51
|
Katrinli S, Maihofer AX, Wani AH, Pfeiffer JR, Ketema E, Ratanatharathorn A, Baker DG, Boks MP, Geuze E, Kessler RC, Risbrough VB, Rutten BPF, Stein MB, Ursano RJ, Vermetten E, Logue MW, Nievergelt CM, Smith AK, Uddin M. Epigenome-wide meta-analysis of PTSD symptom severity in three military cohorts implicates DNA methylation changes in genes involved in immune system and oxidative stress. Mol Psychiatry 2022; 27:1720-1728. [PMID: 34992238 PMCID: PMC9106882 DOI: 10.1038/s41380-021-01398-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
Epigenetic factors modify the effects of environmental factors on biological outcomes. Identification of epigenetic changes that associate with PTSD is therefore a crucial step in deciphering mechanisms of risk and resilience. In this study, our goal is to identify epigenetic signatures associated with PTSD symptom severity (PTSS) and changes in PTSS over time, using whole blood DNA methylation (DNAm) data (MethylationEPIC BeadChip) of military personnel prior to and following combat deployment. A total of 429 subjects (858 samples across 2 time points) from three male military cohorts were included in the analyses. We conducted two different meta-analyses to answer two different scientific questions: one to identify a DNAm profile of PTSS using a random effects model including both time points for each subject, and the other to identify a DNAm profile of change in PTSS conditioned on pre-deployment DNAm. Four CpGs near four genes (F2R, CNPY2, BAIAP2L1, and TBXAS1) and 88 differentially methylated regions (DMRs) were associated with PTSS. Change in PTSS after deployment was associated with 15 DMRs, of those 2 DMRs near OTUD5 and ELF4 were also associated with PTSS. Notably, three PTSS-associated CpGs near F2R, BAIAP2L1 and TBXAS1 also showed nominal evidence of association with change in PTSS. This study, which identifies PTSD-associated changes in genes involved in oxidative stress and immune system, provides novel evidence that epigenetic differences are associated with PTSS.
Collapse
Affiliation(s)
- Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Agaz H Wani
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - John R Pfeiffer
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
| | - Elizabeth Ketema
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Marco P Boks
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elbert Geuze
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Netherlands Ministry of Defence, Utrecht, The Netherlands
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Robert J Ursano
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - Eric Vermetten
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, ZA, Leiden, The Netherlands
- Research Center, Netherlands Defense Department, UT, AA Utrecht, The Netherlands
- Arq Psychotrauma Expert Group, XE, Diemen, The Netherlands
| | - Mark W Logue
- National Center for PTSD, Behavioral Science Division at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
52
|
Rovati G, Contursi A, Bruno A, Tacconelli S, Ballerini P, Patrignani P. Antiplatelet Agents Affecting GPCR Signaling Implicated in Tumor Metastasis. Cells 2022; 11:725. [PMID: 35203374 PMCID: PMC8870128 DOI: 10.3390/cells11040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Metastasis requires that cancer cells survive in the circulation, colonize distant organs, and grow. Despite platelets being central contributors to hemostasis, leukocyte trafficking during inflammation, and vessel stability maintenance, there is significant evidence to support their essential role in supporting metastasis through different mechanisms. In addition to their direct interaction with cancer cells, thus forming heteroaggregates such as leukocytes, platelets release molecules that are necessary to promote a disseminating phenotype in cancer cells via the induction of an epithelial-mesenchymal-like transition. Therefore, agents that affect platelet activation can potentially restrain these prometastatic mechanisms. Although the primary adhesion of platelets to cancer cells is mainly independent of G protein-mediated signaling, soluble mediators released from platelets, such as ADP, thromboxane (TX) A2, and prostaglandin (PG) E2, act through G protein-coupled receptors (GPCRs) to cause the activation of more additional platelets and drive metastatic signaling pathways in cancer cells. In this review, we examine the contribution of the GPCRs of platelets and cancer cells in the development of cancer metastasis. Finally, the possible use of agents affecting GPCR signaling pathways as antimetastatic agents is discussed.
Collapse
Affiliation(s)
- Gianenrico Rovati
- Department of Pharmaceutical Sciences, University of Milan, 20122 Milan, Italy;
| | - Annalisa Contursi
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Annalisa Bruno
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Stefania Tacconelli
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Paola Patrignani
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| |
Collapse
|
53
|
Fukushima K, Senoo K, Kurata N, Regan JW, Fujino H. The Gαs‐protein‐mediated pathway may be steadily stimulated by prostanoid EP2 receptors, but not by EP4 receptors. FEBS Open Bio 2022; 12:775-783. [PMID: 35124898 PMCID: PMC8972045 DOI: 10.1002/2211-5463.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 11/11/2022] Open
Abstract
EP2 and EP4 prostanoid receptors have long been considered to have similar roles, since they are known to couple with Gαs‐protein and activate cAMP‐mediated signaling pathways. In this study, we re‐evaluated the results of cAMP assays with or without phosphodiesterase (PDE) inhibitor pretreatment. Here, we show that in the absence of PDE inhibitor pretreatment, prostaglandin E2 causes accumulation of cAMP in EP2 receptors, whereas markedly low levels of cAMP accumulated in EP4 receptors. By applying the Black/Leff operational model calculation, we found that EP2 receptors have a biased ability to intrinsically activate the Gαs‐protein‐mediated pathway, whereas EP4 receptors have strong biased activity for the Gαi‐protein‐mediated pathway. Thus, EP2 and EP4 receptors may not be similar Gαs‐coupled receptors but instead substantially different receptors with distinct roles.
Collapse
Affiliation(s)
- Keijo Fukushima
- Department of Pharmacology for Life Sciences Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences Tokushima University Tokushima 770‐8505 Japan
| | - Kanaho Senoo
- Department of Pharmacology for Life Sciences Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences Tokushima University Tokushima 770‐8505 Japan
| | - Naoki Kurata
- Department of Pharmacology for Life Sciences Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences Tokushima University Tokushima 770‐8505 Japan
- Laboratory of Chemical Pharmacology Graduate School of Pharmaceutical Sciences Chiba University 1‐8‐1 Inohana, Chuo‐ku Chiba 260‐8675 Japan
| | - John W. Regan
- Department of Pharmacology & Toxicology College of Pharmacy The University of Arizona Tucson AZ 85721‐0207 USA
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences Tokushima University Tokushima 770‐8505 Japan
| |
Collapse
|
54
|
Tai Y, Huang B, Guo PP, Wang Z, Zhou ZW, Wang MM, Sun HF, Hu Y, Xu SL, Zhang LL, Wang QT, Wei W. TNF-α impairs EP4 signaling through the association of TRAF2-GRK2 in primary fibroblast-like synoviocytes. Acta Pharmacol Sin 2022; 43:401-416. [PMID: 33859345 PMCID: PMC8791952 DOI: 10.1038/s41401-021-00654-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/13/2021] [Indexed: 02/06/2023]
Abstract
Our previous study showed that chronic treatment with tumor necrosis factor-α (TNF-α) decreased cAMP concentration in fibroblast-like synoviocytes (FLSs) of collagen-induced arthritis (CIA) rats. In this study we investigated how TNF-α impairs cAMP homeostasis, particularly clarifying the potential downstream molecules of TNF-α and prostaglandin receptor 4 (EP4) signaling that would interact with each other. Using a cAMP FRET biosensor PM-ICUE3, we demonstrated that TNF-α (20 ng/mL) blocked ONO-4819-triggered EP4 signaling, but not Butaprost-triggered EP2 signaling in normal rat FLSs. We showed that TNF-α (0.02-20 ng/mL) dose-dependently reduced EP4 membrane distribution in normal rat FLS. TNF-α significantly increased TNF receptor 2 (TNFR2) expression and stimulated proliferation in human FLS (hFLS) via ecruiting TNF receptor-associated factor 2 (TRAF2) to cell membrane. More interestingly, we revealed that TRAF2 interacted with G protein-coupled receptor kinase (GRK2) in the cytoplasm of primary hFLS and helped to bring GRK2 to cell membrane in response of TNF-α stimulation, the complex of TRAF2 and GRK2 then separated on the membrane, and translocated GRK2 induced the desensitization and internalization of EP4, leading to reduced production of intracellular cAMP. Silencing of TRAF2 by siRNA substantially diminished TRAF2-GRK2 interaction, blocked the translocation of GRK2, and resulted in upregulated expression of membrane EP4 and intracellular cAMP. In CIA rats, administration of paroxetine to inhibit GRK2 effectively improved the symptoms and clinic parameters with significantly reduced joint synovium inflammation and bone destruction. These results elucidate a novel form of cross-talk between TNFR (a cytokine receptor) and EP4 (a typical G protein-coupled receptor) signaling pathways. The interaction between TRAF2 and GRK2 may become a potential new drug target for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yu Tai
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Bei Huang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China ,Department of Pharmacy, Maanshan Hospital of Traditional Chinese Medicine, Maanshan, 243000 China
| | - Pai-pai Guo
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Zhen Wang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Zheng-wei Zhou
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Man-man Wang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Han-fei Sun
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Yong Hu
- grid.412679.f0000 0004 1771 3402Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Sheng-lin Xu
- grid.412679.f0000 0004 1771 3402Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Ling-ling Zhang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Qing-tong Wang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Wei Wei
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| |
Collapse
|
55
|
Zimmermann A, Vu O, Brüser A, Sliwoski G, Marnett LJ, Meiler J, Schöneberg T. Mapping the binding sites of UDP and prostaglandin E2 glyceryl ester in the nucleotide receptor P2Y6. ChemMedChem 2022; 17:e202100683. [PMID: 35034430 PMCID: PMC9305961 DOI: 10.1002/cmdc.202100683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Indexed: 12/02/2022]
Abstract
Cyclooxygenase‐2 catalyzes the biosynthesis of prostaglandins from arachidonic acid and the biosynthesis of prostaglandin glycerol esters (PG‐Gs) from 2‐arachidonoylglycerol. PG‐Gs are mediators of several biological actions such as macrophage activation, hyperalgesia, synaptic plasticity, and intraocular pressure. Recently, the human UDP receptor P2Y6 was identified as a target for the prostaglandin E2 glycerol ester (PGE2‐G). Here, we show that UDP and PGE2‐G are evolutionary conserved endogenous agonists at vertebrate P2Y6 orthologs. Using sequence comparison of P2Y6 orthologs, homology modeling, and ligand docking studies, we proposed several receptor positions participating in agonist binding. Site‐directed mutagenesis and functional analysis of these P2Y6 mutants revealed that both UDP and PGE2‐G share in parts one ligand‐binding site. Thus, the convergent signaling of these two chemically very different agonists has already been manifested in the evolutionary design of the ligand‐binding pocket.
