51
|
N-glycan in the scavenger receptor cysteine-rich domain of hepsin promotes intracellular trafficking and cell surface expression. Int J Biol Macromol 2020; 161:818-827. [DOI: 10.1016/j.ijbiomac.2020.06.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
|
52
|
Zou H, Wen B, Li RL, Zhan XH, Jiao JW, Liao LD, Wu BL, Xie WM, Xu LY, Li EM. Lysyl oxidase-like 2 promotes esophageal squamous cell carcinoma cell migration independent of catalytic activity. Int J Biochem Cell Biol 2020; 125:105795. [PMID: 32580015 DOI: 10.1016/j.biocel.2020.105795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023]
Abstract
Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase (LOX) family that contributes to tumor cell metastasis. Our previous data identified two splice variants of LOXL2 (i.e., LOXL2 Δ72 and Δ13) in esophageal squamous cell carcinoma (ESCC) cells that increased cell invasiveness and migration but had lower LOX activities than wild-type LOXL2 (LOXL2 WT). We generated a series of LOXL2 deletion mutants with different deleted biochemical domains and examined the relationship between the cell migration abilities and catalytic activities, as well as subcellular locations, of these deletion mutants compared with LOXL2 WT in ESCC cells to explore the mechanism of LOXL2-driven ESCC cell migration. Our results indicated that the deletion mutants of LOXL2 had impaired deamination enzymatic activity; LOXL2 ΔSRCR4, which lacks the fourth scavenger receptor cysteine-rich (SRCR) domain, had lower enzymatic activity; and LOXL2 Y689F had no catalytic activity compared with LOXL2 WT. However these two mutants stimulated greater cellular migration than LOXL2 WT. Furthermore, the degree of cell migration promoted by LOXL2 ΔLO (in which the LOX-like domain was deleted) was higher than that of LOXL2 WT, and LOXL2 ΔSRCR3, which does not have the third SRCR domain, had lower LOX activity and cellular migration ability than LOXL2 WT. These results suggested that LOXL2 promotes ESCC cell migration independent of catalytic activity.
Collapse
Affiliation(s)
- Haiying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Run-Liu Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiu-Hui Zhan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ji-Wei Jiao
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China; Institute of Oncologic Pathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, China
| | - Bing-Li Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wen-Ming Xie
- Medical Bioinformatics Center, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China; Institute of Oncologic Pathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
53
|
Al-U'datt D, Allen BG, Nattel S. Role of the lysyl oxidase enzyme family in cardiac function and disease. Cardiovasc Res 2020; 115:1820-1837. [PMID: 31504232 DOI: 10.1093/cvr/cvz176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/23/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022] Open
Abstract
Heart diseases are a major cause of morbidity and mortality world-wide. Lysyl oxidase (LOX) and related LOX-like (LOXL) isoforms play a vital role in remodelling the extracellular matrix (ECM). The LOX family controls ECM formation by cross-linking collagen and elastin chains. LOX/LOXL proteins are copper-dependent amine oxidases that catalyse the oxidation of lysine, causing cross-linking between the lysine moieties of lysine-rich proteins. Dynamic changes in LOX and LOXL protein-expression occur in a variety of cardiac pathologies; these changes are believed to be central to the associated tissue-fibrosis. An awareness of the potential pathophysiological importance of LOX has led to the evaluation of interventions that target LOX/LOXL proteins for heart-disease therapy. The purposes of this review article are: (i) to summarize the basic biochemistry and enzyme function of LOX and LOXL proteins; (ii) to consider their tissue and species distribution; and (iii) to review the results of experimental studies of the roles of LOX and LOXL proteins in heart disease, addressing involvement in the mechanisms, pathophysiology and therapeutic responses based on observations in patient samples and relevant animal models. Therapeutic targeting of LOX family enzymes has shown promising results in animal models, but small-molecule approaches have been limited by non-specificity and off-target effects. Biological approaches show potential promise but are in their infancy. While there is strong evidence for LOX-family protein participation in heart failure, myocardial infarction, cardiac hypertrophy, dilated cardiomyopathy, atrial fibrillation and hypertension, as well as potential interest as therapeutic targets, the precise involvement of LOX-family proteins in heart disease requires further investigation.
Collapse
Affiliation(s)
- Doa'a Al-U'datt
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| | - Bruce G Allen
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Medicine, Université de Montreal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Stanley Nattel
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Medicine, Université de Montreal, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
54
|
Zhu N, Guo X, Pang S, Chang Y, Liu X, Shi Z, Feng S. Mitochondria-Immobilized Unimolecular Fluorescent Probe for Multiplexing Imaging of Living Cancer Cells. Anal Chem 2020; 92:11103-11110. [DOI: 10.1021/acs.analchem.0c01046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nansong Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaolei Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shirui Pang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yulei Chang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
55
|
Umana-Diaz C, Pichol-Thievend C, Marchand MF, Atlas Y, Salza R, Malbouyres M, Barret A, Teillon J, Ardidie-Robouant C, Ruggiero F, Monnot C, Girard P, Guilluy C, Ricard-Blum S, Germain S, Muller L. Scavenger Receptor Cysteine-Rich domains of Lysyl Oxidase-Like2 regulate endothelial ECM and angiogenesis through non-catalytic scaffolding mechanisms. Matrix Biol 2020; 88:33-52. [DOI: 10.1016/j.matbio.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
|
56
|
Bathum Nexoe A, Pedersen AA, von Huth S, Detlefsen S, Hansen PL, Holmskov U. Immunohistochemical Localization of Deleted in Malignant Brain Tumors 1 in Normal Human Tissues. J Histochem Cytochem 2020; 68:377-387. [PMID: 32436776 DOI: 10.1369/0022155420927109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deleted in malignant brain tumors 1 (DMBT1) is part of the innate immune system and is expressed on mucosal surfaces in various tissues throughout the human body. However, to date, the localization of DMBT1 has not been investigated systematically and comprehensively in normal human tissues. In this study, we analyzed the mRNA expression of DMBT1 in human tissue by quantitative real-time PCR and examined its localization and distribution in the tissue by immunohistochemical staining using the monoclonal DMBT1 antibody HYB213-6. Anti-ovalbumin was used as an isotype control. The highest level of mRNA expression of DMBT1 was found in the small intestine, and the expression level was high throughout the luminal digestive tract. The expression of DMBT1 was especially high in the luminal digestive tract and salivary glands. The lowest expression level was found in the spleen. Immunohistochemical staining showed a high expression level of DMBT1 on mucosal surfaces throughout the body. There was a clear correlation between the mRNA expression and immunohistochemical expression of DMBT1 in the tissue. DMBT1 is strongly expressed on mucosal surfaces and in salivary glands.
Collapse
Affiliation(s)
| | | | - Sebastian von Huth
- Cancer and Inflammation Research, Department of Molecular Medicine.,Department of Clinical Research, Faculty of Health Sciences.,University of Southern Denmark, Odense, Denmark, and Department of Infectious Diseases
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Pernille Lund Hansen
- Department of Clinical Research, Faculty of Health Sciences and Molecular Oncology
| | - Uffe Holmskov
- Cancer and Inflammation Research, Department of Molecular Medicine
| |
Collapse
|
57
|
Zheng C, Xia E, Quan R, Bhandari A, Wang O, Hao R. Scavenger receptor class A, member 5 is associated with thyroid cancer cell lines progression via epithelial-mesenchymal transition. Cell Biochem Funct 2020; 38:158-166. [PMID: 31989658 PMCID: PMC7216911 DOI: 10.1002/cbf.3455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/27/2019] [Accepted: 10/13/2019] [Indexed: 12/13/2022]
Abstract
Thyroid cancer (TC) has become one of most common endocrine malignancies in recent decades. Due to gene background polymorphism, it's outcome goes quite differently in each patient. For exploring the mechanism, we performed whole transcriptome sequencing of paired papillary thyroid carcinoma (PTC) and adjacent thyroid tissues. As a result, scavenger receptor class A member 5 (SCARA5) might be a crucial anti-oncogene associated with PTC. By RT-qPCR, we first detected the expression of SCARA5 in PTC tissue and three type of TC cell lines. Besides, The Cancer Genome Atlas (TCGA) data were gathered to analysis the relationship between SCARA5 and clinical feature. A series of loss-function experiments in TC cell lines (KTC-1 and BCPAP) to investigate the function of SCARA5 in PTC. The results showed that SCARA5 expression in PTC was lower than adjacent normal tissue. And, it's consistent with the TCGA database. After analyse the correlation between SCARA5 expression and clinicopathological features in TCGA database, we discovered that downregulated SCARA5 is significantly connected age (P = .04) and tumour size (P = .032). Knockdown of SCARA5 in TC cell line could significantly increase the function of cells proliferation, colony formation, migration, and invasion. Furthermore, we also proved that SCARA5 could modulate the expression of epithelial-mesenchymal transition-related proteins, which influence invasion and migration. To best of our knowledge, SCARA5 is a suppressor gene which was associated with PTC and might be a potential therapeutic target in the future. SIGNIFICANCE OF THE STUDY: Thyroid cancer (TC) has become one of most common endocrine malignancies in recent decades. By whole transcriptome sequencing of paired papillary thyroid carcinoma (PTC) and adjacent thyroid tissues, author discovered that scavenger receptor class A member 5 (SCARA5) might be crucial anti-oncogene associated with PTC. Furthermore, knocking-down of SCARA5 in TC cell line can increase the function of cells proliferation, colony formation, migration, and invasion. Author also proved that SCARA5 could modulate the expression of epithelial-mesenchymal transition-related proteins.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Er‐Jie Xia
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Rui‐Da Quan
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Adheesh Bhandari
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Ou‐Chen Wang
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Ru‐Tian Hao
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| |
Collapse
|
58
|
Guarino SR, Canciani A, Forneris F. Dissecting the Extracellular Complexity of Neuromuscular Junction Organizers. Front Mol Biosci 2020; 6:156. [PMID: 31998752 PMCID: PMC6966886 DOI: 10.3389/fmolb.2019.00156] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Synapse formation is a very elaborate process dependent upon accurate coordination of pre and post-synaptic specialization, requiring multiple steps and a variety of receptors and signaling molecules. Due to its relative structural simplicity and the ease in manipulation and observation, the neuromuscular synapse or neuromuscular junction (NMJ)-the connection between motor neurons and skeletal muscle-represents the archetype junction system for studying synapse formation and conservation. This junction is essential for survival, as it controls our ability to move and breath. NMJ formation requires coordinated interactions between motor neurons and muscle fibers, which ultimately result in the formation of a highly specialized post-synaptic architecture and a highly differentiated nerve terminal. Furthermore, to ensure a fast and reliable synaptic transmission following neurotransmitter release, ligand-gated channels (acetylcholine receptors, AChRs) are clustered on the post-synaptic muscle cell at high concentrations in sites opposite the presynaptic active zone, supporting a direct role for nerves in the organization of the post-synaptic membrane architecture. This organized clustering process, essential for NMJ formation and for life, relies on key signaling molecules and receptors and is regulated by soluble extracellular molecules localized within the synaptic cleft. Notably, several mutations as well as auto-antibodies against components of these signaling complexes have been related to neuromuscular disorders. The recent years have witnessed strong progress in the understanding of molecular identities, architectures, and functions of NMJ macromolecules. Among these, prominent roles have been proposed for neural variants of the proteoglycan agrin, its receptor at NMJs composed of the lipoprotein receptor-related protein 4 (LRP4) and the muscle-specific kinase (MuSK), as well as the regulatory soluble synapse-specific protease Neurotrypsin. In this review we summarize the current state of the art regarding molecular structures and (agrin-dependent) canonical, as well as (agrin-independent) non-canonical, MuSK signaling mechanisms that underscore the formation of neuromuscular junctions, with the aim of providing a broad perspective to further stimulate molecular, cellular and tissue biology investigations on this fundamental intercellular contact.
