51
|
Li J, Wang G, Chen X, Li X, Wu M, Yuan S, Zou Y, Wang X, Zhang K. Manipulation of Triplet Excited States in Two‐Component Systems for High‐Performance Organic Afterglow Materials. Chemistry 2022; 28:e202200852. [DOI: 10.1002/chem.202200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jiuyang Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Guangming Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xuefeng Chen
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Minjian Wu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Shou Yuan
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Yunlong Zou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xuepu Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Kaka Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
52
|
Dynamic room-temperature phosphorescence by reversible transformation of photo-induced free radicals. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
53
|
Shao W, Kim J. Metal-Free Organic Phosphors toward Fast and Efficient Room-Temperature Phosphorescence. Acc Chem Res 2022; 55:1573-1585. [PMID: 35613040 DOI: 10.1021/acs.accounts.2c00146] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ConspectusMetal-free purely organic phosphors (POPs) are promising materials for display technologies, solid-state lighting, and sensors platforms because of their advantageous properties such as large design windows, easy processability, and economic material cost. Unlike inorganic semiconductors, creating the conditions for triplet excitons to produce light in organic materials is a demanding task because of the presence of electron spin configurations that undergo spin-forbidden transitions, which is usually facilitated by spin-orbit coupling (SOC). In the absence of heavy metals, however, the SOC efficiency in POPs remains low, and consequently, external nonradiative photophysical processes will also severely affect triplet excitons. Addressing these challenges requires the development of rational molecular design principles to accurately account for how all conceivable structural, electronic, chemical, compositional factors affect materials performance.This Account summarizes important molecular design and matrix engineering strategies to tackle the two key challenges for POPs─boosting SOC efficiencies and suppressing nonradiative decays. We start by reviewing the fundamental understanding of internal and external factors affecting the emission efficiencies of POPs, including the theory behind SOC and the origin of nonradiative decays. Subsequently, we discuss the design of contemporary POP systems on the basis of research insights from our group and others, where SOC is mostly promoted by heavy atom effects and the El-Sayed rule. On one hand, nonmetal heavy atoms including Br, I, or Se provide the heavy atom effects to boost SOC. On the other hand, the El-Sayed rule addresses the necessity of orbital angular momentum change in SOC and the general utilization of carbonyl, heterocyclic rings, and other moieties with rich nonbonding electrons. Because of the slow-decaying nature of triplet excitons, engineering the matrices of POPs is critical to effectively suppress collisional quenching as the major nonradiative decay route, thus achieving POPs with decent room temperature quantum efficiency. For that purpose, crystalline or rigid amorphous matrices have been implemented along with specific intermolecular forces between POPs and their environment.Despite the great efforts made in the past decade, the intrinsic SOC efficiencies of POPs remain low, and their emission lifetimes are pinned in the millisecond to second regime. While this is beneficial for POPs with ultralong emission, designing high-SOC POPs with simultaneous fast decay and high quantum efficiencies is particularly advantageous for display systems. Following the design of contemporary POPs, we will discuss molecular design descriptors that could potentially break the current limit to boost internal SOC in purely organic materials. Our recently developed concept of "heavy atom oriented orbital angular momentum manipulation" will be discussed, accompanied by a rich and expanded library of fast and efficient POP molecules, which serves as a stepping stone into the future of this field. We will conclude this Account by discussing the noteworthy application of POPs in organic light-emitting diodes (OLEDs), solid-state lighting, and sensors, as well as the remaining challenges in the design of fast and efficient POPs.
Collapse
|
54
|
Liu Y, Al-Salihi M, Guo Y, Ziniuk R, Cai S, Wang L, Li Y, Yang Z, Peng D, Xi K, An Z, Jia X, Liu L, Yan W, Qu J. Halogen-doped phosphorescent carbon dots for grayscale patterning. LIGHT, SCIENCE & APPLICATIONS 2022; 11:163. [PMID: 35637206 PMCID: PMC9151715 DOI: 10.1038/s41377-022-00856-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 05/19/2023]
Abstract
Flexible organic materials that exhibit dynamic ultralong room temperature phosphorescence (DURTP) via photoactivation have attracted increasing research interest for their fascinating functions of reversibly writing-reading-erasing graphic information in the form of a long afterglow. However, due to the existence of a nonnegligible activation threshold for the initial exposure dose, the display mode of these materials has thus far been limited to binary patterns. By resorting to halogen element doping of carbon dots (CDs) to enhance intersystem crossing and reduce the activation threshold, we were able to produce, for the first time, a transparent, flexible, and fully programmable DURTP composite film with a reliable grayscale display capacity. Examples of promising applications in UV photography and highly confidential steganography were constructed, partially demonstrating the broad future applications of this material as a programmable platform with a high optical information density.