Collapse
Affiliation(s)
- Anne Zimmermann
- Leipzig University: Universitat Leipzig Rudolf Schönheimer Institute of Biochemistry GERMANY
| | - Oanh Vu
- Vanderbilt University Department of Chemistry UNITED STATES
| | - Antje Brüser
- Leipzig University: Universitat Leipzig Rudolf Schönheimer Institute of Biochemistry GERMANY
| | - Gregory Sliwoski
- Vanderbilt University School of Medicine Department of Biomedical Informatics UNITED STATES
| | - Lawrence J. Marnett
- Vanderbilt University School of Medicine Department of Biochemistry UNITED STATES
| | - Jens Meiler
- Leipzig University: Universitat Leipzig Institute of Drug discovery GERMANY
| | - Torsten Schöneberg
- Leipzig University: Universitat Leipzig Rudolf Schönheimer Institute of Biochemistry Johannisallee 30 04103 Leipzig GERMANY
| |
Collapse
|
56
|
Chen L, Yan G, Ohwada T. Building on endogenous lipid mediators to design synthetic receptor ligands. Eur J Med Chem 2022; 231:114154. [DOI: 10.1016/j.ejmech.2022.114154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023]
|
57
|
Wang L, Wu Y, Jia Z, Yu J, Huang S. Roles of EP Receptors in the Regulation of Fluid Balance and Blood Pressure. Front Endocrinol (Lausanne) 2022; 13:875425. [PMID: 35813612 PMCID: PMC9262144 DOI: 10.3389/fendo.2022.875425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important prostanoid expressing throughout the kidney and cardiovascular system. Despite the diverse effects on fluid metabolism and blood pressure, PGE2 is implicated in sustaining volume and hemodynamics homeostasis. PGE2 works through four distinct E-prostanoid (EP) receptors which are G protein-coupled receptors. To date, pharmacological specific antagonists and agonists of all four subtypes of EP receptors and genetic targeting knockout mice for each subtype have helped in uncoupling the diverse functions of PGE2 and discriminating the respective characteristics of each receptor. In this review, we summarized the functions of individual EP receptor subtypes in the renal and blood vessels and the molecular mechanism of PGE2-induced fluid metabolism and blood pressure homeostasis.
Collapse
Affiliation(s)
- Lu Wang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqian Wu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| | - Songming Huang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| |
Collapse
|
58
|
Nagano T, Tsuda N, Fujimura K, Ikezawa Y, Higashi Y, Kimura SH. Prostaglandin E 2 increases the expression of cyclooxygenase-2 in cultured rat microglia. J Neuroimmunol 2021; 361:577724. [PMID: 34610503 DOI: 10.1016/j.jneuroim.2021.577724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022]
Abstract
Prostaglandin E2 (PGE2) plays pivotal roles in controlling microglial activation with the EP2 receptor, a PGE2 receptor subtype. Activated microglia are often reported to increase cyclooxygenase (COX)-2 expression, followed by PGE2 production, but it is unclear whether extracellular PGE2 is involved in microglial PGE2 synthesis. In the present study, we report that PGE2 increases COX-2 protein in microglia. In a culture system, PGE2 at 10-6 M for 3 h increased COX-2 and microsomal PGE synthase (mPGES)-1 mRNA levels, and reduced mPGES-2, but did not affect COX-1 or cytosolic PGE synthase (cPGES) in microglia. PGE2 at 10-6 M for 3 h also increased the COX-2 protein level, but did not affect COX-1, mPGES-1, mPGES-2, or cPGES. An EP2 agonist, ONO-AE1-259-01, also increased COX-2 and mPGES-1 mRNA levels, and reduced mPGES-2, but did not affect COX-1 or cPGES, whereas an EP1 agonist, ONO-DI-004, an EP3 agonist, ONO-AE-248, and an EP4 agonist, ONO-AE1-329, had no effect. Similar to PGE2, ONO-AE1-259-01 increased the COX-2 protein level, but did not affect COX-1, mPGES-1, mPGES-2, or cPGES. In addition, the effects of PGE2 were inhibited by an EP2 antagonist, PF-04418948, but not by an EP1 antagonist, ONO-8713, an EP3 antagonist, ONO-AE3-240, or an EP4 antagonist, ONO-AE3-208, at 10-6 M. On the other hand, lipopolysaccharide (LPS) increased PGE2 production, but the LPS-induced PGE2 production was not affected by ONO-8713, PF-04418948, ONO-AE3-240, or ONO-AE3-208. These results indicate that PGE2 increases COX-2 protein in microglia through the EP2 receptor supporting the idea that extracellular PGE2 has a triggering aspect for microglial activation.
Collapse
Affiliation(s)
- Takayuki Nagano
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| | - Naohiko Tsuda
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kenichi Fujimura
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yuji Ikezawa
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yuki Higashi
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shinya H Kimura
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
59
|
Pharmacokinetics of grapiprant in goat kids at two different dosing regimens. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
60
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
61
|
Diskin C, Zotta A, Corcoran SE, Tyrrell VJ, Zaslona Z, O'Donnell VB, O'Neill LAJ. 4-Octyl-Itaconate and Dimethyl Fumarate Inhibit COX2 Expression and Prostaglandin Production in Macrophages. THE JOURNAL OF IMMUNOLOGY 2021; 207:2561-2569. [PMID: 34635585 PMCID: PMC7613254 DOI: 10.4049/jimmunol.2100488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Prostaglandins (PGs) are important proinflammatory lipid mediators, the significance of which is highlighted by the widespread and efficacious use of non-steroidal anti-inflammatory drugs (NSAIDs) in the treatment of inflammation. 4-Octyl itaconate (4-OI), a derivative of the Krebs cycle-derived metabolite itaconate, has recently garnered much interest as an anti-inflammatory agent. Here we show that 4-OI limits PG production in macrophages stimulated with the Toll-like receptor 1/2 (TLR1/2) ligand Pam3CSK4. This decrease in PG secretion is due to a robust suppression of COX2 expression by 4-OI, with both mRNA and protein levels decreased. Dimethyl fumarate (DMF), a fumarate derivative used in the treatment of multiple sclerosis (MS), with properties similar to itaconate, replicated the phenotype observed with 4-OI. We also demonstrate that the decrease in COX2 expression and inhibition of downstream prostaglandin production occurs in an NRF2-independent manner. Our findings provide a new insight into the potential of 4-OI as an anti-inflammatory agent and also identifies a novel anti-inflammatory function of DMF.
Collapse
Affiliation(s)
- Ciana Diskin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| | - Alessia Zotta
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| | - Sarah E Corcoran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| | - Victoria J Tyrrell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zbigniew Zaslona
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| |
Collapse
|
62
|
Tay J, Barbier V, Helwani FM, Price GR, Levesque JP, Winkler IG. Prostacyclin is an endosteal bone marrow niche component and its clinical analog iloprost protects hematopoietic stem cell potential during stress. Stem Cells 2021; 39:1532-1545. [PMID: 34260805 DOI: 10.1002/stem.3438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Hematopoietic stem cells (HSCs) with superior reconstitution potential are reported to be enriched in the endosteal compared to central bone marrow (BM) region. To investigate whether specific factors at the endosteum may contribute to HSC potency, we screened for candidate HSC niche factors enriched in the endosteal compared to central BM regions. Together with key known HSC supporting factors Kitl and Cxcl12, we report that prostacyclin/prostaglandin I2 (PGI2 ) synthase (Ptgis) was one of the most highly enriched mRNAs (>10-fold) in endosteal compared to central BM. As PGI2 signals through receptors distinct from prostaglandin E2 (PGE2 ), we investigated functional roles for PGI2 at the endosteal niche using therapeutic PGI2 analogs, iloprost, and cicaprost. We found PGI2 analogs strongly reduced HSC differentiation in vitro. Ex vivo iloprost pulse treatment also significantly boosted long-term competitive repopulation (LT-CR) potential of HSCs upon transplantation. This was associated with increased tyrosine-phosphorylation of transducer and activator of transcription-3 (STAT3) signaling in HSCs but not altered cell cycling. In vivo, iloprost administration protected BM HSC potential from radiation or granulocyte colony-stimulating factor-induced exhaustion, and restored HSC homing potential with increased Kitl and Cxcl12 transcription in the BM. In conclusion, we propose that PGI2 is a novel HSC regulator enriched in the endosteum that promotes HSC regenerative potential following stress.