Collapse
Affiliation(s)
| | | | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
59
|
Zhao Y, Tao Q, Wu J, Liu H. DMBT1 has a protective effect on allergic rhinitis. Biomed Pharmacother 2019; 121:109675. [PMID: 31810134 DOI: 10.1016/j.biopha.2019.109675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE Deleted in malignant brain tumors 1 (DMBT1) is a secreted scavenger receptor cysteine-rich (SRCR) protein, predominantly expressed in nasal mucosal epithelial cells. In previous experiments, we found large amounts of DMBT1 present in the nasal cavity mucosa of allergic rhinitis (AR) patients. However, the exact role of DMBT1 in AR remains unclear. This study is to investigate the mechanism through which DMBT1 exerts its effects on AR progression. METHOD DMBT1 levels in the nasal lavage (NL) fluid and the nasal mucosa in AR and control groups were determined by ELISA and IHC. Next, mice were sensitized with ovalbumin; intranasal administrations of recombinant DMBT1 were then performed. DMBT1 in the nasal mucosa of mice were determined by IHC and WB. Nasal symptoms were estimated. IL-4 and IL-5 in BAL fluid and eosinophils infiltration in the nasal cavity were measured through ELISA and HE staining, respectively. RESULTS DMBT1 levels were found to be significantly higher in the NL fluid and nasal mucosa of AR patients and AR mice, compared to control groups (p < 0.01). Levels of IL-4 and IL-5 in BAL and infiltration of eosinophils into the nasal mucosa were significantly increased in AR mice, compared to control mice (p < 0.01). rDMBT1 significantly reduced the number of nasal sneezing and rubbings in AR mice (p < 0.01). It also inhibited the eosinophil infiltration in the nasal mucosa and significantly decreased the production of IL-4 and IL-5 in BAL (p < 0.01). CONCLUSION This study demonstrated that rDMBT1 alleviates AR progression in mice via inhibiting IL-4 and IL-5 production and eosinophils infiltration in the nasal cavity.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Qilei Tao
- Department of Otorhinolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Jian Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Second Military Medical University, Shanghai, 200003, China.
| | - Huanhai Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
60
|
Rodríguez C, Martínez-González J. The Role of Lysyl Oxidase Enzymes in Cardiac Function and Remodeling. Cells 2019; 8:cells8121483. [PMID: 31766500 PMCID: PMC6953057 DOI: 10.3390/cells8121483] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Lysyl oxidase (LOX) proteins comprise a family of five copper-dependent enzymes (LOX and four LOX-like isoenzymes (LOXL1-4)) critical for extracellular matrix (ECM) homeostasis and remodeling. The primary role of LOX enzymes is to oxidize lysyl and hydroxylysyl residues from collagen and elastin chains into highly reactive aldehydes, which spontaneously react with surrounding amino groups and other aldehydes to form inter- and intra-catenary covalent cross-linkages. Therefore, they are essential for the synthesis of a mature ECM and assure matrix integrity. ECM modulates cellular phenotype and function, and strikingly influences the mechanical properties of tissues. This explains the critical role of these enzymes in tissue homeostasis, and in tissue repair and remodeling. Cardiac ECM is mainly composed of fibrillar collagens which form a complex network that provides structural and biochemical support to cardiac cells and regulates cell signaling pathways. It is now becoming apparent that cardiac performance is affected by the structure and composition of the ECM and that any disturbance of the ECM contributes to cardiac disease progression. This review article compiles the major findings on the contribution of the LOX family to the development and progression of myocardial disorders.
Collapse
Affiliation(s)
- Cristina Rodríguez
- Institut de Recerca Hospital de la Santa Creu i Sant Pau-Programa ICCC, 08025 Barcelona, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (C.R.); (J.M.-G.); Tel.: +34-93-556-5897 (C.R.); +34-93-556-5896 (J.M.-G.)
| | - José Martínez-González
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), 08036 Barcelona, Spain
- Correspondence: (C.R.); (J.M.-G.); Tel.: +34-93-556-5897 (C.R.); +34-93-556-5896 (J.M.-G.)
| |
Collapse
|
61
|
Cheng C, Hu Z, Cao L, Peng C, He Y. The scavenger receptor SCARA1 (CD204) recognizes dead cells through spectrin. J Biol Chem 2019; 294:18881-18897. [PMID: 31653705 DOI: 10.1074/jbc.ra119.010110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/22/2019] [Indexed: 01/05/2023] Open
Abstract
Scavenger receptor class A member 1 (SCARA1 or CD204) is an immune receptor highly expressed on macrophages. It forms homotrimers on the cell surface and plays important roles in regulating immune responses via its involvement in multiple pathways. However, both the structure and the functional roles of SCARA1 are not fully understood. Here, we determined the crystal structure of the C-terminal SRCR domain of SCARA1 at 1.8 Å resolution, revealing its Ca2+-binding site. Results from cell-based assays revealed that SCARA1 can recognize dead cells, rather than live cells, specifically through its SRCR domain and in a Ca2+-dependent manner. Furthermore, by combining MS and biochemical assays, we found that cellular spectrin is the binding target of SCARA1 on dead cells and that the SRCR domain of SCARA1 recognizes the SPEC repeats of spectrin in the presence of Ca2+ We also found that macrophages can internalize dead cells or debris from both erythrocytes and other cells through the interaction between SCARA1 and spectrin, suggesting that SCARA1 could function as a scavenging receptor that recognizes dead cells. These results suggest that spectrin, which is one of the major components of the cytoskeleton, acts as a cellular marker that enables the recognition of dead cells by the immune system.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenzheng Hu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Longxing Cao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Peng
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yongning He
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
62
|
Lysyl oxidases: linking structures and immunity in the tumor microenvironment. Cancer Immunol Immunother 2019; 69:223-235. [PMID: 31650200 PMCID: PMC7000489 DOI: 10.1007/s00262-019-02404-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023]
Abstract
The lysyl oxidases (LOXs) are a family of enzymes deputed to cross-link collagen and elastin, shaping the structure and strength of the extracellular matrix (ECM). However, many novel “non-canonical” functions, alternative substrates, and regulatory mechanisms have been described and are being continuously elucidated. The activity of LOXs, therefore, appears to be integrated into a complex network of signals regulating many cell functions, including survival/proliferation/differentiation. Among these signaling pathways, TGF-β and PI3K/Akt/mTOR, in particular, cross-talk extensively with each other and with LOXs also initiating complex feedback loops which modulate the activity of LOXs and direct the remodeling of the ECM. A growing body of evidence indicates that LOXs are not only important in the homeostasis of the normal structure of the ECM, but are also implicated in the establishment and maturation of the tumor microenvironment. LOXs’ association with advanced and metastatic cancer is well established; however, there is enough evidence to support a significant role of LOXs in the transformation of normal epithelial cells, in the accelerated tumor development and the induction of invasion of the premalignant epithelium. A better understanding of LOXs and their interactions with the different elements of the tumor immune microenvironment will prove invaluable in the design of novel anti-tumor strategies.
Collapse
|
63
|
Abstract
Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize lysyl and hydroxylysyl residues in collagen and elastin, as a first step in the stabilization of these extracellular matrix proteins through the formation of covalent cross-linkages, an essential process for connective tissue maturation. Five different LOX enzymes have been identified in mammals, LOX and LOX-like (LOXL) 1 to 4, being genetically different protein products with a high degree of homology in the catalytic carboxy terminal end and a more variable amino terminal proregion. Intensive investigation in the last years has delineated the main biological functions of these enzymes and their involvement in several pathologies including fibrosis, cancer, and ocular disorders. This review article summarizes the major findings on the role of LOX isoforms, with particular focus on their contribution to the development and progression of human disorders.
Collapse
|
64
|
Li XC, Zhou J, Zhou JF, Wang Y, Ma H, Wang Y, Zhao S, Fang WH. SpBark Suppresses Bacterial Infection by Mediating Hemocyte Phagocytosis in an Invertebrate Model, Scylla paramamosain. Front Immunol 2019; 10:1992. [PMID: 31507600 PMCID: PMC6716108 DOI: 10.3389/fimmu.2019.01992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/06/2019] [Indexed: 11/13/2022] Open
Abstract
Scavenger receptors are cell surface membrane-bound receptors that typically bind multiple ligands and promote the removal of endogenous proteins and pathogens. In this study, we characterized a novel scavenger receptor-like protein, namely, SpBark. SpBark was upregulated in hemocytes after challenges with bacteria, suggesting that it might be involved in antibacterial defense. SpBark is a type I transmembrane protein with four extracellular domains, including three scavenger receptor cysteine-rich domains (SRCRDs) and a C-type lectin domain (CTLD). Western blot assay showed that SpBark CTLD possessed a much stronger binding activity to tested microbes than the three SRCRDs. It also exhibited apparent binding activities to lipopolysaccharide (LPS) and acetylated low-density lipoprotein (ac-LDL), whereas the other SRCRDs showed much lower or no binding activities to these components. Agglutination activities were observed in the presence of Ca2+ by incubating microorganisms with SpBark CTLD instead of SRCRDs. These results suggested that SpBark CTLD was the major binding site for ac-LDL and LPS. Coating Vibrio parahemolyticus with SpBark CTLD promoted bacterial clearance in vivo. This finding indicated that SpBark might participate in the immune defenses against Gram-negative bacteria through a certain mechanism. The promotion of bacterial clearance by SpBark was further determined using SpBark-silenced crabs injected with V. parahemolyticus. SpBark knockdown by injection of SpBark dsRNA remarkably suppressed the clearance of bacteria in hemolymph. Meanwhile, it also severely restrained the phagocytosis of bacteria. This finding suggested that SpBark could modulate the phagocytosis of bacteria, and the promotion of bacterial clearance by SpBark was closely related to SpBark-mediated phagocytosis activity. The likely mechanism of bacterial clearance mediated by SpBark was as follows: SpBark acted as a pattern recognition receptor, which could sense and bind to LPS on the surface of invading bacteria with its CTLD in hemolymph. The binding to LPS made the bacteria adhere to the surface of hemocytes. This process would facilitate phagocytosis of the bacteria, resulting in their removal. This study provided new insights into the hemocyte phagocytosis mechanisms of invertebrates and the multiple biological functions of Bark proteins.
Collapse
Affiliation(s)
- Xin-Cang Li
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Jian Zhou
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Jun-Fang Zhou
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yue Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China.,Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Yuan Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Shu Zhao
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Wen-Hong Fang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| |
Collapse
|
65
|
Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem 2019; 63:349-364. [DOI: 10.1042/ebc20180050] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
AbstractThe lysyl oxidase family comprises five members in mammals, lysyl oxidase (LOX) and four lysyl oxidase like proteins (LOXL1-4). They are copper amine oxidases with a highly conserved catalytic domain, a lysine tyrosylquinone cofactor, and a conserved copper-binding site. They catalyze the first step of the covalent cross-linking of the extracellular matrix (ECM) proteins collagens and elastin, which contribute to ECM stiffness and mechanical properties. The role of LOX and LOXL2 in fibrosis, tumorigenesis, and metastasis, including changes in their expression level and their regulation of cell signaling pathways, have been extensively reviewed, and both enzymes have been identified as therapeutic targets. We review here the molecular features and three-dimensional structure/models of LOX and LOXLs, their role in ECM cross-linking, and the regulation of their cross-linking activity by ECM proteins, proteoglycans, and by inhibitors. We also make an overview of the major ECM cross-links, because they are the ultimate molecular readouts of LOX/LOXL activity in tissues. The recent 3D model of LOX, which recapitulates its known structural and biochemical features, will be useful to decipher the molecular mechanisms of LOX interaction with its various substrates, and to design substrate-specific inhibitors, which are potential antifibrotic and antitumor drugs.
