51
|
Ishizaki T, Chaiyawong N, Hakimi H, Asada M, Tachibana M, Ishino T, Yahata K, Kaneko O. A novel Plasmodium yoelii pseudokinase, PypPK1, is involved in erythrocyte invasion and exflagellation center formation. Parasitol Int 2020; 76:102056. [PMID: 31953169 DOI: 10.1016/j.parint.2020.102056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 11/24/2022]
Abstract
Malaria parasites proliferate by repeated invasion of and multiplication within erythrocytes in the vertebrate host. Sexually committed intraerythrocytic parasites undergo sexual stage differentiation to become gametocytes. After ingestion by the mosquito, male and female gametocytes egress from erythrocytes and fertilize within the mosquito midgut. A complex signaling pathway likely responds to environmental events to trigger gametogenesis and regulate fertilization; however, such knowledge remains limited for malaria parasites. Several pseudokinases are highly transcribed at the gametocyte stage and are possible multi-functional regulators controlling critical steps of the life cycle. Here we characterized one pseudokinase, termed PypPK1, in Plasmodium yoelii that is highly expressed in schizonts and male gametocytes. Immunofluorescence assays for parasites expressing Myc-tagged PypPK1 confirmed that PypPK1 protein is expressed in schizonts and sexual stage parasites. Transgenic ΔpPK1 parasites, in which the PypPK1 gene locus was deleted by the CRISPR/Cas9 method, showed significant growth defect and reduced virulence in mice. In the blood stage, ΔpPK1 parasites were able to egress from erythrocytes similar to wild type parasites; however, erythrocyte invasion efficacy was significantly reduced. During sexual stage development, no clear changes were seen in male and female gametocytemias as well as gametocyte egress from erythrocytes; but, the number of exflagellation centers and oocysts were significantly reduced in ΔpPK1 parasites. Taken together, PypPK1 has an important role for both erythrocyte invasion and exflagellation center formation.
Collapse
Affiliation(s)
- Takahiro Ishizaki
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Nattawat Chaiyawong
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Masahito Asada
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Osamu Kaneko
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
52
|
de Jong RM, Tebeje SK, Meerstein‐Kessel L, Tadesse FG, Jore MM, Stone W, Bousema T. Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites. Immunol Rev 2020; 293:190-215. [PMID: 31840844 PMCID: PMC6973022 DOI: 10.1111/imr.12828] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
The efficient spread of malaria from infected humans to mosquitoes is a major challenge for malaria elimination initiatives. Gametocytes are the only Plasmodium life stage infectious to mosquitoes. Here, we summarize evidence for naturally acquired anti-gametocyte immunity and the current state of transmission blocking vaccines (TBV). Although gametocytes are intra-erythrocytic when present in infected humans, developing Plasmodium falciparum gametocytes may express proteins on the surface of red blood cells that elicit immune responses in naturally exposed individuals. This immune response may reduce the burden of circulating gametocytes. For both P. falciparum and Plasmodium vivax, there is a solid evidence that antibodies against antigens present on the gametocyte surface, when co-ingested with gametocytes, can influence transmission to mosquitoes. Transmission reducing immunity, reducing the burden of infection in mosquitoes, is a well-acknowledged but poorly quantified phenomenon that forms the basis for the development of TBV. Transmission enhancing immunity, increasing the likelihood or intensity of transmission to mosquitoes, is more speculative in nature but is convincingly demonstrated for P. vivax. With the increased interest in malaria elimination, TBV and monoclonal antibodies have moved to the center stage of malaria vaccine development. Methodologies to prioritize and evaluate products are urgently needed.
Collapse
MESH Headings
- Antibodies, Blocking/immunology
- Antibodies, Protozoan/immunology
- Host-Parasite Interactions/immunology
- Humans
- Immunity
- Immunomodulation
- Life Cycle Stages
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/prevention & control
- Malaria, Vivax/transmission
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/immunology
- Plasmodium vivax/growth & development
- Plasmodium vivax/immunology
Collapse
Affiliation(s)
- Roos M. de Jong
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Lisette Meerstein‐Kessel
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Centre for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Fitsum G. Tadesse
- Armauer Hansen Research InstituteAddis AbabaEthiopia
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Matthijs M. Jore
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Will Stone
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| | - Teun Bousema
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
53
|
Mellin R, Boddey JA. Organoids for Liver Stage Malaria Research. Trends Parasitol 2019; 36:158-169. [PMID: 31848118 DOI: 10.1016/j.pt.2019.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 11/30/2022]
Abstract
Plasmodium parasites cause malaria and are maintained between Anopheles mosquitoes and mammalian hosts in a complex life cycle. Malaria parasites occupy tissue niches that can be difficult to access, and models to study them can be challenging to recapitulate experimentally, particularly for Plasmodium species that infect humans. 2D culture models provide extremely beneficial tools to investigate Plasmodium biology but they have limitations. More complex 3D structural networks, such as organoids, have unveiled new avenues for developing more physiological tissue models, and their application to malaria research offers great promise. Here, we review current models for studying Plasmodium infection with a key focus on the obligate pre-erythrocytic stage that culminates in blood infection, causing malaria, and discuss how organoids should fulfil an important and unmet need.