Collapse
Affiliation(s)
- Yanfeng Liu
- Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Mahmoud Al-Salihi
- Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Yong Guo
- Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Roman Ziniuk
- Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Songtao Cai
- Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Luwei Wang
- Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Yuan Li
- Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Zhigang Yang
- Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Dengfeng Peng
- Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Kai Xi
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xudong Jia
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China
| | - Liwei Liu
- Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Wei Yan
- Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.
| | - Junle Qu
- Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
55
|
Li W, Chasing P, Nalaoh P, Chawanpunyawat T, Sukpattanacharoen C, Kungwan N, Sudyoadsuk T, Promarak V. Hydroxy‐Tetraphenylimidazole Derivatives as Efficient Blue Emissive Materials for Electroluminescent Devices. Chem Asian J 2022; 17:e202200266. [DOI: 10.1002/asia.202200266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Wan Li
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Institute of Science and Technology 21210 Wangchan Rayong Thailand
| | - Pongsakorn Chasing
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Institute of Science and Technology 21210 Wangchan Rayong Thailand
| | - Phattananawee Nalaoh
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Institute of Science and Technology 21210 Wangchan Rayong Thailand
| | - Thanyarat Chawanpunyawat
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Institute of Science and Technology 21210 Wangchan Rayong Thailand
| | | | - Nawee Kungwan
- Department of Chemistry Faculty of Science Chiang Mai University Muang District 50200 Chiang Mai Thailand
| | - Taweesak Sudyoadsuk
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Institute of Science and Technology 21210 Wangchan Rayong Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Institute of Science and Technology 21210 Wangchan Rayong Thailand
- Research Network of NANOTEC-VISTEC on Nanotechnology for Energy Vidyasirimedhi Institute of Science and Technology 21210 Wangchan Rayong Thailand
| |
Collapse
|
56
|
Ma Y, Shen J, Zhao J, Li J, Liu S, Liu C, Wei J, Liu S, Zhao Q. Multicolor Zinc(II)‐coordinated Hydrazone‐based Bistable Photoswitches for Rewritable Transparent Luminescent Labels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yun Ma
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jiandong Shen
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jufu Zhao
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jiangang Li
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Shanying Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Chenyuan Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Juan Wei
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Shujuan Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Qiang Zhao
- Nanjing University of Posts and Telecommunications 9 Wenyuan Road 210023 Nanjing CHINA
| |
Collapse
|
57
|
Wang Z, Gao L, Zheng Y, Zhu Y, Zhang Y, Zheng X, Wang C, Li Y, Zhao Y, Yang C. Four‐in‐One Stimulus‐Responsive Long‐Lived Luminescent Systems Based on Pyrene‐Doped Amorphous Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhonghao Wang
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Liang Gao
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Yan Zheng
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Yinyin Zhu
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Yongfeng Zhang
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Xian Zheng
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Chang Wang
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Youbing Li
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Yanli Zhao
- Nanyang Technological University Division of Chemistry and Biological Chemistry 21 Nanyang Link 637371 Singapore SINGAPORE
| | - Chaolong Yang
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| |
Collapse
|
58
|
Tao Y, Liu C, Xiang Y, Wang Z, Xue X, Li P, Li H, Xie G, Huang W, Chen R. Resonance-Induced Stimuli-Responsive Capacity Modulation of Organic Ultralong Room Temperature Phosphorescence. J Am Chem Soc 2022; 144:6946-6953. [PMID: 35316606 DOI: 10.1021/jacs.2c01669] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic ultralong room temperature phosphorescence (OURTP) materials having stimuli-responsive attributes have attracted great attention due to their great potential in a wide variety of advanced applications. It is of fundamental importance but challengeable to develop stimuli-responsive OURTP materials, especially such materials with modulated optoelectronic properties in a controlled manner probably due to the lack of an authentic construction approach. Here, we propose an effective strategy for OURTP materials with controllably regulated stimuli-responsive properties by engineering the resonance linkage between flexible chain and phosphor units. A quantitative parameter to demonstrate the stimuli-responsive capacity is also established by the responsivity rate constant. The designed OURTP materials demonstrate efficient photoactivated OURTP with lifetimes up to 724 ms and tunable responsivity rate constants ranging from 0.132 to 0.308 min-1 upon continuous UV irradiation. Moreover, the applications of stimuli-responsive resonance OURTP materials have been illustrated by the rewritable paper for snapshot and Morse code for multiple information encryption. Our works, which enable the accomplishment of OURTP materials capable of on-demand manipulated optical properties, demonstrate a viable design to explore smart OURTP materials, giving deep insights into the dynamically stimuli-responsive process.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chang Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yuan Xiang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zijie Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xudong Xue
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shanxi, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
59
|
Zhang Y, Sun Q, Yue L, Wang Y, Cui S, Zhang H, Xue S, Yang W. Room Temperature Phosphorescent (RTP) Thermoplastic Elastomers with Dual and Variable RTP Emission, Photo-Patterning Memory Effect, and Dynamic Deformation RTP Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103402. [PMID: 34951140 PMCID: PMC8844475 DOI: 10.1002/advs.202103402] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/15/2021] [Indexed: 05/30/2023]
Abstract
Room temperature phosphorescent (RTP) polymers have advantages of strength, toughness, and processing and application flexibility over organic small molecular crystals, but the current RTP polymers are all from rigid plastics and involve chemical linkage and hydrogen and ionic bonds, and thermoplastic RTP elastomer has not been attempted and realized. Moreover, solution-processed films by simply mixing polymers and organic RTP materials can only show weak and single blue RTP. Here it is presented that such elastomer films, once thermomechanically plasticized, can emit bright and long-lived dual RTP. Moreover, they exhibit photo-activation memory effect, variable RTP colors and dynamic deformation RTP response. These results reveal that thermoplasticizing has altered the dispersion states and micro-environment of RTP molecules in matrix, and the cohesion of elastic polymer itself can also greatly restrict non-radiative relaxations to boost both blue mono-molecular and yellow micro-crystalline RTP. This work provides an effective and versatile processing strategy for tuning and enhancing the RTP properties of doped RTP polymers.