Collapse
|
66
|
Hong CS, Park MR, Sun EG, Choi W, Hwang JE, Bae WK, Rhee JH, Cho SH, Chung IJ. Gal-3BP Negatively Regulates NF-κB Signaling by Inhibiting the Activation of TAK1. Front Immunol 2019; 10:1760. [PMID: 31402917 PMCID: PMC6677151 DOI: 10.3389/fimmu.2019.01760] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/11/2019] [Indexed: 01/02/2023] Open
Abstract
Galectin-3-binding protein (Gal-3BP) is a member of the family of scavenger receptor cysteine-rich (SRCR) domain-containing proteins, which are associated with the immune system. However, the functional roles and signaling mechanisms of Gal-3BP in host defense and the immune response remain largely unknown. Here, we identified cellular Gal-3BP as a negative regulator of NF-κB activation and proinflammatory cytokine production in lipopolysaccharide (LPS)-stimulated murine embryonic fibroblasts (MEFs). Furthermore, cellular Gal-3BP interacted with transforming growth factor β-activated kinase 1 (TAK1), a crucial mediator of NF-κB activation in response to cellular stress. Gal-3BP inhibited the phosphorylation of TAK1, leading to suppression of its kinase activity and reduced protein stability. In vivo we found that Lgals3BP deficiency in mice enhanced LPS-induced proinflammatory cytokine release and rendered mice more sensitive to LPS-induced endotoxin shock. Overall, these results suggest that Gal-3BP is a novel suppressor of TAK1-dependent NF-κB activation that may have potential in the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Chang-Soo Hong
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea
| | - Mi-Ra Park
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea
| | - Eun-Gene Sun
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea
| | - Wonyoung Choi
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea
| | - Jun-Eul Hwang
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea
| | - Woo-Kyun Bae
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea.,Combinatorial Tumor Immunotherapy MRC, Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Hwasun, South Korea
| | - Joon Haeng Rhee
- Combinatorial Tumor Immunotherapy MRC, Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Hwasun, South Korea
| | - Sang-Hee Cho
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea
| | - Ik-Joo Chung
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea.,Combinatorial Tumor Immunotherapy MRC, Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Hwasun, South Korea
| |
Collapse
|
67
|
Wang M, Hua Y, Keep RF, Wan S, Novakovic N, Xi G. Complement Inhibition Attenuates Early Erythrolysis in the Hematoma and Brain Injury in Aged Rats. Stroke 2019; 50:1859-1868. [PMID: 31177985 DOI: 10.1161/strokeaha.119.025170] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background and Purpose- Early erythrolysis in the hematoma contributes to brain injury after intracerebral hemorrhage (ICH). This study investigated the effects of N-acetylheparin, a complement inhibitor, and aurin tricarboxylic acid, a membrane attack complex inhibitor, on early erythrolysis, brain iron deposition, and brain injury in aged rats. Methods- There were 3 parts in the study. First, aged (18 months old) male Fischer 344 rats had an ICH. The time course of erythrolysis in the hematoma was determined by T2* weighted magnetic resonance imaging, and the expression of CD163 was examined. Second, aged rats had an ICH with N-acetylheparin or vehicle. Rats were euthanized at days 1, 3, and 28 after magnetic resonance imaging (T2-, T2*-weighted, and T2* array) and behavioral tests. Brains were used for immunohistochemistry. Third, aged rats had an ICH with avaurin tricarboxylic acid or vehicle. The rats had magnetic resonance imaging and behavioral tests and were euthanized at day 3. Brains were used for immunohistochemistry. Results- Early erythrolysis occurred within the clot in aged F344 rats. There were increased numbers of CD163-positive cells after ICH. Almost all perihematomal CD163-positive cells were microglia/macrophages, while positive neurons were found more distant from the hematoma. Coinjection of N-acetylheparin attenuated erythrolysis, iron accumulation, CD163 expression, microglia activation, brain swelling, and neuronal death in the acute phase, as well as reducing brain atrophy and neurological deficits in the chronic phase. Coinjection of aurin tricarboxylic acid also reduced erythrolysis and ICH-induced brain injury. Conclusions- Inhibiting complement activation resulted in less erythrolysis and brain injury after ICH.
Collapse
Affiliation(s)
- Ming Wang
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (M.W., Y.H., R.F.K., S.W., N.N., G.X.).,Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (M.W.)
| | - Ya Hua
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (M.W., Y.H., R.F.K., S.W., N.N., G.X.)
| | - Richard F Keep
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (M.W., Y.H., R.F.K., S.W., N.N., G.X.)
| | - Shu Wan
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (M.W., Y.H., R.F.K., S.W., N.N., G.X.)
| | - Nemanja Novakovic
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (M.W., Y.H., R.F.K., S.W., N.N., G.X.)
| | - Guohua Xi
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (M.W., Y.H., R.F.K., S.W., N.N., G.X.)
| |
Collapse
|
68
|
Amendola PG, Reuten R, Erler JT. Interplay Between LOX Enzymes and Integrins in the Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11050729. [PMID: 31130685 PMCID: PMC6562985 DOI: 10.3390/cancers11050729] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022] Open
Abstract
Members of the lysyl oxidase (LOX) family are secreted copper-dependent amine oxidases that catalyze the covalent crosslinking of collagens and elastin in the extracellular matrix (ECM), an essential process for the structural integrity of all tissues. LOX enzymes can also remodel the tumor microenvironment and have been implicated in all stages of tumor initiation and progression of many cancer types. Changes in the ECM can influence several cancer cell phenotypes. Integrin adhesion complexes (IACs) physically connect cells with their microenvironment. This review article summarizes the main findings on the role of LOX proteins in modulating the tumor microenvironment, with a particular focus on how ECM changes are integrated by IACs to modulate cells behavior. Finally, we discuss how the development of selective LOX inhibitors may lead to novel and effective therapies in cancer treatment.
Collapse
Affiliation(s)
- Pier Giorgio Amendola
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Raphael Reuten
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Janine Terra Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
69
|
Du Z, Xia Q, Wu B, Ding J, Zhao Y, Lin L, Chen M, Cai Z, Wang S, Xu L, Li E, Wu Z, Li Y, Xu H, Yin D. The analyses of SRCR genes based on protein-protein interaction network in esophageal squamous cell carcinoma. Am J Transl Res 2019; 11:2683-2705. [PMID: 31217847 PMCID: PMC6556668 DOI: pmid/31217847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/29/2019] [Indexed: 02/05/2023]
Abstract
The scavenger receptor cysteine-rich (SRCR) proteins, with one to several SRCR domains, play important roles in human diseases. A full view of their functions in esophageal squamous cell carcinoma (ESCC) remain unclear. Sequence alignment and phylogenetic tree for all human SRCR domains were performed. Differentially-expressed SRCR genes were identified in ESCC, followed by protein-protein interaction (PPI) network construction, topological parameters, subcellular distribution, functional enrichment and survival analyses. The variation of conserved cysteines in each SRCR domain suggested a requirement for new classification of the SRCR family. Six genes (LGALS3BP, MSR1, CD163, LOXL2, LOXL3 and LOXL4) were upregulated, and four genes (DMBT1, PRSS12, TMPRSS2 and SCARA5) were downregulated in ESCC. These 10 SRCR genes form a unique biological network. Functional enrichment analyses provided important clues to investigate the biological functions for SRCR gene network in ESCC, such as extracellular structure organization and the PI3K-Akt signaling pathway. Kaplan-Meier curves confirmed that high expression of SCARA5, LOXL2, LOXL3, LOXL4 were related to poor survival, whereas high expression of DMBTI and PRSS12 showed the opposite result. SRCR genes promote the development of ESCC through its network and could serve as potential prognostic factors and therapy targets of ESCC.
Collapse
Affiliation(s)
- Zepeng Du
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Genes Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou 515041, China
| | - Qiaoxi Xia
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, China
| | - Bingli Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, China
| | - Jiyu Ding
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, China
| | - Yan Zhao
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou 515041, China
| | - Ling Lin
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, China
| | - Mantong Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, China
| | - Zhixiong Cai
- Department of Cardiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou 515041, China
| | - Shaohong Wang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou 515041, China
| | - Liyan Xu
- Institute of Oncologic Pathology, Shantou University Medical CollegeShantou 515041, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, China
| | - Zhiyong Wu
- Department of Surgical Oncology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou 515041, China
| | - Yun Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Genes Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Haixiong Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou 515041, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Genes Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| |
Collapse
|
70
|
Kubagawa H, Honjo K, Ohkura N, Sakaguchi S, Radbruch A, Melchers F, Jani PK. Functional Roles of the IgM Fc Receptor in the Immune System. Front Immunol 2019; 10:945. [PMID: 31130948 PMCID: PMC6509151 DOI: 10.3389/fimmu.2019.00945] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
It is now evident from studies of mice unable to secrete IgM that both non-immune “natural” and antigen-induced “immune” IgM are important for protection against pathogens and for regulation of immune responses to self-antigens. Since identification of its Fc receptor (FcμR) by a functional cloning strategy in 2009, the roles of FcμR in these IgM effector functions have begun to be explored. Unlike Fc receptors for switched Ig isotypes (e.g., FcγRs, FcεRs, FcαR, Fcα/μR, pIgR, FcRn), FcμR is selectively expressed by lymphocytes: B, T, and NK cells in humans and only B cells in mice. FcμR may have dual signaling ability: one through a potential as yet unidentified adaptor protein non-covalently associating with the FcμR ligand-binding chain via a His in transmembrane segment and the other through its own Tyr and Ser residues in the cytoplasmic tail. FcμR binds pentameric and hexameric IgM with a high avidity of ~10 nM in solution, but more efficiently binds IgM when it is attached to a membrane component via its Fab region on the same cell surface (cis engagement). Four different laboratories have generated Fcmr-ablated mice and eight different groups of investigators have examined the resultant phenotypes. There have been some clear discrepancies reported that appear to be due to factors including differences in the exons of Fcmr that were targeted to generate the knockouts. One common feature among these different mutant mice, however, is their propensity to produce autoantibodies of both IgM and IgG isotypes. In this review, we briefly describe recent findings concerning the functions of FcμR in both mice and humans and propose a model for how FcμR plays a regulatory role in B cell tolerance.
Collapse
Affiliation(s)
| | - Kazuhito Honjo
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Naganari Ohkura
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | | | | | - Peter K Jani
- Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| |
Collapse
|
71
|
Gorbushin AM. Derivatives of the lectin complement pathway in Lophotrochozoa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 94:35-58. [PMID: 30682446 DOI: 10.1016/j.dci.2019.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 05/16/2023]
Abstract
A plethora of non-overlapping immune molecular mechanisms in metazoans is the most puzzling issue in comparative immunobiology. No valid evolutionary retrospective on these mechanisms has been developed. In this study, we aimed to reveal the origin and evolution of the immune complement-like system in Lophotrochozoa. For this, we analyzed publicly available transcriptomes of prebilaterian and lophotrochozoan species, mapping lineage-specific molecular events on the phylogenetic tree. We found that there were no orthologs of mannose-binding lectin (MBL) and ficolins (FCN) in Lophotrochozoa but C1q-like proteins (C1qL), bearing both a collagen domain and a globular C1q domain, were omnipresent in them. This suggests that among all complement-like activators the C1qL-specific domain architecture was an evolutionarily first. Two novel protostomian MASP-Related Molecules, MReM1 and MReM2, might hypothetically compensate for the loss of a prebilaterian MASP-orthologous gene and act in complex with C1qL and C1qDC as a "proto-activator" of an ancient "proto-complement". We proposed a new model of the complement evolution predicting that numerous lineage-specific complement-like systems should have evolved from a stem "antique" molecular complex. First evolved in the common ancestor of coelomic animals, the "antique" humoral complex consisted of a TEP molecule, the common ancestor of TEP-associated proteases (C2/Bf/Сf/Lf), the common ancestor of MASP-like proteases (MASP/C1r/C1s, MReM1/MReM2) and multimeric recognition proteins (C1q-, MBL- and FCN-homologs). Further evolutionary specialization and expansion of the complex was independent and lineage-specific, examples being the mammalian complement system and the Apogastropoda complement-like complex. The latter includes an impressive array of multimeric recognition proteins, the variable immunoglobulin and lectin domain containing molecules (VIgL), homologous to C1q, MBL, FCN and other lectins. Four novel polymorphic subfamilies of VIgLs were found to be expressed in Apogastropoda: C1q-related proteins (QREP), zona pellucida-related proteins (ZREP), Scavenger Receptor Cys-Rich-related proteins (SREP) and HPA-lectin related proteins (HREP). The transcriptional response of fibrinogen-related proteins of VIgL family (LlFREP), LlQREP and LlSREP to infestation of common periwinkle, Littorina littorea, with digenean parasite Himasthla elongata correlates with that of LlMReM1, supporting the model suggested in this study.