Collapse
Affiliation(s)
- Ronan Mellin
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia.
| |
Collapse
|
54
|
Neveu G, Lavazec C. Erythrocyte Membrane Makeover by Plasmodium falciparum Gametocytes. Front Microbiol 2019; 10:2652. [PMID: 31787966 PMCID: PMC6856072 DOI: 10.3389/fmicb.2019.02652] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Plasmodium falciparum sexual parasites, called gametocytes, are the only parasite stages responsible for transmission from humans to Anopheles mosquitoes. During their maturation, P. falciparum gametocytes remodel the structural and mechanical properties of the membrane of their erythrocyte host. This remodeling is induced by the export of several parasite proteins and a dynamic reorganization of the erythrocyte cytoskeleton. Some of these modifications are specific for sexual stages and play a key role for gametocyte maturation, sequestration in internal organs, subsequent release in the bloodstream and ability to persist in circulation. Here we discuss the mechanisms developed by gametocytes to remodel their host cell and the functional relevance of these modifications.
Collapse
Affiliation(s)
- Gaëlle Neveu
- Inserm U1016, CNRS UMR 8104, Université de Paris, Institut Cochin, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR 8104, Université de Paris, Institut Cochin, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
55
|
De Niz M, Meehan GR, Tavares J. Intravital microscopy: Imaging host-parasite interactions in lymphoid organs. Cell Microbiol 2019; 21:e13117. [PMID: 31512335 DOI: 10.1111/cmi.13117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/25/2019] [Accepted: 09/01/2019] [Indexed: 12/11/2022]
Abstract
Intravital microscopy allows imaging of biological phenomena within living animals, including host-parasite interactions. This has advanced our understanding of both, the function of lymphoid organs during parasitic infections, and the effect of parasites on such organs to allow their survival. In parasitic research, recent developments in this technique have been crucial for the direct study of host-parasite interactions within organs at depths, speeds and resolution previously difficult to achieve. Lymphoid organs have gained more attention as we start to understand their function during parasitic infections and the effect of parasites on them. In this review, we summarise technical and biological findings achieved by intravital microscopy with respect to the interaction of various parasites with host lymphoid organs, namely the bone marrow, thymus, lymph nodes, spleen and the mucosa-associated lymphoid tissue, and present a view into possible future applications.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, Heussler Lab, University of Bern, Bern, Switzerland
| | - Gavin R Meehan
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Joana Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| |
Collapse
|
56
|
Camarda G, Jirawatcharadech P, Priestley RS, Saif A, March S, Wong MHL, Leung S, Miller AB, Baker DA, Alano P, Paine MJI, Bhatia SN, O'Neill PM, Ward SA, Biagini GA. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nat Commun 2019; 10:3226. [PMID: 31324806 PMCID: PMC6642103 DOI: 10.1038/s41467-019-11239-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Primaquine (PQ) is an essential antimalarial drug but despite being developed over 70 years ago, its mode of action is unclear. Here, we demonstrate that hydroxylated-PQ metabolites (OH-PQm) are responsible for efficacy against liver and sexual transmission stages of Plasmodium falciparum. The antimalarial activity of PQ against liver stages depends on host CYP2D6 status, whilst OH-PQm display direct, CYP2D6-independent, activity. PQ requires hepatic metabolism to exert activity against gametocyte stages. OH-PQm exert modest antimalarial efficacy against parasite gametocytes; however, potency is enhanced ca.1000 fold in the presence of cytochrome P450 NADPH:oxidoreductase (CPR) from the liver and bone marrow. Enhancement of OH-PQm efficacy is due to the direct reduction of quinoneimine metabolites by CPR with the concomitant and excessive generation of H2O2, leading to parasite killing. This detailed understanding of the mechanism paves the way to rationally re-designed 8-aminoquinolines with improved pharmacological profiles. Primaquine (PQ) is a widely used anti-malaria drug, but its mechanism of action is unclear. Here, Camarda et al. show that PQ’s activity against liver and sexual Plasmodium stages depends on generation of hydroxylated-PQ metabolites (OH-PQm), which, undergoing further reactions, results in production of H2O2.