Collapse
Affiliation(s)
- Yuefa Zhang
- Key Laboratory of Rubber‐Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐PlasticsSchool of Polymer Science & EngineeringQingdao University of Science &TechnologyQingdaoChina
| | - Qikun Sun
- Key Laboratory of Rubber‐Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐PlasticsSchool of Polymer Science & EngineeringQingdao University of Science &TechnologyQingdaoChina
| | - Lingtai Yue
- Key Laboratory of Rubber‐Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐PlasticsSchool of Polymer Science & EngineeringQingdao University of Science &TechnologyQingdaoChina
| | - Yaguang Wang
- Key Laboratory of Rubber‐Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐PlasticsSchool of Polymer Science & EngineeringQingdao University of Science &TechnologyQingdaoChina
| | - Shuaiwei Cui
- Key Laboratory of Rubber‐Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐PlasticsSchool of Polymer Science & EngineeringQingdao University of Science &TechnologyQingdaoChina
| | - Haichang Zhang
- Key Laboratory of Rubber‐Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐PlasticsSchool of Polymer Science & EngineeringQingdao University of Science &TechnologyQingdaoChina
| | - Shanfeng Xue
- Key Laboratory of Rubber‐Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐PlasticsSchool of Polymer Science & EngineeringQingdao University of Science &TechnologyQingdaoChina
| | - Wenjun Yang
- Key Laboratory of Rubber‐Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐PlasticsSchool of Polymer Science & EngineeringQingdao University of Science &TechnologyQingdaoChina
| |
Collapse
|
60
|
Xu T, Liu F, Hu X, Zhao Z, Liu S. Cucurbit[ n]uril-based host-guest interaction enhancing organic room-temperature phosphorescence of phthalic anhydride derivatives in aqueous solution. NEW J CHEM 2022. [DOI: 10.1039/d2nj01507b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cyan RTP in aqueous solution was enhanced by supramolecular host–guest complexation of water-soluble halogen-substituted phthalic anhydride (PA) derivatives with cucurbit[n]urils (CB[n]s).
Collapse
Affiliation(s)
- Tianyue Xu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Fengbo Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xianchen Hu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhiyong Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
61
|
Yan X, Peng H, Xiang Y, Wang J, Yu L, Tao Y, Li H, Huang W, Chen R. Recent Advances on Host-Guest Material Systems toward Organic Room Temperature Phosphorescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104073. [PMID: 34725921 DOI: 10.1002/smll.202104073] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/15/2021] [Indexed: 06/13/2023]
Abstract
The design and characterization of purely organic room-temperature phosphorescent (RTP) materials for optoelectronic applications is currently the focus of research in the field of organic electronics. Particularly, with the merits of preparation controllability and modulation flexibility, host-guest material systems are encouraging candidates that can prepare high-performance RTP materials. By regulating the interaction between host and guest molecules, it can effectively control the quantum efficiency, luminescent lifetime, and color of host-guest RTP materials, and even produce RTP emission with stimuli-responsive features, holding tremendous potential in diverse applications such as encryption and anti-counterfeiting, organic light-emitting diodes, sensing, optical recording, etc. Here a roundup of rapid achievement in construction strategies, molecule systems, and diversity of applications of host-guest material systems is outlined. Intrinsic correlations between the molecular properties and a survey of recent significant advances in the development of host-guest RTP materials divided into three systems including rigid matrix, exciplex, and sensitization are presented. Providing an insightful understanding of host-guest RTP materials and offering a promising platform for high throughput screening of RTP systems with inherent advantages of simple material preparation, low-cost, versatile resource, and controllably modulated properties for a wide range of applications is intended.