Collapse
Affiliation(s)
- Alexander M Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), Saint-Petersburg, Russia.
| |
Collapse
|
72
|
Canciani A, Catucci G, Forneris F. Structural characterization of the third scavenger receptor cysteine-rich domain of murine neurotrypsin. Protein Sci 2019; 28:746-755. [PMID: 30748049 DOI: 10.1002/pro.3587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/11/2019] [Indexed: 01/05/2023]
Abstract
Neurotrypsin (NT) is a multi-domain serine protease of the nervous system with only one known substrate: the large proteoglycan Agrin. NT has seen to be involved in the maintenance/turnover of neuromuscular junctions and in processes of synaptic plasticity in the central nervous system. Roles which have been tied to its enzymatic activity, localized in the C-terminal serine-protease (SP) domain. However the purpose of NT's remaining 3-4 scavenger receptor cysteine-rich (SRCR) domains is still unclear. We have determined the crystal structure of the third SRCR domain of murine NT (mmNT-SRCR3), immediately preceding the SP domain and performed a comparative structural analysis using homologous SRCR structures. Our data and the elevated degree of structural conservation with homologous domains highlight possible functional roles for NT SRCRs. Computational and experimental analyses suggest the identification of a putative binding region for Ca2+ ions, known to regulate NT enzymatic activity. Furthermore, sequence and structure comparisons allow to single out regions of interest that, in future studies, might be implicated in Agrin recognition/binding or in interactions with as of yet undiscovered NT partners.
Collapse
Affiliation(s)
- Anselmo Canciani
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100 Pavia, Italy
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100 Pavia, Italy
| |
Collapse
|
73
|
Novakowski KE, Yap NVL, Yin C, Sakamoto K, Heit B, Golding GB, Bowdish DME. Human-Specific Mutations and Positively Selected Sites in MARCO Confer Functional Changes. Mol Biol Evol 2019; 35:440-450. [PMID: 29165618 DOI: 10.1093/molbev/msx298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Macrophage Receptor with COllagenous structure (MARCO) is a class A scavenger receptor that binds, phagocytoses, and modifies inflammatory responses to bacterial pathogens. Multiple candidate gene approach studies have shown that polymorphisms in MARCO are associated with susceptibility or resistance to Mycobacterium tuberculosis infection, but how these variants alter function is not known. To complement candidate gene approach studies, we previously used phylogenetic analyses to identify a residue, glutamine 452 (Q452), within the ligand-binding Scavenger Receptor Cysteine Rich domain as undergoing positive selection in humans. Herein, we show that Q452 is found in Denisovans, Neanderthals, and extant humans, but all other nonprimate, terrestrial, and aquatic mammals possess an aspartic acid (D452) residue. Further analysis of hominoid sequences of MARCO identified an additional human-specific mutation, phenylalanine 282 (F282), within the collagenous domain. We show that residue 282 is polymorphic in humans, but only 17% of individuals (rs6761637) possess the ancestral serine residue at position 282. We show that rs6761637 is in linkage disequilibrium with MARCO polymorphisms that have been previously linked to susceptibility to pulmonary tuberculosis. To assess the functional importance of sites Q452 and F282 in humans, we cloned the ancestral residues and loss-of-function mutations and investigated the role of these residues in binding and internalizing polystyrene microspheres and Escherichia coli. Herein, we show that the residues at sites 452 and 282 enhance receptor function.
Collapse
Affiliation(s)
- Kyle E Novakowski
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Nicholas V L Yap
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Charles Yin
- Department of Microbiology and Immunology and The Centre for Human Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Bryan Heit
- Department of Microbiology and Immunology and The Centre for Human Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - G Brian Golding
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Dawn M E Bowdish
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
74
|
Jiang N, Fan Y, Zhou Y, Wang W, Ma J, Zeng L. Transcriptome analysis of Aeromonas hydrophila infected hybrid sturgeon (Huso dauricus×Acipenser schrenckii). Sci Rep 2018; 8:17925. [PMID: 30560883 PMCID: PMC6298973 DOI: 10.1038/s41598-018-36376-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
The hybrid sturgeon (Huso dauricus × Acipenser schrenckii) is an economically important species in China. With the increasing aquaculture of hybrid sturgeon, the bacterial diseases are a great concern of the industry. In this study, de novo sequencing was used to compare the difference in transcriptome in spleen of the infected and mock infected sturgeon with Aeromonas hydrophila. Among 187,244 unigenes obtained, 87,887 unigenes were annotated and 1,147 unigenes were associated with immune responses genes. Comparative expression analysis indicated that 2,723 differently expressed genes between the infected and mock-infected group were identified, including 1,420 up-regulated and 1,303 down-regulated genes. 283 differently expressed anti-bacterial immune related genes were scrutinized, including 168 up-regulated and 115 down-regulated genes. Ten of the differently expressed genes were further validated by qRT-PCR. In this study, toll like receptors (TLRs) pathway, NF-kappa B pathway, class A scavenger receptor pathway, phagocytosis pathway, mannose receptor pathway and complement pathway were shown to be up-regulated in Aeromonas hydrophila infected hybrid sturgeon. Additionally, 65,040 potential SSRs and 2,133,505 candidate SNPs were identified from the hybrid sturgeon spleen transcriptome. This study could provide an insight of host immune genes associated with bacterial infection in hybrid sturgeon.
Collapse
Affiliation(s)
- Nan Jiang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, P. R. China
| | - Yuding Fan
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, P. R. China
| | - Yong Zhou
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, P. R. China
| | - Weiling Wang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, P. R. China
| | - Jie Ma
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, P. R. China
| | - Lingbing Zeng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, P. R. China.
| |
Collapse
|
75
|
Okada K, Moon HJ, Finney J, Meier A, Mure M. Extracellular Processing of Lysyl Oxidase-like 2 and Its Effect on Amine Oxidase Activity. Biochemistry 2018; 57:6973-6983. [PMID: 30499665 DOI: 10.1021/acs.biochem.8b01008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Overexpression of lysyl oxidase-like 2 (LOXL2) is associated with several hepatic and vascular fibrotic diseases and tumor progression in some aggressive cancers. Secreted LOXL2 promotes extracellular matrix cross-linking by catalyzing the oxidative deamination of peptidyl lysine. A great deal remains to be learned about the post-translational modifications of LOXL2, including whether such modifications modulate enzymatic and disease-promoting activities; such knowledge would inform the development of potential therapies. We discovered that upon secretion in cell culture, LOXL2 undergoes proteolytic processing of the first two of four scavenger receptor cysteine-rich domains at the N-terminus. A similar pattern of processing was also evident in tissue extracts from an invasive ductal carcinoma patient. Processing occurred at 314Arg-315Phe-316Arg-317Lys↓-318Ala-, implicating proprotein convertases. siRNA-mediated knockdown of proprotein convertases (furin, PACE4, and PC5/6), as well as incubation with their recombinant forms, showed that PACE4 is the major protease that acts on extracellular LOXL2. Unlike LOX, which requires cleavage of its propeptide for catalytic activation, cleavage of LOXL2 was not essential for tropoelastin oxidation or for cross-linking of collagen type IV in vitro. However, in the latter case, processing enhanced the extent of collagen cross-linking ∼2-fold at ≤10 nM LOXL2. These results demonstrate an important difference in the regulatory mechanisms for LOX and LOXL2 catalytic activity. Moreover, they pave the way for further studies of potential differential functions of LOXL2 isoforms in fibrosis and tumor progression.
Collapse
Affiliation(s)
- Kazushi Okada
- Department of Chemistry , The University of Kansas , Lawrence , Kansas 66045 , United States
| | - Hee-Jung Moon
- Department of Chemistry , The University of Kansas , Lawrence , Kansas 66045 , United States
| | - Joel Finney
- Department of Chemistry , The University of Kansas , Lawrence , Kansas 66045 , United States
| | - Alex Meier
- Department of Chemistry , The University of Kansas , Lawrence , Kansas 66045 , United States
| | - Minae Mure
- Department of Chemistry , The University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
76
|
Mourglia-Ettlin G, Miles S, Velasco-De-Andrés M, Armiger-Borràs N, Cucher M, Dematteis S, Lozano F. The ectodomains of the lymphocyte scavenger receptors CD5 and CD6 interact with tegumental antigens from Echinococcus granulosus sensu lato and protect mice against secondary cystic echinococcosis. PLoS Negl Trop Dis 2018; 12:e0006891. [PMID: 30500820 PMCID: PMC6267981 DOI: 10.1371/journal.pntd.0006891] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background Scavenger Receptors (SRs) from the host’s innate immune system are known to bind multiple ligands to promote the removal of non-self or altered-self targets. CD5 and CD6 are two highly homologous class I SRs mainly expressed on all T cells and the B1a cell subset, and involved in the fine tuning of activation and differentiation signals delivered by the antigen-specific receptors (TCR and BCR, respectively), to which they physically associate. Additionally, CD5 and CD6 have been shown to interact with and sense the presence of conserved pathogen-associated structures from bacteria, fungi and/or viruses. Methodology/Principal findings We report herein the interaction of CD5 and CD6 lymphocyte surface receptors with Echinococcus granulosus sensu lato (s.l.). Binding studies show that both soluble and membrane-bound forms of CD5 and CD6 bind to intact viable protoscoleces from E. granulosus s.l. through recognition of metaperiodate-resistant tegumental components. Proteomic analyses allowed identification of thioredoxin peroxidase for CD5, and peptidyl-prolyl cis-trans isomerase (cyclophilin) and endophilin B1 (antigen P-29) for CD6, as their potential interactors. Further in vitro assays demonstrate that membrane-bound or soluble CD5 and CD6 forms differentially modulate the pro- and anti-inflammatory cytokine release induced following peritoneal cells exposure to E. granulosus s.l. tegumental components. Importantly, prophylactic infusion of soluble CD5 or CD6 significantly ameliorated the infection outcome in the mouse model of secondary cystic echinococcosis. Conclusions/Significance Taken together, the results expand the pathogen binding properties of CD5 and CD6 and provide novel evidence for their therapeutic potential in human cystic echinococcosis. Scavenger Receptors (SRs) are constituents of host’s innate immune system able to sense and remove altered-self and/or pathogen components. Data on their interaction with helminth parasites is scarce. In this work, we describe that CD5 and CD6 -two lymphoid SRs previously reported to interact with conserved structures from bacteria, fungi and viruses- recognize tegumental components in the cestode parasite Echinococcus granulosus sensu lato (s.l.). Moreover, both receptors differentially modulate the cytokine release by host cells exposed to E. granulosus s.l. tegumental components. Importantly, the infusion of soluble forms of CD5 or CD6 improve infection outcomes in a murine model of secondary cystic echinococcosis. In summary, our results expand the pathogen binding properties of CD5 and CD6 and suggest their therapeutic potential against helminth infections.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD5 Antigens/genetics
- CD5 Antigens/metabolism
- Echinococcosis/genetics
- Echinococcosis/metabolism
- Echinococcosis/parasitology
- Echinococcus granulosus/genetics
- Echinococcus granulosus/metabolism
- Female
- Helminth Proteins/genetics
- Helminth Proteins/metabolism
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Protein Binding
- Proteomics
- Receptors, Scavenger/genetics
- Receptors, Scavenger/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/parasitology
Collapse
Affiliation(s)
- Gustavo Mourglia-Ettlin
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
- * E-mail: (GM-E); (FL)
| | - Sebastián Miles
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
| | - María Velasco-De-Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noelia Armiger-Borràs
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sylvia Dematteis
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (GM-E); (FL)
| |
Collapse
|
77
|
Arai S, Miyazaki T. A scavenging system against internal pathogens promoted by the circulating protein apoptosis inhibitor of macrophage (AIM). Semin Immunopathol 2018; 40:567-575. [PMID: 30310974 PMCID: PMC6223838 DOI: 10.1007/s00281-018-0717-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 01/15/2023]
Abstract
An internal system designed to ward off and remove unnecessary or hazardous materials is intrinsic to animals. In addition to exogenous pathogens, a number of self-molecules, such as apoptotic or necrotic dead cells, their debris, and the oxides or peroxides of their cellular components, are recognized as extraneous substances. It is essential to eliminate these internal pathogens as quickly as possible because their accumulation can cause chronic inflammation as well as autoimmune responses, possibly leading to onset or progression of certain diseases. Apoptosis inhibitor of macrophage (AIM, also called CD5L) is a circulating protein that is a member of the scavenger receptor cysteine-rich superfamily, and we recently found that during acute kidney injury, AIM associates with intraluminal dead cell debris accumulated in renal proximal tubules and enhances clearance of luminal obstructions, thereby facilitating repair. Thus, AIM acts as a marker for phagocytes so that they can efficiently recognize and engulf the debris as their targets. In this chapter, we give an overview of the professional and non-professional phagocytes, and how soluble scavenging molecules such as AIM contribute to improvement of diseases by stimulating phagocytic activity.
