51
|
Mavlyutov TA, Epstein ML, Liu P, Verbny YI, Ziskind-Conhaim L, Ruoho AE. Development of the sigma-1 receptor in C-terminals of motoneurons and colocalization with the N,N'-dimethyltryptamine forming enzyme, indole-N-methyl transferase. Neuroscience 2012; 206:60-8. [PMID: 22265729 PMCID: PMC3321351 DOI: 10.1016/j.neuroscience.2011.12.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 11/17/2022]
Abstract
The function of the sigma-1 receptor (S1R) has been linked to modulating the activities of ion channels and G-protein-coupled receptors (GPCR). In the CNS, the S1R is expressed ubiquitously but is enriched in mouse motoneurons (MN), where it is localized to subsurface cisternae of cholinergic postsynaptic densities, also known as C-terminals. We found that S1R is enriched in mouse spinal MN at late stages of embryonic development when it is first visualized in the endoplasmic reticulum. S1Rs appear to concentrate at C-terminals of mouse MN only on the second week of postnatal development. We found that indole-N-methyl transferase (INMT), an enzyme that converts tryptamine into the sigma-1 ligand dimethyltryptamine (DMT), is also localized to postsynaptic sites of C-terminals in close proximity to the S1R. This close association of INMT and S1Rs suggest that DMT is synthesized locally to effectively activate S1R in MN.
Collapse
Affiliation(s)
- T A Mavlyutov
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1300 University Ave, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
52
|
Synthesis and binding assays of novel 3,3-dimethylpiperidine derivatives with various lipophilicities as σ1 receptor ligands. Bioorg Med Chem 2011; 19:7612-22. [DOI: 10.1016/j.bmc.2011.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 11/21/2022]
|
53
|
Laurini E, Col VD, Mamolo MG, Zampieri D, Posocco P, Fermeglia M, Vio L, Pricl S. Homology Model and Docking-Based Virtual Screening for Ligands of the σ1 Receptor. ACS Med Chem Lett 2011; 2:834-9. [PMID: 24900272 DOI: 10.1021/ml2001505] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/27/2011] [Indexed: 02/04/2023] Open
Abstract
This study presents for the first time the 3D model of the σ1 receptor protein as obtained from homology modeling techniques, shows the applicability of this structure to docking-based virtual screening, defines a computational strategy to optimize the results based on a combination of 3D pharmacophore-based docking and MM/PBSA free energy of binding scoring, and provides evidence that these in silico models and recipes are powerful tools on which virtual screening of new σ1 ligands can be based. In particular, the validation of the applicability of docking-based virtual screening to homology models is of utmost importance, since no crystal structure is available to date for the σ1 receptor, and this missing information still constitutes a major hurdle for a rational ligand design for this important protein target.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Industrial Engineering and Information Technology (DI3), University of Trieste, Via Valerio 10, 34127 Trieste, Italy
| | - Valentina Dal Col
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Industrial Engineering and Information Technology (DI3), University of Trieste, Via Valerio 10, 34127 Trieste, Italy
| | - Maria Grazia Mamolo
- Department of Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Daniele Zampieri
- Department of Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Paola Posocco
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Industrial Engineering and Information Technology (DI3), University of Trieste, Via Valerio 10, 34127 Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Industrial Engineering and Information Technology (DI3), University of Trieste, Via Valerio 10, 34127 Trieste, Italy
| | - Luciano Vio
- Department of Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Industrial Engineering and Information Technology (DI3), University of Trieste, Via Valerio 10, 34127 Trieste, Italy
| |
Collapse
|
54
|
Hajipour AR, Guo LW, Pal A, Mavlyutov T, Ruoho AE. Electron-donating para-methoxy converts a benzamide-isoquinoline derivative into a highly Sigma-2 receptor selective ligand. Bioorg Med Chem 2011; 19:7435-40. [PMID: 22055714 DOI: 10.1016/j.bmc.2011.10.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/07/2011] [Accepted: 10/15/2011] [Indexed: 11/27/2022]
Abstract
The sigma-2 (σ2) receptor has been suggested to be a promising target for pharmacological interventions to curb tumor progression. Development of σ2-specific ligands, however, has been hindered by lack of understanding of molecular determinants that underlie selective ligand-σ2 interactions. Here we have explored effects of electron donating and withdrawing groups on ligand selectivity for the σ2 versus σ1 receptor using new benzamide-isoquinoline derivatives. The electron-donating methoxy group increased but the electron-withdrawing nitro group decreased σ2 affinity. In particular, an extra methoxy added to the para-position (5e) of the benzamide phenyl ring of 5f dramatically improved (631 fold) the σ2 selectivity relative to the σ1 receptor. This para-position provided a sensitive site for effective manipulation of the sigma receptor subtype selectivity using either the methoxy or nitro substituent. Our study provides a useful guide for further improving the σ2-over-σ1 selectivity of new ligands.