Collapse
Affiliation(s)
- Joshua Tay
- Stem Cell and Cancer Group, Blood and Bone Diseases Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Valerie Barbier
- Stem Cell and Cancer Group, Blood and Bone Diseases Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Falak M Helwani
- Stem Cell Biology Group, Blood and Bone Diseases Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Gareth R Price
- Stem Cell and Cancer Group, Blood and Bone Diseases Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jean-Pierre Levesque
- Stem Cell Biology Group, Blood and Bone Diseases Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Ingrid G Winkler
- Stem Cell and Cancer Group, Blood and Bone Diseases Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
63
|
An Insight into Anti-Inflammatory Activities and Inflammation Related Diseases of Anthocyanins: A Review of Both In Vivo and In Vitro Investigations. Int J Mol Sci 2021; 22:ijms222011076. [PMID: 34681733 PMCID: PMC8540239 DOI: 10.3390/ijms222011076] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Anthocyanin is a type of flavonoid pigment widely present in fruits and vegetables. It can not only be used as natural pigment, but also has a variety of health functions, for instance, anti-oxidant, anti-inflammatory, anti-tumor, and neuroprotective activities. Persistent proinflammatory status is a major factor in the development, progression, and complications of chronic diseases. Not surprisingly, there are thus many food ingredients that can potentially affect inflammation related diseases and many studies have shown that anthocyanins play an important role in inflammatory pathways. In this paper, the inflammation related diseases (such as, obesity, diabetes, cardiovascular disease, and cancer) of anthocyanins are introduced, and the anti-inflammatory effect of anthocyanins is emphatically introduced. Moreover, the anti-inflammatory mechanism of anthocyanins is elaborated from the aspects of NF-κB, toll like receptor, MAPKs, NO, and ROS and the main efficacy of anthocyanins in inflammation and related diseases is determined. In conclusion, this review aims to get a clear insight into the role of anthocyanins in inflammation related diseases.
Collapse
|
64
|
Lone AM, Giansanti P, Jørgensen MJ, Gjerga E, Dugourd A, Scholten A, Saez-Rodriguez J, Heck AJR, Taskén K. Systems approach reveals distinct and shared signaling networks of the four PGE 2 receptors in T cells. Sci Signal 2021; 14:eabc8579. [PMID: 34609894 DOI: 10.1126/scisignal.abc8579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anna M Lone
- Department of Cancer Immunology, Institute of Cancer Research, Oslo University Hospital, 0424 Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy and K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CH Utrecht, Netherlands.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising 85354, Germany
| | - Marthe Jøntvedt Jørgensen
- K.G. Jebsen Centre for Cancer Immunotherapy and K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Enio Gjerga
- Joint Research Centre for Computational Biomedicine (JRC-Combine), RWTH-Aachen University Hospital, Faculty of Medicine, Aachen 52074, Germany.,Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University Hospital, Bioquant, Heidelberg University, Heidelberg 69120, Germany
| | - Aurelien Dugourd
- Joint Research Centre for Computational Biomedicine (JRC-Combine), RWTH-Aachen University Hospital, Faculty of Medicine, Aachen 52074, Germany.,Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University Hospital, Bioquant, Heidelberg University, Heidelberg 69120, Germany
| | - Arjen Scholten
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CH Utrecht, Netherlands
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine (JRC-Combine), RWTH-Aachen University Hospital, Faculty of Medicine, Aachen 52074, Germany.,Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University Hospital, Bioquant, Heidelberg University, Heidelberg 69120, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CH Utrecht, Netherlands
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute of Cancer Research, Oslo University Hospital, 0424 Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy and K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
65
|
Kwon H, Hall DR, Smith RC. Prostaglandin E2 Signaling Mediates Oenocytoid Immune Cell Function and Lysis, Limiting Bacteria and Plasmodium Oocyst Survival in Anopheles gambiae. Front Immunol 2021; 12:680020. [PMID: 34484178 PMCID: PMC8415482 DOI: 10.3389/fimmu.2021.680020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid-derived signaling molecules known as eicosanoids have integral roles in mediating immune and inflammatory processes across metazoans. This includes the function of prostaglandins and their cognate G protein-coupled receptors (GPCRs) to employ their immunological actions. In insects, prostaglandins have been implicated in the regulation of both cellular and humoral immune responses, yet in arthropods of medical importance, studies have been limited. Here, we describe a prostaglandin E2 receptor (AgPGE2R) in the mosquito Anopheles gambiae and demonstrate that its expression is most abundant in oenocytoid immune cell populations. Through the administration of prostaglandin E2 (PGE2) and AgPGE2R-silencing, we demonstrate that prostaglandin E2 signaling regulates a subset of prophenoloxidases (PPOs) and antimicrobial peptides (AMPs) that are strongly expressed in populations of oenocytoids. We demonstrate that PGE2 signaling via the AgPGE2R significantly limits both bacterial replication and Plasmodium oocyst survival. Additional experiments establish that PGE2 treatment increases phenoloxidase (PO) activity through the increased expression of PPO1 and PPO3, genes essential to anti-Plasmodium immune responses that promote oocyst killing. We also provide evidence that the mechanisms of PGE2 signaling are concentration-dependent, where high concentrations of PGE2 promote oenocytoid lysis, negating the protective effects of lower concentrations of PGE2 on anti-Plasmodium immunity. Taken together, our results provide new insights into the role of PGE2 signaling on immune cell function and its contributions to mosquito innate immunity that promote pathogen killing.
Collapse
Affiliation(s)
- Hyeogsun Kwon
- Department of Entomology, Iowa State University, Ames, IA, United States
| | - David R Hall
- Department of Entomology, Iowa State University, Ames, IA, United States
| | - Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA, United States
| |
Collapse
|
66
|
Eicosanoid receptors as therapeutic targets for asthma. Clin Sci (Lond) 2021; 135:1945-1980. [PMID: 34401905 DOI: 10.1042/cs20190657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.
Collapse
|
67
|
Sluter MN, Hou R, Li L, Yasmen N, Yu Y, Liu J, Jiang J. EP2 Antagonists (2011-2021): A Decade's Journey from Discovery to Therapeutics. J Med Chem 2021; 64:11816-11836. [PMID: 34352171 PMCID: PMC8455147 DOI: 10.1021/acs.jmedchem.1c00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the wake of health disasters associated with the chronic use of cyclooxygenase-2 (COX-2) inhibitor drugs, it has been widely proposed that modulation of downstream prostanoid synthases or receptors might provide more specificity than simply shutting down the entire COX cascade for anti-inflammatory benefits. The pathogenic actions of COX-2 have long been thought attributable to the prostaglandin E2 (PGE2) signaling through its Gαs-coupled EP2 receptor subtype; however, the truly selective EP2 antagonists did not emerge until 2011. These small molecules provide game-changing tools to better understand the EP2 receptor in inflammation-associated conditions. Their applications in preclinical models also reshape our knowledge of PGE2/EP2 signaling as a node of inflammation in health and disease. As we celebrate the 10-year anniversary of this breakthrough, the exploration of their potential as drug candidates for next-generation anti-inflammatory therapies has just begun. The first decade of EP2 antagonists passes, while their future looks brighter than ever.
Collapse
Affiliation(s)
- Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiawang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
68
|
Alvarez MDL, Lorenzetti F. Role of eicosanoids in liver repair, regeneration and cancer. Biochem Pharmacol 2021; 192:114732. [PMID: 34411565 DOI: 10.1016/j.bcp.2021.114732] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Eicosanoids are lipid signaling molecules derived from the oxidation of ω-6 fatty acids, usually arachidonic acid. There are three major pathways, including the cyclooxygenase (COX), lipoxygenase (LOX), and P450 cytochrome epoxygenase (CYP) pathway. Prostanoids, which include prostaglandins (PG) and thromboxanes (Tx), are formed via the COX pathway, leukotrienes (LT) and lipoxins (LX) by the action of 5-LOX, and hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) by CYP. Although eicosanoids are usually associated with pro-inflammatory responses, non-classic eicosanoids, as LX, have anti-inflammatory and pro-resolving properties. Eicosanoids like PGE2, LTB4 and EETs have been involved in promoting liver regeneration after partial hepatectomy. PGE2 and LTB4 have also been reported to participate in the regenerative phase after ischemia and reperfusion (I/R), while cysteinyl leukotrienes (Cys-LT) contribute to the inflammatory process associated with I/R and are also involved in liver fibrosis and cirrhosis. However, LX, another product of 5-LOX, have the opposite effect, acting as pro-resolving mediators in these pathologies. In liver cancer, most studies show that eicosanoids, with the exception of LX, promote the proliferation of hepatocellular carcinoma cells and favor metastasis. This review summarizes the synthesis of different eicosanoids in the liver and discusses key findings from basic research linking eicosanoids to liver repair, regeneration and cancer and the impact of targeting eicosanoid cascade. In addition, studies in patients are presented that explore the potential use of eicosanoids as biomarkers and show correlations between eicosanoid production and the course and prognosis of liver disease.
Collapse
Affiliation(s)
- María de Luján Alvarez
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina.
| | - Florencia Lorenzetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
69
|
Molecular basis for lipid recognition by the prostaglandin D 2 receptor CRTH2. Proc Natl Acad Sci U S A 2021; 118:2102813118. [PMID: 34341104 DOI: 10.1073/pnas.2102813118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostaglandin D2 (PGD2) signals through the G protein-coupled receptor (GPCR) CRTH2 to mediate various inflammatory responses. CRTH2 is the only member of the prostanoid receptor family that is phylogenetically distant from others, implying a nonconserved mechanism of lipid action on CRTH2. Here, we report a crystal structure of human CRTH2 bound to a PGD2 derivative, 15R-methyl-PGD2 (15mPGD2), by serial femtosecond crystallography. The structure revealed a "polar group in"-binding mode of 15mPGD2 contrasting the "polar group out"-binding mode of PGE2 in its receptor EP3. Structural comparison analysis suggested that these two lipid-binding modes, associated with distinct charge distributions of ligand-binding pockets, may apply to other lipid GPCRs. Molecular dynamics simulations together with mutagenesis studies also identified charged residues at the ligand entry port that function to capture lipid ligands of CRTH2 from the lipid bilayer. Together, our studies suggest critical roles of charge environment in lipid recognition by GPCRs.