Collapse
Affiliation(s)
- Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.,Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo, Japan
| |
Collapse
|
78
|
Glycoprotein 340 in mucosal immunity and ocular surface. Ocul Surf 2018; 16:282-288. [DOI: 10.1016/j.jtos.2018.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
|
79
|
Catelas I, Lehoux EA, Ning Z, Figeys D, Baskey SJ, Beaulé PE. Differential proteomic analysis of synovial fluid from hip arthroplasty patients with a pseudotumor vs. Periprosthetic osteolysis . J Orthop Res 2018; 36:1849-1859. [PMID: 29352728 DOI: 10.1002/jor.23858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/08/2018] [Indexed: 02/04/2023]
Abstract
Adverse tissue reactions to metal implants, including pseudotumors, can compromise implant functionality and survivorship. The identification of specific proteins in the synovial fluid (SF) of hip arthroplasty patients with a pseudotumor may lead to a better understanding of the underlying pathomechanisms. The objective of the present study was to compare the protein content of SF from patients with a short-term metal-on-metal hip implant associated with a pseudotumor and patients with a long-term metal-on-polyethylene hip implant associated with periprosthetic osteolysis. Discovery proteomics was used to identify differentially abundant proteins in albumin-depleted SF. In toto, 452 distinct proteins (present in at least half of the patients in one or both groups) were identified. Thirty of these 452 proteins were differentially abundant between the two groups, including two potential biomarkers: 6-phosphogluconate dehydrogenase (which plays a major protective role against oxidative stress) for the pseudotumor group, and scavenger receptor cysteine-rich type 1 protein M130 (which is involved in low-grade inflammation) for the periprosthetic osteolysis group. Other differentially abundant proteins identified suggest the presence of an adaptive immune response (particularly a type-IV hypersensitivity reaction), necrosis, and greater oxidative stress in patients with a pseudotumor. They also suggest the presence of an innate immune response, oxidative stress, tissue remodeling, and apoptosis in both patient groups, although differences in the specific proteins identified in each group point to differences in the pathomechanisms. Overall, results provide insights into the molecular mechanisms underlying metal-related pseudotumors and periprosthetic osteolysis, and may ultimately help elucidate pseudotumor etiology and assess the risk that asymptomatic pseudotumors will develop into an aggressive lesion. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1849-1859, 2018.
Collapse
Affiliation(s)
- Isabelle Catelas
- Department of Mechanical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada, K1N 6N5.,Department of Surgery, Division of Orthopaedic Surgery, University of Ottawa, The Ottawa Hospital-General Campus, 501 Smyth Road, Ottawa, Ontario, Canada, K1H 8L6.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5
| | - Eric A Lehoux
- Department of Mechanical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada, K1N 6N5
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5.,Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5.,Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5
| | - Stephen J Baskey
- Department of Mechanical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada, K1N 6N5
| | - Paul E Beaulé
- Department of Surgery, Division of Orthopaedic Surgery, University of Ottawa, The Ottawa Hospital-General Campus, 501 Smyth Road, Ottawa, Ontario, Canada, K1H 8L6
| |
Collapse
|
80
|
Ulker D, Ersoy YE, Gucin Z, Muslumanoglu M, Buyru N. Downregulation of SCARA5 may contribute to breast cancer via promoter hypermethylation. Gene 2018; 673:102-106. [PMID: 29908284 DOI: 10.1016/j.gene.2018.06.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 01/04/2023]
Abstract
Breast cancer is the most common malignant tumor in women worldwide. Breast tumors mostly exhibit aberrant gene expression and DNA hypermethylation patterns that predispose the disease. Understanding the genetic and epigenetic factors that contribute to breast cancer development is important to identify novel diagnostic and prognostic markers. SCARA5: Scavenger receptor class A, member 5; is a member of the scavenger receptor family located on chromosome 8p21 which is a frequently deleted region in human cancers. SCARA5 has been identified as a candidate tumor suppressor gene in various kinds of cancer. However, its role in breast cancer remains unclear. Therefore, in the present study SCARA5 expression levels in breast tumors and matched noncancerous tissue samples from 77 patients were analyzed by qRT-PCR and the expression levels were correlated with the methylation level of SCARA5 gene promoter. We found that SCARA5 expression was significantly decreased in tumors (92.2%) compared to non-cancerous tissue samples and this down-regulation was associated with hypermethylation of the promoter (p < 0.001). A significant correlation was also detected between SCARA5 expression and the histological grade of the breast tumors (p = 0.017). Taken together, our results indicate that SCARA5 may play an important role in tumorigenesis of breast cancer via promoter methylation.
Collapse
Affiliation(s)
- Damla Ulker
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Biology, Istanbul, Turkey
| | - Yeliz Emine Ersoy
- Bezmialem Vakif University, Medical Faculty, Department of General Surgery, Istanbul, Turkey
| | - Zuhal Gucin
- Bezmialem Vakıf University, Medical Faculty, Department of Medical Pathology, Istanbul, Turkey
| | - Mahmut Muslumanoglu
- Istanbul University, Capa Medical Faculty, Department of General Surgery, Istanbul, Turkey
| | - Nur Buyru
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Biology, Istanbul, Turkey.
| |
Collapse
|
81
|
Loimaranta V, Hepojoki J, Laaksoaho O, Pulliainen AT. Galectin-3-binding protein: A multitask glycoprotein with innate immunity functions in viral and bacterial infections. J Leukoc Biol 2018; 104:777-786. [PMID: 29882603 DOI: 10.1002/jlb.3vmr0118-036r] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022] Open
Abstract
Galectin-3-binding protein (Gal-3BP) is a ubiquitous and multifunctional secreted glycoprotein originally identified and mainly studied in the context of neoplastic transformation and cancer progression. However, Gal-3BP expression is induced in viral infection and by a multitude of molecules that either mimic or are characteristic for an ongoing inflammation and microbial infection, such as IFN-α, IFN-β, IFN-γ, TNF-α, poly(I:C), dsRNA, and dsDNA. Furthermore, Gal-3BP belongs to the scavenger receptor cysteine-rich (SRCR) domain-containing protein family, by virtue of its N-terminal SRCR domain. The SRCR domain is found in soluble or membrane-associated innate immunity-related proteins and is implicated in self-nonself discrimination. This review summarizes the current knowledge of structural features of Gal-3BP and its proposed intracellular and extracellular innate immunity functions with special emphasis on viral and bacterial infections.
Collapse
Affiliation(s)
- Vuokko Loimaranta
- Institute of Dentistry, University of Turku, Turku, Finland.,Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| | - Jussi Hepojoki
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland.,Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Olli Laaksoaho
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| | - Arto T Pulliainen
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| |
Collapse
|
82
|
Consuegra-Fernández M, Lin F, Fox DA, Lozano F. Clinical and experimental evidence for targeting CD6 in immune-based disorders. Autoimmun Rev 2018. [DOI: 10.1016/j.autrev.2017.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
83
|
Martínez-Florensa M, Català C, Velasco-de Andrés M, Cañadas O, Fraile-Ágreda V, Casadó-Llombart S, Armiger-Borràs N, Consuegra-Fernández M, Casals C, Lozano F. Conserved Bacterial-Binding Peptides of the Scavenger-Like Human Lymphocyte Receptor CD6 Protect From Mouse Experimental Sepsis. Front Immunol 2018; 9:627. [PMID: 29706953 PMCID: PMC5906529 DOI: 10.3389/fimmu.2018.00627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023] Open
Abstract
Sepsis is an unmet clinical need constituting one of the most important causes of death worldwide, a fact aggravated by the appearance of multidrug resistant strains due to indiscriminate use of antibiotics. Host innate immune receptors involved in pathogen-associated molecular patterns (PAMPs) recognition represent a source of broad-spectrum therapies alternative or adjunctive to antibiotics. Among the few members of the ancient and highly conserved scavenger receptor cysteine-rich superfamily (SRCR-SF) sharing bacterial-binding properties there is CD6, a lymphocyte-specific surface receptor. Here, we analyze the bacterial-binding properties of three conserved short peptides (11-mer) mapping at extracellular SRCR domains of human CD6 (CD6.PD1, GTVEVRLEASW; CD6.PD2 GRVEMLEHGEW; and CD6.PD3, GQVEVHFRGVW). All peptides show high binding affinity for PAMPs from Gram-negative (lipopolysaccharide; Kd from 3.5 to 3,000 nM) and Gram-positive (lipoteichoic acid; Kd from 36 to 680 nM) bacteria. The CD6.PD3 peptide possesses broad bacterial-agglutination properties and improved survival of mice undergoing polymicrobial sepsis in a dose- and time-dependent manner. Accordingly, CD6.PD3 triggers a decrease in serum levels of both pro-inflammatory cytokines and bacterial load. Interestingly, CD6.PD3 shows additive survival effects on septic mice when combined with Imipenem/Cilastatin. These results illustrate the therapeutic potential of peptides retaining the bacterial-binding properties of native CD6.
Collapse
Affiliation(s)
- Mario Martínez-Florensa
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Català
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María Velasco-de Andrés
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Olga Cañadas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departmento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Víctor Fraile-Ágreda
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departmento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Sergi Casadó-Llombart
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noelia Armiger-Borràs
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Consuegra-Fernández
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Casals
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departmento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Lozano
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain.,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
84
|
Miyazaki T, Yamazaki T, Sugisawa R, Gershwin ME, Arai S. AIM associated with the IgM pentamer: attackers on stand-by at aircraft carrier. Cell Mol Immunol 2018; 15:563-574. [PMID: 29375122 DOI: 10.1038/cmi.2017.141] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Circulating immunoglobulin M (IgM) exists in a pentameric form, possessing a polyreactive nature that responds not only to foreign antigens but also to autoantigens; thus, it is involved in both beneficial and detrimental immune responses, including protection from infection and the progression of autoimmunity. On the other hand, IgM also behaves as a carrier of the apoptosis inhibitor of macrophage (AIM) protein, storing a large amount of the inactivated form of AIM in the blood through this association. Under different disease conditions, AIM can dissociate from IgM locally or systemically to exert its function, inducing the removal of various biological debris such as excess fat, bacteria, cancer cells or dead cell debris. Most typically, upon induction of acute kidney injury (AKI), IgM-free AIM is filtered by the glomerulus in the kidney, which stimulates the clearance of intraluminal dead cells debris at the obstructed proximal tubules, thereby facilitating the repair of kidney injury. Interestingly, cats exhibit a deficiency in AIM release from IgM, which may increase their susceptibility to renal failure. Conversely, association with AIM inhibits IgM binding to the Fcα/μ receptor on follicular dendritic cells at the splenic germinal center, thereby protecting the IgM immune complex from Fcα/μ receptor-mediated internalization, which supports IgM-dependent antigen presentation to B cells and stimulates high-affinity IgG antibody production. The regulation of AIM-IgM binding, resulting from the discovery of reciprocal actions between AIM and IgM, could lead to the development of novel therapies against different diseases.
