51
|
K v1.1 preserves the neural stem cell pool and facilitates neuron maturation during adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 2022; 119:e2118240119. [PMID: 35613055 PMCID: PMC9295736 DOI: 10.1073/pnas.2118240119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite decades of research on adult neurogenesis, little is known about the role of bioelectric signaling in this process. In this study, we describe how a voltage-gated potassium channel, Kv1.1, supports adult neurogenesis by maintaining the neural stem cell niche and facilitating newborn neuron development. Additionally, we show that deletion of Kv1.1 from adult neural stem cells contributes to modest impairments in hippocampus-dependent contextual fear learning and memory. Dysfunctional adult neurogenesis has been implicated in cognitive decline associated with aging and neurological disease. Therefore, understanding the role of Kv1.1 in adult neurogenesis represents an opportunity to identify new therapeutic targets to promote healthy neurogenesis and cognition. Adult hippocampal neurogenesis is critical for learning and memory, and aberrant adult neurogenesis has been implicated in cognitive decline associated with aging and neurological diseases [J. T. Gonçalves, S. T. Schafer, F. H. Gage, Cell 167, 897–914 (2016)]. In previous studies, we observed that the delayed-rectifier voltage-gated potassium channel Kv1.1 controls the membrane potential of neural stem and progenitor cells and acts as a brake on neurogenesis during neonatal hippocampal development [S. M. Chou et al., eLife 10, e58779 (2021)]. To assess the role of Kv1.1 in adult hippocampal neurogenesis, we developed an inducible conditional knockout mouse to specifically remove Kv1.1 from adult neural stem cells via tamoxifen administration. We determined that Kv1.1 deletion in adult neural stem cells causes overproliferation and depletion of radial glia-like neural stem cells, prevents proper adult-born granule cell maturation and integration into the dentate gyrus, and moderately impairs hippocampus-dependent contextual fear learning and memory. Taken together, these findings support a critical role for this voltage-gated ion channel in adult neurogenesis.
Collapse
|
52
|
Häfner S, Sandoz G. Photopharmacological approaches for dissecting potassium channel physiology. Curr Opin Pharmacol 2022; 63:102178. [DOI: 10.1016/j.coph.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023]
|
53
|
Tan XF, Bae C, Stix R, Fernández-Mariño AI, Huffer K, Chang TH, Jiang J, Faraldo-Gómez JD, Swartz KJ. Structure of the Shaker Kv channel and mechanism of slow C-type inactivation. SCIENCE ADVANCES 2022; 8:eabm7814. [PMID: 35302848 PMCID: PMC8932672 DOI: 10.1126/sciadv.abm7814] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Voltage-activated potassium (Kv) channels open upon membrane depolarization and proceed to spontaneously inactivate. Inactivation controls neuronal firing rates and serves as a form of short-term memory and is implicated in various human neurological disorders. Here, we use high-resolution cryo-electron microscopy and computer simulations to determine one of the molecular mechanisms underlying this physiologically crucial process. Structures of the activated Shaker Kv channel and of its W434F mutant in lipid bilayers demonstrate that C-type inactivation entails the dilation of the ion selectivity filter and the repositioning of neighboring residues known to be functionally critical. Microsecond-scale molecular dynamics trajectories confirm that these changes inhibit rapid ion permeation through the channel. This long-sought breakthrough establishes how eukaryotic K+ channels self-regulate their functional state through the plasticity of their selectivity filters.
Collapse
Affiliation(s)
- Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robyn Stix
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Ana I. Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Tsg-Hui Chang
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
54
|
Ding J, Wang L, Jin Z, Qiang Y, Li W, Wang Y, Zhu C, Jiang S, Xiao L, Hao X, Hu X, Li X, Wang F, Sun T. Do All Roads Lead to Rome? Genes Causing Dravet Syndrome and Dravet Syndrome-Like Phenotypes. Front Neurol 2022; 13:832380. [PMID: 35359639 PMCID: PMC8961694 DOI: 10.3389/fneur.2022.832380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Dravet syndrome (DS) is a severe epileptic encephalopathy mainly caused by haploinsufficiency of the gene SCN1A, which encodes the voltage-gated sodium channel NaV1. 1 in the brain. While SCN1A mutations are known to be the primary cause of DS, other genes that may cause DS are poorly understood. Several genes with pathogenic mutations result in DS or DS-like phenotypes, which may require different drug treatment approaches. Therefore, it is urgent for clinicians, especially epilepsy specialists to fully understand these genes involved in DS in addition to SCN1A. Particularly for healthcare providers, a deep understanding of these pathogenic genes is useful in properly selecting and adjusting drugs in a more effective and timely manner. OBJECTIVE The purpose of this study was to identify genes other than SCN1A that may also cause DS or DS-like phenotypes. METHODS A comprehensive search of relevant Dravet syndrome and severe myoclonic epilepsy in infancy was performed in PubMed, until December 1, 2021. Two independent authors performed the screening for potentially eligible studies. Disagreements were decided by a third, more professional researcher or by all three. The results reported by each study were narratively summarized. RESULTS A PubMed search yielded 5,064 items, and other sources search 12 records. A total of 29 studies published between 2009 and 2021 met the inclusion criteria. Regarding the included articles, seven studies on PCDH19, three on SCN2A, two on SCN8A, five on SCN1B, two on GABRA1, three on GABRB3, three on GABRG2, and three on STXBP1 were included. Only one study was recorded for CHD2, CPLX1, HCN1 and KCNA2, respectively. It is worth noting that a few articles reported on more than one epilepsy gene. CONCLUSION DS is not only identified in variants of SCN1A, but other genes such as PCDH19, SCN2A, SCN8A, SCN1B, GABRA1, GABRB3, GABRG2, KCNA2, CHD2, CPLX1, HCN1A, STXBP1 can also be involved in DS or DS-like phenotypes. As genetic testing becomes more widely available, more genes associated with DS and DS-like phenotypes may be identified and gene-based diagnosis of subtypes of phenotypes in this spectrum may improve the management of these diseases in the future.
Collapse
Affiliation(s)
- Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Zhe Jin
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Wenchao Li
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Changliang Zhu
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoyan Hao
- Department of Neurology, First Affiliated Hospital of Zhengzhou Universiy, Zhengzhou, China
| | - Xulei Hu
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
55
|
Li XT. Alzheimer's disease therapy based on acetylcholinesterase inhibitor/blocker effects on voltage-gated potassium channels. Metab Brain Dis 2022; 37:581-587. [PMID: 35098414 DOI: 10.1007/s11011-022-00921-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder with progressive loss of memory and other cognitive functions. The pathogenesis of this disease is complex and multifactorial, and remains obscure until now. To enhance the declined level of acetylcholine (ACh) resulting from loss of cholinergic neurons, acetylcholinesterase (AChE) inhibitors are developed and successfully approved for AD treatment in the clinic, with a limited therapeutic effectiveness. At present, it is generally accepted that multi-target strategy is potently useful for designing novel drugs for AD. Accumulated evidence reveals that Kv channels, which are broadly expressed in brain and possess crucial functions in modulating the neuronal activity, are inhibited by several acetylcholinesterase (AChE) inhibitors, such as tacrine, bis(7)-tacrine, donepezil and galantamine. Inhibition of Kv channels by these AChE inhibitors can generate neuroprotective effects by either mitigating Aβ toxicity and neuronal apoptosis, or facilitating cell proliferation. These inhibitory effects provide additional explanations for clinical beneficial effectiveness of AChE inhibitors, meaning that Kv channel is a promising candidate target for novel drugs for AD therapy.
Collapse
Affiliation(s)
- Xian-Tao Li
- Department of Neuroscience, South-Central University for Nationalities, 182 Minyuan Road, Wuhan, 430074, China.
| |
Collapse
|
56
|
Lin YF. Potassium channels as molecular targets of endocannabinoids. Channels (Austin) 2021; 15:408-423. [PMID: 34282702 PMCID: PMC8293965 DOI: 10.1080/19336950.2021.1910461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 10/25/2022] Open
Abstract
Endocannabinoids are a group of endogenous mediators derived from membrane lipids, which are implicated in a wide variety of physiological functions such as blood pressure regulation, immunity, pain, memory, reward, perception, reproduction, and sleep. N-Arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) represent two major endocannabinoids in the human body and they exert many of their cellular and organ system effects by activating the Gi/o protein-coupled, cannabinoid type 1 (CB1) and type 2 (CB2) receptors. However, not all effects of cannabinoids are ascribable to their interaction with CB1 and CB2 receptors; indeed, macromolecules like other types of receptors, ion channels, transcription factors, enzymes, transporters, and cellular structure have been suggested to mediate the functional effects of cannabinoids. Among the proposed molecular targets of endocannabinoids, potassium channels constitute an intriguing group, because these channels not only are crucial in shaping action potentials and controlling the membrane potential and cell excitability, thereby regulating a wide array of physiological processes, but also serve as potential therapeutic targets for the treatment of cancer and metabolic, neurological and cardiovascular disorders. This review sought to survey evidence pertaining to the CB1 and CB2 receptor-independent actions of endocannabinoids on ion channels, with an emphasis on AEA and potassium channels. To better understand the functional roles as well as potential medicinal uses of cannabinoids in human health and disease, further mechanistic studies to delineate interactions between various types of cannabinoids and ion channels, including members in the potassium channel superfamily, are warranted.
Collapse
Affiliation(s)
- Yu-Fung Lin
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
- Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
57
|
Autism-associated mutations in K V7 channels induce gating pore current. Proc Natl Acad Sci U S A 2021; 118:2112666118. [PMID: 34728568 PMCID: PMC8609342 DOI: 10.1073/pnas.2112666118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) adversely impacts >1% of children in the United States, causing social interaction deficits, repetitive behaviors, and communication disorders. Genetic analysis of ASD has advanced dramatically through genome sequencing, which has identified >500 genes with mutations in ASD. Mutations that alter arginine gating charges in the voltage sensor of the voltage-gated potassium (KV) channel KV7 (KCNQ) are among those frequently associated with ASD. We hypothesized that these gating charge mutations would induce gating pore current (also termed ω-current) by causing an ionic leak through the mutant voltage sensor. Unexpectedly, we found that wild-type KV7 conducts outward gating pore current through its native voltage sensor at positive membrane potentials, owing to a glutamine in the third gating charge position. In bacterial and human KV7 channels, gating charge mutations at the R1 and R2 positions cause inward gating pore current through the resting voltage sensor at negative membrane potentials, whereas mutation at R4 causes outward gating pore current through the activated voltage sensor at positive potentials. Remarkably, expression of the KV7.3/R2C ASD-associated mutation in vivo in midbrain dopamine neurons of mice disrupts action potential generation and repetitive firing. Overall, our results reveal native and mutant gating pore current in KV7 channels and implicate altered control of action potential generation by gating pore current through mutant KV7 channels as a potential pathogenic mechanism in autism.