Collapse
Affiliation(s)
- Grazia Camarda
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Piyaporn Jirawatcharadech
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Richard S Priestley
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.,ARUK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Ahmed Saif
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.,Clinical Laboratory sciences Department, College of Applied Medical Sciences, Najran University, Najran, 61441, Saudi Arabia
| | - Sandra March
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael H L Wong
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Suet Leung
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Alex B Miller
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Mark J I Paine
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Sangeeta N Bhatia
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Stephen A Ward
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
57
|
Ngotho P, Soares AB, Hentzschel F, Achcar F, Bertuccini L, Marti M. Revisiting gametocyte biology in malaria parasites. FEMS Microbiol Rev 2019; 43:401-414. [PMID: 31220244 PMCID: PMC6606849 DOI: 10.1093/femsre/fuz010] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/05/2019] [Indexed: 12/21/2022] Open
Abstract
Gametocytes are the only form of the malaria parasite that is transmissible to the mosquito vector. They are present at low levels in blood circulation and significant knowledge gaps exist in their biology. Recent reductions in the global malaria burden have brought the possibility of elimination and eradication, with renewed focus on malaria transmission biology as a basis for interventions. This review discusses recent insights into gametocyte biology in the major human malaria parasite, Plasmodium falciparum and related species.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Alexandra Blancke Soares
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Franziska Hentzschel
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Lucia Bertuccini
- Core Facilities, Microscopy Area, Instituto Superiore di Sanita, Via Regina Elena 299, 00161 Rome, Italy
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston 02115, MA, USA
| |
Collapse
|
58
|
Dantzler KW, Ma S, Ngotho P, Stone WJR, Tao D, Rijpma S, De Niz M, Nilsson Bark SK, Jore MM, Raaijmakers TK, Early AM, Ubaida-Mohien C, Lemgruber L, Campo JJ, Teng AA, Le TQ, Walker CL, Hermand P, Deterre P, Davies DH, Felgner P, Morlais I, Wirth DF, Neafsey DE, Dinglasan RR, Laufer M, Huttenhower C, Seydel K, Taylor T, Bousema T, Marti M. Naturally acquired immunity against immature Plasmodium falciparum gametocytes. Sci Transl Med 2019; 11:eaav3963. [PMID: 31167926 PMCID: PMC6653583 DOI: 10.1126/scitranslmed.aav3963] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/05/2019] [Indexed: 12/11/2022]
Abstract
The recent decline in global malaria burden has stimulated efforts toward Plasmodium falciparum elimination. Understanding the biology of malaria transmission stages may provide opportunities to reduce or prevent onward transmission to mosquitoes. Immature P. falciparum transmission stages, termed stages I to IV gametocytes, sequester in human bone marrow before release into the circulation as mature stage V gametocytes. This process likely involves interactions between host receptors and potentially immunogenic adhesins on the infected red blood cell (iRBC) surface. Here, we developed a flow cytometry assay to examine immune recognition of live gametocytes of different developmental stages by naturally exposed Malawians. We identified strong antibody recognition of the earliest immature gametocyte-iRBCs (giRBCs) but not mature stage V giRBCs. Candidate surface antigens (n = 30), most of them shared between asexual- and gametocyte-iRBCs, were identified by mass spectrometry and mouse immunizations, as well as correlations between responses by protein microarray and flow cytometry. Naturally acquired responses to a subset of candidate antigens were associated with reduced asexual and gametocyte density, and plasma samples from malaria-infected individuals were able to induce immune clearance of giRBCs in vitro. Infected RBC surface expression of select candidate antigens was validated using specific antibodies, and genetic analysis revealed a subset with minimal variation across strains. Our data demonstrate that humoral immune responses to immature giRBCs and shared iRBC antigens are naturally acquired after malaria exposure. These humoral immune responses may have consequences for malaria transmission potential by clearing developing gametocytes, which could be leveraged for malaria intervention.