Collapse
Affiliation(s)
- Xi Yan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Hao Peng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Xiang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Juan Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lan Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ye Tao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Huanhuan Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
62
|
Chen X, Wang G, Wu M, Liu J, Liu Z, Wang X, Zou Y, Zhang K. Merging photoinitiated bulk polymerization and the dopant-matrix design strategy for polymer-based organic afterglow materials. Polym Chem 2022. [DOI: 10.1039/d2py00367h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The polymer produced by photoinitiated bulk polymerization promotes intersystem crossing of luminescent dopants and switches on room-temperature organic afterglow.
Collapse
Affiliation(s)
- Xiuzheng Chen
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guangming Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Minjian Wu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jiahui Liu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xuepu Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yunlong Zou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kaka Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
63
|
Gmelch M, Achenbach T, Tomkeviciene A, Reineke S. High-Speed and Continuous-Wave Programmable Luminescent Tags Based on Exclusive Room Temperature Phosphorescence (RTP). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102104. [PMID: 34708588 PMCID: PMC8655189 DOI: 10.1002/advs.202102104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/07/2021] [Indexed: 05/29/2023]
Abstract
Most materials recently developed for room temperature phosphorescence (RTP) lack in practical relevance due to their inconvenient crystalline morphology. Using amorphous material systems instead, programmable luminescent tags (PLTs) based on organic biluminescent emitter molecules with easy processing and smooth sample shapes are presented recently. Here, the effective quenching of the emitter's RTP by molecular oxygen (O2 ) and the consumption of the excited singlet O2 through a chemical reaction represent the central features. With customized activation schemes, high-resolution content can be written and later erased multiple times into such films, providing a versatile yet simple photonic platform for information storage. However, two important limitations remain: The immutable fluorescence of the emitters outshines the phosphorescent patterns by roughly one order of magnitude, allowing readout of the PLTs only after the excitation source is turned off. The programming of these systems is a rather slow process, where lowest reported activation times are still >8 s. Here, a material-focused approach to PLTs with fast activation times of 120 ± 20 ms and high-contrast under continuous-wave illumination is demonstrated, leading to accelerated programming on industry relevant time scales and a simplified readout process both by eye and low cost cameras.
Collapse
Affiliation(s)
- Max Gmelch
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenDresden01187Germany
| | - Tim Achenbach
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenDresden01187Germany
| | - Ausra Tomkeviciene
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenDresden01187Germany
- Department of Polymer Chemistry and TechnologyKaunas University of TechnologyK. Barsausko g. 59Kaunas51423Lithuania
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenDresden01187Germany
| |
Collapse
|
64
|
Ma Z, Yang Z, Mu L, Deng L, Chen L, Wang B, Qiao X, Hu D, Yang B, Ma D, Peng J, Ma Y. Converting molecular luminescence to ultralong room-temperature phosphorescence via the excited state modulation of sulfone-containing heteroaromatics. Chem Sci 2021; 12:14808-14814. [PMID: 34820096 PMCID: PMC8597857 DOI: 10.1039/d1sc04118e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
Manipulating the molecular orbital properties of excited states and the subsequent relaxation processes can greatly alter the emission behaviors of luminophores. Herein we report a vivid example of this, with luminescence conversion from thermally activated delayed fluorescence (TADF) to ultralong room-temperature phosphorescence (URTP) via a facile substituent effect on a rigid benzothiazino phenothiazine tetraoxide (BTPO) core. Pristine BTPO with multiple heteroatoms shows obvious intramolecular charge transfer (ICT) excited states with small exchange energy, featuring TADF. Via delicately functionalizing the BTPO core with peripheral moieties, the excited states of the BTPO derivatives become a hybridized local and charge transfer (HLCT) state in the S1 state and a local excitation (LE) dominated HLCT state in the T1 state, with enlarged energy bandgaps. Upon dispersion in a polymer matrix, the BTPO derivatives exhibit a persistent bright green afterglow with long lifetimes of up to 822 ms and decent quantum yields of up to 11.6%.