Collapse
Affiliation(s)
- Abdol R Hajipour
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, 1300 University Ave., Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
55
|
Moriguchi S, Yamamoto Y, Ikuno T, Fukunaga K. Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice. J Neurochem 2011; 117:879-91. [PMID: 21434925 DOI: 10.1111/j.1471-4159.2011.07256.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehydroepiandrosterone (DHEA) is one of the most abundant neurosteroids synthesized de novo in the CNS. We here found that sigma-1 receptor stimulation by DHEA improves cognitive function through phosphorylation of synaptic proteins in olfactory bulbectomized (OBX) mouse hippocampus. We have previously reported that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) were impaired in OBX mouse hippocampus. OBX mice were administered once a day for 7-8 days with DHEA (30 or 60 mg/kg p.o.) 10 days after operation. The spatial, cognitive and conditioned fear memories in OBX mice were significantly improved as assessed by Y-maze, novel object recognition and passive avoidance task, respectively. DHEA also improved impaired hippocampal long-term potentiation in OBX mice. Notably, DHEA treatment restored PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) and myristoylated alanine-rich protein kinase C substrate (Ser-152/156) phosphorylation to the control levels in the hippocampal CA1 region. Likewise, DHEA treatment improved CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation to the control levels in the CA1 region. Furthermore, DHEA treatment improved ERK and cAMP-responsive element-binding protein (Ser-133) phosphorylation to the control levels. Finally, NE-100, sigma-1 receptor antagonist, significantly inhibited the DHEA-induced improvement of memory-related behaviors and CaMKII, PKC and ERK phosphorylation in CA1 region. Taken together, sigma-1 receptor stimulation by DHEA ameliorates OBX-induced impairment in memory-related behaviors and long-term potentiation in the hippocampal CA1 region through activation of CaMKII, PKC and ERK.
Collapse
Affiliation(s)
- Shigeki Moriguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Sendai, Japan
| | | | | | | |
Collapse
|
56
|
Johannessen M, Fontanilla D, Mavlyutov T, Ruoho AE, Jackson MB. Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels. Am J Physiol Cell Physiol 2011; 300:C328-37. [PMID: 21084640 PMCID: PMC3043630 DOI: 10.1152/ajpcell.00383.2010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/17/2010] [Indexed: 01/23/2023]
Abstract
σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ(1)- and σ(2)-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na(+) channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na(+) channel Na(v)1.5. Patch-clamp recording in this cell line tested Na(+) current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ(1)-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ(2)-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ(1)-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions.
Collapse
Affiliation(s)
- Molly Johannessen
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
57
|
Bhuiyan MS, Fukunaga K. Targeting sigma-1 receptor signaling by endogenous ligands for cardioprotection. Expert Opin Ther Targets 2011; 15:145-55. [PMID: 21204730 DOI: 10.1517/14728222.2011.546350] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION The sigma receptors, initially described as a subtype of opioid receptors, are now considered to be a unique receptor expressed in neonatal rat cardiomyocytes and in the plasma membrane of adult rat cardiomyocytes. A number of sigma receptor ligands influence cardiovascular function and the heart has binding sites for sigma receptor ligands that alter contractility both in vivo and in vitro. The human sigma-1 receptor gene contains a steroid-binding component and gonadal steroid dehydroepiandrosterone (DHEA) which interacts with the sigma-1 receptor. AREAS COVERED We recently documented that the pathophysiological role of the sigma-1 receptor in the heart and its modulation using DHEA, was cardioprotective. Moreover, agonist-induced activation of the sigma-1 receptor modulates diverse ion channels and thereby regulates heart function. Novel concepts for understanding the pathophysiological relevance of sigma-1 receptors in the progression of heart failure, and developing clinical therapeutics targeting for the receptor in cardiovascular diseases are discussed. EXPERT OPINION Future studies should attempt to develop cardiac-specific knockdown of the sigma-1 receptor to observe its downstream signaling. We expect that these observations will lead to a novel therapeutic target for which a new class of antihypertrophic drugs can be designed.
Collapse
Affiliation(s)
- Md Shenuarin Bhuiyan
- Tohoku University, Graduate School of Pharmaceutical Sciences, Department of Pharmacology, Aramaki-Aoba Aoba-ku, Sendai 980-8578, Japan.
| | | |
Collapse
|
58
|
Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 2010; 31:557-66. [PMID: 20869780 PMCID: PMC2993063 DOI: 10.1016/j.tips.2010.08.007] [Citation(s) in RCA: 379] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/19/2010] [Accepted: 08/26/2010] [Indexed: 01/13/2023]
Abstract
Inter-organelle signaling plays important roles in many physiological functions. Endoplasmic reticulum (ER)-mitochondrion signaling affects intramitochondrial calcium (Ca(2+)) homeostasis and cellular bioenergetics. ER-nucleus signaling attenuates ER stress. ER-plasma membrane signaling regulates cytosolic Ca(2+) homeostasis and ER-mitochondrion-plasma membrane signaling regulates hippocampal dendritic spine formation. Here, we propose that the sigma-1 receptor (Sig-1R), an ER chaperone protein, acts as an inter-organelle signaling modulator. Sig-1Rs normally reside at the ER-mitochondrion contact called the MAM (mitochondrion-associated ER membrane), where Sig-1Rs regulate ER-mitochondrion signaling and ER-nucleus crosstalk. When cells are stimulated by ligands or undergo prolonged stress, Sig-1Rs translocate from the MAM to the ER reticular network and plasmalemma/plasma membrane to regulate a variety of functional proteins, including ion channels, receptors and kinases. Thus, the Sig-1R serves as an inter-organelle signaling modulator locally at the MAM and remotely at the plasmalemma/plasma membrane. Many pharmacological/physiological effects of Sig-1Rs might relate to this unique action of Sig-1Rs.