Collapse
|
58
|
Clifton NE, Collado-Torres L, Burke EE, Pardiñas AF, Harwood JC, Di Florio A, Walters JTR, Owen MJ, O'Donovan MC, Weinberger DR, Holmans PA, Jaffe AE, Hall J. Developmental Profile of Psychiatric Risk Associated With Voltage-Gated Cation Channel Activity. Biol Psychiatry 2021; 90:399-408. [PMID: 33965196 PMCID: PMC8375582 DOI: 10.1016/j.biopsych.2021.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recent breakthroughs in psychiatric genetics have implicated biological pathways onto which genetic risk for psychiatric disorders converges. However, these studies do not reveal the developmental time point(s) at which these pathways are relevant. METHODS We aimed to determine the relationship between psychiatric risk and developmental gene expression relating to discrete biological pathways. We used postmortem RNA sequencing data (BrainSeq and BrainSpan) from brain tissue at multiple prenatal and postnatal time points, with summary statistics from recent genome-wide association studies of schizophrenia, bipolar disorder, and major depressive disorder. We prioritized gene sets for overall enrichment of association with each disorder and then tested the relationship between the association of their constituent genes with their relative expression at each developmental stage. RESULTS We observed relationships between the expression of genes involved in voltage-gated cation channel activity during early midfetal, adolescence, and early adulthood time points and association with schizophrenia and bipolar disorder, such that genes more strongly associated with these disorders had relatively low expression during early midfetal development and higher expression during adolescence and early adulthood. The relationship with schizophrenia was strongest for the subset of genes related to calcium channel activity, while for bipolar disorder, the relationship was distributed between calcium and potassium channel activity genes. CONCLUSIONS Our results indicate periods during development when biological pathways related to the activity of calcium and potassium channels may be most vulnerable to the effects of genetic variants conferring risk for psychiatric disorders. Furthermore, they indicate key time points and potential targets for disorder-specific therapeutic interventions.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom.
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland; Centre for Computational Biology, Johns Hopkins University Medical Campus, Baltimore, Maryland
| | - Emily E Burke
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Janet C Harwood
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Arianna Di Florio
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland; Departments of Psychiatry, Neurology, Neuroscience and Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Peter A Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland; Centre for Computational Biology, Johns Hopkins University Medical Campus, Baltimore, Maryland; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
59
|
Szanto TG, Zakany F, Papp F, Varga Z, Deutsch CJ, Panyi G. The activation gate controls steady-state inactivation and recovery from inactivation in Shaker. J Gen Physiol 2021; 152:151805. [PMID: 32442242 PMCID: PMC7398138 DOI: 10.1085/jgp.202012591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/18/2020] [Indexed: 01/15/2023] Open
Abstract
Despite major advances in the structure determination of ion channels, the sequence of molecular rearrangements at negative membrane potentials in voltage-gated potassium channels of the Shaker family remains unknown. Four major composite gating states are documented during the gating process: closed (C), open (O), open-inactivated (OI), and closed-inactivated (CI). Although many steps in the gating cycle have been clarified experimentally, the development of steady-state inactivation at negative membrane potentials and mandatory gating transitions for recovery from inactivation have not been elucidated. In this study, we exploit the biophysical properties of Shaker-IR mutants T449A/V474C and T449A/V476C to evaluate the status of the activation and inactivation gates during steady-state inactivation and upon locking the channel open with intracellular Cd2+. We conclude that at negative membrane potentials, the gating scheme of Shaker channels can be refined in two aspects. First, the most likely pathway for the development of steady-state inactivation is C→O→OI⇌CI. Second, the OI→CI transition is a prerequisite for recovery from inactivation. These findings are in accordance with the widely accepted view that tight coupling is present between the activation and C-type inactivation gates in Shaker and underscore the role of steady-state inactivation and recovery from inactivation as determinants of excitability.
Collapse
Affiliation(s)
- Tibor G Szanto
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Papp
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Carol J Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, PA
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
60
|
Commentary on "Immler et al. (2021) The voltage‑gated potassium channel Kv1.3 regulates neutrophil recruitment during inflammation" Cardiovasc Res 2021 (doi:10.1093/cvr/cvab133) : Roll over-Kv1.3 ! The function of a voltage-gated potassium channel in leucocytes revealed. Pflugers Arch 2021; 473:1587-1588. [PMID: 34459985 PMCID: PMC8433102 DOI: 10.1007/s00424-021-02615-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 10/25/2022]
|
61
|
Contribution of Neuronal and Glial Two-Pore-Domain Potassium Channels in Health and Neurological Disorders. Neural Plast 2021; 2021:8643129. [PMID: 34434230 PMCID: PMC8380499 DOI: 10.1155/2021/8643129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023] Open
Abstract
Two-pore-domain potassium (K2P) channels are widespread in the nervous system and play a critical role in maintaining membrane potential in neurons and glia. They have been implicated in many stress-relevant neurological disorders, including pain, sleep disorder, epilepsy, ischemia, and depression. K2P channels give rise to leaky K+ currents, which stabilize cellular membrane potential and regulate cellular excitability. A range of natural and chemical effectors, including temperature, pressure, pH, phospholipids, and intracellular signaling molecules, substantially modulate the activity of K2P channels. In this review, we summarize the contribution of K2P channels to neuronal excitability and to potassium homeostasis in glia. We describe recently discovered functions of K2P channels in glia, such as astrocytic passive conductance and glutamate release, microglial surveillance, and myelin generation by oligodendrocytes. We also discuss the potential role of glial K2P channels in neurological disorders. In the end, we discuss current limitations in K2P channel researches and suggest directions for future studies.
Collapse
|
62
|
Abstract
The presence of unprovoked, recurrent seizures, particularly when drug resistant and associated with cognitive and behavioral deficits, warrants investigation for an underlying genetic cause. This article provides an overview of the major classes of genes associated with epilepsy phenotypes divided into functional categories along with the recommended work-up and therapeutic considerations. Gene discovery in epilepsy supports counseling and anticipatory guidance but also opens the door for precision medicine guiding therapy with a focus on those with disease-modifying effects.
Collapse
Affiliation(s)
- Luis A Martinez
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Yi-Chen Lai
- Department of Pediatrics, Section of Pediatric Critical Care Medicine, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - J Lloyd Holder
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Anne E Anderson
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA.
| |
Collapse
|
63
|
Rashwan R, Hunt DM, Carvalho LS. The role of voltage-gated ion channels in visual function and disease in mammalian photoreceptors. Pflugers Arch 2021; 473:1455-1468. [PMID: 34255151 DOI: 10.1007/s00424-021-02595-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022]
Abstract
Light activation of the classical light-sensing retinal neurons, the photoreceptors, results in a graded change in membrane potential that ultimately leads to a reduction in neurotransmitter release to the post-synaptic retinal neurons. Photoreceptors show striking powers of adaptation, and for visual processing to function optimally, they must adjust their gain to remain responsive to different levels of ambient light intensity. The presence of a tightly controlled balance of inward and outward currents modulated by several different types of ion channels is what gives photoreceptors their remarkably dynamic operating range. Part of the resetting and modulation of this operating range is controlled by potassium and calcium voltage-gated channels, which are involved in setting the dark resting potential and synapse signal processing, respectively. Their essential contribution to visual processing is further confirmed in patients suffering from cone dystrophy with supernormal rod response (CDSRR) and congenital stationary night blindness type 2 (CSNB2), both conditions that lead to irreversible vision loss. This review will discuss these two types of voltage-gated ion channels present in photoreceptors, focussing on their structure and physiology, and their role in visual processing. It will also discuss the use and benefits of knockout mouse models to further study the function of these channels and what routes to potential treatments could be applied for CDSRR and CSNB2.
Collapse
Affiliation(s)
- Rabab Rashwan
- Lions Eye Institute, Nedlands, Western Australia, 6009, Australia
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
| | - David M Hunt
- Lions Eye Institute, Nedlands, Western Australia, 6009, Australia
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, Western Australia, 6009, Australia
- School of Biological Sciences, University of Western Australia, Nedlands, Western Australia, 6009, Australia
| | - Livia S Carvalho
- Lions Eye Institute, Nedlands, Western Australia, 6009, Australia.
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, Western Australia, 6009, Australia.
| |
Collapse
|
64
|
Scheiblich H, Steinert JR. Nitrergic modulation of neuronal excitability in the mouse hippocampus is mediated via regulation of Kv2 and voltage-gated sodium channels. Hippocampus 2021; 31:1020-1038. [PMID: 34047430 DOI: 10.1002/hipo.23366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/10/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Regulation of neuronal activity is a necessity for communication and information transmission. Many regulatory processes which have been studied provide a complex picture of how neurons can respond to permanently changing functional requirements. One such activity-dependent mechanism involves signaling mediated by nitric oxide (NO). Within the brain, NO is generated in response to neuronal NO synthase (nNOS) activation but NO-dependent pathways regulating neuronal excitability in the hippocampus remain to be fully elucidated. This study was set out to systematically assess the effects of NO on ion channel activities and intrinsic excitabilities of pyramidal neurons within the CA1 region of the mouse hippocampus. We characterized whole-cell potassium and sodium currents, both involved in action potential (AP) shaping and propagation and determined NO-mediated changes in excitabilities and AP waveforms. Our data describe a novel signaling by which NO, in a cGMP-independent manner, suppresses voltage-gated Kv2 potassium and voltage-gated sodium channel activities, thereby widening AP waveforms and reducing depolarization-induced AP firing rates. Our data show that glutathione, which possesses denitrosylating activity, is sufficient to prevent the observed nitrergic effects on potassium and sodium channels, whereas inhibition of cGMP signaling is also sufficient to abolish NO modulation of sodium currents. We propose that NO suppresses both ion channel activities via redox signaling and that an additional cGMP-mediated component is required to exert effects on sodium currents. Both mechanisms result in a dampened excitability and firing ability providing new data on nitrergic activities in the context of activity-dependent regulation of neuronal function following nNOS activation.
Collapse
Affiliation(s)
- Hannah Scheiblich
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, University of Nottingham, School of Life Sciences, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
65
|
Chou SM, Li KX, Huang MY, Chen C, Lin King YH, Li GG, Zhou W, Teo CF, Jan YN, Jan LY, Yang SB. Kv1.1 channels regulate early postnatal neurogenesis in mouse hippocampus via the TrkB signaling pathway. eLife 2021; 10:e58779. [PMID: 34018923 PMCID: PMC8208815 DOI: 10.7554/elife.58779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
In the postnatal brain, neurogenesis occurs only within a few regions, such as the hippocampal sub-granular zone (SGZ). Postnatal neurogenesis is tightly regulated by factors that balance stem cell renewal with differentiation, and it gives rise to neurons that participate in learning and memory formation. The Kv1.1 channel, a voltage-gated potassium channel, was previously shown to suppress postnatal neurogenesis in the SGZ in a cell-autonomous manner. In this study, we have clarified the physiological and molecular mechanisms underlying Kv1.1-dependent postnatal neurogenesis. First, we discovered that the membrane potential of neural progenitor cells is highly dynamic during development. We further established a multinomial logistic regression model for cell-type classification based on the biophysical characteristics and corresponding cell markers. We found that the loss of Kv1.1 channel activity causes significant depolarization of type 2b neural progenitor cells. This depolarization is associated with increased tropomyosin receptor kinase B (TrkB) signaling and proliferation of neural progenitor cells; suppressing TrkB signaling reduces the extent of postnatal neurogenesis. Thus, our study defines the role of the Kv1.1 potassium channel in regulating the proliferation of postnatal neural progenitor cells in mouse hippocampus.