Collapse
Affiliation(s)
- Zetong Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University Changchun 130012 China
| | - Lan Mu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Lisong Deng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Liangjian Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Bohan Wang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Xianfeng Qiao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Dehua Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University Changchun 130012 China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Junbiao Peng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
65
|
Li Y, Jiang L, Liu W, Xu S, Li T, Fries F, Zeika O, Zou Y, Ramanan C, Lenk S, Scholz R, Andrienko D, Feng X, Leo K, Reineke S. Reduced Intrinsic Non-Radiative Losses Allow Room-Temperature Triplet Emission from Purely Organic Emitters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101844. [PMID: 34365677 PMCID: PMC11469145 DOI: 10.1002/adma.202101844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/18/2021] [Indexed: 05/22/2023]
Abstract
Persistent luminescence from triplet excitons in organic molecules is rare, as fast non-radiative deactivation typically dominates over radiative transitions. This work demonstrates that the substitution of a hydrogen atom in a derivative of phenanthroimidazole with an N-phenyl ring can substantially stabilize the excited state. This stabilization converts an organic material without phosphorescence emission into a molecular system exhibiting efficient and ultralong afterglow phosphorescence at room temperature. Results from systematic photophysical investigations, kinetic modeling, excited-state dynamic modeling, and single-crystal structure analysis identify that the long-lived triplets originate from a reduction of intrinsic non-radiative molecular relaxations. Further modification of the N-phenyl ring with halogen atoms affects the afterglow lifetime and quantum yield. As a proof-of-concept, an anticounterfeiting device is demonstrated with a time-dependent Morse code feature for data encryption based on these emitters. A fundamental design principle is outlined to achieve long-lived and emissive triplet states by suppressing intrinsic non-radiative relaxations in the form of molecular vibrations or rotations.
Collapse
Affiliation(s)
- Yungui Li
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| | - Lihui Jiang
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
- College of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083China
| | - Wenlan Liu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shunqi Xu
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstraße 401069DresdenGermany
| | - Tian‐Yi Li
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| | - Felix Fries
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| | - Olaf Zeika
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| | - Yingping Zou
- College of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083China
| | | | - Simone Lenk
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| | - Reinhard Scholz
- Leibniz‐Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | - Denis Andrienko
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstraße 401069DresdenGermany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| |
Collapse
|
66
|
Yang Y, Wang J, Li D, Yang J, Fang M, Li Z. Tunable Photoresponsive Behaviors Based on Triphenylamine Derivatives: The Pivotal Role of π-Conjugated Structure and Corresponding Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104002. [PMID: 34499382 DOI: 10.1002/adma.202104002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Photoresponsive materials have drawn much attention and are widely applied in daily life for their reversible changes in luminous color or appearance color under light irradiation. In this work, a new photoresponsive system based on triarylamine derivatives is developed. With the changed aryl substituents, adjustable photoresponsive properties, including photoactivated phosphorescence and photochromism after being dispersed into the poly(methyl methacrylate) (PMMA) matrix, are demonstrated. According to the theoretical calculations and experimental data, the competition between the formations of triplet excitons and cationic radicals under photoirradiation should be the main reason for their different photoresponsive properties. Excitingly, the applications of rewritable photopatterning, anticounterfeiting, information encryption, and decryption are realized conveniently, in addition to the successful model of sunglasses to protect eyes away from ultraviolet radiation and strong light in the sunlight. These studies present a simple and efficient design strategy for the development of photoresponsive materials on modulating the phosphorescence and photochromic property.
Collapse
Affiliation(s)
- Yujie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jiaqiang Wang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Dan Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
- Joint School of National University of Singapore, Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
67
|
Chen R, Guan Y, Wang H, Zhu Y, Tan X, Wang P, Wang X, Fan X, Xie HL. Organic Persistent Luminescent Materials: Ultralong Room-Temperature Phosphorescence and Multicolor-Tunable Afterglow. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41131-41139. [PMID: 34412468 DOI: 10.1021/acsami.1c12249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic persistent luminescent materials have attracted special attention due to their significant applications in optoelectronics, sensors, and security technology areas. In this work, a series of organic compounds (1-4) with twisted electron donor-acceptor structures are successfully designed and synthesized, and then the resultant compounds are dissolved in methyl methacrylate (MMA), and afterward, in situ polymerization realizes single-molecular organic room-temperature phosphorescent (RTP) materials (P1-P4). All RTP materials show long lifetime, especially P2 exhibits ultralong lifetime of 1.51 s. When the compounds are grown into single crystals, multicolor-tunable afterglow is obtained at different delay times due to the dual emission of phosphorescence and delayed fluorescence, which is promising to be applied in high-level anticounterfeiting.
Collapse
Affiliation(s)
- Renjie Chen
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yan Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hailong Wang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yan Zhu
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xin Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Ping Wang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xueye Wang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xinghe Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - He-Lou Xie
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
68
|
Thomas H, Fries F, Gmelch M, Bärschneider T, Kroll M, Vavaleskou T, Reineke S. Purely Organic Microparticles Showing Ultralong Room Temperature Phosphorescence. ACS OMEGA 2021; 6:13087-13093. [PMID: 34056458 PMCID: PMC8158833 DOI: 10.1021/acsomega.1c00785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Currently, organic phosphorescent particles are heavily used in sensing and imaging. Up to now, most of these particles contain poisonous and/or expensive metal complexes. Environmentally friendly systems are therefore highly desired. A purely amorphous system consisting of poly(methyl methacrylate) particles with incorporated N,N,N',N'-tetrakis(4-carboxyphenyl)benzidine emitter molecules is presented in this work. Single particles with sizes between 400 and 840 nm show-depending on the environment-bright fluorescence and phosphorescence. The latter is observed when oxygen is not in the proximity of the emitting dye molecules. These particles can scavenge singlet oxygen, which is produced during the photoexcitation process, by incorporating it into the polymer matrix. This renders their use to be unharmful for the surrounding matter with possible application in marking schemes for living bodies.