Collapse
Affiliation(s)
- Tsung-Ping Su
- Cellular Pathobiology Section, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, suite 3304, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
59
|
Oberdorf C, Schmidt TJ, Wünsch B. 5D-QSAR for spirocyclic sigma1 receptor ligands by Quasar receptor surface modeling. Eur J Med Chem 2010; 45:3116-24. [PMID: 20427100 DOI: 10.1016/j.ejmech.2010.03.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
Based on a contiguous and structurally as well as biologically diverse set of 87 sigma(1) ligands, a 5D-QSAR study was conducted in which a quasi-atomistic receptor surface modeling approach (program package Quasar) was applied. The superposition of the ligands was performed with the tool Pharmacophore Elucidation (MOE-package), which takes all conformations of the ligands into account. This procedure led to four pharmacophoric structural elements with aromatic, hydrophobic, cationic and H-bond acceptor properties. Using the aligned structures a 3D-model of the ligand binding site of the sigma(1) receptor was obtained, whose general features are in good agreement with previous assumptions on the receptor structure, but revealed some novel insights since it represents the receptor surface in more detail. Thus, e.g., our model indicates the presence of an H-bond acceptor moiety in the binding site as counterpart to the ligands' cationic ammonium center, rather than a negatively charged carboxylate group. The presented QSAR model is statistically valid and represents the biological data of all tested compounds, including a test set of 21 ligands not used in the modeling process, with very good to excellent accuracy [q(2) (training set, n=66; leave 1/3 out) = 0.84, p(2) (test set, n=21)=0.64]. Moreover, the binding affinities of 13 further spirocyclic sigma(1) ligands were predicted with reasonable accuracy (mean deviation in pK(i) approximately 0.8). Thus, in addition to novel insights into the requirements for binding of spirocyclic piperidines to the sigma(1) receptor, the presented model can be used successfully in the rational design of new sigma(1) ligands.
Collapse
Affiliation(s)
- Christoph Oberdorf
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Hittorfstrasse 58-62, D-48149 Münster, Germany
| | | | | |
Collapse
|
60
|
Hajipour AR, Fontanilla D, Chu UB, Arbabian M, Ruoho AE. Synthesis and characterization of N,N-dialkyl and N-alkyl-N-aralkyl fenpropimorph-derived compounds as high affinity ligands for sigma receptors. Bioorg Med Chem 2010; 18:4397-404. [PMID: 20493718 PMCID: PMC3565575 DOI: 10.1016/j.bmc.2010.04.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/23/2010] [Accepted: 04/25/2010] [Indexed: 11/20/2022]
Abstract
The sigma-1 receptor is a unique non-opioid, non-PCP binding site that has been implicated in many different pathophysiological conditions including psychosis, drug addiction, retinal degeneration and cancer. Based on the structure of fenpropimorph, a high affinity (K(i)=0.005 nM)(1) sigma-1 receptor ligand and strong inhibitor of the yeast sterol isomerase (ERG2), we previously deduced a basic sigma-1 receptor pharmacophore or chemical backbone composed of a phenyl ring attached to a di-substituted nitrogen atom via an alkyl chain.(2) Here, we report the design and synthesis of various N,N-dialkyl or N-alkyl-N-aralkyl derivatives based on this pharmacophore as well as their binding affinities to the sigma-1 receptor. We introduce three high affinity sigma-1 receptor compounds, N,N-dibutyl-3-(4-fluorophenyl)propylamine (9), N,N-dibutyl-3-(4-nitrophenyl)propylamine (3), and N-propyl-N'-4-aminophenylethyl-3-(4-nitrophenyl)propylamine (20) with K(i) values of 17.7 nM, 0.36 nM, and 6 nM, respectively. In addition to sigma receptor affinity, we show through cytotoxicity assays that growth inhibition of various tumor cell lines occurs with our high affinity N,N-dialkyl or N-alkyl-N-aralkyl derivatives.