Collapse
Affiliation(s)
- Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,CREST, Japan Agency for Medical Research and Development, Tokyo, 113-0033, Japan. .,Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo, 113-0033, Japan.
| | - Tomoko Yamazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ryoichi Sugisawa
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - M Eric Gershwin
- Division of Rheumatology Allergy and Clinical Immunology, The University of California School of Medicine, Davis, 95616, USA, CA
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
85
|
Simões IT, Aranda F, Carreras E, Andrés MVD, Casadó-Llombart S, Martinez VG, Lozano F. Immunomodulatory effects of soluble CD5 on experimental tumor models. Oncotarget 2017; 8:108156-108169. [PMID: 29296231 PMCID: PMC5746133 DOI: 10.18632/oncotarget.22564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/13/2017] [Indexed: 12/29/2022] Open
Abstract
Modulation of antitumor immune responses by targeting immune checkpoint regulators has been proven successful in the treatment of many different tumors. Recent evidence shows that the lymphocyte receptor CD5 –a negative regulator of TCR-mediated signaling- may play a role in the anti-tumor immune response. To explore such an issue, we developed transgenic C57BL/6 mice expressing a soluble form of human CD5 (shCD5EμTg), putatively blocking CD5-mediated interactions (“decoy receptor” effect). Homozygous shCD5EμTg mice showed reduced growth rates of tumor cells of melanoma (B16-F0) and thymoma (EG7-OVA) origin. Concomitantly, increased CD4+ and CD8+ T cell numbers, as well as reduced proportion of CD4+CD25+FoxP3+ (Treg) cells were observed in tumor draining lymph nodes (TdLN). TdLN cell suspensions from tumor-bearing shCD5EμTg mice showed increased both tumor specific and non-specific cytolitic activity. Moreover, subcutaneous peritumoral (p.t.) injection of recombinant shCD5 to wild-type (WT) mice slowed B16-F0 tumor growth, and reproduced the above mentioned TdLN cellular changes. Interestingly, lower intratumoral IL-6 levels –an inhibitor of Natural Killer (NK) cell cytotoxity- were observed in both transgenic and rshCD5-treated WT mice and the anti-tumor effect was abrogated by mAb-induced NK cell depletion. Taken together, the results further illustrate the putative regulatory role of CD5-mediated interactions in anti-tumor immune responses, which would be at least in part fostered by NK cells.
Collapse
Affiliation(s)
- Inês T Simões
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Spain
| | - Fernando Aranda
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Spain
| | - Esther Carreras
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Spain
| | - Maria Velasco-de Andrés
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Spain
| | - Sergi Casadó-Llombart
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Spain
| | - Vanesa G Martinez
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, 08036, Barcelona, Spain.,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| |
Collapse
|
86
|
Early Versus Late Diagnosis of Complement Factor I Deficiency: Clinical Consequences Illustrated in Two Families with Novel Homozygous CFI Mutations. J Clin Immunol 2017; 37:781-789. [PMID: 28942469 DOI: 10.1007/s10875-017-0447-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
The complement system is an important effector arm of innate immunity and plays a crucial role in the defense against common pathogens. But effective defense and maintenance of homeostasis requires a careful balance between complement activation and regulation. Factor I (FI) is one of the most important regulators of the complement system. Complete FI deficiency is a rare autosomal recessive disorder typically resulting in severe, recurrent infection by encapsulated bacteria. In the present study, we describe two patients from unrelated families with complete FI deficiency diagnosed at very different ages: Patient 1 is a 60-year-old man who had experienced several severe infections (pneumonia, meningitis, sepsis) since childhood, one of which caused significant and permanent neurologic sequelae. In contrast, patient 2 was diagnosed at the age of 4 years after a single infectious episode (otitis media) and through detection of a flat beta2 peak on serum protein electrophoresis. This early diagnosis of FI deficiency enabled prompt implementation of a therapeutic intervention consisting of vaccination with encapsulated bacteria and prophylactic antibiotics. The two patients had novel homozygous mutations in the CFI gene (p.Gly162Asp and p.His380Arg) that disrupted protein function. Interestingly, p.His380Arg is the first mutation described affecting a residue of the highly conserved FI catalytic triad (His380, Asp429, and Ser525). This study illustrates the importance of early versus late diagnosis of FI deficiency and, in general, highlights the clinical relevance of prompt detection of complement system deficiencies.
Collapse
|
87
|
Vasquez M, Simões I, Consuegra-Fernández M, Aranda F, Lozano F, Berraondo P. Exploiting scavenger receptors in cancer immunotherapy: Lessons from CD5 and SR-B1. Eur J Immunol 2017; 47:1108-1118. [PMID: 28504304 DOI: 10.1002/eji.201646903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/21/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022]
Abstract
Scavenger receptors (SRs) are structurally heterogeneous cell surface receptors characterized by their capacity to remove extraneous or modified self-macromolecules from circulation, thus avoiding the accumulation of noxious agents in the extracellular space. This scavenging activity makes SRs important molecules for host defense and homeostasis. In turn, SRs keep the activation of the steady-state immune response in check, and participate as co-receptors in the priming of the effector immune responses when the macromolecules are associated with a threat that might compromise host homeostasis. Therefore, SRs built up sophisticated sensor mechanisms controlling the immune system, which may be exploited to develop novel drugs for cancer immunotherapy. In this review, we focus on the regulation of the anti-tumor immune response by two paradigmatic SRs: the lymphocyte receptor CD5 and the more broadly distributed scavenger receptor class B type 1 (SR-B1). Cancer immunity can be boosted by blockade of SRs working as immune checkpoint inhibitors (CD5) and/or by proper engagement of SRs working as innate danger receptor (SR-B1). Thus, these receptors illustrate both the complexity of targeting SRs in cancer immunotherapy and also the opportunities offered by such an approach.
Collapse
Affiliation(s)
- Marcos Vasquez
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, Spain
| | - Inês Simões
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Fernando Aranda
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francisco Lozano
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Immunology, Hospital Clínic of Barcelona, Barcelona, Spain.,Departament de Biomedical Sciences, University of Barcelona, Barcelona, Spain
| | - Pedro Berraondo
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, Spain
| |
Collapse
|
88
|
Cuevas EP, Eraso P, Mazón MJ, Santos V, Moreno-Bueno G, Cano A, Portillo F. LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway. Sci Rep 2017; 7:44988. [PMID: 28332555 PMCID: PMC5362953 DOI: 10.1038/srep44988] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/17/2017] [Indexed: 12/14/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) is a key process contributing to the aggressiveness of cancer cells. EMT is triggered by activation of different transcription factors collectively known as EMT-TFs. Different cellular cues and cell signalling networks activate EMT at transcriptional and posttranscriptional level in different biological and pathological situations. Among them, overexpression of LOXL2 (lysyl oxidase-like 2) induces EMT independent of its catalytic activity. Remarkably, perinuclear/cytoplasmic accumulation of LOXL2 is a poor prognosis marker of squamous cell carcinomas and is associated to basal breast cancer metastasis by mechanisms no yet fully understood. Here, we report that overexpression of LOXL2 promotes its accumulation in the Endoplasmic Reticulum where it interacts with HSPA5 leading to activation of the IRE1-XBP1 signalling pathway of the ER-stress response. LOXL2-dependent IRE1-XBP1 activation induces the expression of several EMT-TFs: SNAI1, SNAI2, ZEB2 and TCF3 that are direct transcriptional targets of XBP1. Remarkably, inhibition of IRE1 blocks LOXL2-dependent upregulation of EMT-TFs thus hindering EMT induction.
Collapse
Affiliation(s)
- Eva P Cuevas
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, CIBERONC, Madrid, Spain
| | - Pilar Eraso
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, CIBERONC, Madrid, Spain
| | - María J Mazón
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, CIBERONC, Madrid, Spain
| | - Vanesa Santos
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, CIBERONC, Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, CIBERONC, Madrid, Spain.,Fundación MD Anderson International, Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, CIBERONC, Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, CIBERONC, Madrid, Spain
| |
Collapse
|
89
|
Serum levels of galectin-1, galectin-3, and galectin-9 are associated with large artery atherosclerotic stroke. Sci Rep 2017; 7:40994. [PMID: 28112232 PMCID: PMC5256273 DOI: 10.1038/srep40994] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/13/2016] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to assess the expression patterns of serum galectin-1 (Gal-1), galectin-3 (Gal-3), galectin-9 (Gal-9), and galectin-3 binding protein (Gal-3BP) and their associations with stroke outcome in large artery atherosclerotic (LAA) stroke. The serum levels of Gal-1, Gal-3, Gal-9, and Gal-3BP were measured by ELISA in 130 patients with LAA stroke and 130 age- and sex-matched controls. Serum samples were collected from the patients on day 1, day 6, and in the 4th week after ischaemic stroke (IS). An unfavourable outcome was defined as a modified Rankin Scale score of >2 on day 90 after IS. Our results indicated that the Gal-3 and Gal-9 levels were higher in patients with LAA stroke than in controls. A higher Gal-3 level was independently associated with an unfavourable outcome both on day 1 and day 6 after IS. In addition, Gal-9 and Gal-1 levels were upregulated on day 6 and in the 4th week after IS, respectively. For Gal-3BP, no difference was detected between patients and controls and no predictive value was found in patients. In conclusion, these findings suggest that the serum levels of Gal-1, Gal-3, and Gal-9 may be associated with LAA stroke.
Collapse
|
90
|
Jeong C, Kim Y. LOXL3-sv2, a novel variant of human lysyl oxidase-like 3 (LOXL3), functions as an amine oxidase. Int J Mol Med 2017; 39:719-724. [PMID: 28112368 DOI: 10.3892/ijmm.2017.2862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/13/2017] [Indexed: 11/05/2022] Open
Abstract
Human lysyl oxidase-like 3 (LOXL3) functions as a copper-dependent amine oxidase toward collagen and elastin. The LOXL3 protein contains four scavenger receptor cysteine-rich (SRCR) domains in the N-terminus in addition to the C-terminal characteristic domains of the lysyl oxidase (LOX) family, such as a copper-binding domain, a cytokine receptor‑like domain and residues for the lysyl-tyrosyl quinone cofactor. Using BLASTN searches, we identified a novel variant of LOXL3 (termed LOXL3-sv2), which lacked the sequences corresponding to exons 4 and 5 of LOXL3. The LOXL3-sv2 mRNA is at least 2,398 bp in length, encoding a 608 amino acid-long polypeptide with a calculated molecular mass of 67.4 kDa. The deletion of exons 4 and 5 do not change the open-reading frame of LOXL3 but results in deletion of the SRCR domain 2. The recombinant LOXL3-sv2 protein showed a β-aminopropionitrile-inhibitable amine oxidase activity toward collagen type I. In RT-PCR analysis, LOXL3-sv2 was detected in all human tissues tested, along with LOXL3 and LOXL3-sv1, a previously identified variant of LOXL3. These findings indicate that the human LOXL3 gene encodes at least three variants, LOXL3, LOXL3-sv1 and LOXL3-sv2, all of which function as amine oxidases.