Collapse
|
70
|
Moraes JGN, Behura SK, Geary TW, Spencer TE. Analysis of the uterine lumen in fertility-classified heifers: I. Glucose, prostaglandins, and lipids†. Biol Reprod 2021; 102:456-474. [PMID: 31616913 DOI: 10.1093/biolre/ioz191] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Survival and growth of the bovine conceptus (embryo and associated extraembryonic membranes) are dependent on endometrial secretions or histotroph found in the uterine lumen. Previously, serial embryo transfer was used to classify heifers as high fertile (HF), subfertile (SF), or infertile (IF). Here, we investigated specific histotroph components [glucose, prostaglandins (PGs), and lipids] in the uterine lumen of day 17 pregnant and open fertility-classified heifers. Concentrations of glucose in the uterine lumen were increased by pregnancy but did not differ among fertility-classified heifers. Differences in expression of genes encoding glucose transporters and involved with glycolysis and gluconeogenesis were observed between conceptuses collected from HF and SF heifers. In the uterine lumen, PGE2 and PGF2α were increased by pregnancy, and HF heifers had higher concentrations of PGE2, PGF2α, and 6-keto-PFG1α than SF heifers. Differences were found in expression of genes regulating PG signaling, arachidonic acid metabolism, and peroxisome proliferator-activated receptor signaling among conceptuses and endometrium from fertility-classified heifers. Lipidomics was conducted exclusively in samples from HF heifers, and phosphatidylcholine was the main lipid class that increased in the uterine lumen by pregnancy. Expression of several lipid metabolism genes differed between HF and SF conceptuses, and a number of fatty acids were differentially abundant in the uterine lumen of pregnant HF and SF heifers. These results support the ideas that uterine luminal histotroph impacts conceptus survival and programs its development and is a facet of dysregulated conceptus-endometrial interactions that result in loss of the conceptus in SF cattle during the implantation period of pregnancy establishment.
Collapse
Affiliation(s)
- Joao G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas W Geary
- USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, Montana, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
71
|
Sartini I, Giorgi M. Grapiprant: A snapshot of the current knowledge. J Vet Pharmacol Ther 2021; 44:679-688. [PMID: 34057218 PMCID: PMC8518515 DOI: 10.1111/jvp.12983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/19/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022]
Abstract
Grapiprant is the pioneer member of the novel piprant class, a potent and specific antagonist of the prostaglandin E2 receptor 4. It has been approved in veterinary medicine for the control of pain and inflammation associated with osteoarthritis in dogs at the dose regimen of 2 mg/kg once a day by the FDA and EMA (for pain only) in 2016 and 2018, respectively. The aim of this narrative review was to report the analytical methods, pharmacokinetics, pharmacodynamics and safety of grapiprant in several animal species using the best available published scientific evidence. In conclusion, most of the analytical methods proposed for grapiprant detection are simple, reliable, sensitive and validated. The pharmacokinetics show discrepancies between animal species. The therapeutic efficacy seems more suited to chronic rather than acute pain.
Collapse
Affiliation(s)
- Irene Sartini
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy.,PhD School, Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
72
|
Thumkeo D, Narumiya S. Opening the Door to Better Aspirin. Structure 2021; 29:200-202. [PMID: 33667375 DOI: 10.1016/j.str.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this issue of Structure, Nojima et al. (2021) report the structure of the PGE2-EP4-Gs complex by cryo-electron microscopy. This work shows unique modes of ligand binding, transduction mechanism, and G protein coupling of EP4, and serves as a starting point for development of more selective drugs.
Collapse
Affiliation(s)
- Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; AMED-FORCE, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
73
|
Ogazon del Toro A, Jimenez L, Serrano Rubi M, Castillo A, Hinojosa L, Martinez Rendon J, Cereijido M, Ponce A. Prostaglandin E2 Enhances Gap Junctional Intercellular Communication in Clonal Epithelial Cells. Int J Mol Sci 2021; 22:5813. [PMID: 34071686 PMCID: PMC8198183 DOI: 10.3390/ijms22115813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Prostaglandins are a group of lipids that produce diverse physiological and pathological effects. Among them, prostaglandin E2 (PGE2) stands out for the wide variety of functions in which it participates. To date, there is little information about the influence of PGE2 on gap junctional intercellular communication (GJIC) in any type of tissue, including epithelia. In this work, we set out to determine whether PGE2 influences GJIC in epithelial cells (MDCK cells). To this end, we performed dye (Lucifer yellow) transfer assays to compare GJIC of MDCK cells treated with PGE2 and untreated cells. Our results indicated that (1) PGE2 induces a statistically significant increase in GJIC from 100 nM and from 15 min after its addition to the medium, (2) such effect does not require the synthesis of new mRNA or proteins subunits but rather trafficking of subunits already synthesized, and (3) such effect is mediated by the E2 receptor, which, in turn, triggers a signaling pathway that includes activation of adenylyl cyclase and protein kinase A (PKA). These results widen the knowledge regarding modulation of gap junctional intercellular communication by prostaglandins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX, México C.P. 07360, Mexico; (A.O.d.T.); (L.J.); (M.S.R.); (A.C.); (L.H.); (J.M.R.); (M.C.)
| |
Collapse
|
74
|
Celejewska-Wójcik N, Kania A, Górka K, Nastałek P, Wójcik K, Gielicz A, Mastalerz L, Sanak M, Sładek K. Eicosanoids and Eosinophilic Inflammation of Airways in Stable COPD. Int J Chron Obstruct Pulmon Dis 2021; 16:1415-1424. [PMID: 34079245 PMCID: PMC8164670 DOI: 10.2147/copd.s298678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose Lipid mediators, particularly eicosanoids, are associated with airway inflammation, especially with the eosinophilic influx. This study aimed to measure lipid mediators and cells in induced sputum, that could possibly reflect the inflammatory process in the bronchial tree of COPD subjects. Patients and Methods Eighty patients diagnosed with COPD and 37 healthy controls participated in the study. Induced sputum samples were ascertained for differential cell count and induced sputum supernatant concentrations of selected eicosanoids by the means of gas chromatography/mass spectrometry and high-performance liquid chromatography/tandem mass spectrometry. Results Increased sputum eosinophilia was associated with higher concentrations of selected proinflammatory eicosanoids. In COPD subjects prostaglandin D2 and 11-dehydro-thromboxane B2 correlated negatively with airway obstruction measured by FEV1 and FEV1/FVC values. COPD subjects with disease exacerbations during past 12 months had significantly higher concentrations of prostaglandin D2, 12-oxo-eicosatetraenoic acid and 5-oxo-eicosatetraenoic acid. Conclusion Stable COPD is often associated with eosinophil influx in the lower airways and elevated concentrations of eicosanoids that is reflected by some disease characteristics.
Collapse
Affiliation(s)
- Natalia Celejewska-Wójcik
- Department of Pulmonology, 2nd Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksander Kania
- Department of Pulmonology, 2nd Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Karolina Górka
- Department of Pulmonology, 2nd Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Nastałek
- Department of Pulmonology, 2nd Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Wójcik
- 2nd Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Gielicz
- Department of Molecular Biology and Clinical Genetics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Lucyna Mastalerz
- Department of Pulmonology, 2nd Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Sanak
- Department of Molecular Biology and Clinical Genetics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Sładek
- Department of Pulmonology, 2nd Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
75
|
Kursun O, Karatas H, Bariskaner H, Ozturk S. Arachidonic Acid Metabolites in Neurologic Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:150-159. [PMID: 33982658 DOI: 10.2174/1871527320666210512013648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND & OBJECTIVE Arachidonic acid (ARA) is essential for the fluidity, selective permeability, and flexibility of the cell membrane. It is an important factor for the function of all cells, particularly in the nervous system, immune system, and vascular endothelium. ARA, after docosahexaenoic acid, is the second most common polyunsaturated fatty acid in the phospholipids of the nerve cell membrane. ARA metabolites have many kinds of physiologic roles. The major action of ARA metabolites is the promotion of the acute inflammatory response, mediated by the production of pro-inflammatory mediators such as PGE2 and PGI2, followed by the formation of lipid mediators, which have pro-resolving effects. Another important action of ARA derivatives, especially COX, is the regulation of vascular reactivity through PGs and TXA2. There is significant involvement of ARA metabolites in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and neuropsychiatric disorders. ARA derivatives also make an important contribution to acute stroke, global ischemia, subarachnoid hemorrhage, and anticoagulation- related hemorrhagic transformation. CONCLUSION In this review, we discuss experimental and human study results of neurologic disorders related to ARA and its metabolites in line with treatment options.
Collapse
Affiliation(s)
- Oguzhan Kursun
- Ankara City Hospital, Neurology Clinic, Neurointensive Care Unit, Neurology, Turkey
| | - Hulya Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry Neurology, Turkey
| | | | | |
Collapse
|
76
|
Prostaglandin E 2 Enhances Aged Hematopoietic Stem Cell Function. Stem Cell Rev Rep 2021; 17:1840-1854. [PMID: 33974233 DOI: 10.1007/s12015-021-10177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Aging of hematopoiesis is associated with increased frequency and clonality of hematopoietic stem cells (HSCs), along with functional compromise and myeloid bias, with donor age being a significant variable in survival after HSC transplantation. No clinical methods currently exist to enhance aged HSC function, and little is known regarding how aging affects molecular responses of HSCs to biological stimuli. Exposure of HSCs from young fish, mice, nonhuman primates, and humans to 16,16-dimethyl prostaglandin E2 (dmPGE2) enhances transplantation, but the effect of dmPGE2 on aged HSCs is unknown. Here we show that ex vivo pulse of bone marrow cells from young adult (3 mo) and aged (25 mo) mice with dmPGE2 prior to serial competitive transplantation significantly enhanced long-term repopulation from aged grafts in primary and secondary transplantation (27 % increase in chimerism) to a similar degree as young grafts (21 % increase in chimerism; both p < 0.05). RNA sequencing of phenotypically-isolated HSCs indicated that the molecular responses to dmPGE2 are similar in young and old, including CREB1 activation and increased cell survival and homeostasis. Common genes within these pathways identified likely key mediators of HSC enhancement by dmPGE2 and age-related signaling differences. HSC expression of the PGE2 receptor EP4, implicated in HSC function, increased with age in both mRNA and surface protein. This work suggests that aging does not alter the major dmPGE2 response pathways in HSCs which mediate enhancement of both young and old HSC function, with significant implications for expanding the therapeutic potential of elderly HSC transplantation.