Collapse
Affiliation(s)
- Abdol R. Hajipour
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
- Pharmaceutical Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156, IR Iran
| | - Dominique Fontanilla
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Uyen B. Chu
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Marty Arbabian
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Arnold E. Ruoho
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| |
Collapse
|
61
|
Cobos EJ, Entrena JM, Nieto FR, Cendán CM, Del Pozo E. Pharmacology and therapeutic potential of sigma(1) receptor ligands. Curr Neuropharmacol 2010; 6:344-66. [PMID: 19587856 PMCID: PMC2701284 DOI: 10.2174/157015908787386113] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 07/18/2008] [Accepted: 07/09/2008] [Indexed: 11/22/2022] Open
Abstract
Sigma (σ) receptors, initially described as a subtype of opioid receptors, are now considered unique receptors. Pharmacological studies have distinguished two types of σ receptors, termed σ1 and σ2. Of these two subtypes, the σ1 receptor has been cloned in humans and rodents, and its amino acid sequence shows no homology with other mammalian proteins. Several psychoactive drugs show high to moderate affinity for σ1 receptors, including the antipsychotic haloperidol, the antidepressant drugs fluvoxamine and sertraline, and the psychostimulants cocaine and methamphetamine; in addition, the anticonvulsant drug phenytoin allosterically modulates σ1 receptors. Certain neurosteroids are known to interact with σ1 receptors, and have been proposed to be their endogenous ligands. These receptors are located in the plasma membrane and in subcellular membranes, particularly in the endoplasmic reticulum, where they play a modulatory role in intracellular Ca2+ signaling. Sigma1 receptors also play a modulatory role in the activity of some ion channels and in several neurotransmitter systems, mainly in glutamatergic neurotransmission. In accordance with their widespread modulatory role, σ1 receptor ligands have been proposed to be useful in several therapeutic fields such as amnesic and cognitive deficits, depression and anxiety, schizophrenia, analgesia, and against some effects of drugs of abuse (such as cocaine and methamphetamine). In this review we provide an overview of the present knowledge of σ1 receptors, focussing on σ1 ligand neuropharmacology and the role of σ1 receptors in behavioral animal studies, which have contributed greatly to the potential therapeutic applications of σ1 ligands.
Collapse
Affiliation(s)
- E J Cobos
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
62
|
Carnally SM, Johannessen M, Henderson RM, Jackson MB, Edwardson JM. Demonstration of a direct interaction between sigma-1 receptors and acid-sensing ion channels. Biophys J 2010; 98:1182-91. [PMID: 20371317 PMCID: PMC2849097 DOI: 10.1016/j.bpj.2009.12.4293] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/08/2009] [Accepted: 12/15/2009] [Indexed: 10/19/2022] Open
Abstract
The sigma-1 receptor is a widely expressed protein that interacts with a variety of ion channels, including the acid-sensing ion channel (ASIC) 1a. Here we used atomic force microscopy to determine the architecture of the ASIC1a/sigma-1 receptor complex. When isolated His(8)-tagged ASIC1a was imaged in complex with anti-His(6) antibodies, the angle between pairs of bound antibodies was 135 degrees , consistent with the known trimeric structure of the channel. When ASIC1a was coexpressed with FLAG/His(6)-tagged sigma-1 receptor, ASIC1a became decorated with small particles, and pairs of these particles bound at an angle of 131 degrees . When these complexes were incubated with anti-FLAG antibodies, pairs of antibodies bound at an angle of 134 degrees , confirming that the small particles were sigma-1 receptors. Of interest, we found that the sigma-1 receptor ligand haloperidol caused an approximately 50% reduction in ASIC1a/sigma-receptor binding, suggesting a way in which sigma-1 ligands might modulate channel properties. For the first time, to our knowledge, we have resolved the structure of a complex between the sigma-1 receptor and a target ion channel, and demonstrated that the stoichiometry of the interaction is 1 sigma-1 receptor/1 ASIC1a subunit.
Collapse
Affiliation(s)
- Stewart M. Carnally
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Molly Johannessen
- Department of Physiology, University of Wisconsin, Madison, Wisconsin
| | - Robert M. Henderson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Meyer B. Jackson
- Department of Physiology, University of Wisconsin, Madison, Wisconsin
| | | |
Collapse
|
63
|
Hayashi T, Fujimoto M. Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum-mitochondria junction. Mol Pharmacol 2010; 77:517-28. [PMID: 20053954 PMCID: PMC2845942 DOI: 10.1124/mol.109.062539] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/06/2010] [Indexed: 01/04/2023] Open
Abstract
Sigma-1 receptors (Sig-1Rs) that bind diverse synthetic and endogenous compounds have been implicated in the pathophysiology of several human diseases such as drug addiction, depression, neurodegenerative disorders, pain-related disorders, and cancer. Sig-1Rs were identified recently as novel ligand-operated molecular chaperones. Although Sig-1Rs are predominantly expressed at endoplasmic reticulum (ER) subdomains apposing mitochondria [i.e., the mitochondria-associated ER membrane (MAM)], they dynamically change the cellular distribution, thus regulating both MAM-specific and plasma membrane proteins. However, what determines the location of Sig-1R at the MAM and how the receptor translocation is initiated is unknown. Here we report that the detergent-resistant membranes (DRMs) play an important role in anchoring Sig-1Rs to the MAM. The MAM, which is highly capable of accumulating ceramides, is enriched with both cholesterol and simple sphingolipids, thus forming Triton X-114-resistant DRMs. Sig-1Rs associate with MAM-derived DRMs but not with those from microsomes. A lipid overlay assay found that solubilized Sig-1Rs preferentially associate with simple sphingolipids such as ceramides. Disrupting DRMs by lowering cholesterol or inhibiting de novo synthesis of ceramides at the ER largely decreases Sig-1R at DRMs and causes translocation of Sig-1R from the MAM to ER cisternae. These findings suggest that the MAM, bearing cholesterol and ceramide-enriched microdomains at the ER, may use the microdomains to anchor Sig-1Rs to the location; thus, it serves to stage Sig-1R at ER-mitochondria junctions.
