation(s)
- Andrew W Gichira
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Conservation Biology, Core Botanic Gardens, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino‑Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lingyun Chen
- Center of Conservation Biology, Core Botanic Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino‑Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhizhong Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Conservation Biology, Core Botanic Gardens, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwan Hu
- Center of Conservation Biology, Core Botanic Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino‑Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Josphat K Saina
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Conservation Biology, Core Botanic Gardens, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino‑Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Robert W Gituru
- Sino‑Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China; Department of Botany, Jomo Kenyatta University of Agriculture and Technology, 62000-00200 Nairobi, Kenya
| | - Qingfeng Wang
- Center of Conservation Biology, Core Botanic Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino‑Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Jinming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Conservation Biology, Core Botanic Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
68
|
Ufimov R, Zeisek V, Píšová S, Baker WJ, Fér T, van Loo M, Dobeš C, Schmickl R. Relative performance of customized and universal probe sets in target enrichment: A case study in subtribe Malinae. APPLICATIONS IN PLANT SCIENCES 2021; 9:e11442. [PMID: 34336405 PMCID: PMC8312748 DOI: 10.1002/aps3.11442] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/09/2021] [Indexed: 05/10/2023]
Abstract
PREMISE Custom probe design for target enrichment in phylogenetics is tedious and often hinders broader phylogenetic synthesis. The universal angiosperm probe set Angiosperms353 may be the solution. Here, we test the relative performance of Angiosperms353 on the Rosaceae subtribe Malinae in comparison with custom probes that we specifically designed for this clade. We then address the impact of bioinformatically altering the performance of Angiosperms353 by replacing the original probe sequences with orthologs extracted from the Malus domestica genome. METHODS To evaluate the relative performance of these probe sets, we compared the enrichment efficiency, locus recovery, alignment length, proportion of parsimony-informative sites, proportion of potential paralogs, the topology and support of the resulting species trees, and the gene tree discordance. RESULTS Locus recovery was highest for our custom Malinae probe set, and replacing the original Angiosperms353 sequences with a Malus representative improved the locus recovery relative to Angiosperms353. The proportion of parsimony-informative sites was similar between all probe sets, while the gene tree discordance was lower in the case of the custom probes. DISCUSSION A custom probe set benefits from data completeness and can be tailored toward the specificities of the project of choice; however, Angiosperms353 was equally as phylogenetically informative as the custom probes. We therefore recommend using both a custom probe set and Angiosperms353 to facilitate large-scale systematic studies, where financially possible.
Collapse
Affiliation(s)
- Roman Ufimov
- Department of Forest Growth, Silviculture and GeneticsAustrian Research Centre for ForestsSeckendorff‐Gudent‐Weg 8Vienna1130Austria
- Komarov Botanical InstituteRussian Academy of Sciencesul. Prof. Popova 2St. Petersburg197376Russian Federation
| | - Vojtěch Zeisek
- Institute of BotanyThe Czech Academy of SciencesZámek 1Průhonice252 43Czech Republic
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2Prague128 01Czech Republic
| | - Soňa Píšová
- Department of Forest Growth, Silviculture and GeneticsAustrian Research Centre for ForestsSeckendorff‐Gudent‐Weg 8Vienna1130Austria
- Institute of BotanyThe Czech Academy of SciencesZámek 1Průhonice252 43Czech Republic
| | | | - Tomáš Fér
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2Prague128 01Czech Republic
| | - Marcela van Loo
- Department of Forest Growth, Silviculture and GeneticsAustrian Research Centre for ForestsSeckendorff‐Gudent‐Weg 8Vienna1130Austria
| | - Christoph Dobeš
- Department of Forest Growth, Silviculture and GeneticsAustrian Research Centre for ForestsSeckendorff‐Gudent‐Weg 8Vienna1130Austria
| | - Roswitha Schmickl
- Institute of BotanyThe Czech Academy of SciencesZámek 1Průhonice252 43Czech Republic
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2Prague128 01Czech Republic
| |
Collapse
|
69
|
Thomas AE, Igea J, Meudt HM, Albach DC, Lee WG, Tanentzap AJ. Using target sequence capture to improve the phylogenetic resolution of a rapid radiation in New Zealand Veronica. AMERICAN JOURNAL OF BOTANY 2021; 108:1289-1306. [PMID: 34173225 DOI: 10.1002/ajb2.1678] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/10/2021] [Indexed: 05/08/2023]
Abstract
PREMISE Recent, rapid radiations present a challenge for phylogenetic reconstruction. Fast successive speciation events typically lead to low sequence divergence and poorly resolved relationships with standard phylogenetic markers. Target sequence capture of many independent nuclear loci has the potential to improve phylogenetic resolution for rapid radiations. METHODS Here we applied target sequence capture with 353 protein-coding genes (Angiosperms353 bait kit) to Veronica sect. Hebe (common name hebe) to determine its utility for improving the phylogenetic resolution of rapid radiations. Veronica section Hebe originated 5-10 million years ago in New Zealand, forming a monophyletic radiation of ca 130 extant species. RESULTS We obtained approximately 150 kbp of 353 protein-coding exons and an additional 200 kbp of flanking noncoding sequences for each of 77 hebe and two outgroup species. When comparing coding, noncoding, and combined data sets, we found that the latter provided the best overall phylogenetic resolution. While some deep nodes in the radiation remained unresolved, our phylogeny provided broad and often improved support for subclades identified by both morphology and standard markers in previous studies. Gene-tree discordance was nonetheless widespread, indicating that additional methods are needed to disentangle fully the history of the radiation. CONCLUSIONS Phylogenomic target capture data sets both increase phylogenetic signal and deliver new insights into the complex evolutionary history of rapid radiations as compared with traditional markers. Improving methods to resolve remaining discordance among loci from target sequence capture is now important to facilitate the further study of rapid radiations.
Collapse
Affiliation(s)
- Anne E Thomas
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Javier Igea
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Heidi M Meudt
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Dirk C Albach
- Carl von Ossietzky-University, Oldenburg, D-26111, Germany
| | - William G Lee
- Manaaki Whenua - Landcare Research Otago, Dunedin, New Zealand
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
70
|
Pérez-Escobar OA, Dodsworth S, Bogarín D, Bellot S, Balbuena JA, Schley RJ, Kikuchi IA, Morris SK, Epitawalage N, Cowan R, Maurin O, Zuntini A, Arias T, Serna-Sánchez A, Gravendeel B, Torres Jimenez MF, Nargar K, Chomicki G, Chase MW, Leitch IJ, Forest F, Baker WJ. Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. AMERICAN JOURNAL OF BOTANY 2021; 108:1166-1180. [PMID: 34250591 DOI: 10.1002/ajb2.1702] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The inference of evolutionary relationships in the species-rich family Orchidaceae has hitherto relied heavily on plastid DNA sequences and limited taxon sampling. Previous studies have provided a robust plastid phylogenetic framework, which was used to classify orchids and investigate the drivers of orchid diversification. However, the extent to which phylogenetic inference based on the plastid genome is congruent with the nuclear genome has been only poorly assessed. METHODS We inferred higher-level phylogenetic relationships of orchids based on likelihood and ASTRAL analyses of 294 low-copy nuclear genes sequenced using the Angiosperms353 universal probe set for 75 species (representing 69 genera, 16 tribes, 24 subtribes) and a concatenated analysis of 78 plastid genes for 264 species (117 genera, 18 tribes, 28 subtribes). We compared phylogenetic informativeness and support for the nuclear and plastid phylogenetic hypotheses. RESULTS Phylogenetic inference using nuclear data sets provides well-supported orchid relationships that are highly congruent between analyses. Comparisons of nuclear gene trees and a plastid supermatrix tree showed that the trees are mostly congruent, but revealed instances of strongly supported phylogenetic incongruence in both shallow and deep time. The phylogenetic informativeness of individual Angiosperms353 genes is in general better than that of most plastid genes. CONCLUSIONS Our study provides the first robust nuclear phylogenomic framework for Orchidaceae and an assessment of intragenomic nuclear discordance, plastid-nuclear tree incongruence, and phylogenetic informativeness across the family. Our results also demonstrate what has long been known but rarely thoroughly documented: nuclear and plastid phylogenetic trees can contain strongly supported discordances, and this incongruence must be reconciled prior to interpretation in evolutionary studies, such as taxonomy, biogeography, and character evolution.