Collapse
Affiliation(s)
- Shu-Min Chou
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Ke-Xin Li
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | | | - Chao Chen
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Yuan-Hung Lin King
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Neuroscience Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | | | - Wei Zhou
- Department of Anesthesia and Perioperative Care, University of California, San FranciscoSan FranciscoUnited States
| | - Chin Fen Teo
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Neuroscience Program of Academia Sinica, Academia SinicaTaipeiTaiwan
| |
Collapse
|
66
|
Dallas ML, Al-Owais MM, Hettiarachchi NT, Vandiver MS, Jarosz-Griffiths HH, Scragg JL, Boyle JP, Steele D, Peers C. Hydrogen sulfide regulates hippocampal neuron excitability via S-sulfhydration of Kv2.1. Sci Rep 2021; 11:8194. [PMID: 33854181 PMCID: PMC8046973 DOI: 10.1038/s41598-021-87646-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Hydrogen sulfide (H2S) is gaining interest as a mammalian signalling molecule with wide ranging effects. S-sulfhydration is one mechanism that is emerging as a key post translational modification through which H2S acts. Ion channels and neuronal receptors are key target proteins for S-sulfhydration and this can influence a range of neuronal functions. Voltage-gated K+ channels, including Kv2.1, are fundamental components of neuronal excitability. Here, we show that both recombinant and native rat Kv2.1 channels are inhibited by the H2S donors, NaHS and GYY4137. Biochemical investigations revealed that NaHS treatment leads to S-sulfhydration of the full length wild type Kv2.1 protein which was absent (as was functional regulation by H2S) in the C73A mutant form of the channel. Functional experiments utilising primary rat hippocampal neurons indicated that NaHS augments action potential firing and thereby increases neuronal excitability. These studies highlight an important role for H2S in shaping cellular excitability through S-sulfhydration of Kv2.1 at C73 within the central nervous system.
Collapse
Affiliation(s)
- Mark L Dallas
- Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK.
| | - Moza M Al-Owais
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK.
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Nishani T Hettiarachchi
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew Scott Vandiver
- Department of Neuroscience, John's Hopkins University School of Medicine, Baltimore, USA
| | | | - Jason L Scragg
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - John P Boyle
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Derek Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Chris Peers
- Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| |
Collapse
|
67
|
Schartl M, Kneitz S, Ormanns J, Schmidt C, Anderson JL, Amores A, Catchen J, Wilson C, Geiger D, Du K, Garcia-Olazábal M, Sudaram S, Winkler C, Hedrich R, Warren WC, Walter R, Meyer A, Postlethwait JH. The Developmental and Genetic Architecture of the Sexually Selected Male Ornament of Swordtails. Curr Biol 2021; 31:911-922.e4. [PMID: 33275891 PMCID: PMC8580132 DOI: 10.1016/j.cub.2020.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
Sexual selection results in sex-specific characters like the conspicuously pigmented extension of the ventral tip of the caudal fin-the "sword"-in males of several species of Xiphophorus fishes. To uncover the genetic architecture underlying sword formation and to identify genes that are associated with its development, we characterized the sword transcriptional profile and combined it with genetic mapping approaches. Results showed that the male ornament of swordtails develops from a sexually non-dimorphic prepattern of transcription factors in the caudal fin. Among genes that constitute the exclusive sword transcriptome and are located in the genomic region associated with this trait we identify the potassium channel, Kcnh8, as a sword development gene. In addition to its neural function kcnh8 performs a known role in fin growth. These findings indicate that during evolution of swordtails a brain gene has been co-opted for an additional novel function in establishing a male ornament.
Collapse
Affiliation(s)
- Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany; The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Susanne Kneitz
- Biochemistry and Cell Biology, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Jenny Ormanns
- Biochemistry and Cell Biology, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Cornelia Schmidt
- Biochemistry and Cell Biology, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Jennifer L Anderson
- Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, OR 97401, USA
| | - Julian Catchen
- Department of Animal Biology, University of Illinois, Urbana, IL 6812, USA
| | - Catherine Wilson
- Institute of Neuroscience, University of Oregon, Eugene, OR 97401, USA
| | - Dietmar Geiger
- Julius-von-Sachs-Institute for Biosciences, Molecular Plant Physiology and Biophysics, Biocenter, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Kang Du
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany; The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | | | - Sudha Sudaram
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Rainer Hedrich
- Julius-von-Sachs-Institute for Biosciences, Molecular Plant Physiology and Biophysics, Biocenter, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Wesley C Warren
- 440G Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO 65211, USA
| | - Ronald Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | | |
Collapse
|
68
|
McCoy MT, Jayanthi S, Cadet JL. Potassium Channels and Their Potential Roles in Substance Use Disorders. Int J Mol Sci 2021; 22:1249. [PMID: 33513859 PMCID: PMC7865894 DOI: 10.3390/ijms22031249] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/12/2023] Open
Abstract
Substance use disorders (SUDs) are ubiquitous throughout the world. However, much remains to be done to develop pharmacotherapies that are very efficacious because the focus has been mostly on using dopaminergic agents or opioid agonists. Herein we discuss the potential of using potassium channel activators in SUD treatment because evidence has accumulated to support a role of these channels in the effects of rewarding drugs. Potassium channels regulate neuronal action potential via effects on threshold, burst firing, and firing frequency. They are located in brain regions identified as important for the behavioral responses to rewarding drugs. In addition, their expression profiles are influenced by administration of rewarding substances. Genetic studies have also implicated variants in genes that encode potassium channels. Importantly, administration of potassium agonists have been shown to reduce alcohol intake and to augment the behavioral effects of opioid drugs. Potassium channel expression is also increased in animals with reduced intake of methamphetamine. Together, these results support the idea of further investing in studies that focus on elucidating the role of potassium channels as targets for therapeutic interventions against SUDs.
Collapse
Affiliation(s)
| | | | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, USA; (M.T.M.); (S.J.)
| |
Collapse
|
69
|
Wie J, Liu Z, Song H, Tropea TF, Yang L, Wang H, Liang Y, Cang C, Aranda K, Lohmann J, Yang J, Lu B, Chen-Plotkin AS, Luk KC, Ren D. A growth-factor-activated lysosomal K + channel regulates Parkinson's pathology. Nature 2021; 591:431-437. [PMID: 33505021 DOI: 10.1038/s41586-021-03185-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Lysosomes have fundamental physiological roles and have previously been implicated in Parkinson's disease1-5. However, how extracellular growth factors communicate with intracellular organelles to control lysosomal function is not well understood. Here we report a lysosomal K+ channel complex that is activated by growth factors and gated by protein kinase B (AKT) that we term lysoKGF. LysoKGF consists of a pore-forming protein TMEM175 and AKT: TMEM175 is opened by conformational changes in, but not the catalytic activity of, AKT. The minor allele at rs34311866, a common variant in TMEM175, is associated with an increased risk of developing Parkinson's disease and reduces channel currents. Reduction in lysoKGF function predisposes neurons to stress-induced damage and accelerates the accumulation of pathological α-synuclein. By contrast, the minor allele at rs3488217-another common variant of TMEM175, which is associated with a decreased risk of developing Parkinson's disease-produces a gain-of-function in lysoKGF during cell starvation, and enables neuronal resistance to damage. Deficiency in TMEM175 leads to a loss of dopaminergic neurons and impairment in motor function in mice, and a TMEM175 loss-of-function variant is nominally associated with accelerated rates of cognitive and motor decline in humans with Parkinson's disease. Together, our studies uncover a pathway by which extracellular growth factors regulate intracellular organelle function, and establish a targetable mechanism by which common variants of TMEM175 confer risk for Parkinson's disease.
Collapse
Affiliation(s)
- Jinhong Wie
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenjiang Liu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Haikun Song
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lu Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Huanhuan Wang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yuling Liang
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chunlei Cang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly Aranda
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joey Lohmann
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
70
|
Maqoud F, Scala R, Hoxha M, Zappacosta B, Tricarico D. ATP-sensitive potassium channel subunits in the neuroinflammation: novel drug targets in neurodegenerative disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:130-149. [PMID: 33463481 DOI: 10.2174/1871527320666210119095626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
Arachidonic acids and its metabolites modulate plenty of ligand-gated, voltage-dependent ion channels, and metabolically regulated potassium channels including ATP-sensitive potassium channels (KATP). KATP channels are hetero-multimeric complexes of sulfonylureas receptors (SUR1, SUR2A or SUR2B) and the pore-forming subunits (Kir6.1 and Kir6.2) likewise expressed in the pre-post synapsis of neurons and inflammatory cells, thereby affecting their proliferation and activity. KATP channels are involved in amyloid-β (Aβ)-induced pathology, therefore emerging as therapeutic targets against Alzheimer's and related diseases. The modulation of these channels can represent an innovative strategy for the treatment of neurodegenerative disorders; nevertheless, the currently available drugs are not selective for brain KATP channels and show contrasting effects. This phenomenon can be a consequence of the multiple physiological roles of the different varieties of KATP channels. Openings of cardiac and muscular KATP channel subunits, is protective against caspase-dependent atrophy in these tissues and some neurodegenerative disorders, whereas in some neuroinflammatory diseases benefits can be obtained through the inhibition of neuronal KATP channel subunits. For example, glibenclamide exerts an anti-inflammatory effect in respiratory, digestive, urological, and central nervous system (CNS) diseases, as well as in ischemia-reperfusion injury associated with abnormal SUR1-Trpm4/TNF-α or SUR1-Trpm4/ Nos2/ROS signaling. Despite this strategy is promising, glibenclamide may have limited clinical efficacy due to its unselective blocking action of SUR2A/B subunits also expressed in cardiovascular apparatus with pro-arrhythmic effects and SUR1 expressed in pancreatic beta cells with hypoglycemic risk. Alternatively, neuronal selective dual modulators showing agonist/antagonist actions on KATP channels can be an option.
Collapse
Affiliation(s)
- Fatima Maqoud
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Rosa Scala
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Bruno Zappacosta
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Domenico Tricarico
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| |
Collapse
|
71
|
Timäus C, von Gottberg P, Hirschel S, Lange C, Wiltfang J, Hansen N. KCNA2 Autoimmunity in Progressive Cognitive Impairment: Case Series and Literature Review. Brain Sci 2021; 11:89. [PMID: 33445475 PMCID: PMC7826663 DOI: 10.3390/brainsci11010089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022] Open
Abstract
Autoimmune dementia is a novel and expanding field which subsumes neuropsychiatric disorders with predominant cognitive impairments due to an underlying autoimmune etiology. Progressive dementias with atypical clinical presentation should trigger a thorough diagnostic approach including testing for neural surface and intracellular antibodies to avoid a delay in accurate diagnosis and initiating appropriate therapy. Here, we present two emerging cases of progressive dementia with co-existing serum autoantibodies against the KCNA2 (potassium voltage-gated channel subfamily A member 2) subunit. We found various cognitive deficits with dominant impairments in the memory domain, particularly in delayed recall. One patient presented a subacute onset of then-persisting cognitive deficits, while the other patient's cognitive impairments progressed more chronically and fluctuated. Cognitive impairments coincided with additional neuropsychiatric symptoms. Both had a potential paraneoplastic background according to their medical history and diagnostic results. We discuss the potential role of KCNA2 autoantibodies in these patients and in general by reviewing the literature. The pathogenetic role of KCNA2 antibodies in cognitive impairment is not well delineated; clinical presentations are heterogeneous, and thus a causal link between antibodies remains questionable. Current evidence indicates an intracellular rather than extracellular epitope. We strongly suggest additional prospective studies to explore KCNA2 antibodies in specifically-defined cohorts of cognitively impaired patients via a systematic assessment of clinical, neuropsychological, neuroimaging, as well as laboratory and CSF (cerebrospinal fluid) parameters, and antibody studies to (1) determine the epitope's location (intracellular vs. extracellular), (2) the mode of action, and (3) seek co-existing, novel pathogenetic autoantibodies in sera and CSF.