Collapse
Affiliation(s)
- Heidi Thomas
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Felix Fries
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Max Gmelch
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Toni Bärschneider
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Martin Kroll
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Thaleia Vavaleskou
- Johann
Wolfgang Goethe-Universität Frankfurt am Main, Institut für
Anorganische und Analytische Chemie, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Sebastian Reineke
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| |
Collapse
|
69
|
Ren J, Wang Y, Tian Y, Liu Z, Xiao X, Yang J, Fang M, Li Z. Force-Induced Turn-On Persistent Room-Temperature Phosphorescence in Purely Organic Luminogen. Angew Chem Int Ed Engl 2021; 60:12335-12340. [PMID: 33719198 DOI: 10.1002/anie.202101994] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Indexed: 12/11/2022]
Abstract
Research of purely organic room-temperature phosphorescence (RTP) materials has been a hot topic, especially for those with stimulus response character. Herein, an abnormal stimulus-responsive RTP effect is reported, in which, purely organic luminogen of Czs-ph-3F shows turn-on persistent phosphorescence under grinding. Careful analyses of experimental results, coupled with the theoretical calculations, show that the transition of molecular conformation from quasi-axial to quasi-equatorial of the phenothiazine group should be mainly responsible for this exciting result. Furthermore, the applications of stylus printing and thermal printing are both successfully realized, based on the unique RTP effect of Czs-ph-3F.
Collapse
Affiliation(s)
- Jia Ren
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yunsheng Wang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yu Tian
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhenjiang Liu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xiangheng Xiao
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.,Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian, 350207, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
70
|
Liu Y, Huang X, Niu Z, Wang D, Gou H, Liao Q, Xi K, An Z, Jia X. Photo-induced ultralong phosphorescence of carbon dots for thermally sensitive dynamic patterning. Chem Sci 2021; 12:8199-8206. [PMID: 34194710 PMCID: PMC8208321 DOI: 10.1039/d1sc01394g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/08/2021] [Indexed: 01/05/2023] Open
Abstract
Stimuli-responsive films with a dynamic long afterglow feature have received considerable attention in the field of optical materials. Herein, we report the unique dynamic ultralong room temperature phosphorescence (URTP) in flexible solid films made of luminescent carbon dots (CDs) and polyvinylpyrrolidone (PVP). Impressively, fully reversible photo-activation and thermal deactivation of the dynamic long afterglow was achieved in this material, with a lifetime on-off ratio exceeding 3900. Subsequently, ultra-fine URTP patterns (resolution > 1280 dpi) with thermally sensitive retention time were readily photo-printed onto the films and utilized as time-temperature indicating logistics labels with multi-editing capacity. These findings not only enrich the library of dynamic URTP materials, but also extend the scope of the potential applications of luminescent CDs.
Collapse
Affiliation(s)
- Yanfeng Liu
- School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Zuoji Niu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Dongni Wang
- School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Huilin Gou
- School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Qiaobo Liao
- School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Kai Xi
- School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Xudong Jia
- School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University 163 Xianlin Road Nanjing 210023 China
| |
Collapse
|
71
|
Luo T, Zhou T, Qu J. Lifetime Division Multiplexing by Multilevel Encryption Algorithm. ACS NANO 2021; 15:6257-6265. [PMID: 33625205 DOI: 10.1021/acsnano.0c09177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Asymmetric, multilevel, switchable, and reversible encryption is realized by algorithm encryption, which plays an important role in encryption technology. Fluorescence lifetime encryption is currently not executed by an algorithm. It is well-known that the short fluorescence lifetime (τ1), long fluorescence lifetime (τ2), amplitude-weighted average fluorescence lifetime (τm), and intensity-weighted average fluorescence lifetime (τi) can be obtained using a double exponential fitting, and then these four lifetime parameters can be considered as four lifetime algorithms. Therefore, we propose that the acquisition of these four fluorescence lifetimes can be regarded as further dividing the lifetime by different algorithms and optimizing lifetime multiplexing. Moreover, the four lifetime algorithms of τ1, τm, τ2, and τi can be switched between each other and can be used to perform asymmetric, multilevel, and reversible lifetime encryption to effectively increase the difficulties of anticounterfeiting.