Collapse
Affiliation(s)
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2UP, UK
| | - Diego Bogarín
- Lankester Botanic Garden, University of Costa Rica, Cartago, Costa Rica
| | | | | | | | | | | | | | - Robyn Cowan
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
| | | | | | | | | | | | | | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Australia
- National Research Collections, Commonwealth Industrial and Scientific Research Organization, Australia
| | - Guillaume Chomicki
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mark W Chase
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, 6102, Australia
| | | | - Félix Forest
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
| | | |
Collapse
|
71
|
Nauheimer L, Weigner N, Joyce E, Crayn D, Clarke C, Nargar K. HybPhaser: A workflow for the detection and phasing of hybrids in target capture data sets. APPLICATIONS IN PLANT SCIENCES 2021; 9:APS311441. [PMID: 34336402 PMCID: PMC8312746 DOI: 10.1002/aps3.11441] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/28/2021] [Indexed: 05/24/2023]
Abstract
PREMISE Hybrids contain divergent alleles that can confound phylogenetic analyses but can provide insights into reticulated evolution when identified and phased. We developed a workflow to detect hybrids in target capture data sets and phase reads into parental lineages using a similarity and phylogenetic framework. METHODS We used Angiosperms353 target capture data for Nepenthes, including known hybrids to test the novel workflow. Reference mapping was used to assess heterozygous sites across the data set and to detect hybrid accessions and paralogous genes. Hybrid samples were phased by mapping reads to multiple references and sorting reads according to similarity. Phased accessions were included in the phylogenetic framework. RESULTS All known Nepenthes hybrids and nine additional samples had high levels of heterozygous sites, had reads associated with multiple divergent clades, and were phased into accessions resembling divergent haplotypes. Phylogenetic analysis including phased accessions increased clade support and confirmed parental lineages of hybrids. DISCUSSION HybPhaser provides a novel approach to detect and phase hybrids in target capture data sets, which can provide insights into reticulations by revealing origins of hybrids and reduce conflicting signal, leading to more robust phylogenetic analyses.
Collapse
Affiliation(s)
- Lars Nauheimer
- Australian Tropical HerbariumJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
- Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
- Centre for Tropical Environmental Sustainability ScienceJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
| | - Nicholas Weigner
- Australian Tropical HerbariumJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
| | - Elizabeth Joyce
- Australian Tropical HerbariumJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
- Centre for Tropical Environmental Sustainability ScienceJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
| | - Darren Crayn
- Australian Tropical HerbariumJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
- Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
- Centre for Tropical Environmental Sustainability ScienceJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
| | - Charles Clarke
- Australian Tropical HerbariumJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
- Cairns Botanic GardensCollins AvenueEdge HillQueensland4870Australia
| | - Katharina Nargar
- Australian Tropical HerbariumJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
- National Research Collections AustraliaCommonwealth Industrial and Scientific Research Organisation (CSIRO)GPO Box 1700CanberraAustralian Capital Territory2601Australia
| |
Collapse
|
72
|
Baker WJ, Dodsworth S, Forest F, Graham SW, Johnson MG, McDonnell A, Pokorny L, Tate JA, Wicke S, Wickett NJ. Exploring Angiosperms353: An open, community toolkit for collaborative phylogenomic research on flowering plants. AMERICAN JOURNAL OF BOTANY 2021; 108:1059-1065. [PMID: 34293179 DOI: 10.1002/ajb2.1703] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Affiliation(s)
| | - Steven Dodsworth
- School of Life Sciences, University of Bedfordshire, University Square, Luton, LU1 3JU, UK
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Angela McDonnell
- Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, 60022, USA
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Jennifer A Tate
- School of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Susann Wicke
- Plant Evolutionary Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Plant Systematics and Biodiversity, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Norman J Wickett
- Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, 60022, USA
| |
Collapse
|
73
|
Duan L, Li SJ, Su C, Sirichamorn Y, Han LN, Ye W, Lôc PK, Wen J, Compton JA, Schrire B, Nie ZL, Chen HF. Phylogenomic framework of the IRLC legumes (Leguminosae subfamily Papilionoideae) and intercontinental biogeography of tribe Wisterieae. Mol Phylogenet Evol 2021; 163:107235. [PMID: 34146677 DOI: 10.1016/j.ympev.2021.107235] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
The inverted repeat-lacking clade (IRLC) is one of the most derived clades within the subfamily Papilionoideae of the legume family, and includes various economically important plants, e.g., chickpeas, peas, liquorice, and the largest genus of angiosperms, Astragalus. Tribe Wisterieae is one of the earliest diverged groups of the IRLC, and its generic delimitation and spatiotemporal diversification needs further clarifications. Based on genome skimming data, we herein reconstruct the phylogenomic framework of the IRLC, and infer the inter-generic relationships and historical biogeography of Wisterieae. We redefine tribe Caraganeae to contain Caragana only, and tribe Astragaleae is reduced to the Erophaca-Astragalean clade. The chloroplast capture scenario was hypothesized as the most plausible explanation of the topological incongruences between the chloroplast CDSs and nuclear ribosomal DNA trees in both the Glycyrrhizinae-Adinobotrys-Wisterieae clade and the Chesneyeae-Caraganeae-Hedysareae clade. A new name, Caragana lidou L. Duan & Z.Y. Chang, is proposed within Caraganeae. Thirteen genera are herein supported within Wisterieae, including a new genus, Villosocallerya L. Duan, J. Compton & Schrire, segregated from Callerya. Our biogeographic analyses suggest that Wisterieae originated in the late Eocene and its most recent common ancestor (MRCA) was distributed in continental southeastern Asia. Lineages of Wisterieae remained in the ancestral area from the early Oligocene to the early Miocene. By the middle Miocene, Whitfordiodendron and the MRCA of Callerya-Kanburia-Villosocallerya Clade became disjunct between the Sunda area and continental southeastern Asia, respectively; the MRCA of Wisteria migrated to North America via the Bering land bridge. The ancestor of Austrocallerya and Padbruggea migrated to the Wallacea-Oceania area, which split in the early Pliocene. In the Pleistocene, Wisteria brachybotrys, W. floribunda and Wisteriopsis japonica reached Japan, and Callerya cinerea dispersed to South Asia. This study provides a solid phylogenomic for further evolutionary/biogeographic/systematic investigations on the ecologically diverse and economically important IRLC legumes.