Collapse
|
77
|
Lone AM, Taskén K. Phosphoproteomics-Based Characterization of Prostaglandin E 2 Signaling in T Cells. Mol Pharmacol 2021; 99:370-382. [PMID: 33674363 DOI: 10.1124/molpharm.120.000170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a key lipid mediator in health and disease and serves as a crucial link between the immune response and cancer. With the advent of cancer therapies targeting PGE2 signaling pathways at different levels, there has been increased interest in mapping and understanding the complex and interconnected signaling pathways arising from the four distinct PGE2 receptors. Here, we review phosphoproteomics studies that have investigated different aspects of PGE2 signaling in T cells. These studies have elucidated PGE2's regulatory effect on T cell receptor signaling and T cell function, the key role of protein kinase A in many PGE2 signaling pathways, the temporal regulation of PGE2 signaling, differences in PGE2 signaling between different T cell subtypes, and finally, the crosstalk between PGE2 signaling pathways elicited by the four distinct PGE2 receptors present in T cells. SIGNIFICANCE STATEMENT: Through the reviewed studies, we now have a much better understanding of PGE2's signaling mechanisms and functional roles in T cells, as well as a solid platform for targeted and functional studies of specific PGE2-triggered pathways in T cells.
Collapse
Affiliation(s)
- Anna Mari Lone
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital (A.M.L., K.T.) and Institute for Clinical Medicine, University of Oslo, Oslo, Norway (K.T.)
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital (A.M.L., K.T.) and Institute for Clinical Medicine, University of Oslo, Oslo, Norway (K.T.)
| |
Collapse
|
78
|
Calcium signaling cascades differentially regulate PGF 2α-induced myometrial contractions in water buffaloes (Bubalus bubalis). Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1651-1664. [PMID: 33884445 DOI: 10.1007/s00210-021-02084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
This study unravels the differential involvement of calcium signaling pathway(s) in PGF2α-induced contractions in myometrium of nonpregnant (NP) and pregnant buffaloes. Compared to the myometrium of pregnant animals, myometrium of NP buffaloes was more sensitive to PGF2α as manifested by changes in mean integral tension (MIT) and tonicity. In the presence of nifedipine, myometrial contraction to PGF2α was significantly attenuated in both NP and pregnant uteri; however, mibefradil and NNC 55-0396 produced inhibitory effects only in uterus of pregnant animals, thus suggesting the role of extracellular Ca2+ influx through nifedipine-sensitive L-type Ca2+-channels both in NP and pregnant, but T-type Ca2+ channels seem to play a role only during pregnancy. Entry of extracellular Ca2+ is triggered by enhanced functional involvement of Pyr3-sensitive TRPC3 channels and Rho-kinase pathways as evidenced by a significant rightward shift of the concentration-response curve of PGF2α in the presence of Pyr3 and Y-27632 in NP myometrium. But significant down-expressions of TRPC3 and Rho-A proteins during pregnancy apparently facilitate uterine quiescence. In the presence of Ca2+-free solution and cyclopiazonic acid (SERCA blocker), feeble contraction to PGF2α was observed in both NP and pregnant myometrium which suggests minor role of intracellular source of Ca2+ in mediating PGF2α-induced contractions in these tissues.
Collapse
|
79
|
The pharmacology of the prostaglandin D 2 receptor 2 (DP 2) receptor antagonist, fevipiprant. Pulm Pharmacol Ther 2021; 68:102030. [PMID: 33826946 DOI: 10.1016/j.pupt.2021.102030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022]
Abstract
Fevipiprant is an oral, non-steroidal, highly selective, reversible antagonist of the prostaglandin D2 (DP2) receptor. The DP2 receptor is a mediator of inflammation expressed on the membrane of key inflammatory cells, including eosinophils, Th2 cells, type 2 innate lymphoid cells, CD8+ cytotoxic T cells, basophils and monocytes, as well as airway smooth muscle and epithelial cells. The DP2 receptor pathway regulates the allergic and non-allergic asthma inflammatory cascade and is activated by the binding of prostaglandin D2. Fevipiprant is metabolised by several uridine 5'-diphospho glucuronosyltransferase enzymes to an inactive acyl-glucuronide (AG) metabolite, the only major human metabolite. Both fevipiprant and its AG metabolite are eliminated by urinary excretion; fevipiprant is also possibly cleared by biliary excretion. These parallel elimination pathways suggested a low risk of major drug-drug interactions (DDI), pharmacogenetic or ethnic variability for fevipiprant, which was supported by DDI and clinical studies of fevipiprant. Phase II clinical trials of fevipiprant showed reduction in sputum eosinophilia, as well as improvement in lung function, symptoms and quality of life in patients with asthma. While fevipiprant reached the most advanced state of development to date of an oral DP2 receptor antagonist in a worldwide Phase III clinical trial programme, the demonstrated efficacy did not support further clinical development in asthma.
Collapse
|
80
|
Okura I, Hasuoka N, Senoo K, Suganami A, Fukushima K, Regan JW, Mashimo M, Murayama T, Tamura Y, Fujino H. The differential functional coupling of phosphodiesterase 4 to human DP and EP2 prostanoid receptors stimulated with PGD 2 or PGE 2. Pharmacol Rep 2021; 73:946-953. [PMID: 33786738 DOI: 10.1007/s43440-021-00247-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Human DP and EP2 receptors are two of the most homologically related receptors coupling with Gαs-protein, which stimulate adenylyl cyclase to produce cAMP. Indeed, both receptors are considered to be generated by tandem duplication. It has been reported that other highly homologous and closely related β1- and β2-adrenergic receptors interact distinctly with and differentially regulate cAMP-specific phosphodiesterase (PDE) 4 recruitment. METHODS First, we focused on the cAMP degradation pathways of DP and EP2 receptors stimulated by prostaglandin (PG) D2 or PGE2 using HEK cells stably expressing either human DP receptors or EP2 receptors. Then, distances between ligands and amino acids of the receptors were evaluated by molecular dynamics (MD) analysis. RESULTS We found that PGD2/EP2 receptors exerted a greater effect on PDE4 activity than PGE2/EP2 receptors. Moreover, by MD analysis, either the PGD2 or EP2 receptor was moved and the distance was shortened between them. According to the results, DP receptors retain reactivity for PGE2, but EP2 receptors may be activated only by PGE2, at least in terms of cAMP formation, through the differential functional coupling of PDE4 probably with β-arrestin. CONCLUSION Since DP receptors and EP2 receptors are considered to be duplicated genes, DP receptors may still be in a rapid evolutionary stage as a duplicated copy of EP2 receptors and have not yet sufficient selectivity for their cognate ligand, PGD2.
Collapse
Affiliation(s)
- Iori Okura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Nanae Hasuoka
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Kanaho Senoo
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - John W Regan
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721-0207, USA
| | - Masato Mashimo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto, 610-0311, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan.
| |
Collapse
|
81
|
Qu C, Mao C, Xiao P, Shen Q, Zhong YN, Yang F, Shen DD, Tao X, Zhang H, Yan X, Zhao RJ, He J, Guan Y, Zhang C, Hou G, Zhang PJ, Hou G, Li Z, Yu X, Chai RJ, Guan YF, Sun JP, Zhang Y. Ligand recognition, unconventional activation, and G protein coupling of the prostaglandin E 2 receptor EP2 subtype. SCIENCE ADVANCES 2021; 7:eabf1268. [PMID: 33811074 PMCID: PMC11057787 DOI: 10.1126/sciadv.abf1268] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/12/2021] [Indexed: 05/25/2023]
Abstract
Selective modulation of the heterotrimeric G protein α S subunit-coupled prostaglandin E2 (PGE2) receptor EP2 subtype is a promising therapeutic strategy for osteoporosis, ocular hypertension, neurodegenerative diseases, and cardiovascular disorders. Here, we report the cryo-electron microscopy structure of the EP2-Gs complex with its endogenous agonist PGE2 and two synthesized agonists, taprenepag and evatanepag (CP-533536). These structures revealed distinct features of EP2 within the EP receptor family in terms of its unconventional receptor activation and G protein coupling mechanisms, including activation in the absence of a typical W6.48 "toggle switch" and coupling to Gs via helix 8. Moreover, inspection of the agonist-bound EP2 structures uncovered key motifs governing ligand selectivity. Our study provides important knowledge for agonist recognition and activation mechanisms of EP2 and will facilitate the rational design of drugs targeting the PGE2 signaling system.
Collapse
Affiliation(s)
- Changxiu Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingya Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Ya-Ni Zhong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Xiaona Tao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Xu Yan
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ru-Jia Zhao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Junyan He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ying Guan
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chao Zhang
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guihua Hou
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng-Ju Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Research, Beijing 100191, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ren-Jie Chai
- State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, School of Life Sciences and Technology, Southeast University, Nanjing 210096, China.
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jin-Peng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou 310058, China
| |
Collapse
|
82
|
Complex and Controversial Roles of Eicosanoids in Fungal Pathogenesis. J Fungi (Basel) 2021; 7:jof7040254. [PMID: 33800694 PMCID: PMC8065571 DOI: 10.3390/jof7040254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023] Open
Abstract
The prevalence of fungal infections has increased in immunocompromised patients, leading to millions of deaths annually. Arachidonic acid (AA) metabolites, such as eicosanoids, play important roles in regulating innate and adaptative immune function, particularly since they can function as virulence factors enhancing fungal colonization and are produced by mammalian and lower eukaryotes, such as yeasts and other fungi (Candida albicans, Histoplasma capsulatum and Cryptococcus neoformans). C. albicans produces prostaglandins (PG), Leukotrienes (LT) and Resolvins (Rvs), whereas the first two have been well documented in Cryptococcus sp. and H. capsulatum. In this review, we cover the eicosanoids produced by the host and fungi during fungal infections. These fungal-derived PGs have immunomodulatory functions analogous to their mammalian counterparts. Prostaglandin E2 (PGE2) protects C. albicans and C. parapsilosis cells from the phagocytic and killing activity of macrophages. H. capsulatum PGs augment the fungal burden and host mortality rates in histoplasmosis. However, PGD2 potentiates the effects and production of LTB4, which is a very potent neutrophil chemoattractant that enhances host responses. Altogether, these data suggest that eicosanoids, mainly PGE2, may serve as a new potential target to combat diverse fungal infections.