Collapse
Affiliation(s)
- Teruo Hayashi
- Cellular Pathobiology Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | | |
Collapse
|
64
|
Hayashi T, Su TP. Cholesterol at the endoplasmic reticulum: roles of the sigma-1 receptor chaperone and implications thereof in human diseases. Subcell Biochem 2010; 51:381-98. [PMID: 20213551 PMCID: PMC3155710 DOI: 10.1007/978-90-481-8622-8_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite substantial data elucidating the roles of cholesterol in lipid rafts at the plasma membrane, the roles of cholesterol and related lipids in lipid raft microdomains at the level of subcellular membrane, such as the endoplasmic reticulum (ER) membrane, remain less understood. Growing evidence, however, begins to unveil the importance of cholesterol and lipids on the lipid raft at the ER membrane. A few ER proteins including the sigma-1 receptor chaperone were identified at lipid raft-like microdomains of the ER membrane. The sigma-1 receptor, which is highly expressed at a subdomain of ER membrane directly apposing mitochondria and known as the mitochondria-associated ER membrane or MAM, has been shown to associate with steroids as well as cholesterol. The sigma-1 receptor has been implicated in ER lipid metabolisms/transports, lipid raft reconstitution at the plasma membrane, trophic factor signalling, cellular differentiation, and cellular protection against beta-amyloid-induced neurotoxicity. Recent studies on sigma-1 receptor chaperones and other ER proteins clearly suggest that cholesterol, in concert with those ER proteins, may regulate several important functions of the ER including folding, degradation, compartmentalization, and segregation of ER proteins, and the biosynthesis of sphingolipids.
Collapse
Affiliation(s)
- Teruo Hayashi
- National Institute on Drug Abuse, Department of Health and Human Services, National Institutes of Health, Baltimore, MD 21224, USA.
| | | |
Collapse
|
65
|
Johannessen M, Ramachandran S, Riemer L, Ramos-Serrano A, Ruoho AE, Jackson MB. Voltage-gated sodium channel modulation by sigma-receptors in cardiac myocytes and heterologous systems. Am J Physiol Cell Physiol 2009; 296:C1049-57. [PMID: 19279232 DOI: 10.1152/ajpcell.00431.2008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sigma-receptor, a broadly distributed integral membrane protein with a novel structure, is known to modulate various voltage-gated K(+) and Ca(2+) channels through a mechanism that involves neither G proteins nor phosphorylation. The present study investigated the modulation of the heart voltage-gated Na(+) channel (Na(v)1.5) by sigma-receptors. The sigma(1)-receptor ligands [SKF-10047 and (+)-pentazocine] and sigma(1)/sigma(2)-receptor ligands (haloperidol and ditolylguanidine) all reversibly inhibited Na(v)1.5 channels to varying degrees in human embryonic kidney 293 (HEK-293) cells and COS-7 cells, but the sigma(1)-receptor ligands were less effective in COS-7 cells. The same four ligands also inhibited Na(+) current in neonatal mouse cardiac myocytes. In sigma(1)-receptor knockout myocytes, the sigma(1)-receptor-specific ligands were far less effective in modulating Na(+) current, but the sigma(1)/sigma(2)-receptor ligands modulated Na(+) channels as well as in wild type. Photolabeling with the sigma(1)-receptor photoprobe [(125)I]-iodoazidococaine demonstrated that sigma(1)-receptors were abundant in heart and HEK-293 cells, but scarce in COS-7 cells. This difference was consistent with the greater efficacy of sigma(1)-receptor-specific ligands in HEK-293 cells than in COS-7 cells. sigma-Receptors modulated Na(+) channels despite the omission of GTP and ATP from the patch pipette solution. sigma-Receptor-mediated inhibition of Na(+) current had little if any voltage dependence and produced no change in channel kinetics. Na(+) channels represent a new addition to the large number of voltage-gated ion channels modulated by sigma-receptors. The modulation of Na(v)1.5 channels by sigma-receptors in the heart suggests an important pathway by which drugs can alter cardiac excitability and rhythmicity.
Collapse
Affiliation(s)
- Molly Johannessen
- Dept. of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
66
|
Ramachandran S, Chu UB, Mavlyutov TA, Pal A, Pyne S, Ruoho AE. The sigma1 receptor interacts with N-alkyl amines and endogenous sphingolipids. Eur J Pharmacol 2009; 609:19-26. [PMID: 19285059 DOI: 10.1016/j.ejphar.2009.03.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 02/13/2009] [Accepted: 03/01/2009] [Indexed: 12/18/2022]
Abstract
The sigma1 receptor is distinguished for its ability to bind various pharmacological agents including drugs of abuse such as cocaine and methamphetamine. Some endogenous ligands have been identified as putative sigma1 receptor regulators. High affinity ligands for the sigma1 receptor contain a nitrogen atom connected to long alkyl chains. We found that long alkyl chain primary amines including endogenous amines belonging to the sphingolipid family such as D-erythro-sphingosine and sphinganine bind with considerable affinity to the sigma1 receptor but not to the sigma2 receptor. The binding of D-erythro-sphingosine to the sigma1 receptor appears to be competitive in nature as assessed against the radioligand [3H]-(+)-pentazocine. Interestingly, the well studied sphingolipid mediator sphingosine-1 phosphate did not bind to the sigma1 or the sigma2 receptor. Sphingosine is converted to sphingosine-1 phosphate by a family of sphingosine kinases that regulate the relative levels of these two bioactive lipids in the cell. The selective binding of sphingosine but not sphingosine-1 phosphate to the sigma1 receptor suggests a mechanism for regulation of sigma1 receptor activity by the sphingosine kinase. We have successfully reconstituted this hypothetical model in HEK-293 cells overexpressing both the sigma1 receptor and sphingosine kinase-1. The data presented here strongly supports sphingosine as an endogenous modulator of the sigma1 receptor.