Collapse
Affiliation(s)
- Lei Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shi-Jin Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Chun Su
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Yotsawate Sirichamorn
- Silpakorn University, Department of Biology, Faculty of Science, Sanam Chandra Palace Campus, Nakhon Pathom 73000, Thailand
| | - Li-Na Han
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Wen Ye
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Phan Ke Lôc
- Department of Botany and HNU, Faculty of Biology, VNU Hanoi University of Science (HUS), Hanoi, Viet Nam
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, D.C. 20013-7012, USA.
| | | | - Brian Schrire
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Ze-Long Nie
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Hong-Feng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
74
|
Ren C, Wang L, Nie ZL, Johnson G, Yang QE, Wen J. Development and phylogenetic utilities of a new set of single-/low-copy nuclear genes in Senecioneae (Asteraceae), with new insights into the tribal position and the relationships within subtribe Tussilagininae. Mol Phylogenet Evol 2021; 162:107202. [PMID: 33992786 DOI: 10.1016/j.ympev.2021.107202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 11/26/2022]
Abstract
The tribe Senecioneae is one of the largest tribes in Asteraceae, with a nearly cosmopolitan distribution. Despite great efforts devoted to elucidate the evolution of Senecioneae, many questions still remain concerning the systematics of this group, from the tribal circumscription and position to species relationships in many genera. The hybridization-based target enrichment method of next-generation sequencing has been accepted as a promising approach to resolve phylogenetic problems. We herein develop a set of single-/low-copy genes for Senecioneae, and test their phylogenetic utilities. Our results demonstrate that these genes work highly efficiently for Senecioneae, with a high average gene recovery of 98.8% across the tribe and recovering robust phylogenetic hypotheses at different levels. In particular, the delimitation of the Senecioneae has been confirmed to include Abrotanella and exclude Doronicum, with the former sister to core Senecioneae and the latter shown to be more closely related to Calenduleae. Moreover, Doronicum and Calenduleae are inferred to be the closest relatives of Senecioneae, which is a new hypothesis well supported by statistical topology tests, morphological evidence, and the profile of pyrrolizidine alkaloids, a special kind of chemical characters generally used to define Senecioneae. Furthermore, this study suggests a complex reticulation history in the diversification of Senecioneae, accounting for the prevalence of polyploid groups in the tribe. With subtribe Tussilagininae s.str. as a case study showing a more evident pattern of gene duplication, we further explored reconstructing the phylogeny in the groups with high ploidy levels. Our results also demonstrate that tree topologies based on sorted paralogous copies are stable across different methods of phylogenetic inference, and more congruent with the morphological evidence and the results of previous phylogenetic studies.
Collapse
Affiliation(s)
- Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Long Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Qin-Er Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Key Laboratory of Digital Botanical Garden of Guangdong Province, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China.
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| |
Collapse
|
75
|
Šlenker M, Kantor A, Marhold K, Schmickl R, Mandáková T, Lysak MA, Perný M, Caboňová M, Slovák M, Zozomová-Lihová J. Allele Sorting as a Novel Approach to Resolving the Origin of Allotetraploids Using Hyb-Seq Data: A Case Study of the Balkan Mountain Endemic Cardamine barbaraeoides. FRONTIERS IN PLANT SCIENCE 2021; 12:659275. [PMID: 33995457 PMCID: PMC8115912 DOI: 10.3389/fpls.2021.659275] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 05/19/2023]
Abstract
Mountains of the Balkan Peninsula are significant biodiversity hotspots with great species richness and a large proportion of narrow endemics. Processes that have driven the evolution of the rich Balkan mountain flora, however, are still insufficiently explored and understood. Here we focus on a group of Cardamine (Brassicaceae) perennials growing in wet, mainly mountainous habitats. It comprises several Mediterranean endemics, including those restricted to the Balkan Peninsula. We used target enrichment with genome skimming (Hyb-Seq) to infer their phylogenetic relationships, and, along with genomic in situ hybridization (GISH), to resolve the origin of tetraploid Cardamine barbaraeoides endemic to the Southern Pindos Mts. (Greece). We also explored the challenges of phylogenomic analyses of polyploid species and developed a new approach of allele sorting into homeologs that allows identifying subgenomes inherited from different progenitors. We obtained a robust phylogenetic reconstruction for diploids based on 1,168 low-copy nuclear genes, which suggested both allopatric and ecological speciation events. In addition, cases of plastid-nuclear discordance, in agreement with divergent nuclear ribosomal DNA (nrDNA) copy variants in some species, indicated traces of interspecific gene flow. Our results also support biogeographic links between the Balkan and Anatolian-Caucasus regions and illustrate the contribution of the latter region to high Balkan biodiversity. An allopolyploid origin was inferred for C. barbaraeoides, which highlights the role of mountains in the Balkan Peninsula both as refugia and melting pots favoring species contacts and polyploid evolution in response to Pleistocene climate-induced range dynamics. Overall, our study demonstrates the importance of a thorough phylogenomic approach when studying the evolution of recently diverged species complexes affected by reticulation events at both diploid and polyploid levels. We emphasize the significance of retrieving allelic and homeologous variation from nuclear genes, as well as multiple nrDNA copy variants from genome skim data.
Collapse
Affiliation(s)
- Marek Šlenker
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Adam Kantor
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Karol Marhold
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin A. Lysak
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Michaela Caboňová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Slovák
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Judita Zozomová-Lihová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
76
|
Wang N, Kelly LJ, McAllister HA, Zohren J, Buggs RJA. Resolving phylogeny and polyploid parentage using genus-wide genome-wide sequence data from birch trees. Mol Phylogenet Evol 2021; 160:107126. [PMID: 33647400 DOI: 10.1016/j.ympev.2021.107126] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Numerous plant genera have a history including frequent hybridisation and polyploidisation (allopolyploidisation), which means that their phylogeny is a network of reticulate evolution that cannot be accurately depicted as a bifurcating tree with a single tip per species. The genus Betula, which contains many ecologically important tree species, is a case in point. We generated genome-wide sequence reads for 27 diploid and 36 polyploid Betula species or subspecies using restriction site associated DNA (RAD) sequences. These reads were assembled into contigs with a mean length of 675 bp. We reconstructed the evolutionary relationships among diploid Betula species using both supermatrix (concatenation) and species tree methods. We identified the closest diploid relatives of the polyploids according to the relative rates at which reads from polyploids mapped to contigs from different diploid species within a concatenated reference sequence. By mapping reads from allopolyploids to their different putative diploid relatives we assembled contigs from the putative sub-genomes of allopolyploid taxa. We used these to build new phylogenies that included allopolyploid sub-genomes as separate tips. This approach yielded a highly evidenced phylogenetic hypothesis for the genus Betula, including the complex reticulate origins of the majority of its polyploid taxa. Our phylogeny divides the genus into two well supported clades, which, interestingly, differ in their seed-wing morphology. We therefore propose to split Betula into two subgenera.
Collapse
Affiliation(s)
- Nian Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK
| | - Hugh A McAllister
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Jasmin Zohren
- Sex Chromosome Biology Lab, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Richard J A Buggs
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK.
| |
Collapse
|
77
|
Meng KK, Chen SF, Xu KW, Zhou RC, Li MW, Dhamala MK, Liao WB, Fan Q. Phylogenomic analyses based on genome-skimming data reveal cyto-nuclear discordance in the evolutionary history of Cotoneaster (Rosaceae). Mol Phylogenet Evol 2021; 158:107083. [PMID: 33516804 DOI: 10.1016/j.ympev.2021.107083] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/16/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022]
Abstract
As a consequence of hybridization, polyploidization, and apomixis, the genus Cotoneaster (Rosaceae) represents one of the most complicated and controversial lineages in Rosaceae, with ca. 370 species which have been classified into two subgenera and several sections, and is notorious for its taxonomic difficulty. The infrageneric relationships and taxonomy of Cotoneaster have remained poorly understood. Previous studies have focused mainly on natural hybridization involving only several species, and phylogeny based on very limited markers. In the present study, the sequences of complete chloroplast genomes and 204 low-copy nuclear genes of 72 accessions, representing 69 species as ingroups, were used to conduct the most comprehensive phylogenetic analysis so far for Cotoneaster. Based on the sequences of complete chloroplast genomes and many nuclear genes, our analyses yield two robust phylogenetic trees respectively. Chloroplast genome and nuclear data confidently resolved relationships of this genus into two major clades which largely supported current classification based on morphological evidence. However, conflicts between the chloroplast genome and low-copy nuclear phylogenies were observed in both the species level and clade level. Cyto-nuclear discordance in the phylogeny could be caused by frequent hybridization events and incomplete sorting lineage (ILS). In addition, our divergence-time analysis revealed an evolutionary radiation of the genus from late Miocene to date.