Collapse
|
83
|
Corboz MR, Salvail W, Gagnon S, LaSala D, Laurent CE, Salvail D, Chen KJ, Cipolla D, Perkins WR, Chapman RW. Prostanoid receptor subtypes involved in treprostinil-mediated vasodilation of rat pulmonary arteries and in treprostinil-mediated inhibition of collagen gene expression of human lung fibroblasts. Prostaglandins Other Lipid Mediat 2021; 152:106486. [PMID: 33011365 DOI: 10.1016/j.prostaglandins.2020.106486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Treprostinil (TRE) is a potent pulmonary vasodilator with effects on other pathological aspects of pulmonary arterial hypertension. In this study, the prostanoid receptors involved in TRE-induced relaxation of isolated rat pulmonary arteries and TRE-induced inhibition of increased gene expression in collagen synthesis and contractility of human lung fibroblasts were determined. TRE (0.01-100 μM) relaxed prostaglandin F2α-precontracted rat pulmonary arteries which was attenuated by denudation of the vascular endothelium. TRE-induced relaxation was predominantly blocked by the IP receptor antagonist RO3244194 (1 μM), with slightly greater inhibition in endothelium-denuded tissue. At higher TRE concentrations (> 1 μM), the DP1 receptor antagonist BW A868C (1 μM) also inhibited relaxation reaching significance above 10 μM. In contrast, the EP3 receptor antagonist L798106 (1 μM) accentuated TRE-induced relaxation of pulmonary arteries with intact endothelium. In human lung fibroblasts, the EP2 receptor antagonist PF-04418948 (1 μM) blocked transforming growth factor β1 (TGF-β1)-increased expression of collagen synthesis (COL1A1 and COL1A2) and fibroblast contractility (ACTG2) genes in presence of TRE (0.1 μM). In conclusion, the IP receptor located on rat pulmonary vascular smooth muscle and endothelium is the primary receptor mediating vasorelaxation, while the DP1 receptor present on the rat endothelium is involved only at higher TRE concentrations. In human lung fibroblasts, the EP2 receptor is the dominant receptor subtype involved in suppression of increased collagen synthesis and fibroblast contractility gene expression induced by TGF-β1 in the presence of TRE.
Collapse
Affiliation(s)
- Michel R Corboz
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | - William Salvail
- IPS Therapeutique Incorporated, Sherbrooke, QC, J1G5J6, Canada.
| | - Sandra Gagnon
- IPS Therapeutique Incorporated, Sherbrooke, QC, J1G5J6, Canada.
| | - Daniel LaSala
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | | | - Dany Salvail
- IPS Therapeutique Incorporated, Sherbrooke, QC, J1G5J6, Canada.
| | - Kuan-Ju Chen
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | - David Cipolla
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | - Walter R Perkins
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | - Richard W Chapman
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| |
Collapse
|
84
|
Putman AK, Contreras GA, Sordillo LM. Isoprostanes in Veterinary Medicine: Beyond a Biomarker. Antioxidants (Basel) 2021; 10:antiox10020145. [PMID: 33498324 PMCID: PMC7909258 DOI: 10.3390/antiox10020145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress has been associated with many pathologies, in both human and animal medicine. Damage to tissue components such as lipids is a defining feature of oxidative stress and can lead to the generation of many oxidized products, including isoprostanes (IsoP). First recognized in the early 1990s, IsoP are formed in numerous biological fluids and tissues, chemically stable, and easily measured by noninvasive means. Additionally, IsoP are highly specific indicators of lipid peroxidation and thereby are regarded as excellent biomarkers of oxidative stress. Although there have been many advancements in the detection and use of IsoP as a biomarker, there is still a paucity of knowledge regarding the biological activity of these molecules and their potential roles in pathology of oxidative stress. Furthermore, the use of IsoP has been limited in veterinary species thus far and represents an avenue of opportunity for clinical applications in veterinary practice. Examples of clinical applications of IsoP in veterinary medicine include use as a novel biomarker to guide treatment recommendations or as a target to mitigate inflammatory processes. This review will discuss the history, biosynthesis, measurement, use as a biomarker, and biological action of IsoP, particularly in the context of veterinary medicine.
Collapse
|
85
|
Mosaad E, Peiris HN, Holland O, Morean Garcia I, Mitchell MD. The Role(s) of Eicosanoids and Exosomes in Human Parturition. Front Physiol 2020; 11:594313. [PMID: 33424622 PMCID: PMC7786405 DOI: 10.3389/fphys.2020.594313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
The roles that eicosanoids play during pregnancy and parturition are crucial to a successful outcome. A better understanding of the regulation of eicosanoid production and the roles played by the various end products during pregnancy and parturition has led to our view that accurate measurements of a panel of those end products has exciting potential as diagnostics and prognostics of preterm labor and delivery. Exosomes and their contents represent an exciting new area for research of movement of key biological factors circulating between tissues and organs akin to a parallel endocrine system but involving key intracellular mediators. Eicosanoids and enzymes regulating their biosynthesis and metabolism as well as regulatory microRNAs have been identified within exosomes. In this review, the regulation of eicosanoid production, abundance and actions during pregnancy will be explored. Additionally, the functional significance of placental exosomes will be discussed.
Collapse
Affiliation(s)
- Eman Mosaad
- School of Biomedical Science, Institute of Health and Biomedical Innovation – Centre for Children’s Health Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Hassendrini N. Peiris
- School of Biomedical Science, Institute of Health and Biomedical Innovation – Centre for Children’s Health Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Olivia Holland
- School of Biomedical Science, Institute of Health and Biomedical Innovation – Centre for Children’s Health Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Medical Science, Griffith University, Southport, QLD, Australia
| | - Isabella Morean Garcia
- School of Biomedical Science, Institute of Health and Biomedical Innovation – Centre for Children’s Health Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Murray D. Mitchell
- School of Biomedical Science, Institute of Health and Biomedical Innovation – Centre for Children’s Health Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
86
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
87
|
Hou R, Yu Y, Jiang J. PGE2 receptors in detrusor muscle: Drugging the undruggable for urgency. Biochem Pharmacol 2020; 184:114363. [PMID: 33309520 DOI: 10.1016/j.bcp.2020.114363] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
Overactive bladder (OAB) syndrome is a prevalent condition of the lower urinary tract that causes symptoms, such as urinary frequency, urinary urgency, urge incontinence, and nocturia, and disproportionately affects women and the elderly. Current medications for OAB merely provide symptomatic relief with considerable limitations, as they are no more than moderately effective, not to mention that they may cause substantial adverse effects. Identifying novel molecular targets to facilitate the development of new medical therapies with higher efficacy and safety for OAB is in an urgent unmet need. Although the molecular mechanisms underlying the pathophysiology of OAB largely remain elusive and are likely multifactorial, mounting evidence from preclinical studies over the past decade reveals that the pro-inflammatory pathways engaging cyclooxygenases and their prostanoid products, particularly the prostaglandin E2 (PGE2), may play essential roles in the progression of OAB. The goals of this review are to summarize recent progresses in our knowledge on the pathogenic roles of PGE2 in the OAB and to provide new mechanistic insights into the signaling pathways transduced by its four G-protein-coupled receptors (GPCRs), i.e., EP1-EP4, in the overactive detrusor smooth muscle. We also discuss the feasibility of targeting these GPCRs as an emerging strategy to treat OAB with better therapeutic specificity than the current medications.
Collapse
Affiliation(s)
- Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
88
|
Li YH, Zhu D, Yang T, Cheng L, Sun J, Tan L. Crosstalk between the COX2-PGE2-EP4 signaling pathway and primary cilia in osteoblasts after mechanical stimulation. J Cell Physiol 2020; 236:4764-4777. [PMID: 33275302 DOI: 10.1002/jcp.30198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022]
Abstract
Primary cilia have been found to function as mechanosensors in low-magnitude high-frequency vibration (LMHFV)-induced osteogenesis. The PGE2 also regulates bone homeostasis and mechanical osteogenesis through its receptor EP4 signaling, but its involvement in LMHFV-induced or in primary cilia-induced osteogenesis has not been investigated. We hypothesized that LMHFV stimulates osteoblast (OB) differentiation by activating the COX2-PGE2-EP pathway in a manner dependent on primary cilia and that primary cilia are also affected by the PGE2 pathway. In this study, through western blot analysis, RNA interference, enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction, and cytochemical staining, we observed that COX2, mPGES-1, and PGE2 levels were markedly elevated in cells treated with LMHFV and were greatly decreased in LMHFV-treated cells following IFT88 silencing. EP4 expression was significantly increased in OBs following LMHFV treatment, but IFT88 silencing significantly blocked this increase. EP4 localized to the bases of primary cilia. LMHFV reduced the length and abundance of primary cilia, but the cells could self-repair their primary cilia after mechanical damage. EP4 antagonism significantly blocked the LMHFV-induced increase in IFT88 expression and blocked the recovery of primary cilia length and the proportion of cells with primary cilia. In addition, COX2 or EP4 antagonism disrupted LMHFV-induced osteogenesis. These results demonstrate the integration of and crosstalk between primary cilia and the COX2-PGE2-EP4 signaling pathway under mechanical stimulation.