Collapse
Affiliation(s)
- Charles Timäus
- Department of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (C.L.); (J.W.); (N.H.)
| | - Philipp von Gottberg
- Department of Neuroradiology, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany;
| | - Sina Hirschel
- Department of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (C.L.); (J.W.); (N.H.)
| | - Claudia Lange
- Department of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (C.L.); (J.W.); (N.H.)
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (C.L.); (J.W.); (N.H.)
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Goettingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (S.H.); (C.L.); (J.W.); (N.H.)
| |
Collapse
|
72
|
Zhang L, Peng Z, Bian W, Zhu P, Tang B, Liao WP, Su T. Functional Differences Between Two Kv1.1 RNA Editing Isoforms: a Comparative Study on Neuronal Overexpression in Mouse Prefrontal Cortex. Mol Neurobiol 2021; 58:2046-2060. [PMID: 33411244 DOI: 10.1007/s12035-020-02229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The Shaker-related potassium channel Kv1.1 subunit has important implications for controlling neuronal excitabilities. A particular recoding by A-to-I RNA editing at I400 of Kv1.1 mRNA is an underestimated mechanism for fine-tuning the properties of Kv1.1-containing channels. Knowledge about functional differences between edited (I400V) and non-edited Kv1.1 isoforms is insufficient, especially in neurons. To understand their different roles, the two Kv1.1 isoforms were overexpressed in the prefrontal cortex via local adeno-associated virus-mediated gene delivery. The I400V isoform showed a higher competitiveness in membrane translocalization, but failed to reduce current-evoked discharges and showed weaker impact on spiking-frequency adaptation in the transduced neurons. The non-edited Kv1.1 overexpression led to slight elevations in both fast- and non-inactivating current components of macroscopic potassium current. By contrast, the I400V overexpression did not impact the fast-inactivating current component. Further isolation of Kv1.1-specific current by its specific blocker dendrotoxin-κ showed that both isoforms did result in significant increases in current amplitude, whereas the I400V was less efficient in contributing the fast-inactivating current component. Voltage-dependent properties of the fast-inactivating current component did not alter for both isoforms. For recovery kinetics, the I400V showed a significant acceleration of recovery from fast inactivation. The gene delivery of the I400V rather than the wild type exhibited anxiolytic activities, which was assessed by an open field test. These results suggest that the Kv1.1 RNA editing isoforms have different properties and outcomes, reflecting the functional and phenotypic significance of the Kv1.1 RNA editing in neurons.
Collapse
Affiliation(s)
- Liting Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Zetong Peng
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wenjun Bian
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Pingping Zhu
- Department of Neurology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Bin Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China. .,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
73
|
Khoubza L, Chatelain FC, Feliciangeli S, Lesage F, Bichet D. Physiological roles of heteromerization: focus on the two-pore domain potassium channels. J Physiol 2021; 599:1041-1055. [PMID: 33347640 DOI: 10.1113/jp279870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
Potassium channels form the largest family of ion channels with more than 80 members involved in cell excitability and signalling. Most of them exist as homomeric channels, whereas specific conditions are required to obtain heteromeric channels. It is well established that heteromerization of voltage-gated and inward rectifier potassium channels affects their function, increasing the diversity of the native potassium currents. For potassium channels with two pore domains (K2P ), homomerization has long been considered the rule, their polymodal regulation by a wide diversity of physical and chemical stimuli being responsible for the adaptation of the leak potassium currents to cellular needs. This view has recently evolved with the accumulation of evidence of heteromerization between different K2P subunits. Several functional intragroup and intergroup heteromers have recently been identified, which contribute to the functional heterogeneity of this family. K2P heteromerization is involved in the modulation of channel expression and trafficking, promoting functional and signalling diversity. As illustrated in the Abstract Figure, heteromerization of TREK1 and TRAAK provides the cell with more possibilities of regulation. It is becoming increasingly evident that K2P heteromers contribute to important physiological functions including neuronal and cardiac excitability. Since heteromerization also affects the pharmacology of K2P channels, this understanding helps to establish K2P heteromers as new therapeutic targets for physiopathological conditions.
Collapse
Affiliation(s)
- Lamyaa Khoubza
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France
| | - Franck C Chatelain
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France
| | - Sylvain Feliciangeli
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France.,Inserm, 101 rue de Tolbiac, 75013, Paris, France
| | - Florian Lesage
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France.,Inserm, 101 rue de Tolbiac, 75013, Paris, France
| | - Delphine Bichet
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France
| |
Collapse
|
74
|
Trosclair K, Si M, Watts M, Gautier NM, Voigt N, Traylor J, Bitay M, Baczko I, Dobrev D, Hamilton KA, Bhuiyan MS, Dominic P, Glasscock E. Kv1.1 potassium channel subunit deficiency alters ventricular arrhythmia susceptibility, contractility, and repolarization. Physiol Rep 2021; 9:e14702. [PMID: 33427415 PMCID: PMC7798052 DOI: 10.14814/phy2.14702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Epilepsy-associated Kv1.1 voltage-gated potassium channel subunits encoded by the Kcna1 gene have traditionally been considered absent in heart, but recent studies reveal they are expressed in cardiomyocytes where they could regulate intrinsic cardiac electrophysiology. Although Kv1.1 now has a demonstrated functional role in atria, its role in the ventricles has never been investigated. In this work, electrophysiological, histological, and gene expression approaches were used to explore the consequences of Kv1.1 deficiency in the ventricles of Kcna1 knockout (KO) mice at the organ, cellular, and molecular levels to determine whether the absence of Kv1.1 leads to ventricular dysfunction that increases the risk of premature or sudden death. When subjected to intracardiac pacing, KO mice showed normal baseline susceptibility to inducible ventricular arrhythmias (VA) but resistance to VA under conditions of sympathetic challenge with isoproterenol. Echocardiography revealed cardiac contractile dysfunction manifesting as decreased ejection fraction and fractional shortening. In whole-cell patch-clamp recordings, KO ventricular cardiomyocytes exhibited action potential prolongation indicative of impaired repolarization. Imaging, histological, and transcript analyses showed no evidence of structural or channel gene expression remodeling, suggesting that the observed deficits are likely electrogenic due to Kv1.1 deficiency. Immunoblots of patient heart samples detected the presence of Kv1.1 at relatively high levels, implying that Kv1.1 contributes to human cardiac electrophysiology. Taken together, this work describes an important functional role for Kv1.1 in ventricles where its absence causes repolarization and contractility deficits but reduced susceptibility to arrhythmia under conditions of sympathetic drive.
Collapse
Affiliation(s)
- Krystle Trosclair
- Department of Cellular Biology & AnatomyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Man Si
- Department of Cellular Biology & AnatomyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Megan Watts
- Department of Internal MedicineSection of CardiologyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Nicole M. Gautier
- Department of Cellular Biology & AnatomyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Niels Voigt
- Institute of Pharmacology and ToxicologyUniversity Medical Center GoettingenGoettingenGermany
- DZHK (German Center for Cardiovascular Research)GöttingenGermany
| | - James Traylor
- Department of PathologyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Miklós Bitay
- Department of Cardiac Surgery2nd Department of Medicine and Cardiology CenterUniversity of SzegedSzegedHungary
| | - Istvan Baczko
- Department of Pharmacology and PharmacotherapyInterdisciplinary Excellence CentreUniversity of SzegedSzegedHungary
| | - Dobromir Dobrev
- Institute of PharmacologyWest German Heart and Vascular CenterUniversity Duisburg‐EssenEssenGermany
| | - Kathryn A. Hamilton
- Department of Cellular Biology & AnatomyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Md. Shenuarin Bhuiyan
- Department of PathologyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Paari Dominic
- Department of Internal MedicineSection of CardiologyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Edward Glasscock
- Department of Cellular Biology & AnatomyLouisiana State University Health Sciences CenterShreveportLAUSA
- Department of Biological SciencesSouthern Methodist UniversityDallasTXUSA
| |
Collapse
|
75
|
Kalmbach BE, Brager DH. Fragile X mental retardation protein modulates somatic D-type K + channels and action potential threshold in the mouse prefrontal cortex. J Neurophysiol 2020; 124:1766-1773. [PMID: 32997566 DOI: 10.1152/jn.00494.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Axo-somatic K+ channels control action potential output in part by acting in concert with voltage-gated Na+ channels to set action potential threshold. Slowly inactivating, D-type K+ channels are enriched at the axo-somatic region of cortical pyramidal neurons of the prefrontal cortex, where they regulate action potential firing. We previously demonstrated that D-type K+ channels are downregulated in extratelencephalic-projecting (ET) L5 neurons in the medial prefrontal cortex (mPFC) of the Fmr1-knockout mouse model of fragile X syndrome (FX mice), resulting in a hyperpolarized action potential threshold. To test whether K+ channel alterations are regulated in a cell-autonomous manner in FXS, we used a virus-mediated approach to restore expression of fragile X mental retardation protein (FMRP) in a small population of prefrontal neurons in male FX mice. Outside-out voltage-clamp recordings revealed a higher D-type K+ conductance in FMRP-positive ET neurons compared with nearby FMRP-negative ET neurons. FMRP did not affect either rapidly inactivating A-type or noninactivating K+ conductance. ET neuron patches recorded with FMRP1-298, a truncated form of FMRP that lacks mRNA binding domains, included in the pipette solution had larger D-type K+ conductance compared with heat-inactivated controls. Viral expression of FMRP in FX mice depolarized action potential threshold to near-wild-type levels in ET neurons. These results suggest that FMRP influences the excitability of ET neurons in the mPFC by regulating somatic D-type K+ channels in a cell-autonomous, protein-protein-dependent manner.NEW & NOTEWORTHY We demonstrate that fragile X mental retardation protein (FMRP), which is absent in fragile X syndrome (FXS), regulates D-type potassium channels in prefrontal cortex L5 pyramidal neurons with subcerebral projections but not in neighboring pyramidal neurons without subcerebral projections. FMRP regulates D-type potassium channels in a protein-protein-dependent manner and rescues action potential threshold in a mouse model of FXS. These findings have implications for how changes in voltage-gated channels contribute to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Brian E Kalmbach
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas.,Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Darrin H Brager
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas.,Department of Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|
76
|
Li T, Wu K, Yue Z, Wang Y, Zhang F, Shen H. Structural Basis for the Modulation of Human KCNQ4 by Small-Molecule Drugs. Mol Cell 2020; 81:25-37.e4. [PMID: 33238160 DOI: 10.1016/j.molcel.2020.10.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/28/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Among the five KCNQ channels, also known as the Kv7 voltage-gated potassium (Kv) channels, KCNQ2-KCNQ5 control neuronal excitability. Dysfunctions of KCNQ2-KCNQ5 are associated with neurological disorders such as epilepsy, deafness, and neuropathic pain. Here, we report the cryoelectron microscopy (cryo-EM) structures of human KCNQ4 and its complexes with the opener retigabine or the blocker linopirdine at overall resolutions of 2.5, 3.1, and 3.3 Å, respectively. In all structures, a phosphatidylinositol 4,5-bisphosphate (PIP2) molecule inserts its head group into a cavity within each voltage-sensing domain (VSD), revealing an unobserved binding mode for PIP2. Retigabine nestles in each fenestration, inducing local shifts. Instead of staying within the central pore, linopirdine resides in a cytosolic cavity underneath the inner gate. Electrophysiological analyses of various mutants corroborated the structural observations. Our studies reveal the molecular basis for the modulatory mechanism of neuronal KCNQ channels and provide a framework for structure-facilitated drug discovery targeting these important channels.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Kun Wu
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhenlei Yue
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yifei Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Fan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Huaizong Shen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
77
|
Hutson TN, Rezaei F, Gautier NM, Indumathy J, Glasscock E, Iasemidis L. Directed Connectivity Analysis of the Neuro-Cardio- and Respiratory Systems Reveals Novel Biomarkers of Susceptibility to SUDEP. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:301-311. [PMID: 34223181 PMCID: PMC8249082 DOI: 10.1109/ojemb.2020.3036544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 01/11/2023] Open
Abstract
Goal: Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality and its pathophysiological mechanisms remain unknown. We set to record and analyze for the first time concurrent electroencephalographic (EEG), electrocardiographic (ECG), and unrestrained whole-body plethysmographic (Pleth) signals from control (WT - wild type) and SUDEP-prone mice (KO- knockout Kcna1 animal model). Employing multivariate autoregressive models (MVAR) we measured all tri-organ effective directional interactions by the generalized partial directed coherence (GPDC) in the frequency domain over time (hours). When compared to the control (WT) animals, the SUDEP-prone (KO) animals exhibited (p < 0.001) reduced afferent and efferent interactions between the heart and the brain over the full frequency spectrum (0-200Hz), enhanced efferent interactions from the brain to the lungs and from the heart to the lungs at high (>90 Hz) frequencies (especially during periods with seizure activity), and decreased feedback from the lungs to the brain at low (<40 Hz) frequencies. These results show that impairment in the afferent and efferent pathways in the holistic neuro-cardio-respiratory network could lead to SUDEP, and effective connectivity measures and their dynamics could serve as novel biomarkers of susceptibility to SUDEP and seizures respectively.