Collapse
Affiliation(s)
- Kai-Kai Meng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Su-Fang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ren-Chao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ming-Wan Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Man Kumar Dhamala
- Central Department of Environmental Science, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Wen-Bo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
78
|
Sarver BAJ, Herrera ND, Sneddon D, Hunter SS, Settles ML, Kronenberg Z, Demboski JR, Good JM, Sullivan J. Diversification, Introgression, and Rampant Cytonuclear Discordance in Rocky Mountains Chipmunks (Sciuridae: Tamias). Syst Biol 2021; 70:908-921. [PMID: 33410870 DOI: 10.1093/sysbio/syaa085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Evidence from natural systems suggests that hybridization between animal species is more common than traditionally thought, but the overall contribution of introgression to standing genetic variation within species remains unclear for most animal systems. Here, we use targeted exon-capture to sequence thousands of nuclear loci and complete mitochondrial genomes from closely related chipmunk species in the Tamias quadrivittatus group that are distributed across the Great Basin and the central and southern Rocky Mountains of North America. This recent radiation includes six overlapping, ecologically distinct species (T. canipes, T. cinereicollis, T. dorsalis, T. quadrivittatus, T. rufus, and T. umbrinus) that show evidence for widespread introgression across species boundaries. Such evidence has historically been derived from a handful of markers, typically focused on mitochondrial loci, to describe patterns of introgression; consequently, the extent of introgression of nuclear genes is less well characterized. We conducted a series of phylogenomic and species-tree analyses to resolve the phylogeny of six species in this group. In addition, we performed several population genomic analyses to characterize nuclear genomes and infer coancestry among individuals. Furthermore, we used emerging quartets-based approaches to simultaneously infer the species tree (SVDquartets) and identify introgression (HyDe). We found that, in spite of rampant introgression of mitochondrial genomes between some species pairs (and sometimes involving up to three species), there appears to be little to no evidence for nuclear introgression. These findings mirror other genomic results where complete mitochondrial capture has occurred between chipmunk species in the absence of appreciable nuclear gene flow. The underlying causes of recurrent massive cytonuclear discordance remain unresolved in this group but mitochondrial DNA appears highly misleading of population histories as a whole. Collectively, it appears that chipmunk species boundaries are largely impermeable to nuclear gene flow and that hybridization, while pervasive with respect to mtDNA, has likely played a relatively minor role in the evolutionary history of this group.
Collapse
Affiliation(s)
- Brice A J Sarver
- Department of Biological Sciences, University of Idaho, Moscow, Idaho.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow Idaho
| | | | - David Sneddon
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Samuel S Hunter
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow Idaho.,UC-Davis Genome Center, Davis, California
| | | | | | - John R Demboski
- Department of Zoology, Denver Museum of Nature & Sciences, Denver, Colorado
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana.,Wildlife Biology Program, University of Montana, Missoula, Montana
| | - Jack Sullivan
- Department of Biological Sciences, University of Idaho, Moscow, Idaho.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow Idaho
| |
Collapse
|
79
|
Kandziora M, Sklenář P, Kolář F, Schmickl R. How to Tackle Phylogenetic Discordance in Recent and Rapidly Radiating Groups? Developing a Workflow Using Loricaria (Asteraceae) as an Example. FRONTIERS IN PLANT SCIENCE 2021; 12:765719. [PMID: 35069621 PMCID: PMC8777076 DOI: 10.3389/fpls.2021.765719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/22/2021] [Indexed: 05/17/2023]
Abstract
A major challenge in phylogenetics and -genomics is to resolve young rapidly radiating groups. The fast succession of species increases the probability of incomplete lineage sorting (ILS), and different topologies of the gene trees are expected, leading to gene tree discordance, i.e., not all gene trees represent the species tree. Phylogenetic discordance is common in phylogenomic datasets, and apart from ILS, additional sources include hybridization, whole-genome duplication, and methodological artifacts. Despite a high degree of gene tree discordance, species trees are often well supported and the sources of discordance are not further addressed in phylogenomic studies, which can eventually lead to incorrect phylogenetic hypotheses, especially in rapidly radiating groups. We chose the high-Andean Asteraceae genus Loricaria to shed light on the potential sources of phylogenetic discordance and generated a phylogenetic hypothesis. By accounting for paralogy during gene tree inference, we generated a species tree based on hundreds of nuclear loci, using Hyb-Seq, and a plastome phylogeny obtained from off-target reads during target enrichment. We observed a high degree of gene tree discordance, which we found implausible at first sight, because the genus did not show evidence of hybridization in previous studies. We used various phylogenomic analyses (trees and networks) as well as the D-statistics to test for ILS and hybridization, which we developed into a workflow on how to tackle phylogenetic discordance in recent radiations. We found strong evidence for ILS and hybridization within the genus Loricaria. Low genetic differentiation was evident between species located in different Andean cordilleras, which could be indicative of substantial introgression between populations, promoted during Pleistocene glaciations, when alpine habitats shifted creating opportunities for secondary contact and hybridization.
Collapse
Affiliation(s)
- Martha Kandziora
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Martha Kandziora,
| | - Petr Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| |
Collapse
|
80
|
Folk RA, Siniscalchi CM, Soltis DE. Angiosperms at the edge: Extremity, diversity, and phylogeny. PLANT, CELL & ENVIRONMENT 2020; 43:2871-2893. [PMID: 32926444 DOI: 10.1111/pce.13887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/21/2020] [Accepted: 08/13/2020] [Indexed: 05/26/2023]
Abstract
A hallmark of flowering plants is their ability to invade some of the most extreme and dynamic habitats, including cold and dry biomes, to a far greater extent than other land plants. Recent work has provided insight to the phylogenetic distribution and evolutionary mechanisms which have enabled this success, yet needed is a synthesis of evolutionary perspectives with plant physiological traits, morphology, and genomic diversity. Linking these disparate components will not only lead to better understand the evolutionary parallelism and diversification of plants with these two strategies, but also to provide the framework needed for directing future research. We summarize the primary physiological and structural traits involved in response to cold- and drought stress, outline the phylogenetic distribution of these adaptations, and describe the recurring association of these changes with rapid diversification events that occurred in multiple lineages over the past 15 million years. Across these threefold facets of dry-cold correlation (traits, phylogeny, and time) we stress the contrast between (a) the amazing diversity of solutions flowering plants have developed in the face of extreme environments and (b) a broad correlation between cold and dry adaptations that in some cases may hint at deep common origins.