Collapse
Affiliation(s)
- Subramaniam Ramachandran
- Department of Pharmacology, University Wisconsin-Madison, School of Medicine and Public Health, 1300 University Ave., Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
67
|
Rybczynska AA, Elsinga PH, Sijbesma JW, Ishiwata K, de Jong JR, de Vries EF, Dierckx RA, van Waarde A. Steroid hormones affect binding of the sigma ligand 11C-SA4503 in tumour cells and tumour-bearing rats. Eur J Nucl Med Mol Imaging 2009; 36:1167-75. [PMID: 19247652 PMCID: PMC2691528 DOI: 10.1007/s00259-009-1076-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 01/16/2009] [Indexed: 11/28/2022]
Abstract
Purpose Sigma receptors are implicated in memory and cognitive functions, drug addiction, depression and schizophrenia. In addition, sigma receptors are strongly overexpressed in many tumours. Although the natural ligands are still unknown, steroid hormones are potential candidates. Here, we examined changes in binding of the sigma-1 agonist 11C-SA4503 in C6 glioma cells and in living rats after modification of endogenous steroid levels. Methods 11C-SA4503 binding was assessed in C6 monolayers by gamma counting and in anaesthetized rats by microPET scanning. C6 cells were either repeatedly washed and incubated in steroid-free medium or exposed to five kinds of exogenous steroids (1 h or 5 min before tracer addition, respectively). Tumour-bearing male rats were repeatedly treated with pentobarbital (a condition known to result in reduction of endogenous steroid levels) or injected with progesterone. Results Binding of 11C-SA4503 to C6 cells was increased (~50%) upon removal and decreased (~60%) upon addition of steroid hormones (rank order of potency: progesterone > allopregnanolone = testosterone = androstanolone > dehydroepiandrosterone-3-sulphate, IC50 progesterone 33 nM). Intraperitoneally administered progesterone reduced tumour uptake and tumour-to-muscle contrast (36%). Repeated treatment of animals with pentobarbital increased the PET standardized uptake value of 11C-SA4503 in tumour (16%) and brain (27%), whereas the kinetics of blood pool radioactivity was unaffected. Conclusions The binding of 11C-SA4503 is sensitive to steroid competition. Since not only increases but also decreases of steroid levels affect ligand binding, a considerable fraction of the sigma-1 receptor population in cultured tumour cells or tumour-bearing animals is normally occupied by endogenous steroids.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Nuclear Medicine and Molecular Imaging, University of Groningen Medical Center, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE. The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 2009; 323:934-7. [PMID: 19213917 PMCID: PMC2947205 DOI: 10.1126/science.1166127] [Citation(s) in RCA: 409] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The sigma-1 receptor is widely distributed in the central nervous system and periphery. Originally mischaracterized as an opioid receptor, the sigma-1 receptor binds a vast number of synthetic compounds but does not bind opioid peptides; it is currently considered an orphan receptor. The sigma-1 receptor pharmacophore includes an alkylamine core, also found in the endogenous compound N,N-dimethyltryptamine (DMT). DMT acts as a hallucinogen, but its receptor target has been unclear. DMT bound to sigma-1 receptors and inhibited voltage-gated sodium ion (Na+) channels in both native cardiac myocytes and heterologous cells that express sigma-1 receptors. DMT induced hypermobility in wild-type mice but not in sigma-1 receptor knockout mice. These biochemical, physiological, and behavioral experiments indicate that DMT is an endogenous agonist for the sigma-1 receptor.