Collapse
Affiliation(s)
- Kathleen W Dantzler
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Siyuan Ma
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Priscilla Ngotho
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Will J R Stone
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Dingyin Tao
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Sanna Rijpma
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
| | - Mariana De Niz
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Sandra K Nilsson Bark
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Matthijs M Jore
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
| | - Tonke K Raaijmakers
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
| | | | | | - Leandro Lemgruber
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | | | | | | | - Patricia Hermand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), UMR 1135, ERL CNRS 8255, F-75013 Paris, France
| | - Philippe Deterre
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), UMR 1135, ERL CNRS 8255, F-75013 Paris, France
| | - D Huw Davies
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Phil Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Isabelle Morlais
- UMR MIVEGEC UM1-CNRS 5290-IRD 224, Institut de Recherche pour le Développement, Montpellier Cedex, France
| | - Dyann F Wirth
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Rhoel R Dinglasan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Emerging Pathogens Institute, Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Miriam Laufer
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karl Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands.
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Matthias Marti
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
59
|
Toolbox for In Vivo Imaging of Host-Parasite Interactions at Multiple Scales. Trends Parasitol 2019; 35:193-212. [PMID: 30745251 DOI: 10.1016/j.pt.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/19/2022]
Abstract
Animal models have for long been pivotal for parasitology research. Over the last few years, techniques such as intravital, optoacoustic and magnetic resonance imaging, optical projection tomography, and selective plane illumination microscopy developed promising potential for gaining insights into host-pathogen interactions by allowing different visualization forms in vivo and ex vivo. Advances including increased resolution, penetration depth, and acquisition speed, together with more complex image analysis methods, facilitate tackling biological problems previously impossible to study and/or quantify. Here we discuss advances and challenges in the in vivo imaging toolbox, which hold promising potential for the field of parasitology.
Collapse
|
60
|
Plasmodium falciparum gametocyte-infected erythrocytes do not adhere to human primary erythroblasts. Sci Rep 2018; 8:17886. [PMID: 30552367 PMCID: PMC6294825 DOI: 10.1038/s41598-018-36148-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/16/2018] [Indexed: 11/14/2022] Open
Abstract
Plasmodium falciparum gametocytes, the sexual stages responsible for malaria parasite transmission, develop in the human bone marrow parenchyma in proximity to the erythroblastic islands. Yet, mechanisms underlying gametocytes interactions with these islands are unknown. Here, we have investigated whether gametocyte-infected erythrocytes (GIE) adhere to erythroid precursors, and whether a putative adhesion may be mediated by a mechanism similar to the adhesion of erythrocytes infected with P. falciparum asexual stages to uninfected erythrocytes. Cell-cell adhesion assays with human primary erythroblasts or erythroid cell lines revealed that immature GIE do not specifically adhere to erythroid precursors. To determine whether adhesion may be dependent on binding of STEVOR proteins to Glycophorin C on the surface of erythroid cells, we used clonal lines and transgenic parasites that overexpress specific STEVOR proteins known to bind to Glycophorin C in asexual stages. Our results indicate that GIE overexpressing STEVOR do not specifically adhere to erythroblasts, in agreement with our observation that the STEVOR adhesive domain is not exposed at the surface of GIE.
Collapse
|
61
|
De Niz M, Heussler VT. Rodent malaria models: insights into human disease and parasite biology. Curr Opin Microbiol 2018; 46:93-101. [PMID: 30317152 DOI: 10.1016/j.mib.2018.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
Abstract
The use of rodents as model organisms to study human disease is based on the genetic and physiological similarities between the species. Successful molecular methods to generate transgenic reporter or humanized rodents has rendered rodents as powerful tools for understanding biological processes and host-pathogen interactions relevant to humans. In malaria research, rodent models have been pivotal for the study of liver stages, syndromes arising from blood stages of infection, and malaria transmission to and from the mammalian host. Importantly, many in vivo findings are comparable to pathology observed in humans only when adequate combinations of rodent strains and Plasmodium parasites are used.
Collapse
Affiliation(s)
- Mariana De Niz
- Wellcome Centre for Molecular Parasitology, Glasgow, G12 8TA, UK; Institute for Cell Biology, University of Bern, CH-3012, Switzerland
| | - Volker T Heussler
- Institute for Cell Biology, University of Bern, CH-3012, Switzerland.
| |
Collapse
|
62
|
Markus MB. New Evidence for Hypnozoite-Independent Plasmodium vivax Malarial Recurrences. Trends Parasitol 2018; 34:1015-1016. [PMID: 30213708 DOI: 10.1016/j.pt.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
Abstract
Information provided in recent, related papers has wide-ranging implications concerning, inter alia, the transmission of malaria, drug treatment, and eradication of the disease. Additionally, the research results represent support for the idea that recurrences of Plasmodium vivax malaria can arise from both liver hypnozoites and extravascular merozoites in bone marrow.