Collapse
Affiliation(s)
- Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Carolina M Siniscalchi
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
81
|
Meerow AW, Gardner EM, Nakamura K. Phylogenomics of the Andean Tetraploid Clade of the American Amaryllidaceae (Subfamily Amaryllidoideae): Unlocking a Polyploid Generic Radiation Abetted by Continental Geodynamics. FRONTIERS IN PLANT SCIENCE 2020; 11:582422. [PMID: 33250911 PMCID: PMC7674842 DOI: 10.3389/fpls.2020.582422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/12/2020] [Indexed: 05/27/2023]
Abstract
One of the two major clades of the endemic American Amaryllidaceae subfam. Amaryllidoideae constitutes the tetraploid-derived (n = 23) Andean-centered tribes, most of which have 46 chromosomes. Despite progress in resolving phylogenetic relationships of the group with plastid and nrDNA, certain subclades were poorly resolved or weakly supported in those previous studies. Sequence capture using anchored hybrid enrichment was employed across 95 species of the clade along with five outgroups and generated sequences of 524 nuclear genes and a partial plastome. Maximum likelihood phylogenetic analyses were conducted on concatenated supermatrices, and coalescent-based species tree analyses were run on the gene trees, followed by hybridization network, age diversification and biogeographic analyses. The four tribes Clinantheae, Eucharideae, Eustephieae, and Hymenocallideae (sister to Clinantheae) are resolved in all analyses with > 90 and mostly 100% support, as are almost all genera within them. Nuclear gene supermatrix and species tree results were largely in concordance; however, some instances of cytonuclear discordance were evident. Hybridization network analysis identified significant reticulation in Clinanthus, Hymenocallis, Stenomesson and the subclade of Eucharideae comprising Eucharis, Caliphruria, and Urceolina. Our data support a previous treatment of the latter as a single genus, Urceolina, with the addition of Eucrosia dodsonii. Biogeographic analysis and penalized likelihood age estimation suggests an origin in the Cauca, Desert and Puna Neotropical bioprovinces for the complex in the mid-Oligocene, with more dispersals than vicariances in its history, but no extinctions. Hymenocallis represents the only instance of long-distance vicariance from the tropical Andean origin of its tribe Hymenocallideae. The absence of extinctions correlates with the lack of diversification rate shifts within the clade. The Eucharideae experienced a sudden lineage radiation ca. 10 Mya. We tie much of the divergences in the Andean-centered lineages to the rise of the Andes, and suggest that the Amotape-Huancabamba Zone functioned as both a corridor (dispersal) and a barrier to migration (vicariance). Several taxonomic changes are made. This is the largest DNA sequence data set to be applied within Amaryllidaceae to date.
Collapse
Affiliation(s)
- Alan W. Meerow
- USDA-ARS-SHRS, National Clonal Germplasm Repository, Miami, FL, United States
| | - Elliot M. Gardner
- Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
- Institute of Environment, Florida International University, Miami, FL, United States
| | - Kyoko Nakamura
- USDA-ARS-SHRS, National Clonal Germplasm Repository, Miami, FL, United States
| |
Collapse
|
82
|
Guo C, Ma PF, Yang GQ, Ye XY, Guo Y, Liu JX, Liu YL, Eaton DAR, Guo ZH, Li DZ. Parallel ddRAD and Genome Skimming Analyses Reveal a Radiative and Reticulate Evolutionary History of the Temperate Bamboos. Syst Biol 2020; 70:756-773. [PMID: 33057686 PMCID: PMC8208805 DOI: 10.1093/sysbio/syaa076] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Rapid evolutionary radiations are among the most challenging phylogenetic problems, wherein different types of data (e.g., morphology and molecular) or genetic markers (e.g., nuclear and organelle) often yield inconsistent results. The tribe Arundinarieae, that is, the temperate bamboos, is a clade of tetraploid originated 22 Ma and subsequently radiated in East Asia. Previous studies of Arundinarieae have found conflicting relationships and/or low support. Here, we obtain nuclear markers from ddRAD data for 213 Arundinarieae taxa and parallel sampling of chloroplast genomes from genome skimming for 147 taxa. We first assess the feasibility of using ddRAD-seq data for phylogenetic estimates of paleopolyploid and rapidly radiated lineages, optimize clustering thresholds, and analysis workflow for orthology identification. Reference-based ddRAD data assembly approaches perform well and yield strongly supported relationships that are generally concordant with morphology-based taxonomy. We recover five major lineages, two of which are notable (the pachymorph and leptomorph lineages), in that they correspond with distinct rhizome morphologies. By contrast, the phylogeny from chloroplast genomes differed significantly. Based on multiple lines of evidence, the ddRAD tree is favored as the best species tree estimation for temperate bamboos. Using a time-calibrated ddRAD tree, we find that Arundinarieae diversified rapidly around the mid-Miocene corresponding with intensification of the East Asian monsoon and the evolution of key innovations including the leptomorph rhizomes. Our results provide a highly resolved phylogeny of Arundinarieae, shed new light on the radiation and reticulate evolutionary history of this tribe, and provide an empirical example for the study of recalcitrant plant radiations. [Arundinarieae; ddRAD; paleopolyploid; genome skimming; rapid diversification; incongruence.]
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guo-Qian Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xia-Ying Ye
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ying Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Deren A R Eaton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
83
|
Schley RJ, Pennington RT, Pérez-Escobar OA, Helmstetter AJ, de la Estrella M, Larridon I, Sabino Kikuchi IAB, Barraclough TG, Forest F, Klitgård B. Introgression across evolutionary scales suggests reticulation contributes to Amazonian tree diversity. Mol Ecol 2020; 29:4170-4185. [PMID: 32881172 DOI: 10.1111/mec.15616] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/03/2023]
Abstract
Hybridization has the potential to generate or homogenize biodiversity and is a particularly common phenomenon in plants, with an estimated 25% of plant species undergoing interspecific gene flow. However, hybridization in Amazonia's megadiverse tree flora was assumed to be extremely rare despite extensive sympatry between closely related species, and its role in diversification remains enigmatic because it has not yet been examined empirically. Using members of a dominant Amazonian tree family (Brownea, Fabaceae) as a model to address this knowledge gap, our study recovered extensive evidence of hybridization among multiple lineages across phylogenetic scales. More specifically, using targeted sequence capture our results uncovered several historical introgression events between Brownea lineages and indicated that gene tree incongruence in Brownea is best explained by reticulation, rather than solely by incomplete lineage sorting. Furthermore, investigation of recent hybridization using ~19,000 ddRAD loci recovered a high degree of shared variation between two Brownea species that co-occur in the Ecuadorian Amazon. Our analyses also showed that these sympatric lineages exhibit homogeneous rates of introgression among loci relative to the genome-wide average, implying a lack of selection against hybrid genotypes and persistent hybridization. Our results demonstrate that gene flow between multiple Amazonian tree species has occurred across temporal scales, and contrasts with the prevailing view of hybridization's rarity in Amazonia. Overall, our results provide novel evidence that reticulate evolution influenced diversification in part of the Amazonian tree flora, which is the most diverse on Earth.
Collapse
Affiliation(s)
- Rowan J Schley
- Royal Botanic Gardens, Kew, Richmond, UK.,Department of Life Sciences, Imperial College London, Ascot, Berkshire, London, UK
| | - R Toby Pennington
- Geography, University of Exeter, Exeter, UK.,Royal Botanic Garden Edinburgh, Edinburgh, UK
| | | | - Andrew J Helmstetter
- Institut de Recherche pour le Développement (IRD), UMR-DIADE, Montpellier, France
| | - Manuel de la Estrella
- Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Isabel Larridon
- Royal Botanic Gardens, Kew, Richmond, UK.,Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, K.L, Gent, Belgium
| | | | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, London, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
84
|
Rose JP, Toledo CAP, Lemmon EM, Lemmon AR, Sytsma KJ. Out of Sight, Out of Mind: Widespread Nuclear and Plastid-Nuclear Discordance in the Flowering Plant Genus Polemonium (Polemoniaceae) Suggests Widespread Historical Gene Flow Despite Limited Nuclear Signal. Syst Biol 2020; 70:162-180. [PMID: 32617587 DOI: 10.1093/sysbio/syaa049] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Phylogenomic data from a rapidly increasing number of studies provide new evidence for resolving relationships in recently radiated clades, but they also pose new challenges for inferring evolutionary histories. Most existing methods for reconstructing phylogenetic hypotheses rely solely on algorithms that only consider incomplete lineage sorting (ILS) as a cause of intra- or intergenomic discordance. Here, we utilize a variety of methods, including those to infer phylogenetic networks, to account for both ILS and introgression as a cause for nuclear and cytoplasmic-nuclear discordance using phylogenomic data from the recently radiated flowering plant genus Polemonium (Polemoniaceae), an ecologically diverse genus in Western North America with known and suspected gene flow between species. We find evidence for widespread discordance among nuclear loci that can be explained by both ILS and reticulate evolution in the evolutionary history of Polemonium. Furthermore, the histories of organellar genomes show strong discordance with the inferred species tree from the nuclear genome. Discordance between the nuclear and plastid genome is not completely explained by ILS, and only one case of discordance is explained by detected introgression events. Our results suggest that multiple processes have been involved in the evolutionary history of Polemonium and that the plastid genome does not accurately reflect species relationships. We discuss several potential causes for this cytoplasmic-nuclear discordance, which emerging evidence suggests is more widespread across the Tree of Life than previously thought. [Cyto-nuclear discordance, genomic discordance, phylogenetic networks, plastid capture, Polemoniaceae, Polemonium, reticulations.].