Collapse
Affiliation(s)
- Dominique Fontanilla
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Molly Johannessen
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Abdol R. Hajipour
- Pharmaceutical Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156, IR Iran
| | - Nicholas V. Cozzi
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Meyer B. Jackson
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Arnold E. Ruoho
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
69
|
Wu Z, Bowen WD. Role of sigma-1 receptor C-terminal segment in inositol 1,4,5-trisphosphate receptor activation: constitutive enhancement of calcium signaling in MCF-7 tumor cells. J Biol Chem 2008; 283:28198-215. [PMID: 18539593 PMCID: PMC2661391 DOI: 10.1074/jbc.m802099200] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/06/2008] [Indexed: 11/06/2022] Open
Abstract
Sigma-1 receptor (sigma-1R) agonists enhance inositol 1,4,5-trisphosphate (IP3)-dependent calcium release from endoplasmic reticulum by inducing dissociation of ankyrin B 220 (ANK 220) from the IP3 receptor (IP3R-3), releasing it from inhibition. MCF-7 breast tumor cells express little or no sigma-1R and were used here to investigate the effect of receptor overexpression and the role of its N- and C-terminal segments in function. We stably expressed intact sigma-1R (amino acids (aa) 1-223; lines 11 and 41), N-fragment (aa 1-100; line K3), or C-fragment (aa 102-223; line sg101). C-fragment expressed as a peripheral membrane-bound protein that was removable from the endoplasmic reticulum membrane by chaotropic salt wash, consistent with lack of a putative transmembrane domain. The expressed sigma-1R, N-fragment, and C-fragment exhibited normal, low affinity, and no [3H](+)-pentazocine binding activity, respectively. All transfected lines showed constitutive enhancement of bradykinin (BDK)-induced calcium release, because of a decrease in BDK ED50 values. Interestingly, sigma-1R and C-fragment had high activities, whereas the N-fragment was much less active. The antagonist BD1063 behaved as an inverse agonist in sigma-1R cells, whereas C-fragment was insensitive to ligand regulation. Like BDK, vasopressin- and ATP-induced calcium release was enhanced with the same pattern in cell lines. Anti-IP3R-3 immunoprecipitates from cells expressing sigma-1R or C-fragment contained significantly less ANK 220 compared with untransfected or N-fragment cells, indicating a higher amount of ankyrin-free IP3R-3. Anti-ankyrin B immunoprecipitates contained sigma-1R or C-fragment, with markedly lower levels of N-fragment present. These results suggest that sigma-1R overexpression drives sigma agonist-independent dissociation of ANK 220 from IP3R-3, resulting in activation. The C-terminal segment plays a key role in the interaction.
Collapse
Affiliation(s)
- Zhiping Wu
- Department of Molecular Pharmacology, Physiology and Biotechnology, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
70
|
Pal A, Chu UB, Ramachandran S, Grawoig D, Guo LW, Hajipour AR, Ruoho AE. Juxtaposition of the steroid binding domain-like I and II regions constitutes a ligand binding site in the sigma-1 receptor. J Biol Chem 2008; 283:19646-56. [PMID: 18467334 PMCID: PMC2443669 DOI: 10.1074/jbc.m802192200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/23/2008] [Indexed: 11/06/2022] Open
Abstract
sigma-1 receptors represent unique binding sites that are capable of interacting with a wide range of compounds to mediate different cellular events. The composition of the ligand binding site of this receptor is unclear, since no NMR or crystal structures are available. Recent studies in our laboratory using radiolabeled photoreactive ligands suggested that the steroid binding domain-like I (SBDLI) (amino acids 91-109) and the steroid binding domain-like II (SBDLII) (amino acids 176-194) regions are involved in forming the ligand binding site(s) ( Chen, Y., Hajipour, A. R., Sievert, M. K., Arbabian, M., and Ruoho, A. E. (2007) Biochemistry 46, 3532-3542 ; Pal, A., Hajipour, A. R., Fontanilla, D., Ramachandran, S., Chu, U. B., Mavlyutov, T., and Ruoho, A. E. (2007) Mol. Pharmacol. 72, 921-933 ). In this report, we have further addressed this issue by utilizing our previously developed sulfhydryl-reactive, cleavable, radioiodinated photocross-linking reagent: methanesulfonothioic acid, S-((4-(4-amino-3-[125I]iodobenzoyl) phenyl)methyl) ester (Guo, L. W., Hajipour, A. R., Gavala, M. L., Arbabian, M., Martemyanov, K. A., Arshavsky, V. Y., and Ruoho, A. E. (2005) Bioconjugate Chem. 16, 685-693). This photoprobe was shown to derivatize the single cysteine residues as mixed disulfides at position 94 in the SBDLI region of the wild type guinea pig sigma-1 receptor (Cys94) and at position 190 in the SBDLII region of a mutant guinea pig sigma-1 receptor (C94A,V190C), both in a sigma-ligand (haloperidol or (+)-pentazocine)-sensitive manner. Significantly, photocross-linking followed by Endo Lys-C cleavage under reducing conditions and intramolecular radiolabel transfer from the SBDLI to the SBDLII region in the wild type receptor and, conversely, from the SBDLII to the SBDLI region in the mutant receptor were observed. These data support a model in which the SBDLI and SBDLII regions are juxtaposed to form, at least in part, a ligand binding site of the sigma-1 receptor.