Collapse
Affiliation(s)
- T. Noah Hutson
- Department of Biomedical EngineeringLouisiana Tech UniversityRustonLA71272USA
| | - Farnaz Rezaei
- Department of Mathematics and StatisticsLouisiana Tech UniversityRustonLA71272USA
| | - Nicole M. Gautier
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA71130USA
| | - Jagadeeswaran Indumathy
- Department of PhysiologyJawaharlal Institute of Postgraduate Medical Education and ResearchPuducherryIndia
| | - Edward Glasscock
- Department of Biological SciencesSouthern Methodist UniversityDallasTX75275USA
| | - Leonidas Iasemidis
- Department of Biomedical EngineeringLouisiana Tech UniversityRustonLA71272USA
- Center for Biomedical Engineering and Rehabilitation ScienceLouisiana Tech UniversityRustonLA71272USA
| |
Collapse
|
78
|
Kuenze G, Vanoye CG, Desai RR, Adusumilli S, Brewer KR, Woods H, McDonald EF, Sanders CR, George AL, Meiler J. Allosteric mechanism for KCNE1 modulation of KCNQ1 potassium channel activation. eLife 2020; 9:57680. [PMID: 33095155 PMCID: PMC7584456 DOI: 10.7554/elife.57680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/28/2020] [Indexed: 01/04/2023] Open
Abstract
The function of the voltage-gated KCNQ1 potassium channel is regulated by co-assembly with KCNE auxiliary subunits. KCNQ1-KCNE1 channels generate the slow delayed rectifier current, IKs, which contributes to the repolarization phase of the cardiac action potential. A three amino acid motif (F57-T58-L59, FTL) in KCNE1 is essential for slow activation of KCNQ1-KCNE1 channels. However, how this motif interacts with KCNQ1 to control its function is unknown. Combining computational modeling with electrophysiological studies, we developed structural models of the KCNQ1-KCNE1 complex that suggest how KCNE1 controls KCNQ1 activation. The FTL motif binds at a cleft between the voltage-sensing and pore domains and appears to affect the channel gate by an allosteric mechanism. Comparison with the KCNQ1-KCNE3 channel structure suggests a common transmembrane-binding mode for different KCNEs and illuminates how specific differences in the interaction of their triplet motifs determine the profound differences in KCNQ1 functional modulation by KCNE1 versus KCNE3.
Collapse
Affiliation(s)
- Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, United States.,Department of Chemistry, Vanderbilt University, Nashville, United States.,Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Reshma R Desai
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Sneha Adusumilli
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Kathryn R Brewer
- Center for Structural Biology, Vanderbilt University, Nashville, United States.,Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Hope Woods
- Center for Structural Biology, Vanderbilt University, Nashville, United States.,Department of Chemistry, Vanderbilt University, Nashville, United States
| | - Eli F McDonald
- Center for Structural Biology, Vanderbilt University, Nashville, United States.,Department of Chemistry, Vanderbilt University, Nashville, United States
| | - Charles R Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, United States.,Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, United States.,Department of Chemistry, Vanderbilt University, Nashville, United States.,Institute for Drug Discovery, Leipzig University, Leipzig, Germany.,Department of Pharmacology, Vanderbilt University, Nashville, United States
| |
Collapse
|
79
|
Giunti P, Mantuano E, Frontali M. Episodic Ataxias: Faux or Real? Int J Mol Sci 2020; 21:ijms21186472. [PMID: 32899446 PMCID: PMC7555854 DOI: 10.3390/ijms21186472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022] Open
Abstract
The term Episodic Ataxias (EA) was originally used for a few autosomal dominant diseases, characterized by attacks of cerebellar dysfunction of variable duration and frequency, often accompanied by other ictal and interictal signs. The original group subsequently grew to include other very rare EAs, frequently reported in single families, for some of which no responsible gene was found. The clinical spectrum of these diseases has been enormously amplified over time. In addition, episodes of ataxia have been described as phenotypic variants in the context of several different disorders. The whole group is somewhat confused, since a strong evidence linking the mutation to a given phenotype has not always been established. In this review we will collect and examine all instances of ataxia episodes reported so far, emphasizing those for which the pathophysiology and the clinical spectrum is best defined.
Collapse
Affiliation(s)
- Paola Giunti
- Laboratory of Neurogenetics, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC2N 5DU, UK
- Correspondence: (P.G.); (M.F.)
| | - Elide Mantuano
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy;
| | - Marina Frontali
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy;
- Correspondence: (P.G.); (M.F.)
| |
Collapse
|
80
|
Tsai HF, IJspeert C, Shen AQ. Voltage-gated ion channels mediate the electrotaxis of glioblastoma cells in a hybrid PMMA/PDMS microdevice. APL Bioeng 2020; 4:036102. [PMID: 32637857 PMCID: PMC7332302 DOI: 10.1063/5.0004893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Transformed astrocytes in the most aggressive form cause glioblastoma, the most common cancer in the central nervous system with high mortality. The physiological electric field by neuronal local field potentials and tissue polarity may guide the infiltration of glioblastoma cells through the electrotaxis process. However, microenvironments with multiplex gradients are difficult to create. In this work, we have developed a hybrid microfluidic platform to study glioblastoma electrotaxis in controlled microenvironments with high throughput quantitative analysis by machine learning-powered single cell tracking software. By equalizing the hydrostatic pressure difference between inlets and outlets of the microchannel, uniform single cells can be seeded reliably inside the microdevice. The electrotaxis of two glioblastoma models, T98G and U-251MG, requires an optimal laminin-containing extracellular matrix and exhibits opposite directional and electro-alignment tendencies. Calcium signaling is a key contributor in glioblastoma pathophysiology but its role in glioblastoma electrotaxis is still an open question. Anodal T98G electrotaxis and cathodal U-251MG electrotaxis require the presence of extracellular calcium cations. U-251MG electrotaxis is dependent on the P/Q-type voltage-gated calcium channel (VGCC) and T98G is dependent on the R-type VGCC. U-251MG electrotaxis and T98G electrotaxis are also mediated by A-type (rapidly inactivating) voltage-gated potassium channels and acid-sensing sodium channels. The involvement of multiple ion channels suggests that the glioblastoma electrotaxis is complex and patient-specific ion channel expression can be critical to develop personalized therapeutics to fight against cancer metastasis. The hybrid microfluidic design and machine learning-powered single cell analysis provide a simple and flexible platform for quantitative investigation of complicated biological systems.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Camilo IJspeert
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
81
|
Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps. Proc Natl Acad Sci U S A 2020; 117:20920-20925. [PMID: 32788371 PMCID: PMC7456130 DOI: 10.1073/pnas.2005626117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
People for centuries are puzzled how living creatures like plants sense their environment. Plants employ electrical signals to communicate a cue-dependent local status between plants cells and organs. As a first response to biotic and abiotic stresses, the membrane potential of plant cells depolarizes. Recovery from the depolarized state, repolarization, was proposed to involve ion channels and pumps. Here, we established channelrhodopsin (ChR2)-based optogenetics in plants and learned that the plant plasma membrane H+-ATPase represents the major driver of membrane potential repolarization control during plant electrical signaling, rather than voltage-dependent ion channels. In plants, environmental stressors trigger plasma membrane depolarizations. Being electrically interconnected via plasmodesmata, proper functional dissection of electrical signaling by electrophysiology is basically impossible. The green alga Chlamydomonas reinhardtii evolved blue light-excited channelrhodopsins (ChR1, 2) to navigate. When expressed in excitable nerve and muscle cells, ChRs can be used to control the membrane potential via illumination. In Arabidopsis plants, we used the algal ChR2-light switches as tools to stimulate plasmodesmata-interconnected photosynthetic cell networks by blue light and monitor the subsequent plasma membrane electrical responses. Blue-dependent stimulations of ChR2 expressing mesophyll cells, resting around −160 to −180 mV, reproducibly depolarized the membrane potential by 95 mV on average. Following excitation, mesophyll cells recovered their prestimulus potential not without transiently passing a hyperpolarization state. By combining optogenetics with voltage-sensing microelectrodes, we demonstrate that plant plasma membrane AHA-type H+-ATPase governs the gross repolarization process. AHA2 protein biochemistry and functional expression analysis in Xenopus oocytes indicates that the capacity of this H+ pump to recharge the membrane potential is rooted in its voltage- and pH-dependent functional anatomy. Thus, ChR2 optogenetics appears well suited to noninvasively expose plant cells to signal specific depolarization signatures. From the responses we learn about the molecular processes, plants employ to channel stress-associated membrane excitations into physiological responses.
Collapse
|
82
|
Nirenberg VA, Yifrach O. Flow and shortcuts along the Shaker Kv channel slow inactivation gating cycle. J Gen Physiol 2020; 152:151859. [PMID: 32542313 PMCID: PMC7398140 DOI: 10.1085/jgp.202012611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Closing the cycle of Kv channel slow inactivation gating.