Collapse
Affiliation(s)
- Jeffrey P Rose
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Cassio A P Toledo
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biolgia, Universidade Estadual de Campinas-UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP. CEP: 13083-862, Brazil
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
85
|
Morales-Briones DF, Kadereit G, Tefarikis DT, Moore MJ, Smith SA, Brockington SF, Timoneda A, Yim WC, Cushman JC, Yang Y. Disentangling Sources of Gene Tree Discordance in Phylogenomic Data Sets: Testing Ancient Hybridizations in Amaranthaceae s.l. Syst Biol 2020; 70:219-235. [PMID: 32785686 PMCID: PMC7875436 DOI: 10.1093/sysbio/syaa066] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/01/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
Gene tree discordance in large genomic data sets can be caused by evolutionary processes such as incomplete lineage sorting and hybridization, as well as model violation, and errors in data processing, orthology inference, and gene tree estimation. Species tree methods that identify and accommodate all sources of conflict are not available, but a combination of multiple approaches can help tease apart alternative sources of conflict. Here, using a phylotranscriptomic analysis in combination with reference genomes, we test a hypothesis of ancient hybridization events within the plant family Amaranthaceae s.l. that was previously supported by morphological, ecological, and Sanger-based molecular data. The data set included seven genomes and 88 transcriptomes, 17 generated for this study. We examined gene-tree discordance using coalescent-based species trees and network inference, gene tree discordance analyses, site pattern tests of introgression, topology tests, synteny analyses, and simulations. We found that a combination of processes might have generated the high levels of gene tree discordance in the backbone of Amaranthaceae s.l. Furthermore, we found evidence that three consecutive short internal branches produce anomalous trees contributing to the discordance. Overall, our results suggest that Amaranthaceae s.l. might be a product of an ancient and rapid lineage diversification, and remains, and probably will remain, unresolved. This work highlights the potential problems of identifiability associated with the sources of gene tree discordance including, in particular, phylogenetic network methods. Our results also demonstrate the importance of thoroughly testing for multiple sources of conflict in phylogenomic analyses, especially in the context of ancient, rapid radiations. We provide several recommendations for exploring conflicting signals in such situations. [Amaranthaceae; gene tree discordance; hybridization; incomplete lineage sorting; phylogenomics; species network; species tree; transcriptomics.]
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| | - Gudrun Kadereit
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Delphine T Tefarikis
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Michael J Moore
- Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH 44074-1097, USA
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge CB2 3EA, UK
| | - Alfonso Timoneda
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge CB2 3EA, UK
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89577, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89577, USA
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| |
Collapse
|
86
|
Stull GW, Soltis PS, Soltis DE, Gitzendanner MA, Smith SA. Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages. AMERICAN JOURNAL OF BOTANY 2020; 107:790-805. [PMID: 32406108 DOI: 10.1002/ajb2.1468] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/26/2020] [Indexed: 05/14/2023]
Abstract
PREMISE Discordance between nuclear and organellar phylogenies (cytonuclear discordance) is a well-documented phenomenon at shallow evolutionary levels but has been poorly investigated at deep levels of plant phylogeny. Determining the extent of cytonuclear discordance across major plant lineages is essential not only for elucidating evolutionary processes, but also for evaluating the currently used framework of plant phylogeny, which is largely based on the plastid genome. METHODS We present a phylogenomic examination of a major angiosperm clade (Asteridae) based on sequence data from the nuclear, plastid, and mitochondrial genomes as a means of evaluating currently accepted relationships inferred from the plastome and exploring potential sources of genomic conflict in this group. RESULTS We recovered at least five instances of well-supported cytonuclear discordance concerning the placements of major asterid lineages (i.e., Ericales, Oncothecaceae, Aquifoliales, Cassinopsis, and Icacinaceae). We attribute this conflict to a combination of incomplete lineage sorting and hybridization, the latter supported in part by previously inferred whole-genome duplications. CONCLUSIONS Our results challenge several long-standing hypotheses of asterid relationships and have implications for morphological character evolution and for the importance of ancient whole-genome duplications in early asterid evolution. These findings also highlight the value of reevaluating broad-scale angiosperm and green-plant phylogeny with nuclear genomic data.
Collapse
Affiliation(s)
- Gregory W Stull
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
- Department of Botany, Smithsonian Institution, Washington, D.C., 20013, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | | | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
87
|
Crowl AA, Manos PS, McVay JD, Lemmon AR, Lemmon EM, Hipp AL. Uncovering the genomic signature of ancient introgression between white oak lineages (Quercus). THE NEW PHYTOLOGIST 2020; 226:1158-1170. [PMID: 30963585 DOI: 10.1111/nph.15842] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/29/2019] [Indexed: 05/10/2023]
Abstract
Botanists have long recognised interspecific gene flow as a common occurrence within white oaks (Quercus section Quercus). Historical allele exchange, however, has not been fully characterised and the complex genomic signals resulting from the combination of vertical and horizontal gene transmission may confound phylogenetic inference and obscure our ability to accurately infer the deep evolutionary history of oaks. Using anchored enrichment, we obtained a phylogenomic dataset consisting of hundreds of single-copy nuclear loci. Concatenation, species-tree and network analyses were carried out in an attempt to uncover the genomic signal of ancient introgression and infer the divergent phylogenetic topology for the white oak clade. Locus and site-level likelihood comparisons were then conducted to further explore the introgressed signal within our dataset. Historical, intersectional gene flow is suggested to have occurred between an ancestor of the Eurasian Roburoid lineage and Quercus pontica and North American Dumosae and Prinoideae lineages. Despite extensive time past, our approach proved successful in detecting the genomic signature of ancient introgression. Our results, however, highlight the importance of sampling and the use of a plurality of analytical tools and methods to sufficiently explore genomic datasets, uncover this signal, and accurately infer evolutionary history.