Collapse
Affiliation(s)
- Miles B Markus
- School of Animal, Plant and Environmental Sciences, Faculty of Science, University of Witwatersrand, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
63
|
Brancucci NMB, De Niz M, Straub TJ, Ravel D, Sollelis L, Birren BW, Voss TS, Neafsey DE, Marti M. Probing Plasmodium falciparum sexual commitment at the single-cell level. Wellcome Open Res 2018; 3:70. [PMID: 30320226 PMCID: PMC6143928 DOI: 10.12688/wellcomeopenres.14645.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Malaria parasites go through major transitions during their complex life cycle, yet the underlying differentiation pathways remain obscure. Here we apply single cell transcriptomics to unravel the program inducing sexual differentiation in Plasmodium falciparum. Parasites have to make this essential life-cycle decision in preparation for human-to-mosquito transmission. Methods: By combining transcriptional profiling with quantitative imaging and genetics, we defined a transcriptional signature in sexually committed cells. Results: We found this transcriptional signature to be distinct from general changes in parasite metabolism that can be observed in response to commitment-inducing conditions. Conclusions: This proof-of-concept study provides a template to capture transcriptional diversity in parasite populations containing complex mixtures of different life-cycle stages and developmental programs, with important implications for our understanding of parasite biology and the ongoing malaria elimination campaign.
Collapse
Affiliation(s)
- Nicolas M B Brancucci
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mariana De Niz
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Timothy J Straub
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Deepali Ravel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lauriane Sollelis
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Bruce W Birren
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Matthias Marti
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
64
|
Brancucci NMB, De Niz M, Straub TJ, Ravel D, Sollelis L, Birren BW, Voss TS, Neafsey DE, Marti M. Probing Plasmodium falciparum sexual commitment at the single-cell level. Wellcome Open Res 2018; 3:70. [PMID: 30320226 PMCID: PMC6143928 DOI: 10.12688/wellcomeopenres.14645.4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2018] [Indexed: 01/05/2023] Open
Abstract
Background: Malaria parasites go through major transitions during their complex life cycle, yet the underlying differentiation pathways remain obscure. Here we apply single cell transcriptomics to unravel the program inducing sexual differentiation in Plasmodium falciparum. Parasites have to make this essential life-cycle decision in preparation for human-to-mosquito transmission. Methods: By combining transcriptional profiling with quantitative imaging and genetics, we defined a transcriptional signature in sexually committed cells. Results: We found this transcriptional signature to be distinct from general changes in parasite metabolism that can be observed in response to commitment-inducing conditions. Conclusions: This proof-of-concept study provides a template to capture transcriptional diversity in parasite populations containing complex mixtures of different life-cycle stages and developmental programs, with important implications for our understanding of parasite biology and the ongoing malaria elimination campaign.
Collapse
Affiliation(s)
- Nicolas M B Brancucci
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mariana De Niz
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Timothy J Straub
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Deepali Ravel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lauriane Sollelis
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Bruce W Birren
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Matthias Marti
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
65
|
Brancucci NMB, De Niz M, Straub TJ, Ravel D, Sollelis L, Birren BW, Voss TS, Neafsey DE, Marti M. Probing Plasmodium falciparum sexual commitment at the single-cell level. Wellcome Open Res 2018; 3:70. [PMID: 30320226 PMCID: PMC6143928 DOI: 10.12688/wellcomeopenres.14645.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Malaria parasites go through major transitions during their complex life cycle, yet the underlying differentiation pathways remain obscure. Here we apply single cell transcriptomics to unravel the program inducing sexual differentiation in Plasmodium falciparum. Parasites have to make this essential life-cycle decision in preparation for human-to-mosquito transmission. Methods: By combining transcriptional profiling with quantitative imaging and genetics, we defined a transcriptional signature in sexually committed cells. Results: We found this transcriptional signature to be distinct from general changes in parasite metabolism that can be observed in response to commitment-inducing conditions. Conclusions: This proof-of-concept study provides a template to capture transcriptional diversity in parasite populations containing complex mixtures of different life-cycle stages and developmental programs, with important implications for our understanding of parasite biology and the ongoing malaria elimination campaign.
Collapse
Affiliation(s)
- Nicolas M B Brancucci
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mariana De Niz
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Timothy J Straub
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Deepali Ravel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lauriane Sollelis
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Bruce W Birren
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Matthias Marti
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|