Collapse
Affiliation(s)
- Valerie Abigail Nirenberg
- Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ofer Yifrach
- Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
83
|
Kessi M, Chen B, Peng J, Tang Y, Olatoutou E, He F, Yang L, Yin F. Intellectual Disability and Potassium Channelopathies: A Systematic Review. Front Genet 2020; 11:614. [PMID: 32655623 PMCID: PMC7324798 DOI: 10.3389/fgene.2020.00614] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023] Open
Abstract
Intellectual disability (ID) manifests prior to adulthood as severe limitations to intellectual function and adaptive behavior. The role of potassium channelopathies in ID is poorly understood. Therefore, we aimed to evaluate the relationship between ID and potassium channelopathies. We hypothesized that potassium channelopathies are strongly associated with ID initiation, and that both gain- and loss-of-function mutations lead to ID. This systematic review explores the burden of potassium channelopathies, possible mechanisms, advancements using animal models, therapies, and existing gaps. The literature search encompassed both PubMed and Embase up to October 2019. A total of 75 articles describing 338 cases were included in this review. Nineteen channelopathies were identified, affecting the following genes: KCNMA1, KCNN3, KCNT1, KCNT2, KCNJ10, KCNJ6, KCNJ11, KCNA2, KCNA4, KCND3, KCNH1, KCNQ2, KCNAB1, KCNQ3, KCNQ5, KCNC1, KCNB1, KCNC3, and KCTD3. Twelve of these genes presented both gain- and loss-of-function properties, three displayed gain-of-function only, three exhibited loss-of-function only, and one had unknown function. How gain- and loss-of-function mutations can both lead to ID remains largely unknown. We identified only a few animal studies that focused on the mechanisms of ID in relation to potassium channelopathies and some of the few available therapeutic options (channel openers or blockers) appear to offer limited efficacy. In conclusion, potassium channelopathies contribute to the initiation of ID in several instances and this review provides a comprehensive overview of which molecular players are involved in some of the most prominent disease phenotypes.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China.,Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yulin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Eleonore Olatoutou
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
84
|
The environmental toxicant ziram enhances neurotransmitter release and increases neuronal excitability via the EAG family of potassium channels. Neurobiol Dis 2020; 143:104977. [PMID: 32553709 DOI: 10.1016/j.nbd.2020.104977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/21/2022] Open
Abstract
Environmental toxicants have the potential to contribute to the pathophysiology of multiple complex diseases, but the underlying mechanisms remain obscure. One such toxicant is the widely used fungicide ziram, a dithiocarbamate known to have neurotoxic effects and to increase the risk of Parkinson's disease. We have used Drosophila melanogaster as an unbiased discovery tool to identify novel molecular pathways by which ziram may disrupt neuronal function. Consistent with previous results in mammalian cells, we find that ziram increases the probability of synaptic vesicle release by dysregulation of the ubiquitin signaling system. In addition, we find that ziram increases neuronal excitability. Using a combination of live imaging and electrophysiology, we find that ziram increases excitability in both aminergic and glutamatergic neurons. This increased excitability is phenocopied and occluded by null mutant animals of the ether a-go-go (eag) potassium channel. A pharmacological inhibitor of the temperature sensitive hERG (human ether-a-go-go related gene) phenocopies the excitability effects of ziram but only at elevated temperatures. seizure (sei), a fly ortholog of hERG, is thus another candidate target of ziram. Taken together, the eag family of potassium channels emerges as a candidate for mediating some of the toxic effects of ziram. We propose that ziram may contribute to the risk of complex human diseases by blockade of human eag and sei orthologs, such as hERG.
Collapse
|
85
|
Manville RW, Abbott GW. Isoform-Selective KCNA1 Potassium Channel Openers Built from Glycine. J Pharmacol Exp Ther 2020; 373:391-401. [PMID: 32217768 PMCID: PMC7228494 DOI: 10.1124/jpet.119.264507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Loss of function of voltage-gated potassium (Kv) channels is linked to a range of lethal or debilitating channelopathies. New pharmacological approaches are warranted to isoform-selectively activate specific Kv channels. One example is KCNA1 Potassium Voltage-Gated Channel Subfamily A Member 1 (KCNA1) (Kv1.1), an archetypal Shaker-type Kv channel, in which loss-of-function mutations cause episodic ataxia type 1 (EA1). EA1 causes constant myokomia and episodic bouts of ataxia and may associate with epilepsy and other disorders. We previously found that the inhibitory neurotransmitter γ-aminobutyric acid and modified versions of glycine directly activate Kv channels within the KCNQ subfamily, a characteristic favored by strong negative electrostatic surface potential near the neurotransmitter carbonyl group. Here, we report that adjusting the number and positioning of fluorine atoms within the fluorophenyl ring of glycine derivatives produces isoform-selective KCNA1 channel openers that are inactive against KCNQ2/3 channels, or even KCNA2, the closest relative of KCNA1. The findings refine our understanding of the molecular basis for KCNQ versus KCNA1 activation and isoform selectivity and constitute, to our knowledge, the first reported isoform-selective KCNA1 opener. SIGNIFICANCE STATEMENT: Inherited loss-of-function gene sequence variants in KCNA1, which encodes the KCNA1 (Kv1.1) voltage-gated potassium channel, cause episodic ataxia type 1 (EA1), a movement disorder also linked to epilepsy and developmental delay. We have discovered several isoform-specific KCNA1-activating small molecules, addressing a notable gap in the field and providing possible lead compounds and a novel chemical space for the development of potential future therapeutic drugs for EA1.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
86
|
D'Adamo MC, Liantonio A, Conte E, Pessia M, Imbrici P. Ion Channels Involvement in Neurodevelopmental Disorders. Neuroscience 2020; 440:337-359. [PMID: 32473276 DOI: 10.1016/j.neuroscience.2020.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Inherited and sporadic mutations in genes encoding for brain ion channels, affecting membrane expression or biophysical properties, have been associated with neurodevelopmental disorders characterized by epilepsy, cognitive and behavioral deficits with significant phenotypic and genetic heterogeneity. Over the years, the screening of a growing number of patients and the functional characterization of newly identified mutations in ion channels genes allowed to recognize new phenotypes and to widen the clinical spectrum of known diseases. Furthermore, advancements in understanding disease pathogenesis at atomic level or using patient-derived iPSCs and animal models have been pivotal to orient therapeutic intervention and to put the basis for the development of novel pharmacological options for drug-resistant disorders. In this review we will discuss major improvements and critical issues concerning neurodevelopmental disorders caused by dysfunctions in brain sodium, potassium, calcium, chloride and ligand-gated ion channels.
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | | | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Italy
| | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Italy.
| |
Collapse
|
87
|
von Wittgenstein J, Zheng F, Wittmann MT, Balta EA, Ferrazzi F, Schäffner I, Häberle BM, Valero-Aracama MJ, Koehl M, Miranda CJ, Kaspar BK, Ekici AB, Reis A, Abrous DN, Alzheimer C, Lie DC. Sox11 is an Activity-Regulated Gene with Dentate-Gyrus-Specific Expression Upon General Neural Activation. Cereb Cortex 2020; 30:3731-3743. [PMID: 32080705 DOI: 10.1093/cercor/bhz338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 01/21/2023] Open
Abstract
Neuronal activity initiates transcriptional programs that shape long-term changes in plasticity. Although neuron subtypes differ in their plasticity response, most activity-dependent transcription factors (TFs) are broadly expressed across neuron subtypes and brain regions. Thus, how region- and neuronal subtype-specific plasticity are established on the transcriptional level remains poorly understood. We report that in young adult (i.e., 6-8 weeks old) mice, the developmental TF SOX11 is induced in neurons within 6 h either by electroconvulsive stimulation or by exploration of a novel environment. Strikingly, SOX11 induction was restricted to the dentate gyrus (DG) of the hippocampus. In the novel environment paradigm, SOX11 was observed in a subset of c-FOS expressing neurons (ca. 15%); whereas around 75% of SOX11+ DG granule neurons were c-FOS+, indicating that SOX11 was induced in an activity-dependent fashion in a subset of neurons. Environmental enrichment or virus-mediated overexpression of SOX11 enhanced the excitability of DG granule cells and downregulated the expression of different potassium channel subunits, whereas conditional Sox11/4 knock-out mice presented the opposite phenotype. We propose that Sox11 is regulated in an activity-dependent fashion, which is specific to the DG, and speculate that activity-dependent Sox11 expression may participate in the modulation of DG neuron plasticity.
Collapse
Affiliation(s)
- Julia von Wittgenstein
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.,Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marie-Theres Wittmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.,Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Elli-Anna Balta
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Benjamin M Häberle
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maria J Valero-Aracama
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Muriel Koehl
- Neurocentre Magendie U1215, INSERM and Université de Bordeaux, Bordeaux 33000, France
| | - Carlos J Miranda
- The Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Brian K Kaspar
- The Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Djoher Nora Abrous
- Neurocentre Magendie U1215, INSERM and Université de Bordeaux, Bordeaux 33000, France
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - D Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
88
|
Van Theemsche KM, Van de Sande DV, Snyders DJ, Labro AJ. Hydrophobic Drug/Toxin Binding Sites in Voltage-Dependent K + and Na + Channels. Front Pharmacol 2020; 11:735. [PMID: 32499709 PMCID: PMC7243439 DOI: 10.3389/fphar.2020.00735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
In the Nav channel family the lipophilic drugs/toxins binding sites and the presence of fenestrations in the channel pore wall are well defined and categorized. No such classification exists in the much larger Kv channel family, although certain lipophilic compounds seem to deviate from binding to well-known hydrophilic binding sites. By mapping different compound binding sites onto 3D structures of Kv channels, there appear to be three distinct lipid-exposed binding sites preserved in Kv channels: the front and back side of the pore domain, and S2-S3/S3-S4 clefts. One or a combination of these sites is most likely the orthologous equivalent of neurotoxin site 5 in Nav channels. This review describes the different lipophilic binding sites and location of pore wall fenestrations within the Kv channel family and compares it to the knowledge of Nav channels.