Collapse
Affiliation(s)
- Yan-Hui Li
- Department of Cardiology and Echocardiography, The First Hospital of Jilin University, Changchun, China
| | - Dong Zhu
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, China
| | - Tianye Yang
- Department of Plastic and Cosmetic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Long Cheng
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, China
| | - Jian Sun
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Lei Tan
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
89
|
Shi L, Rocha M, Zhang W, Jiang M, Li S, Ye Q, Hassan SH, Liu L, Adair MN, Xu J, Luo J, Hu X, Wechsler LR, Chen J, Shi Y. Genome-wide transcriptomic analysis of microglia reveals impaired responses in aged mice after cerebral ischemia. J Cereb Blood Flow Metab 2020; 40:S49-S66. [PMID: 32438860 PMCID: PMC7687039 DOI: 10.1177/0271678x20925655] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022]
Abstract
Senescence-associated alterations in microglia may have profound impact on cerebral homeostasis and stroke outcomes. However, the lack of a transcriptome-wide comparison between young and aged microglia in the context of ischemia limits our understanding of aging-related mechanisms. Herein, we performed RNA sequencing analysis of microglia purified from cerebral hemispheres of young adult (10-week-old) and aged (18-month-old) mice five days after distal middle cerebral artery occlusion or after sham operation. Considerable transcriptional differences were observed between young and aged microglia in healthy brains, indicating heightened chronic inflammation in aged microglia. Following stroke, the overall transcriptional activation was more robust (>13-fold in the number of genes upregulated) in young microglia than in aged microglia. Gene clusters with functional implications in immune inflammatory responses, immune cell chemotaxis, tissue remodeling, and cell-cell interactions were markedly activated in microglia of young but not aged stroke mice. Consistent with the genomic profiling predictions, post-stroke cerebral infiltration of peripheral immune cells was markedly decreased in aged mice compared to young mice. Moreover, post-ischemic aged microglia demonstrated reduced interaction with neighboring neurons and diminished polarity toward the infarct lesion. These alterations in microglial gene response and behavior may contribute to aging-driven vulnerability and poorer recovery after ischemic stroke.
Collapse
Affiliation(s)
- Ligen Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marcelo Rocha
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wenting Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ming Jiang
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sicheng Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Ye
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Sulaiman H Hassan
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liqiang Liu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maya N Adair
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jing Xu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Yejie Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
90
|
PGE2 deficiency predisposes to anaphylaxis by causing mast cell hyperresponsiveness. J Allergy Clin Immunol 2020; 146:1387-1396.e13. [DOI: 10.1016/j.jaci.2020.03.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
|
91
|
Polewko-Klim A, Lesiński W, Golińska AK, Mnich K, Siwek M, Rudnicki WR. Sensitivity analysis based on the random forest machine learning algorithm identifies candidate genes for regulation of innate and adaptive immune response of chicken. Poult Sci 2020; 99:6341-6354. [PMID: 33248550 PMCID: PMC7704721 DOI: 10.1016/j.psj.2020.08.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 11/25/2022] Open
Abstract
Two categories of immune responses—innate and adaptive immunity—have both polygenic backgrounds and a significant environmental component. The goal of the reported study was to define candidate genes and mutations for the immune traits of interest in chickens using machine learning–based sensitivity analysis for single-nucleotide polymorphisms (SNPs) located in candidate genes defined in quantitative trait loci regions. Here the adaptive immunity is represented by the specific antibody response toward keyhole limpet hemocyanin (KLH), whereas the innate immunity was represented by natural antibodies toward lipopolysaccharide (LPS) and lipoteichoic acid (LTA). The analysis consisted of 3 basic steps: an identification of candidate SNPs via feature selection, an optimisation of the feature set using recursive feature elimination, and finally a gene-level sensitivity analysis for final selection of models. The predictive model based on 5 genes (MAPK8IP3 CRLF3, UNC13D, ILR9, and PRCKB) explains 14.9% of variance for KLH adaptive response. The models obtained for LTA and LPS use more genes and have lower predictive power, explaining respectively 7.8 and 4.5% of total variance. In comparison, the linear models built on genes identified by a standard statistical analysis explain 1.5, 0.5, and 0.3% of variance for KLH, LTA, and LPS response, respectively. The present study shows that machine learning methods applied to systems with a complex interaction network can discover phenotype-genotype associations with much higher sensitivity than traditional statistical models. It adds contribution to evidence suggesting a role of MAPK8IP3 in the adaptive immune response. It also indicates that CRLF3 is involved in this process as well. Both findings need additional verification.
Collapse
Affiliation(s)
- Aneta Polewko-Klim
- Institute of Computer Science, University of Bialystok, Białystok, Poland.
| | - Wojciech Lesiński
- Institute of Computer Science, University of Bialystok, Białystok, Poland
| | | | - Krzysztof Mnich
- Computational Centre, University of Bialystok, Białystok, Poland
| | - Maria Siwek
- Animal Biotechnology and Genetics Department, University of Technology and Life Sciences, Bydgoszcz, Poland
| | - Witold R Rudnicki
- Institute of Computer Science, University of Bialystok, Białystok, Poland; Computational Centre, University of Bialystok, Białystok, Poland; Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| |
Collapse
|
92
|
Fujino H. Why PGD 2 has different functions from PGE 2. Bioessays 2020; 43:e2000213. [PMID: 33165991 DOI: 10.1002/bies.202000213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
Prostaglandin (PG) D2 and PGE2 are positional isomers; however, they sometimes exhibit opposite physiological functions, such as in cancer development. Because DP receptors are considered to be a duplicated copy of EP2 receptors, PGD2 and PGE2 cross-react with both receptors. These prostanoids may act as biased agonists for each receptor. In reviewing this field, a hypothesis was proposed to explain the opposed effects of these prostanoids from the viewpoints of the evolution of, mutations in, and biased activities of their receptors. Previous findings showing more mutations/variations in DP receptors than EP2 receptors among individuals worldwide indicate that DP receptors are still in a rapid evolutionary stage. The opposing effects of these prostanoids on cancer development may be attributed to the biased activity of PGE2 for DP receptors, which may incidentally develop during the process of the old ligand, PGE2 gaining selectivity to newly diverged DP receptors.
Collapse
Affiliation(s)
- Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
93
|
Woodward DF, Wang JW, Spada CS, Carling RW, Martos JL, Pettit S, Kangasmetsa J, Waterbury LD, Lawrence M, Hu W, Poloso NJ. A Second Generation Prostanoid Receptor Antagonist Acting at Multiple Receptor Subtypes. ACS Pharmacol Transl Sci 2020; 3:1199-1210. [PMID: 33344897 DOI: 10.1021/acsptsci.0c00118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 12/15/2022]
Abstract
It has previously been reported that a prototypical compound (AGN 211377), which blocks pro-inflammatory prostanoid receptors (DP1, DP2, EP1, EP4, FP, TP) and leaves open IP and EP2 receptors so that their anti-inflammatory properties could be exerted, produced superior inhibitory effects on cytokine release from human macrophages compared to cyclooxygenase (COX) inhibitors. This favorable activity profile translated into animal studies, with AGN 211377 exceeding the level of inhibition afforded by COX inhibition. AGN 211377 was not, however, a practical drug candidate, having poor bioavailability and cost of goods concerns. Compound 1 (designated AGN 225660) represents a second-generation compound with an entirely different "druggable" core structure. Such a dramatic change in chemical scaffold created uncertainty with respect to matching the effects of AGN 211377. AGN 225660 inhibited RANTES, IL-8, and MCP-1 secretion by at least 50%, from TNFα activated human macrophages. Although AGN 225660 reduced TNFα-evoked MCP-1 release from human monocyte-derived macrophages, it increased LPS-induced MCP-1 secretion (up to 2-fold) from human monocyte-derived dendritic cells. However, AGN 225660 inhibited the release of IL12p 70 and IL-23 from human monocyte-derived dendritic cells stimulated by LPS by more than 70%. This effect of AGN 225660 was reproduced in part by the prototype compound AGN 211377 and a combination of selective DP1, EP1, EP4, FP, and TP antagonists. These findings suggest important effects on T cell skewing and disease modification by this class of therapeutic agents. AGN 225660 exhibited good ocular bioavailability and was active in reducing ocular inflammation associated with phacoemulsification surgery, LPS, and arachidonic acid induced uveitis.