Collapse
Affiliation(s)
- Andrew A Crowl
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Paul S Manos
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - John D McVay
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL, 32317, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 89 Chieftan Way, Tallahassee, FL, 32317, USA
| | - Andrew L Hipp
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USA
- The Field Museum, 1400 S Lake Shore Drive, Chicago, IL, 60605, USA
| |
Collapse
|
88
|
Bernhardt N, Brassac J, Dong X, Willing EM, Poskar CH, Kilian B, Blattner FR. Genome-wide sequence information reveals recurrent hybridization among diploid wheat wild relatives. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:493-506. [PMID: 31821649 DOI: 10.1111/tpj.14641] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 05/07/2023]
Abstract
Many conflicting hypotheses regarding the relationships among crops and wild species closely related to wheat (the genera Aegilops, Amblyopyrum, and Triticum) have been postulated. The contribution of hybridization to the evolution of these taxa is intensely discussed. To determine possible causes for this, and provide a phylogeny of the diploid taxa based on genome-wide sequence information, independent data were obtained from genotyping-by-sequencing and a target-enrichment experiment that returned 244 low-copy nuclear loci. The data were analyzed using Bayesian, likelihood and coalescent-based methods. D statistics were used to test if incomplete lineage sorting alone or together with hybridization is the source for incongruent gene trees. Here we present the phylogeny of all diploid species of the wheat wild relatives. We hypothesize that most of the wheat-group species were shaped by a primordial homoploid hybrid speciation event involving the ancestral Triticum and Am. muticum lineages to form all other species except Ae. speltoides. This hybridization event was followed by multiple introgressions affecting all taxa except Triticum. Mostly progenitors of the extant species were involved in these processes, while recent interspecific gene flow seems insignificant. The composite nature of many genomes of wheat-group taxa results in complicated patterns of diploid contributions when these lineages are involved in polyploid formation, which is, for example, the case for tetraploid and hexaploid wheats. Our analysis provides phylogenetic relationships and a testable hypothesis for the genome compositions in the basic evolutionary units within the wheat group of Triticeae.
Collapse
Affiliation(s)
- Nadine Bernhardt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Jonathan Brassac
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Xue Dong
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Plant Germplasm and Genomics Centre, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Eva-Maria Willing
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - C Hart Poskar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
- Global Crop Diversity Trust, 53113, Bonn, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
89
|
Multilocus data reveal deep phylogenetic relationships and intercontinental biogeography of the Eurasian-North American genus Corylus (Betulaceae). Mol Phylogenet Evol 2020; 142:106658. [DOI: 10.1016/j.ympev.2019.106658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022]
|
90
|
Brandrud MK, Baar J, Lorenzo MT, Athanasiadis A, Bateman RM, Chase MW, Hedrén M, Paun O. Phylogenomic Relationships of Diploids and the Origins of Allotetraploids in Dactylorhiza (Orchidaceae). Syst Biol 2020; 69:91-109. [PMID: 31127939 PMCID: PMC6902629 DOI: 10.1093/sysbio/syz035] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 12/04/2022] Open
Abstract
Disentangling phylogenetic relationships proves challenging for groups that have evolved recently, especially if there is ongoing reticulation. Although they are in most cases immediately isolated from diploid relatives, sets of sibling allopolyploids often hybridize with each other, thereby increasing the complexity of an already challenging situation. Dactylorhiza (Orchidaceae: Orchidinae) is a genus much affected by allopolyploid speciation and reticulate phylogenetic relationships. Here, we use genetic variation at tens of thousands of genomic positions to unravel the convoluted evolutionary history of Dactylorhiza. We first investigate circumscription and relationships of diploid species in the genus using coalescent and maximum likelihood methods, and then group 16 allotetraploids by maximum affiliation to their putative parental diploids, implementing a method based on genotype likelihoods. The direction of hybrid crosses is inferred for each allotetraploid using information from maternally inherited plastid RADseq loci. Starting from age estimates of parental taxa, the relative ages of these allotetraploid entities are inferred by quantifying their genetic similarity to the diploids and numbers of private alleles compared with sibling allotetraploids. Whereas northwestern Europe is dominated by young allotetraploids of postglacial origins, comparatively older allotetraploids are distributed further south, where climatic conditions remained relatively stable during the Pleistocene glaciations. Our bioinformatics approach should prove effective for the study of other naturally occurring, nonmodel, polyploid plant complexes.
Collapse
Affiliation(s)
- Marie K Brandrud
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Juliane Baar
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Maria T Lorenzo
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Alexander Athanasiadis
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | | | - Mark W Chase
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mikael Hedrén
- Department of Biology, University of Lund, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
91
|
Carter KA, Liston A, Bassil NV, Alice LA, Bushakra JM, Sutherland BL, Mockler TC, Bryant DW, Hummer KE. Target Capture Sequencing Unravels Rubus Evolution. FRONTIERS IN PLANT SCIENCE 2019; 10:1615. [PMID: 31921259 PMCID: PMC6933950 DOI: 10.3389/fpls.2019.01615] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/15/2019] [Indexed: 05/09/2023]
Abstract
Rubus (Rosaceae) comprises more than 500 species with additional commercially cultivated raspberries and blackberries. The most recent (> 100 years old) global taxonomic treatment of the genus defined 12 subgenera; two subgenera were subsequently described and some species were rearranged. Intra- and interspecific ploidy levels and hybridization make phylogenetic estimation of Rubus challenging. Our objectives were to estimate the phylogeny of 94 taxonomically and geographically diverse species and three cultivars using chloroplast DNA sequences and target capture of approximately 1,000 low copy nuclear genes; estimate divergence times between major Rubus clades; and examine the historical biogeography of species diversification. Target capture sequencing identified eight major groups within Rubus. Subgenus Orobatus and Subg. Anoplobatus were monophyletic, while other recognized subgenera were para- or polyphyletic. Multiple hybridization events likely occurred across the phylogeny at subgeneric levels, e.g., Subg. Rubus (blackberries) × Subg. Idaeobatus (raspberries) and Subg. Idaeobatus × Subg. Cylactis (Arctic berries) hybrids. The raspberry heritage within known cultivated blackberry hybrids was confirmed. The most recent common ancestor of the genus was most likely distributed in North America. Multiple distribution events occurred during the Miocene (about 20 Ma) from North America into Asia and Europe across the Bering land bridge and southward crossing the Panamanian Isthmus. Rubus species diversified greatly in Asia during the Miocene. Rubus taxonomy does not reflect phylogenetic relationships and subgeneric revision is warranted. The most recent common ancestor migrated from North America towards Asia, Europe, and Central and South America early in the Miocene then diversified. Ancestors of the genus Rubus may have migrated to Oceania by long distance bird dispersal. This phylogeny presents a roadmap for further Rubus systematics research. In conclusion, the target capture dataset provides high resolution between species though it also gave evidence of gene tree/species tree and cytonuclear discordance. Discordance may be due to hybridization or incomplete lineage sorting, rather than a lack of phylogenetic signal. This study illustrates the importance of using multiple phylogenetic methods when examining complex groups and the utility of software programs that estimate signal conflict within datasets.
Collapse
Affiliation(s)
- Katherine A. Carter
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Aaron Liston
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Nahla V. Bassil
- National Clonal Germplasm Repository, USDA-ARS, Corvallis, OR, United States
| | - Lawrence A. Alice
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States
| | - Jill M. Bushakra
- National Clonal Germplasm Repository, USDA-ARS, Corvallis, OR, United States
| | - Brittany L. Sutherland
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States
| | - Todd C. Mockler
- Mockler Lab, Donald Danforth Plant Sciences Center, St. Louis, MO, United States
| | - Douglas W. Bryant
- Mockler Lab, Donald Danforth Plant Sciences Center, St. Louis, MO, United States
| | - Kim E. Hummer
- National Clonal Germplasm Repository, USDA-ARS, Corvallis, OR, United States
| |
Collapse
|
92
|
Herrando-Moraira S, Calleja JA, Galbany-Casals M, Garcia-Jacas N, Liu JQ, López-Alvarado J, López-Pujol J, Mandel JR, Massó S, Montes-Moreno N, Roquet C, Sáez L, Sennikov A, Susanna A, Vilatersana R. Nuclear and plastid DNA phylogeny of tribe Cardueae (Compositae) with Hyb-Seq data: A new subtribal classification and a temporal diversification framework. Mol Phylogenet Evol 2019; 137:313-332. [DOI: 10.1016/j.ympev.2019.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/04/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
|
93
|
Morales-Briones DF, Romoleroux K, Tank DC. Three new species of Lachemilla (Rosaceae) from South America. PHYTOKEYS 2019; 127:93-119. [PMID: 31379452 PMCID: PMC6661262 DOI: 10.3897/phytokeys.127.36324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/22/2019] [Indexed: 06/10/2023]
Abstract
Three new species of Lachemilla (Rosaceae), two from Colombia and one from Peru, are described and illustrated. Lachemillarothmaleriana is characterized by its stout stems, sericeous-villous indumentum, and wide ascending sheaths with trilobate lateral lobes. Lachemillaargentea presents a unique combination of tripartite basal leaves with an adaxial silvery villous indumentum, and decumbent branches with verticillate lobed sheaths. Finally, Lachemillacyanea has distinctly basal reniform leaves with a blue-green color and hirsute pubescence. Phylogenetic analyses of the nuclear ribosomal cistron and multiple regions of the plastid genome revealed the allopolyploid origin of the three new taxa.