Collapse
Affiliation(s)
- Kenny M Van Theemsche
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Dieter V Van de Sande
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Dirk J Snyders
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Alain J Labro
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
89
|
Gu RX, de Groot BL. Lipid-protein interactions modulate the conformational equilibrium of a potassium channel. Nat Commun 2020; 11:2162. [PMID: 32358584 PMCID: PMC7195391 DOI: 10.1038/s41467-020-15741-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/18/2020] [Indexed: 01/17/2023] Open
Abstract
Cell membranes actively participate in the regulation of protein structure and function. In this work, we conduct molecular dynamics simulations to investigate how different membrane environments affect protein structure and function in the case of MthK, a potassium channel. We observe different ion permeation rates of MthK in membranes with different properties, and ascribe them to a shift of the conformational equilibrium between two states of the channel that differ according to whether a transmembrane helix has a kink. Further investigations indicate that two key residues in the kink region mediate a crosstalk between two gates at the selectivity filter and the central cavity, respectively. Opening of one gate eventually leads to closure of the other. Our simulations provide an atomistic model of how lipid-protein interactions affect the conformational equilibrium of a membrane protein. The gating mechanism revealed for MthK may also apply to other potassium channels.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
90
|
Feria Pliego JA, Pedroarena CM. Kv1 potassium channels control action potential firing of putative GABAergic deep cerebellar nuclear neurons. Sci Rep 2020; 10:6954. [PMID: 32332769 PMCID: PMC7181752 DOI: 10.1038/s41598-020-63583-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/01/2020] [Indexed: 12/26/2022] Open
Abstract
Low threshold voltage activated Kv1 potassium channels play key roles in regulating action potential (AP) threshold, neural excitability, and synaptic transmission. Kv1 channels are highly expressed in the cerebellum and mutations of human Kv1 genes are associated to episodic forms of ataxia (EAT-1). Besides the well-established role of Kv1 channels in controlling the cerebellar basket-Purkinje cells synapses, Kv1 channels are expressed by the deep cerebellar nuclear neurons (DCNs) where they regulate the activity of principal DCNs carrying the cerebellar output. DCNs include as well GABAergic neurons serving important functions, such as those forming the inhibitory nucleo-olivary pathway, the nucleo-cortical DCNs providing feed-back inhibition to the cerebellar cortex, and those targeting principal DCNs, but whether their function is regulated by Kv1 channels remains unclear. Here, using cerebellar slices from mature GAD67-GFP mice to identify putative GABAergic-DCNs (GAD + DCN) we show that specific Kv1 channel blockers (dendrotoxin-alpha/I/K, DTXs) hyperpolarized the threshold of somatic action potentials, increased the spontaneous firing rate and hampered evoked high frequency repetitive responses of GAD + DCNs. Moreover, DTXs induced somatic depolarization and tonic firing in previously silent, putative nucleo-cortical DCNs. These results reveal a novel role of Kv1 channels in regulating GABAergic-DCNs activity and thereby, cerebellar function at multiple levels.
Collapse
Affiliation(s)
- Jessica Abigail Feria Pliego
- Graduate School of Cellular and Molecular Neurosciences, University of Tübingen, Tübingen, Germany.,Department for Cognitive Neurology, Hertie-Institute for Clinical Brain Research, 72076, Tübingen, Germany.,Systems Neurophysiology, Werner Reichardt Center for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Christine M Pedroarena
- Department for Cognitive Neurology, Hertie-Institute for Clinical Brain Research, 72076, Tübingen, Germany. .,Systems Neurophysiology, Werner Reichardt Center for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
91
|
Clinical Spectrum of KCNA1 Mutations: New Insights into Episodic Ataxia and Epilepsy Comorbidity. Int J Mol Sci 2020; 21:ijms21082802. [PMID: 32316562 PMCID: PMC7215408 DOI: 10.3390/ijms21082802] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the KCNA1 gene, which encodes voltage-gated Kv1.1 potassium channel α-subunits, cause a variety of human diseases, complicating simple genotype–phenotype correlations in patients. KCNA1 mutations are primarily associated with a rare neurological movement disorder known as episodic ataxia type 1 (EA1). However, some patients have EA1 in combination with epilepsy, whereas others have epilepsy alone. KCNA1 mutations can also cause hypomagnesemia and paroxysmal dyskinesia in rare cases. Why KCNA1 variants are associated with such phenotypic heterogeneity in patients is not yet understood. In this review, literature databases (PubMed) and public genetic archives (dbSNP and ClinVar) were mined for known pathogenic or likely pathogenic mutations in KCNA1 to examine whether patterns exist between mutation type and disease manifestation. Analyses of the 47 deleterious KCNA1 mutations that were identified revealed that epilepsy or seizure-related variants tend to cluster in the S1/S2 transmembrane domains and in the pore region of Kv1.1, whereas EA1-associated variants occur along the whole length of the protein. In addition, insights from animal models of KCNA1 channelopathy were considered, as well as the possible influence of genetic modifiers on disease expressivity and severity. Elucidation of the complex relationship between KCNA1 variants and disease will enable better diagnostic risk assessment and more personalized therapeutic strategies for KCNA1 channelopathy.
Collapse
|
92
|
Giacobassi MJ, Leavitt LS, Raghuraman S, Alluri R, Chase K, Finol-Urdaneta RK, Terlau H, Teichert RW, Olivera BM. An integrative approach to the facile functional classification of dorsal root ganglion neuronal subclasses. Proc Natl Acad Sci U S A 2020; 117:5494-5501. [PMID: 32079727 PMCID: PMC7071849 DOI: 10.1073/pnas.1911382117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Somatosensory neurons have historically been classified by a variety of approaches, including structural, anatomical, and genetic markers; electrophysiological properties; pharmacological sensitivities; and more recently, transcriptional profile differentiation. These methodologies, used separately, have yielded inconsistent classification schemes. Here, we describe phenotypic differences in response to pharmacological agents as measured by changes in cytosolic calcium concentration for the rapid classification of neurons in vitro; further analysis with genetic markers, whole-cell recordings, and single-cell transcriptomics validated these findings in a functional context. Using this general approach, which we refer to as tripartite constellation analysis (TCA), we focused on large-diameter dorsal-root ganglion (L-DRG) neurons with myelinated axons. Divergent responses to the K-channel antagonist, κM-conopeptide RIIIJ (RIIIJ), reliably identified six discrete functional cell classes. In two neuronal subclasses (L1 and L2), block with RIIIJ led to an increase in [Ca] i Simultaneous electrophysiology and calcium imaging showed that the RIIIJ-elicited increase in [Ca] i corresponded to different patterns of action potentials (APs), a train of APs in L1 neurons, and sporadic firing in L2 neurons. Genetically labeled mice established that L1 neurons are proprioceptors. The single-cell transcriptomes of L1 and L2 neurons showed that L2 neurons are Aδ-low-threshold mechanoreceptors. RIIIJ effects were replicated by application of the Kv1.1 selective antagonist, Dendrotoxin-K, in several L-DRG subclasses (L1, L2, L3, and L5), suggesting the presence of functional Kv1.1/Kv1.2 heteromeric channels. Using this approach on other neuronal subclasses should ultimately accelerate the comprehensive classification and characterization of individual somatosensory neuronal subclasses within a mixed population.
Collapse
Affiliation(s)
- Mario J Giacobassi
- School of Biological Sciences, University of Utah, Salt Lake City, UT 841120
| | - Lee S Leavitt
- School of Biological Sciences, University of Utah, Salt Lake City, UT 841120
| | | | - Rishi Alluri
- School of Biological Sciences, University of Utah, Salt Lake City, UT 841120
| | - Kevin Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT 841120
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Heinrich Terlau
- Institute of Physiology, Christian Albrechts University Kiel, Kiel 24118, Germany
| | - Russell W Teichert
- School of Biological Sciences, University of Utah, Salt Lake City, UT 841120
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 841120;
| |
Collapse
|
93
|
Silva JJ, Scott JG. Conservation of the voltage-sensitive sodium channel protein within the Insecta. INSECT MOLECULAR BIOLOGY 2020; 29:9-18. [PMID: 31206812 DOI: 10.1111/imb.12605] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
The voltage-sensitive sodium channel (VSSC) is essential for the generation and propagation of action potentials. VSSC kinetics can be modified by producing different splice variants. The functionality of VSSC depends on features such as the voltage sensors, the selectivity filter and the inactivation loop. Mutations in Vssc conferring resistance to pyrethroid insecticides are known as knockdown resistance (kdr). We analysed the conservation of VSSC in both a broad scope and a narrow scope by three approaches: (1) we compared conservation of sequences and of differential exon use across orders of the Insecta; (2) we determined which kdr mutations were possible with a single nucleotide mutation in nine populations of Aedes aegypti; and (3) we examined the individual VSSC variation that exists within a population of Drosophila melanogaster. There is an increasing amount of transcript diversity possible from Diplura towards Diptera. The residues of the voltage sensors, selectivity filter and inactivation loop are highly conserved. The majority of exon sequences were >88.6% similar. Strain-specific differences in codon constraints exist for kdr mutations in nine strains of A. aegypti. Three Vssc mutations were found in one population of D. melanogaster. This study shows that, overall, Vssc is highly conserved across Insecta and within a population of an insect, but that important differences do exist.
Collapse
Affiliation(s)
- Juan J Silva
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| |
Collapse
|
94
|
Trosclair K, Dhaibar HA, Gautier NM, Mishra V, Glasscock E. Neuron-specific Kv1.1 deficiency is sufficient to cause epilepsy, premature death, and cardiorespiratory dysregulation. Neurobiol Dis 2020; 137:104759. [PMID: 31978607 DOI: 10.1016/j.nbd.2020.104759] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/03/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality, but the precise cellular substrates involved remain elusive. Epilepsy-associated ion channel genes with co-expression in brain and heart have been proposed as SUDEP candidate genes since they provide a singular unifying link between seizures and lethal cardiac arrhythmias. Here, we generated a conditional knockout (cKO) mouse with neuron-specific deletion of Kcna1, a SUDEP-associated gene with brain-heart co-expression, to test whether seizure-evoked cardiac arrhythmias and SUDEP require the absence of Kv1.1 in both brain and heart or whether ablation in neurons is sufficient. To obtain cKO mice, we developed a floxed Kcna1 mouse which we crossed to mice with the Synapsin1-Cre transgene, which selectively deletes Kcna1 in most neurons. Molecular analyses confirmed neuron-specific Kcna1 deletion in cKO mice and corresponding loss of Kv1.1 except in cerebellum where Synapsin1-Cre is not highly expressed. Survival studies and electroencephalography, electrocardiography, and plethysmography recordings showed that cKO mice exhibit premature death, epilepsy, and cardiorespiratory dysregulation but to a lesser degree than global knockouts. Heart rate variability (HRV) was increased in cKO mice with peaks during daytime suggesting disturbed diurnal HRV patterns as a SUDEP biomarker. Residual Kv1.1 expression in cKO cerebellum suggests it may play an unexpected role in regulating ictal cardiorespiratory dysfunction and SUDEP risk. This work demonstrates the principle that channelopathies with brain-heart expression patterns can increase death risk by brain-driven mechanisms alone without a functionally compromised heart, reinforcing seizure control as a primary clinical strategy for SUDEP prevention.
Collapse
Affiliation(s)
- Krystle Trosclair
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, LA 71103, United States of America.
| | - Hemangini A Dhaibar
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, LA 71103, United States of America.
| | - Nicole M Gautier
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, LA 71103, United States of America.
| | - Vikas Mishra
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, LA 71103, United States of America.
| | - Edward Glasscock
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, LA 71103, United States of America; Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, United States of America.
| |
Collapse
|
95
|
Jayanthi S, Torres OV, Ladenheim B, Cadet JL. A Single Prior Injection of Methamphetamine Enhances Methamphetamine Self-Administration (SA) and Blocks SA-Induced Changes in DNA Methylation and mRNA Expression of Potassium Channels in the Rat Nucleus Accumbens. Mol Neurobiol 2019; 57:1459-1472. [PMID: 31758400 PMCID: PMC7060962 DOI: 10.1007/s12035-019-01830-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022]
Abstract
The transition from occasional to escalated psychostimulant use is accelerated by prior drug exposure. These behavioral observations may be related to long-lasting transcriptional and/or epigenetic changes induced by the drug pre-exposure. Herein, we investigated if a single methamphetamine (METH) injection would enhance METH self-administration (SA) and impact any METH SA-induced epigenetic or transcriptional alterations. We thus injected a single METH dose (10 mg/kg) or saline to rats before training them to self-administer METH or saline. There were three experimental groups in SA experiments: (1) a single saline injection followed by saline SA (SS); (2) a single saline injection followed by METH SA (SM); and (3) a single METH injection followed by METH SA (MM). METH-pretreated rats escalated METH SA earlier and took more METH than saline-pretreated animals. Both groups showed similar incubation of cue-induced METH craving. Because compulsive METH takers and METH-abstinent rats show differences in potassium (K+) channel mRNA levels in their nucleus accumbens (NAc), we wondered if K+ channel expression might also help to distinguish between SM and MM groups. We found increases in mRNA and protein expression of shaker-related voltage-gated K+ channels (Kv1: Kcna1, Kcna3, and Kcna6) and calcium-activated K+ channels (Kcnn1) in the SM compared to MM rats. SM rats also showed decreased DNA methylation at the CpG-rich sites near the promoter region of Kcna1, Kcna3 and Kcnn1 genes in comparison to MM rats. Together, these results provide additional evidence for potentially using K+ channels as therapeutic targets against METH use disorder.