Collapse
Affiliation(s)
- Arindam Pal
- Department of Pharmacology,
University of Wisconsin School of Medicine and Public Health, Madison,
Wisconsin 53705 and the
Pharmaceutical Research Laboratory,
College of Chemistry, Isfahan University of Technology, Isfahan 84156,
Iran
| | - Uyen B. Chu
- Department of Pharmacology,
University of Wisconsin School of Medicine and Public Health, Madison,
Wisconsin 53705 and the
Pharmaceutical Research Laboratory,
College of Chemistry, Isfahan University of Technology, Isfahan 84156,
Iran
| | - Subramaniam Ramachandran
- Department of Pharmacology,
University of Wisconsin School of Medicine and Public Health, Madison,
Wisconsin 53705 and the
Pharmaceutical Research Laboratory,
College of Chemistry, Isfahan University of Technology, Isfahan 84156,
Iran
| | - David Grawoig
- Department of Pharmacology,
University of Wisconsin School of Medicine and Public Health, Madison,
Wisconsin 53705 and the
Pharmaceutical Research Laboratory,
College of Chemistry, Isfahan University of Technology, Isfahan 84156,
Iran
| | - Lian-Wang Guo
- Department of Pharmacology,
University of Wisconsin School of Medicine and Public Health, Madison,
Wisconsin 53705 and the
Pharmaceutical Research Laboratory,
College of Chemistry, Isfahan University of Technology, Isfahan 84156,
Iran
| | - Abdol R. Hajipour
- Department of Pharmacology,
University of Wisconsin School of Medicine and Public Health, Madison,
Wisconsin 53705 and the
Pharmaceutical Research Laboratory,
College of Chemistry, Isfahan University of Technology, Isfahan 84156,
Iran
| | - Arnold E. Ruoho
- Department of Pharmacology,
University of Wisconsin School of Medicine and Public Health, Madison,
Wisconsin 53705 and the
Pharmaceutical Research Laboratory,
College of Chemistry, Isfahan University of Technology, Isfahan 84156,
Iran
| |
Collapse
|
71
|
Fontanilla D, Hajipour AR, Pal A, Chu UB, Arbabian M, Ruoho AE. Probing the steroid binding domain-like I (SBDLI) of the sigma-1 receptor binding site using N-substituted photoaffinity labels. Biochemistry 2008; 47:7205-17. [PMID: 18547058 PMCID: PMC3250216 DOI: 10.1021/bi800564j] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Radioiodinated photoactivatable photoprobes can provide valuable insights regarding protein structure. Previous work in our laboratory showed that the cocaine derivative and photoprobe 3-[ (125)I]iodo-4-azidococaine ([ (125)I]IACoc) binds to the sigma-1 receptor with 2-3 orders of magnitude higher affinity than cocaine [Kahoun, J. R. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1393-1397]. Using this photoprobe, we demonstrated the insertion site for [ (125)I]IACoc to be Asp188 [Chen, Y. (2007) Biochemistry 46, 3532-3542], which resides in the proposed steroid binding domain-like II (SBDLII) region (amino acids 176-194) [Pal, A. (2007) Mol. Pharmacol. 72, 921-933]. An additional photoprobe based on the sigma-1 receptor ligand fenpropimorph, 1- N-(2-3-[ (125)I]iodophenyl)propane ([ (125)I]IAF), was found to label a peptide in both the SBDLII and steroid binding domain-like I (SBDLI) (amino acids 91-109) [Pal, A. (2007) Mol. Pharmacol. 72, 921-933]. In this report, we describe two novel strategically positioned carrier-free, radioiodinated photoaffinity labels specifically designed to probe the putative "nitrogen interacting region" of sigma-1 receptor ligands. These two novel photoprobes are (-)-methyl 3-(benzoyloxy)-8-2-(4-azido-3-[ (125)I]iodobenzene)-1-ethyl-8-azabicyclo[3.2.1]octane-2-carboxylate ([ (125)I]-N-IACoc) and N-propyl- N-(4-azido-3-iodophenylethyl)-3-(4-fluorophenyl)propylamine ([ (125)I]IAC44). In addition to reporting their binding affinities to the sigma-1 and sigma-2 receptors, we show that both photoaffinity labels specifically and covalently derivatized the pure guinea pig sigma-1 receptor (26.1 kDa) [Ramachandran, S. (2007) Protein Expression Purif. 51, 283-292]. Cleavage of the photolabeled sigma-1 receptor using Endo Lys C and cyanogen bromide (CNBr) revealed that the [ (125)I]-N-IACoc label was located primarily in the N-terminus and SBDLI-containing peptides of the sigma-1 receptor, while [ (125)I]IAC44 was found in peptide fragments consistent with labeling of both SBDLI and SBDLII.
Collapse
Affiliation(s)
| | | | | | | | | | - Arnold E. Ruoho
- Corresponding author. Tel: (608) 263-5382. Fax: (608) 262-1257.
| |
Collapse
|
72
|
Hayashi T, Su TP. An update on the development of drugs for neuropsychiatric disorders: focusing on the sigma 1 receptor ligand. Expert Opin Ther Targets 2008; 12:45-58. [PMID: 18076369 DOI: 10.1517/14728222.12.1.45] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The sigma1 receptor is an intracellular molecule that shares no homology with any mammalian proteins. sigma1 receptors normally localize at the endoplasmic reticulum and regulate a variety of signal transductions including intracellular Ca2+ dynamics and neurotrophic factor signaling. In the brain, sigma1 receptors are known to regulate the activity of diverse ion channels via protein-protein interactions. Accumulated evidences strongly indicate that the activation/upregulation of sigma1 receptors promotes the neuronal differentiation as well as a robust antiapoptotic action. In animals, sigma1 receptor agonists exhibit an antidepressant-like action. Furthermore, the agonists enhanced neuronal survival eventhough they were administered several hours after a brain ischemia. Thus, primary clinical targets of sigma1 receptor ligands are proposed to include stroke, neurodegenerative disorders and depression. Ligands for the sigma1 receptor may constitute a new class of therapeutic drugs targeting an endoplasmic reticular protein.
Collapse
Affiliation(s)
- Teruo Hayashi
- IRP, NIDA-NIH, Cellular Pathobiology Unit, Development and Plasticity Section, Cellular Neurobiology Research Branch, Room 3418, Triad building, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|