Collapse
Affiliation(s)
- David F Woodward
- Research and External Scientific Innovation, Allergan Inc., Irvine, California 92612, United States
| | - Jenny W Wang
- Research and External Scientific Innovation, Allergan Inc., Irvine, California 92612, United States
| | - Clayton S Spada
- Research and External Scientific Innovation, Allergan Inc., Irvine, California 92612, United States
| | | | - Jose L Martos
- Discovery Department, Selcia Ltd., Ongar, Essex, CM5 0GS, U.K
| | - Simon Pettit
- Discovery Department, Selcia Ltd., Ongar, Essex, CM5 0GS, U.K
| | | | | | | | - Wenzheng Hu
- RxGen Inc., Hamden, Connecticut 06511, United States
| | - Neil J Poloso
- Research and External Scientific Innovation, Allergan Inc., Irvine, California 92612, United States
| |
Collapse
|
94
|
Jiang J, Yu Y. Small molecules targeting cyclooxygenase/prostanoid cascade in experimental brain ischemia: Do they translate? Med Res Rev 2020; 41:828-857. [PMID: 33094540 DOI: 10.1002/med.21744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Acute brain ischemia accounts for most of stroke cases and constitutes a leading cause of deaths among adults and permanent disabilities in survivors. Currently, the intravenous thrombolysis is the only available medication for ischemic stroke; mechanical thrombectomy is an emerging alternative treatment for occlusion of large arteries and has shown some promise in selected subsets of patients. However, the overall narrow treatment window and potential risks largely limit the patient eligibility. New druggable targets are needed to innovate the treatment of brain ischemia. As the rate-limiting enzyme in the biosyntheses of prostanoids, cyclooxygenase (COX), particularly the inducible isoform COX-2, has long been implicated in mechanisms of acute stroke-induced brain injury and inflammation. However, the notion of therapeutically targeting COX has been diminished over the past two decades due to significant complications of the cardiovascular and cerebrovascular systems caused by long-term use of COX-2 inhibitor drugs. New treatment strategies targeting the downstream prostanoid signaling receptors regulating the deleterious effects of COX cascade have been proposed. As such, a large number of selective small molecules that negatively or positively modulate these important inflammatory regulators have been evaluated for neuroprotection and other beneficial effects in various animal models of brain ischemia. These timely preclinical studies, though not yet led to clinical innovation, provided new insights into the regulation of inflammatory reactions in the ischemic brain and could guide drug discovery efforts aiming for novel adjunctive strategies, along with current reperfusion therapy, to treat acute brain ischemia with higher specificity and longer therapeutic window.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
95
|
Li L, Sluter MN, Yu Y, Jiang J. Prostaglandin E receptors as targets for ischemic stroke: Novel evidence and molecular mechanisms of efficacy. Pharmacol Res 2020; 163:105238. [PMID: 33053444 DOI: 10.1016/j.phrs.2020.105238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Over the past two decades the interest has waned in therapeutically targeting cyclooxygenase-2 (COX-2) due to growing concerns over the potential cardiovascular and cerebrovascular toxicities of the long-term use of COX-2 inhibitors. Attention thus has recently been shifted downstream to the prostaglandin signaling pathways for new druggable anti-inflammatory targets aiming for higher therapeutic specificity. Prostaglandin E2 (PGE2) is robustly synthesized in the ischemic cortex by quickly induced COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1) following cerebral ischemia. The elevated PGE2, in turn, divergently regulates the excitotoxic injury and neuroinflammation by acting on four membrane-bound G protein-coupled receptors (GPCRs), namely, EP1-EP4. Markedly, all four EP receptors have been implicated in the excitotoxicity-associated brain inflammation and injury in animal models of cerebral ischemia. However promising, these preclinical studies have not yet led to a clinical trial targeting any PGE2 receptor for ischemic stroke. The goal of this article is to review the recent progress in understanding the pathogenic roles of PGE2 in cerebral ischemia as well as to provide new mechanistic insights into the PGE2 signaling via these four GPCRs in neuronal excitotoxicity and inflammation. We also discuss the feasibility of targeting EP1-EP4 receptors as an emerging delayed treatment, together with the first-line reperfusion strategy, to manage acute ischemic stroke with potentially extended window as well as improved specificity.
Collapse
Affiliation(s)
- Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
96
|
Beck H, Thaler T, Meibom D, Meininghaus M, Jörißen H, Dietz L, Terjung C, Bairlein M, von Bühler CJ, Anlauf S, Fürstner C, Stellfeld T, Schneider D, Gericke KM, Buyck T, Lovis K, Münster U, Anlahr J, Kersten E, Levilain G, Marossek V, Kast R. Potent and Selective Human Prostaglandin F (FP) Receptor Antagonist (BAY-6672) for the Treatment of Idiopathic Pulmonary Fibrosis (IPF). J Med Chem 2020; 63:11639-11662. [PMID: 32969660 DOI: 10.1021/acs.jmedchem.0c00834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare and devastating chronic lung disease of unknown etiology. Despite the approved treatment options nintedanib and pirfenidone, the medical need for a safe and well-tolerated antifibrotic treatment of IPF remains high. The human prostaglandin F receptor (hFP-R) is widely expressed in the lung tissue and constitutes an attractive target for the treatment of fibrotic lung diseases. Herein, we present our research toward novel quinoline-based hFP-R antagonists, including synthesis and detailed structure-activity relationship (SAR). Starting from a high-throughput screening (HTS) hit of our corporate compound library, multiple parameter improvements-including increase of the relative oral bioavailability Frel from 3 to ≥100%-led to a highly potent and selective hFP-R antagonist with complete oral absorption from suspension. BAY-6672 (46) represents-to the best of our knowledge-the first reported FP-R antagonist to demonstrate in vivo efficacy in a preclinical animal model of lung fibrosis, thus paving the way for a new treatment option in IPF.
Collapse
Affiliation(s)
- Hartmut Beck
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Tobias Thaler
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Daniel Meibom
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Mark Meininghaus
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Hannah Jörißen
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Lisa Dietz
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Carsten Terjung
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Michaela Bairlein
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | | | - Sonja Anlauf
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Chantal Fürstner
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Timo Stellfeld
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Dirk Schneider
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Kersten M Gericke
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Thomas Buyck
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Kai Lovis
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Uwe Münster
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Johanna Anlahr
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Elisabeth Kersten
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Guillaume Levilain
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Virginia Marossek
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Raimund Kast
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| |
Collapse
|
97
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
98
|
Thibeault PE, Ramachandran R. Biased signaling in platelet G-protein coupled receptors. Can J Physiol Pharmacol 2020; 99:255-269. [PMID: 32846106 DOI: 10.1139/cjpp-2020-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets are small megakaryocyte-derived, anucleate, disk-like structures that play an outsized role in human health and disease. Both a decrease in the number of platelets and a variety of platelet function disorders result in petechiae or bleeding that can be life threatening. Conversely, the inappropriate activation of platelets, within diseased blood vessels, remains the leading cause of death and morbidity by affecting heart attacks and stroke. The fine balance of the platelet state in healthy individuals is controlled by a number of receptor-mediated signaling pathways that allow the platelet to rapidly respond and maintain haemostasis. G-protein coupled receptors (GPCRs) are particularly important regulators of platelet function. Here we focus on the major platelet-expressed GPCRs and discuss the roles of downstream signaling pathways (e.g., different G-protein subtypes or β-arrestin) in regulating the different phases of the platelet activation. Further, we consider the potential for selectively targeting signaling pathways that may contribute to platelet responses in disease through development of biased agonists. Such selective targeting of GPCR-mediated signaling pathways by drugs, often referred to as biased signaling, holds promise in delivering therapeutic interventions that do not present significant side effects, especially in finely balanced physiological systems such as platelet activation in haemostasis.
Collapse
Affiliation(s)
- Pierre E Thibeault
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada
| |
Collapse
|
99
|
Endo S, Suganami A, Fukushima K, Senoo K, Araki Y, Regan JW, Mashimo M, Tamura Y, Fujino H. 15-Keto-PGE 2 acts as a biased/partial agonist to terminate PGE 2-evoked signaling. J Biol Chem 2020; 295:13338-13352. [PMID: 32727851 DOI: 10.1074/jbc.ra120.013988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/26/2020] [Indexed: 12/27/2022] Open
Abstract
Prostaglandin E2 (PGE2) is well-known as an endogenous proinflammatory prostanoid synthesized from arachidonic acid by the activation of cyclooxygenase-2. E type prostanoid (EP) receptors are cognates for PGE2 that have four main subtypes: EP1 to EP4. Of these, the EP2 and EP4 prostanoid receptors have been shown to couple to Gαs-protein and can activate adenylyl cyclase to form cAMP. Studies suggest that EP4 receptors are involved in colorectal homeostasis and cancer development, but further work is needed to identify the roles of EP2 receptors in these functions. After sufficient inflammation has been evoked by PGE2, it is metabolized to 15-keto-PGE2 Thus, 15-keto-PGE2 has long been considered an inactive metabolite of PGE2 However, it may have an additional role as a biased and/or partial agonist capable of taking over the actions of PGE2 to gradually terminate reactions. Here, using cell-based experiments and in silico simulations, we show that PGE2-activated EP4 receptor-mediated signaling may evoke the primary initiating reaction of the cells, which would take over the 15-keto-PGE2-activated EP2 receptor-mediated signaling after PGE2 is metabolized to 15-keto-PGE2 The present results shed light on new aspects of 15-keto-PGE2, which may have important roles in passing on activities to EP2 receptors from PGE2-stimulated EP4 receptors as a "switched agonist." This novel mechanism may be significant for gradually terminating PGE2-evoked inflammation and/or maintaining homeostasis of colorectal tissues/cells functions.
Collapse
Affiliation(s)
- Suzu Endo
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kanaho Senoo
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yumi Araki
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - John W Regan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Masato Mashimo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
100
|
Stromberga Z, Chess-Williams R, Moro C. Prostaglandin E2 and F2alpha Modulate Urinary Bladder Urothelium, Lamina Propria and Detrusor Contractility via the FP Receptor. Front Physiol 2020; 11:705. [PMID: 32714206 PMCID: PMC7344237 DOI: 10.3389/fphys.2020.00705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Current pharmacological treatment options for many bladder contractile dysfunctions are not suitable for all patients, thereby bringing interest to the investigation of therapies that target a combination of receptors. This study aimed to compare responses of PGE2 on the urinary bladder urothelium with lamina propria (U&LP, also called the bladder mucosa) or detrusor smooth muscle and attempt to identify the receptor subtypes mediating PGE2 contractile responses in these tissues. In the presence of selective EP1 – 4 receptor antagonists, varying concentrations of PGE2 were applied to isolated strips of porcine U&LP and detrusor that were mounted in organ baths filled with Krebs-bicarbonate solution and gassed with carbogen. The addition of PGE2 (1 and 10 μM) and PGF2α (10 μM) to U&LP preparations caused significant increases in the baseline tension and in the spontaneous phasic contractile frequency. In detrusor preparations, significant increases in the baseline tension were observed in response to PGE2 (1 and 10 μM) and PGFα (10 μM), and spontaneous phasic contractions were initiated in 83% of preparations. None of the selective PGE2 receptor antagonists inhibited the increases in baseline tension in both U&LP and detrusor. However, the antagonism of PGF2α receptor showed significantly inhibited contractile responses in both layers of the bladder. This study presents prostaglandin receptor systems as a potential regulator of urinary bladder contractility. The main contractile effects of PGE2 in both U&LP and detrusor are mediated via the FP receptor with no observed contribution from any of the four EP receptors.
Collapse
Affiliation(s)
- Zane Stromberga
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD, Australia
| | - Christian Moro
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD, Australia
| |
Collapse
|