Collapse
Affiliation(s)
- Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Oscar V Torres
- Department of Behavioral Sciences, San Diego Mesa College, San Diego, CA, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
96
|
Smith P, Buhl E, Tsaneva-Atanasova K, Hodge JJL. Shaw and Shal voltage-gated potassium channels mediate circadian changes in Drosophila clock neuron excitability. J Physiol 2019; 597:5707-5722. [PMID: 31612994 DOI: 10.1113/jp278826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/03/2019] [Indexed: 01/08/2023] Open
Abstract
As in mammals, Drosophila circadian clock neurons display rhythms of activity with higher action potential firing rates and more positive resting membrane potentials during the day. This rhythmic excitability has been widely observed but, critically, its regulation remains unresolved. We have characterized and modelled the changes underlying these electrical activity rhythms in the lateral ventral clock neurons (LNvs). We show that currents mediated by the voltage-gated potassium channels Shaw (Kv3) and Shal (Kv4) oscillate in a circadian manner. Disruption of these channels, by expression of dominant negative (DN) subunits, leads to changes in circadian locomotor activity and shortens lifespan. LNv whole-cell recordings then show that changes in Shaw and Shal currents drive changes in action potential firing rate and that these rhythms are abolished when the circadian molecular clock is stopped. A whole-cell biophysical model using Hodgkin-Huxley equations can recapitulate these changes in electrical activity. Based on this model and by using dynamic clamp to manipulate clock neurons directly, we can rescue the pharmacological block of Shaw and Shal, restore the firing rhythm, and thus demonstrate the critical importance of Shaw and Shal. Together, these findings point to a key role for Shaw and Shal in controlling circadian firing of clock neurons and show that changes in clock neuron currents can account for this. Moreover, with dynamic clamp we can switch the LNvs between morning-like and evening-like states of electrical activity. We conclude that changes in Shaw and Shal underlie the daily oscillation in LNv firing rate.
Collapse
Affiliation(s)
- Philip Smith
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
97
|
Martinez-Pinna J, Marroqui L, Hmadcha A, Lopez-Beas J, Soriano S, Villar-Pazos S, Alonso-Magdalena P, Dos Santos RS, Quesada I, Martin F, Soria B, Gustafsson JÅ, Nadal A. Oestrogen receptor β mediates the actions of bisphenol-A on ion channel expression in mouse pancreatic beta cells. Diabetologia 2019; 62:1667-1680. [PMID: 31250031 DOI: 10.1007/s00125-019-4925-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS Bisphenol-A (BPA) is a widespread endocrine-disrupting chemical that has been associated with type 2 diabetes development. Low doses of BPA modify pancreatic beta cell function and induce insulin resistance; some of these effects are mediated via activation of oestrogen receptors α (ERα) and β (ERβ). Here we investigated whether low doses of BPA regulate the expression and function of ion channel subunits involved in beta cell function. METHODS Microarray gene profiling of isolated islets from vehicle- and BPA-treated (100 μg/kg per day for 4 days) mice was performed using Affymetrix GeneChip Mouse Genome 430.2 Array. Expression level analysis was performed using the normalisation method based on the processing algorithm 'robust multi-array average'. Whole islets or dispersed islets from C57BL/6J or oestrogen receptor β (ERβ) knockout (Erβ-/-) mice were treated with vehicle or BPA (1 nmol/l) for 48 h. Whole-cell patch-clamp recordings were used to measure Na+ and K+ currents. mRNA expression was evaluated by quantitative real-time PCR. RESULTS Microarray analysis showed that BPA modulated the expression of 1440 probe sets (1192 upregulated and 248 downregulated genes). Of these, more than 50 genes, including Scn9a, Kcnb2, Kcnma1 and Kcnip1, encoded important Na+ and K+ channel subunits. These findings were confirmed by quantitative RT-PCR in islets from C57BL/6J BPA-treated mice or whole islets treated ex vivo. Electrophysiological measurements showed a decrease in both Na+ and K+ currents in BPA-treated islets. The pharmacological profile indicated that BPA reduced currents mediated by voltage-activated K+ channels (Kv2.1/2.2 channels) and large-conductance Ca2+-activated K+ channels (KCa1.1 channels), which agrees with BPA's effects on gene expression. Beta cells from ERβ-/- mice did not present BPA-induced changes, suggesting that ERβ mediates BPA's effects in pancreatic islets. Finally, BPA increased burst duration, reduced the amplitude of the action potential and enlarged the action potential half-width, leading to alteration in beta cell electrical activity. CONCLUSIONS/INTERPRETATION Our data suggest that BPA modulates the expression and function of Na+ and K+ channels via ERβ in mouse pancreatic islets. Furthermore, BPA alters beta cell electrical activity. Altogether, these BPA-induced changes in beta cells might play a role in the diabetogenic action of BPA described in animal models.
Collapse
Affiliation(s)
- Juan Martinez-Pinna
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Laura Marroqui
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Abdelkrim Hmadcha
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Javier Lopez-Beas
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Sergi Soriano
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Sabrina Villar-Pazos
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Paloma Alonso-Magdalena
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Reinaldo S Dos Santos
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Ivan Quesada
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Franz Martin
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Bernat Soria
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Jan-Åke Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biosciences and Nutrition, Karolinska Institut, Huddinge, Sweden
| | - Angel Nadal
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain, .
| |
Collapse
|
98
|
Structure Determination by Single-Particle Cryo-Electron Microscopy: Only the Sky (and Intrinsic Disorder) is the Limit. Int J Mol Sci 2019; 20:ijms20174186. [PMID: 31461845 PMCID: PMC6747279 DOI: 10.3390/ijms20174186] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Traditionally, X-ray crystallography and NMR spectroscopy represent major workhorses of structural biologists, with the lion share of protein structures reported in protein data bank (PDB) being generated by these powerful techniques. Despite their wide utilization in protein structure determination, these two techniques have logical limitations, with X-ray crystallography being unsuitable for the analysis of highly dynamic structures and with NMR spectroscopy being restricted to the analysis of relatively small proteins. In recent years, we have witnessed an explosive development of the techniques based on Cryo-electron microscopy (Cryo-EM) for structural characterization of biological molecules. In fact, single-particle Cryo-EM is a special niche as it is a technique of choice for the structural analysis of large, structurally heterogeneous, and dynamic complexes. Here, sub-nanometer atomic resolution can be achieved (i.e., resolution below 10 Å) via single-particle imaging of non-crystalline specimens, with accurate 3D reconstruction being generated based on the computational averaging of multiple 2D projection images of the same particle that was frozen rapidly in solution. We provide here a brief overview of single-particle Cryo-EM and show how Cryo-EM has revolutionized structural investigations of membrane proteins. We also show that the presence of intrinsically disordered or flexible regions in a target protein represents one of the major limitations of this promising technique.
Collapse
|
99
|
Hill AS, Jain P, Folan NE, Ben-Shahar Y. The Drosophila ERG channel seizure plays a role in the neuronal homeostatic stress response. PLoS Genet 2019; 15:e1008288. [PMID: 31393878 PMCID: PMC6687100 DOI: 10.1371/journal.pgen.1008288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/04/2019] [Indexed: 11/24/2022] Open
Abstract
Neuronal physiology is particularly sensitive to acute stressors that affect excitability, many of which can trigger seizures and epilepsies. Although intrinsic neuronal homeostasis plays an important role in maintaining overall nervous system robustness and its resistance to stressors, the specific genetic and molecular mechanisms that underlie these processes are not well understood. Here we used a reverse genetic approach in Drosophila to test the hypothesis that specific voltage-gated ion channels contribute to neuronal homeostasis, robustness, and stress resistance. We found that the activity of the voltage-gated potassium channel seizure (sei), an ortholog of the mammalian ERG channel family, is essential for protecting flies from acute heat-induced seizures. Although sei is broadly expressed in the nervous system, our data indicate that its impact on the organismal robustness to acute environmental stress is primarily mediated via its action in excitatory neurons, the octopaminergic system, as well as neuropile ensheathing and perineurial glia. Furthermore, our studies suggest that human mutations in the human ERG channel (hERG), which have been primarily implicated in the cardiac Long QT Syndrome (LQTS), may also contribute to the high incidence of seizures in LQTS patients via a cardiovascular-independent neurogenic pathway.
Collapse
Affiliation(s)
- Alexis S. Hill
- Department of Biology, College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Poorva Jain
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Nicole E. Folan
- Department of Biology, College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
100
|
Cheng N, Ren S, Yang JF, Liu XM, Li XT. Carvedilol blockage of delayed rectifier Kv2.1 channels and its molecular basis. Eur J Pharmacol 2019; 855:50-55. [PMID: 31063774 DOI: 10.1016/j.ejphar.2019.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 11/19/2022]
Abstract
Previous studies indicated that one of the action targets of carvedilol is the voltage-gated potassium (Kv) channel, which has a fundamental role in the control of electrical properties in excitable cells. It is not clear whether this compound exerts any actions specifically on delayed rectifier Kv2.1 channels. The present study is conducted on Kv2.1 currents heterologously expressed in HEK293 cells to characterize the block by carvedilol in detail, identifying molecular determinants and providing biophysical insights of the block. Macroscopic Kv2.1 currents obtained by whole-cell recording were substantially inhibited after addition of carvedilol with an IC50 value of 5.1 μM. This drug also led to a largely hyperpolarizing shift (30 mV) of the inactivation curve, which may contribute to the blocking action due to more inactivation of Kv2.1 currents occurred in depolarization potentials. Mutations at Y380 (a putative TEA binding site) and K356 (a K+ binding site) in the outer vestibule of Kv2.1 channels significantly eliminated the inhibitory effects of carvedilol and prevented the leftward shift of inactivation. Moreover, mutations at above positions modulated the effects of carvedilol on the deactivation but not activation kinetics of Kv2.1 channels. Collected data indicate that carvedilol can exert a blocking effect on the closed-state of Kv2.1 channels, and specific residues within the S5-P and P-S6 linkers in the outer vestibule may play crucial roles in carvedilol-induced blocking for Kv2.1 channels.
Collapse
Affiliation(s)
- Neng Cheng
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Sheng Ren
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jin-Feng Yang
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiang-Ming Liu
- GongQing Institute of Science and Technology, Gongqing City, 332020, China
| | - Xian-Tao Li
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|