Collapse
Affiliation(s)
- Chankyu Jeong
- Department of Biochemistry, Wonkwang University School of Medicine, Institute of Wonkwang Medical Science, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Youngho Kim
- Department of Biochemistry, Wonkwang University School of Medicine, Institute of Wonkwang Medical Science, Iksan, Jeonbuk 570-749, Republic of Korea
| |
Collapse
|
91
|
The class I scavenger receptor CD163 promotes internalization of ADAMTS13 by macrophages. Blood Adv 2017; 1:293-305. [PMID: 29296945 DOI: 10.1182/bloodadvances.2016001321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/19/2016] [Indexed: 01/07/2023] Open
Abstract
Internalization of ADAMTS13 by macrophages may contribute to its clearance from the circulation. Here we investigated endocytic mechanisms that contribute to the uptake of ADAMTS13 by macrophages. Human monocyte-derived macrophages were used to monitor the uptake of fluorescently labeled recombinant ADAMTS13 by flow cytometry. Internalization of ADAMTS13 was blocked upon addition of the cell-permeable dynamin inhibitor dynasore. Partial blocking of ADAMTS13 uptake was observed by using mannan; however, uptake was not affected by an antibody that blocked binding to the macrophage mannose receptor CD206, which suggests that other endocytic receptors contribute to the internalization of ADAMTS13 by macrophages. A pull-down with ADAMTS13 and subsequent mass spectrometric analysis identified the class I scavenger receptor CD163 as a candidate receptor for ADAMTS13. Blocking experiments with monoclonal anti-CD163 antibody EDHu-1 resulted in decreased ADAMTS13 internalization by macrophages. Pronounced inhibition of ADAMTS13 uptake by EDHu-1 was observed in CD163 high-expressing macrophages. In agreement with these findings, CD163-expressing Chinese hamster ovary cells were capable of rapidly internalizing ADAMTS13. Surface plasmon resonance revealed binding of ADAMTS13 to scavenger receptor cysteine-rich domains 1-9 and 1-5 of CD163. Taken together, our data identify CD163 as a major endocytic receptor for ADAMTS13 on macrophages.
Collapse
|
92
|
Labonte AC, Sung SJ, Jennelle LT, Dandekar AP, Hahn YS. Expression of scavenger receptor-AI promotes alternative activation of murine macrophages to limit hepatic inflammation and fibrosis. Hepatology 2017; 65:32-43. [PMID: 27770558 PMCID: PMC5191952 DOI: 10.1002/hep.28873] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED The liver maintains an immunologically tolerant environment as a result of continuous exposure to food and bacterial constituents from the digestive tract. Hepatotropic pathogens can take advantage of this niche and establish lifelong chronic infections causing hepatic fibrosis and hepatocellular carcinoma. Macrophages (Mϕ) play a critical role in regulation of immune responses to hepatic infection and regeneration of tissue. However, the factors crucial for Mϕ in limiting hepatic inflammation or resolving liver damage have not been fully understood. In this report, we demonstrate that expression of C-type lectin receptor scavenger receptor-AI (SR-AI) is crucial for promoting M2-like Mϕ activation and polarization during hepatic inflammation. Liver Mϕ uniquely up-regulated SR-AI during hepatotropic viral infection and displayed increased expression of alternative Mϕ activation markers, such as YM-1, arginase-1, and interleukin-10 by activation of mer receptor tyrosine kinase associated with inhibition of mammalian target of rapamycin. Expression of these molecules was reduced on Mϕ obtained from livers of infected mice deficient for the gene encoding SR-AI (msr1). Furthermore, in vitro studies using an SR-AI-deficient Mϕ cell line revealed impeded M2 polarization and decreased phagocytic capacity. Direct stimulation with virus was sufficient to activate M2 gene expression in the wild-type (WT) cell line, but not in the knockdown cell line. Importantly, tissue damage and fibrosis were exacerbated in SR-AI-/- mice following hepatic infection and adoptive transfer of WT bone-marrow-derived Mϕ conferred protection against fibrosis in these mice. CONCLUSION SR-AI expression on liver Mϕ promotes recovery from infection-induced tissue damage by mediating a switch to a proresolving Mϕ polarization state. (Hepatology 2017;65:32-43).
Collapse
Affiliation(s)
- Adam C. Labonte
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVA,Department of MicrobiologyUniversity of VirginiaCharlottesvilleVA
| | - Sun‐Sang J. Sung
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVA,Department of Medicine & Center for Inflammation and RegenerationUniversity of VirginiaCharlottesvilleVA
| | - Lucas T. Jennelle
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVA,Department of MicrobiologyUniversity of VirginiaCharlottesvilleVA
| | - Aditya P. Dandekar
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVA
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVA,Department of MicrobiologyUniversity of VirginiaCharlottesvilleVA
| |
Collapse
|
93
|
Protective Effects of Human and Mouse Soluble Scavenger-Like CD6 Lymphocyte Receptor in a Lethal Model of Polymicrobial Sepsis. Antimicrob Agents Chemother 2016; 61:AAC.01391-16. [PMID: 27895015 DOI: 10.1128/aac.01391-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/01/2016] [Indexed: 12/26/2022] Open
Abstract
Sepsis still constitutes an unmet clinical need, which could benefit from novel adjunctive strategies to conventional antibiotic therapy. The soluble form of the scavenger-like human CD6 lymphocyte receptor (shCD6) binds to key pathogenic components from Gram-positive and -negative bacteria and shows time- and dose-dependent efficacy in mouse models of monobacterial sepsis. The objective of the present work was to demonstrate the effectiveness of infusing mouse and human sCD6 by different systemic routes, either alone or as adjunctive therapy to gold standard antibiotics, in a lethal model of polymicrobial sepsis. To this end, C57BL/6 mice undergoing high-grade septic shock induced by cecal ligation and puncture (CLP; ≥90% lethality) were infused via the intraperitoneal (i.p.) or intravenous (i.v.) route with shCD6 at different doses and time points, either alone or in combination with imipenem/cilastatin (I/C) at a dose of 33 mg/kg of body weight every 8 h. Significantly reduced mortality and proinflammatory cytokine levels were observed by i.p. infusion of a single shCD6 dose (1.25 mg/kg) 1 h pre- or post-CLP. When using the i.v. route, mice survival was significantly extended by starting shCD6 infusion at later time points post-CLP (up to 6 h after CLP). Significant adjunctive effects on mouse survival were observed by i.p. or i.v. infusion of shCD6 in combination with i.p. I/C post-CLP. Similar results were obtained in mice expressing high sustained levels (5 to 10 μg/ml) of mouse sCD6 in serum by means of transduction with hepatotropic adeno-associated virus (AAV). Taken together, the data support the conserved antibacterial effects of human and mouse sCD6 and their use as adjunctive therapy in experimental models of complex and severe polymicrobial sepsis.
Collapse
|
94
|
Iannaccone A, Hollingsworth TJ, Koirala D, New DD, Lenchik NI, Beranova-Giorgianni S, Gerling IC, Radic MZ, Giorgianni F. Retinal pigment epithelium and microglia express the CD5 antigen-like protein, a novel autoantigen in age-related macular degeneration. Exp Eye Res 2016; 155:64-74. [PMID: 27989757 DOI: 10.1016/j.exer.2016.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/19/2022]
Abstract
We report on a novel autoantigen expressed in human macular tissues, identified following an initial Western blot (WB)-based screening of sera from subjects with age-related macular degeneration (AMD) for circulating auto-antibodies (AAbs) recognizing macular antigens. Immunoprecipitation, 2D-gel electrophoresis (2D-GE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), direct enzyme-linked immunosorbent assays (ELISA), WBs, immunohistochemistry (IHC), human primary and ARPE-19 immortalized cell cultures were used to characterize this novel antigen. An approximately 40-kDa autoantigen in AMD was identified as the scavenger receptor CD5 antigen-like protein (CD5L), also known as apoptosis inhibitor of macrophage (AIM). CD5L/AIM was localized to human RPE by IHC and WB methods and to retinal microglial cells by IHC. ELISAs with recombinant CD5L/AIM on a subset of AMD sera showed a nearly 2-fold higher anti-CD5L/AIM reactivity in AMD vs. Control sera (p = 0.000007). Reactivity ≥0.4 was associated with 18-fold higher odds of having AMD (χ2 = 21.42, p = 0.00063). Circulating CD5L/AIM levels were also nearly 2-fold higher in AMD sera compared to controls (p = 0.0052). The discovery of CD5L/AIM expression in the RPE and in retinal microglial cells adds to the known immunomodulatory roles of these cells in the retina. The discovery of AAbs recognizing CD5L/AIM identifies a possible novel disease biomarker and suggest a potential role for CD5L/AIM in the pathogenesis of AMD in situ. The possible mechanisms via which anti-CD5L/AIM AAbs may contribute to AMD pathogenesis are discussed. In particular, since CD5L is known to stimulate autophagy and to participate in oxidized LDL uptake in macrophages, we propose that anti-CD5L/AIM auto-antibodies may play a role in drusen biogenesis and inflammatory RPE damage in AMD.
Collapse
Affiliation(s)
- Alessandro Iannaccone
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, USA.
| | - T J Hollingsworth
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA
| | - Diwa Koirala
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - David D New
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA
| | - Nataliya I Lenchik
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; University of Tennessee Health Science Center, Department of Medicine, Division of Endocrinology, Memphis, TN, USA
| | - Sarka Beranova-Giorgianni
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - Ivan C Gerling
- University of Tennessee Health Science Center, Department of Medicine, Division of Endocrinology, Memphis, TN, USA
| | - Marko Z Radic
- University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, TN, USA
| | - Francesco Giorgianni
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| |
Collapse
|
95
|
Carreras-Badosa G, Prats-Puig A, Diaz-Roldan F, Platero-Gutierrez E, Osiniri I, Riera-Perez E, de Zegher F, Ibañez L, Bassols J, López-Bermejo A. The macrophage activation product sCD163 is associated with a less favourable metabolic profile in prepubertal children. Pediatr Obes 2016; 11:543-550. [PMID: 26843034 DOI: 10.1111/ijpo.12104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Macrophages are known to be involved in low-grade inflammatory processes such as obesity. soluble cluster of differentiation 163 (sCD163) is shed from the cell surface as specific macrophage activation marker. In prepubertal children, we studied if circulating sCD163 is associated with metabolic and cardiovascular risk markers. METHODS A population of 236 school-aged Caucasian children (111 girls and 125 boys) aged 8 ± 1 year [81 normal weight (body mass index [BMI]-SDS < 1); 74 overweight (1 ≤ BMI-standard deviation score [SDS] < 2) and 81 with obesity (BMI-SDS ≥ 2)] were studied. BMI, waist circumference, fat mass and visceral fat were measured. Fasting serum sCD163, homeostatic model assessment of insulin resistance, high sensitivity C-reactive protein, gamma-glutamyl transpeptidase and lipids were quantified. RESULTS Circulating sCD163 concentrations were higher in children with obesity (p < 0.0001). Associations were observed between circulating sCD163 and a less favourable metabolic profile as judged by higher waist circumference, fat mass, visceral fat, epicardial fat, homeostatic model assessment of insulin resistance, high sensitivity C-reactive protein, gamma-glutamyl transpeptidase and triglycerides (all between r = 0.173 and r = 0.363; p < 0.05 to p < 0.0001) and lower high-density lipoprotein-cholesterol (r = -0.285, p < 0.0001). In multiple regression analyses, circulating sCD163 was independently associated with HOMA-IR (β = 0.162, p = 0.016; model R2 = 0.179) and high density lipoprotein-cholesterol/triglycerides ratio (β = -0.167, p = 0.012; model R2 = 0.209). CONCLUSIONS Childhood obesity may increase the risk of developing metabolic diseases later in life through chronic macrophage activation having deleterious effects on metabolism.