Collapse
Affiliation(s)
- Diego F. Morales-Briones
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, Minnesota, 55108, USAUniversity of IdahoMoscowUnited States of America
- Department of Biological Sciences and Stillinger Herbarium, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, Idaho 83844-3051, USAUniversity of MinnesotaSaint PaulUnited States of America
| | - Katya Romoleroux
- Herbario QCA, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apartado 17-01-2184, Quito, EcuadorPontificia Universidad Católica del EcuadorRoca QuitoEcuador
| | - David C. Tank
- Department of Biological Sciences and Stillinger Herbarium, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, Idaho 83844-3051, USAUniversity of MinnesotaSaint PaulUnited States of America
| |
Collapse
|
94
|
Target sequence capture in the Brazil nut family (Lecythidaceae): Marker selection and in silico capture from genome skimming data. Mol Phylogenet Evol 2019; 135:98-104. [DOI: 10.1016/j.ympev.2019.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/20/2022]
|
95
|
Liu Y, Johnson MG, Cox CJ, Medina R, Devos N, Vanderpoorten A, Hedenäs L, Bell NE, Shevock JR, Aguero B, Quandt D, Wickett NJ, Shaw AJ, Goffinet B. Resolution of the ordinal phylogeny of mosses using targeted exons from organellar and nuclear genomes. Nat Commun 2019; 10:1485. [PMID: 30940807 PMCID: PMC6445109 DOI: 10.1038/s41467-019-09454-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/07/2019] [Indexed: 11/21/2022] Open
Abstract
Mosses are a highly diverse lineage of land plants, whose diversification, spanning at least 400 million years, remains phylogenetically ambiguous due to the lack of fossils, massive early extinctions, late radiations, limited morphological variation, and conflicting signal among previously used markers. Here, we present phylogenetic reconstructions based on complete organellar exomes and a comparable set of nuclear genes for this major lineage of land plants. Our analysis of 142 species representing 29 of the 30 moss orders reveals that relative average rates of non-synonymous substitutions in nuclear versus plastid genes are much higher in mosses than in seed plants, consistent with the emerging concept of evolutionary dynamism in mosses. Our results highlight the evolutionary significance of taxa with reduced morphologies, shed light on the relative tempo and mechanisms underlying major cladogenic events, and suggest hypotheses for the relationships and delineation of moss orders.
Collapse
Affiliation(s)
- Yang Liu
- Fairy Lake Botanical Garden & Chinese Academy of Sciences, Shenzhen, 518004, China
- BGI-Shenzhen, Shenzhen, 518120, China
| | | | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319, Faro, Portugal
| | - Rafael Medina
- Department of Biology, Augustana College, Rock Island, IL, 61201, USA
| | - Nicolas Devos
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | | | - Lars Hedenäs
- Department of Botany, Swedish Museum of Natural History, Stockholm, Box 50007, 10405, Sweden
| | - Neil E Bell
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - James R Shevock
- California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Blanka Aguero
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, 53115, Germany
| | | | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
96
|
Morales-Briones DF, Tank DC. Extensive allopolyploidy in the neotropical genus Lachemilla (Rosaceae) revealed by PCR-based target enrichment of the nuclear ribosomal DNA cistron and plastid phylogenomics. AMERICAN JOURNAL OF BOTANY 2019; 106:415-437. [PMID: 30882906 DOI: 10.1002/ajb2.1253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Polyploidy has been long recognized as an important force in plant evolution. Previous studies had suggested widespread occurrence of polyploidy and the allopolyploid origin of several species in the diverse neotropical genus Lachemilla (Rosaceae). Nonetheless, this evidence has relied mostly on patterns of cytonuclear discordance, and direct evidence from nuclear allelic markers is still needed. METHODS Here we used PCR target enrichment in combination with high throughput sequencing to obtain multiple copies of the nuclear ribosomal (nr) DNA cistron and 45 regions of the plastid genome (cpDNA) from 219 accessions representing 48 species of Lachemilla and to explore the allopolyploid origin of species in this group. KEY RESULTS We were able to identify multiple nrDNA ribotypes and establish clear evidence of allopolyploidy in 33 species of Lachemilla, showing that this condition is common and widespread in the genus. Additionally, we found evidence for three autopolyploid species. We also established multiple, independent origins of several allopolyploid species. Finally, based solely on the cpDNA phylogeny, we identified that the monotypic genus Farinopsis is the sister group of Lachemilla and allied genera within subtribe Fragariinae. CONCLUSIONS Our study demonstrates the utility of the nuclear ribosomal DNA cistron to detect allopolyploidy when concerted evolution of this region is not complete. Additionally, with a robust chloroplast phylogeny in place, the direction of hybridization events can be established, and multiple, independent origins of allopolyploid species can be identified.
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, ID, 83844-1133, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
| | - David C Tank
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, ID, 83844-1133, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
| |
Collapse
|
97
|
Lee-Yaw JA, Grassa CJ, Joly S, Andrew RL, Rieseberg LH. An evaluation of alternative explanations for widespread cytonuclear discordance in annual sunflowers (Helianthus). THE NEW PHYTOLOGIST 2019; 221:515-526. [PMID: 30136727 DOI: 10.1111/nph.15386] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/05/2018] [Indexed: 05/03/2023]
Abstract
Cytonuclear discordance is commonly observed in phylogenetic studies, yet few studies have tested whether these patterns reflect incomplete lineage sorting or organellar introgression. Here, we used whole-chloroplast sequence data in combination with over 1000 nuclear single-nucleotide polymorphisms to clarify the extent of cytonuclear discordance in wild annual sunflowers (Helianthus), and to test alternative explanations for such discordance. Our phylogenetic analyses indicate that cytonuclear discordance is widespread within this group, both in terms of the relationships among species and among individuals within species. Simulations of chloroplast evolution show that incomplete lineage sorting cannot explain these patterns in most cases. Instead, most of the observed discordance is better explained by cytoplasmic introgression. Molecular tests of evolution further indicate that selection may have played a role in driving patterns of plastid variation - although additional experimental work is needed to fully evaluate the importance of selection on organellar variants in different parts of the geographic range. Overall, this study represents one of the most comprehensive tests of the drivers of cytonuclear discordance and highlights the potential for gene flow to lead to extensive organellar introgression in hybridizing taxa.
Collapse
Affiliation(s)
- Julie A Lee-Yaw
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher J Grassa
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Harvard University Herbaria, Cambridge, MA, 02138, USA
| | - Simon Joly
- Institut Recherche en Biologie Végétale, QC, H1X 2B2, Canada
- Jardin botanique de Montréal, Department Sciences Biologiques, Université de Montréal, Montréal, QC, H1X 2B2, Canada
| | - Rose L Andrew
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|