Collapse
Affiliation(s)
- Teng Luo
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ting Zhou
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
72
|
Ren J, Wang Y, Tian Y, Liu Z, Xiao X, Yang J, Fang M, Li Z. Force‐Induced Turn‐On Persistent Room‐Temperature Phosphorescence in Purely Organic Luminogen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101994] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jia Ren
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Yunsheng Wang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Yu Tian
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Zhenjiang Liu
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Xiangheng Xiao
- School of Physics and Technology Wuhan University Wuhan Hubei 430072 China
| | - Jie Yang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Manman Fang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Zhen Li
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
- Department of Chemistry Wuhan University Wuhan Hubei 430072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou Fujian 350207 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry Tianjin University Tianjin 300072 China
| |
Collapse
|
73
|
Garain S, Kuila S, Garain BC, Kataria M, Borah A, Pati SK, George SJ. Arylene Diimide Phosphors: Aggregation Modulated Twin Room Temperature Phosphorescence from Pyromellitic Diimides. Angew Chem Int Ed Engl 2021; 60:12323-12327. [DOI: 10.1002/anie.202101538] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Swadhin Garain
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Suman Kuila
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Bidhan Chandra Garain
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Theoretical Science Unit Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) India
| | - Meenal Kataria
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Aditya Borah
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Swapan K. Pati
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Theoretical Science Unit Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) India
| | - Subi J. George
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| |
Collapse
|
74
|
Garain S, Kuila S, Garain BC, Kataria M, Borah A, Pati SK, George SJ. Arylene Diimide Phosphors: Aggregation Modulated Twin Room Temperature Phosphorescence from Pyromellitic Diimides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Swadhin Garain
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Suman Kuila
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Bidhan Chandra Garain
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Theoretical Science Unit Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) India
| | - Meenal Kataria
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Aditya Borah
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Swapan K. Pati
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Theoretical Science Unit Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) India
| | - Subi J. George
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| |
Collapse
|
75
|
Zhang Y, Gao L, Zheng X, Wang Z, Yang C, Tang H, Qu L, Li Y, Zhao Y. Ultraviolet irradiation-responsive dynamic ultralong organic phosphorescence in polymeric systems. Nat Commun 2021; 12:2297. [PMID: 33863899 PMCID: PMC8052444 DOI: 10.1038/s41467-021-22609-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Room temperature phosphorescence (RTP) has drawn extensive attention in recent years. Efficient stimulus-responsive phosphorescent organic materials are attractive, but are extremely rare because of unclear design principles and intrinsically spin-forbidden intersystem crossing. Herein, we present a feasible and facile strategy to achieve ultraviolet irradiation-responsive ultralong RTP (IRRTP) of some simple organic phosphors by doping into amorphous poly(vinyl alcohol) matrix. In addition to the observed green and yellow afterglow emission with distinct irradiation-enhanced phosphorescence, the phosphorescence lifetime can be tuned by varying the irradiation period of 254 nm light. Significantly, the dynamic phosphorescence lifetime could be increased 14.3 folds from 58.03 ms to 828.81 ms in one of the obtained hybrid films after irradiation for 45 min under ambient conditions. As such, the application in polychromatic screen printing and multilevel information encryption is demonstrated. The extraordinary IRRTP in the amorphous state endows these systems with a highly promising potential for smart flexible luminescent materials and sensors with dynamically controlled phosphorescence.
Collapse
Affiliation(s)
- Yongfeng Zhang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China
| | - Liang Gao
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China
| | - Xian Zheng
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China
| | - Zhonghao Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China.
| | - Hailong Tang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China
| | - Lunjun Qu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China
| | - Youbing Li
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
76
|
Jakoby M, Beil C, Nazari P, Richards BS, Seitz M, Turshatov A, Howard IA. Rare-earth coordination polymers with multimodal luminescence on the nano-, micro-, and milli-second time scales. iScience 2021; 24:102207. [PMID: 33733068 PMCID: PMC7940971 DOI: 10.1016/j.isci.2021.102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 01/01/2023] Open
Abstract
We present a coordination polymer based on rare-earth metal centers and carboxylated 4,4′-diphenyl-2,2′-bipyridine ligands. We investigate Y3+, Lu3+, Eu3+, and a statistical mixture of Y3+ with Eu3+ as metal centers. When Y3+ or Lu3+ is exclusively present in the coordination polymer, biluminescence from the ligand is observed: violet emission from the singlet state (417 nm, 0.9 ns lifetime) and orange emission from the triplet state (585 nm, 76 ms (Y3+) and 31 ms (Lu3+)). When Eu3+ is present in a statistical mixture with Y3+, red emission from the Eu3+ (611 nm, ∼500μs) is observed in addition to the ligand emissions. We demonstrate that this multi-mode emission is enabled by the immobility of singlet and triplet states on the ligand. Eu3+ only receives energy from adjacent ligands. Meanwhile, in the broad inhomogeneous distribution of ligand energies, higher energy states favor singlet emission, whereas faster intersystem crossing in the more stabilized ligands enhances their contribution to triplet emission. Coordination polymer exhibts nano-, micro-, and milli-second emission bands. Luminescence observed from ligand singlet and triplet states and lanthanide centers. Triluminescence is enabled by exciton immobility. Intersystem crossing is mediated by ligand environment.