Collapse
Affiliation(s)
| | - A Prats-Puig
- Girona Institute for Biomedical Research, Girona, Spain.,EUSES University School, Girona, Spain
| | - F Diaz-Roldan
- Girona Institute for Biomedical Research, Girona, Spain.,Dr Josep Trueta Hospital, Girona, Spain
| | - E Platero-Gutierrez
- Girona Institute for Biomedical Research, Girona, Spain.,Dr Josep Trueta Hospital, Girona, Spain
| | - I Osiniri
- Salut Empordà Foundation, Figueres, Spain
| | | | | | - L Ibañez
- Sant Joan de Déu Children's Hospital, Barcelona, Spain.,CIBERDEM, Madrid, Spain
| | - J Bassols
- Girona Institute for Biomedical Research, Girona, Spain
| | - A López-Bermejo
- Girona Institute for Biomedical Research, Girona, Spain.,Dr Josep Trueta Hospital, Girona, Spain
| |
Collapse
|
96
|
Neubauer EF, Poole AZ, Weis VM, Davy SK. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis. PeerJ 2016; 4:e2692. [PMID: 27896028 PMCID: PMC5119243 DOI: 10.7717/peerj.2692] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/15/2016] [Indexed: 01/01/2023] Open
Abstract
Many cnidarians engage in a mutualism with endosymbiotic photosynthetic dinoflagellates that forms the basis of the coral reef ecosystem. Interpartner interaction and regulation includes involvement of the host innate immune system. Basal metazoans, including cnidarians have diverse and complex innate immune repertoires that are just beginning to be described. Scavenger receptors (SR) are a diverse superfamily of innate immunity genes that recognize a broad array of microbial ligands and participate in phagocytosis of invading microbes. The superfamily includes subclades named SR-A through SR-I that are categorized based on the arrangement of sequence domains including the scavenger receptor cysteine rich (SRCR), the C-type lectin (CTLD) and the CD36 domains. Previous functional and gene expression studies on cnidarian-dinoflagellate symbiosis have implicated SR-like proteins in interpartner communication and regulation. In this study, we characterized the SR repertoire from a combination of genomic and transcriptomic resources from six cnidarian species in the Class Anthozoa. We combined these bioinformatic analyses with functional experiments using the SR inhibitor fucoidan to explore a role for SRs in cnidarian symbiosis and immunity. Bioinformatic searches revealed a large diversity of SR-like genes that resembled SR-As, SR-Bs, SR-Es and SR-Is. SRCRs, CTLDs and CD36 domains were identified in multiple sequences in combinations that were highly homologous to vertebrate SRs as well as in proteins with novel domain combinations. Phylogenetic analyses of CD36 domains of the SR-B-like sequences from a diversity of metazoans grouped cnidarian with bilaterian sequences separate from other basal metazoans. All cnidarian sequences grouped together with moderate support in a subclade separately from bilaterian sequences. Functional experiments were carried out on the sea anemone Aiptasia pallida that engages in a symbiosis with Symbiodinium minutum (clade B1). Experimental blocking of the SR ligand binding site with the inhibitor fucoidan reduced the ability of S. minutum to colonize A. pallida suggesting that host SRs play a role in host-symbiont recognition. In addition, incubation of symbiotic anemones with fucoidan elicited an immune response, indicating that host SRs function in immune modulation that results in host tolerance of the symbionts.
Collapse
Affiliation(s)
- Emilie F. Neubauer
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Angela Z. Poole
- Department of Biology, Western Oregon University, Monmouth, OR, United States
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
97
|
Dang G, Yang Y, Wu G, Hua Y, Keep RF, Xi G. Early Erythrolysis in the Hematoma After Experimental Intracerebral Hemorrhage. Transl Stroke Res 2016; 8:174-182. [PMID: 27783383 DOI: 10.1007/s12975-016-0505-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022]
Abstract
Erythrolysis occurs in the clot after intracerebral hemorrhage (ICH), and the release of hemoglobin causes brain injury, but it is unclear when such lysis occurs. The present study examined early erythrolysis in rats. ICH rats had an intracaudate injection of 100 μl autologous blood, and sham rats had a needle insertion. All rats had T2 and T2* magnetic response imaging (MRI) scanning, and brains were used for histology and CD163 (a hemoglobin scavenger receptor) and DARPP-32 (a neuronal marker) immunohistochemistry. There was marked heterogeneity within the hematoma on T2* MRI, with a hyperintense or isointense core and a hypointense periphery. Hematoxylin and eosin staining in the same animals showed significant erythrolysis in the core with the formation of erythrocyte ghosts. The degree of erythrolysis correlated with the severity of perihematomal neuronal loss. Perihematomal CD163 was increased by day 1 after ICH and may be involved in clearing hemoglobin caused by early hemolysis. Furthermore, ICH resulted in more severe erythrolysis, neuronal loss, and perihematomal CD163 upregulation in spontaneously hypertensive rats compared to Wistar-Kyoto rats. In conclusion, T2*MRI-detectable early erythrolysis occurred in the clot after ICH and activated CD163. Hypertension is associated with enhanced erythrolysis in the hematoma.
Collapse
Affiliation(s)
- Ge Dang
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuefan Yang
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.,Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Gang Wu
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA. .,R5018 BSRB, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
98
|
Bessa Pereira C, Bocková M, Santos RF, Santos AM, Martins de Araújo M, Oliveira L, Homola J, Carmo AM. The Scavenger Receptor SSc5D Physically Interacts with Bacteria through the SRCR-Containing N-Terminal Domain. Front Immunol 2016; 7:416. [PMID: 27790215 PMCID: PMC5061727 DOI: 10.3389/fimmu.2016.00416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/26/2016] [Indexed: 01/26/2023] Open
Abstract
The scavenger receptor cysteine-rich (SRCR) family comprises a group of membrane-attached or secreted proteins that contain one or more modules/domains structurally similar to the membrane distal domain of type I macrophage scavenger receptor. Although no all-inclusive biological function has been ascribed to the SRCR family, some of these receptors have been shown to recognize pathogen-associated molecular patterns (PAMP) of bacteria, fungi, or other microbes. SSc5D is a recently described soluble SRCR receptor produced by monocytes/macrophages and T lymphocytes, consisting of an N-terminal portion, which contains five SRCR modules, and a large C-terminal mucin-like domain. Toward establishing a global common role for SRCR domains, we interrogated whether the set of five SRCR domains of SSc5D displayed pattern recognition receptor (PRR) properties. For that purpose, we have expressed in a mammalian expression system the N-terminal SRCR-containing moiety of SSc5D (N-SSc5D), thus excluding the mucin-like domain likely by nature to bind microorganisms, and tested the capacity of the SRCR functional groups to physically interact with bacteria. Using conventional protein–bacteria binding assays, we showed that N-SSc5D had a superior capacity to bind to Escherichia coli strains RS218 and IHE3034 compared with that of the extracellular domains of the SRCR proteins CD5 and CD6 (sCD5 and sCD6, respectively), and similar E. coli-binding properties as Spα, a proven PRR of the SRCR family. We have further designed a more sensitive, real-time, and label-free surface plasmon resonance (SPR)-based assay and examined the capacity of N-SSc5D, Spα, sCD5, and sCD6 to bind to different bacteria. We demonstrated that N-SSc5D compares with Spα in the capacity to bind to E. coli and Listeria monocytogenes, and further that it can distinguish between pathogenic E. coli RS218 and IHE3034 strains and the non-pathogenic laboratory E. coli strain BL21(DE3). Our work thus advocates the utility of SPR-based assays as sensitive tools for the rapid screening of interactions between immune-related receptors and PAMP-bearing microbes. The analysis of our results suggests that SRCR domains of different members of the family have a differential capacity to interact with bacteria, and further that the same receptor can discriminate between different bacteria strains and species.
Collapse
Affiliation(s)
- Catarina Bessa Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Markéta Bocková
- Institute of Photonics and Electronics of the Czech Academy of Sciences , Prague , Czech Republic
| | - Rita F Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Ana Mafalda Santos
- MRC Human Immunology Unit, Nuffield Department of Clinical Medicine, Weatherall Institute of Molecular Medicine, University of Oxford , Oxford , UK
| | - Mafalda Martins de Araújo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Liliana Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences , Prague , Czech Republic
| | - Alexandre M Carmo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
99
|
Ren S, Chen X, Jiang L, Zhu B, Jiang Q, Xi X. Deleted in malignant brain tumors 1 protein is a potential biomarker of acute respiratory distress syndrome induced by pneumonia. Biochem Biophys Res Commun 2016; 478:1344-9. [PMID: 27565730 DOI: 10.1016/j.bbrc.2016.08.125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 11/25/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high mortality and morbidity. Early diagnosis and risk stratification in patients with ARDS should improve prognosis. Unfortunately, no clinical biomarkers are available for use in early diagnosis. Quantitative proteomics is a powerful tool for biomarker discovery in cancer, autoimmune diseases, and ARDS. Here, we employed isobaric tags for relative and absolute quantitation (iTRAQ) technology to identify potential biomarkers for early ARDS diagnosis and predict the risk for increased disease severity induced by pneumonia. We collected the bronchoalveolar lavage fluid (BALF) and plasma from ARDS patients with differing degrees of ARDS severity. We identified 338 proteins dysregulated in ARDS through iTRAQ, 18 of which showed significant differences with at least 1.5-fold differential expression in patients with mild or severe ARDS. Differential plasma expression of pulmonary surfactant associated protein A, apolipoprotein A1, and deleted in malignant brain tumors 1 protein (DMBT1) was verified in plasma samples. Our results indicate that DMBT1 can potentially serve as a biomarker for early ARDS diagnosis and disease severity assessment.
Collapse
Affiliation(s)
- Shan Ren
- Intensive Care Unit, Fu Xing Hospital, Capital Medical University, 20A Fuxing Men Wai Avenue, Beijing 100038, People's Republic of China; Intensive Care Unit, Hebei General Hospital, 348 Heping Western Road, Shijiazhuang 050051, People's Republic of China.
| | - Xia Chen
- Intensive Care Unit, Fu Xing Hospital, Capital Medical University, 20A Fuxing Men Wai Avenue, Beijing 100038, People's Republic of China.
| | - Li Jiang
- Intensive Care Unit, Fu Xing Hospital, Capital Medical University, 20A Fuxing Men Wai Avenue, Beijing 100038, People's Republic of China.
| | - Bo Zhu
- Intensive Care Unit, Fu Xing Hospital, Capital Medical University, 20A Fuxing Men Wai Avenue, Beijing 100038, People's Republic of China.
| | - Qi Jiang
- Intensive Care Unit, Fu Xing Hospital, Capital Medical University, 20A Fuxing Men Wai Avenue, Beijing 100038, People's Republic of China.
| | - Xiuming Xi
- Intensive Care Unit, Fu Xing Hospital, Capital Medical University, 20A Fuxing Men Wai Avenue, Beijing 100038, People's Republic of China.
| |
Collapse
|
100
|
Feng S, Jiang Y, Zhang S, Dong C, Jiang L, Peng W, Mu X, Sun X, Xu P. Genome wide identification of scavenger receptors class A in common carp (Cyprinus carpio) and their expression following Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2016; 54:60-67. [PMID: 27041666 DOI: 10.1016/j.fsi.2016.03.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/10/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Scavenger receptors class A (SCARAs) is a subgroup of diverse families of pattern recognition receptors that bind a range of ligands, and play important roles in innate immune processes through pathogens detection, adhesion, endocytosis, and phagocytosis. However, most studies of SCARAs have focused on mammals, and much less is known of SCARAs in fish species. In this study, we identified 7 SCARAs across the common carp genome, which were classified into four subclasses according to comparative genomic analysis including sequence similarities analysis, gene structure and functional domain prediction. Further phylogenetic and syntenic analysis supported their annotation and orthologies. Through examining gene copy number of SCARA genes across several vertebrates, SCARA2, SCARA3 and SCARA4 were found have undergone gene duplication. The expression patterns of SCARAs in common carp were examined during early developmental stages, in healthy tissues, and after Aeromonas hydrophila infection. Most SCARA genes were ubiquitously expressed during common carp early developmental stages, and presented diverse patterns in various healthy tissues, with relatively high expression levels in spleen, liver, intestine, gill and brain, indicating their critical roles likely in maintaining homeostasis and host immune response activities. After A. hydrophila infection, most SCARA genes were up-regulated at 4 h post infection in mucosal tissue intestine, while generally up-regulated at 12 h post infection in spleen, suggesting a tissue-specific pattern of regulation. Taken together, all these results suggested that SCARA genes played important roles in host immune response to A. hydrophila infection in common carp, and provided important genomic resources for future studies on fish disease management.
Collapse
Affiliation(s)
- Shuaisheng Feng
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanliang Jiang
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China.
| | - Songhao Zhang
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Chuanju Dong
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Likun Jiang
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenzhu Peng
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xidong Mu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Xiaowen Sun
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Peng Xu
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China.
| |
Collapse
|