Collapse
Affiliation(s)
- Marius Jakoby
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Carolin Beil
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Pariya Nazari
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Michael Seitz
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andrey Turshatov
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| |
Collapse
|
77
|
Yao X, Wang J, Jiao D, Huang Z, Mhirsi O, Lossada F, Chen L, Haehnle B, Kuehne AJC, Ma X, Tian H, Walther A. Room-Temperature Phosphorescence Enabled through Nacre-Mimetic Nanocomposite Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005973. [PMID: 33346394 PMCID: PMC11468592 DOI: 10.1002/adma.202005973] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/18/2020] [Indexed: 06/12/2023]
Abstract
A generic, facile, and waterborne strategy is introduced to fabricate flexible, low-cost nanocomposite films with room-temperature phosphorescence (RTP) by incorporating waterborne RTP polymers into self-assembled bioinspired polymer/nanoclay nanocomposites. The excellent oxygen barrier of the lamellar nanoclay structure suppresses the quenching effect from ambient oxygen (kq ) and broadens the choice of polymer matrices towards lower glass transition temperature (Tg ), while providing better mechanical properties and processability. Moreover, the oxygen permeation and diffusion inside the films can be fine-tuned by varying the polymer/nanoclay ratio, enabling programmable retention times of the RTP signals, which is exploited for transient information storage and anti-counterfeiting materials. Additionally, anti-interception materials are showcased by tracing the interception-induced oxygen history that interferes with the preset self-erasing time. Merging bioinspired nanocomposite design with RTP materials contributes to overcoming the inherent limitations of molecular design of organic RTP compounds, and allows programmable temporal features to be added into RTP materials by controlled mesostructures. This will assist in paving the way for practical applications of RTP materials as novel anti-counterfeiting materials.
Collapse
Affiliation(s)
- Xuyang Yao
- ABMS Lab‐ActiveAdaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 19Freiburg79104Germany
| | - Jie Wang
- ABMS Lab‐ActiveAdaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology130 Meilong RoadShanghai200237China
| | - Dejin Jiao
- ABMS Lab‐ActiveAdaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
| | - Zizhao Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology130 Meilong RoadShanghai200237China
| | - Oumaima Mhirsi
- ABMS Lab‐ActiveAdaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
| | - Francisco Lossada
- ABMS Lab‐ActiveAdaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
| | - Lisa Chen
- Institute of Organic and Macromolecular ChemistryUlm UniversityAlbert‐Einstein‐Allee 11Ulm89081Germany
| | - Bastian Haehnle
- Institute of Organic and Macromolecular ChemistryUlm UniversityAlbert‐Einstein‐Allee 11Ulm89081Germany
| | - Alexander J. C. Kuehne
- Institute of Organic and Macromolecular ChemistryUlm UniversityAlbert‐Einstein‐Allee 11Ulm89081Germany
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology130 Meilong RoadShanghai200237China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology130 Meilong RoadShanghai200237China
| | - Andreas Walther
- ABMS Lab‐ActiveAdaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 19Freiburg79104Germany
- Present address:
Department of ChemistryUniversity of MainzMainz55128Germany
| |
Collapse
|
78
|
Wu H, Baryshnikov GV, Kuklin A, Minaev BF, Wu B, Gu L, Zhu L, Ågren H, Zhao Y. Multidimensional Structure Conformation of Persulfurated Benzene for Highly Efficient Phosphorescence. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1314-1322. [PMID: 33373196 DOI: 10.1021/acsami.0c16338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is a challenge to acquire, realize, and comprehend highly emissive phosphorescent molecules. Herein, we report that, using persulfurated benzene compounds as models, phosphorescence can be strongly enhanced through the modification of molecular conformation and crystal growth conditions. By varying the peripheral groups in these compounds, we were able to control their molecular conformation and crystal growth mode, leading to one- (1D), two- (2D), and three-dimensional (3D) crystal morphologies. Two kinds of typical molecular conformations were separately obtained in these crystals through substituent group control or the solvent effect. Importantly, a symmetrical 3,3-conformer exhibits that a planar central benzene ring prefers a 3D-type crystal growth mode, demonstrating high phosphorescence efficiency. Such outcome is attributed to the strong crystal protection effect of the 3D crystal and the bright global minimum (GM) boat-like T1 state of the symmetrical 3,3-conformer. The conformation studies further reveal small deformation of the inner benzene ring in both singlet and triplet states. The GM boat-like T1 state is indicated by theoretical calculations, which is far away from the conical intersection (CI) point between the S0 and T1 potential energy surfaces. Meanwhile, the small energy gap between S1 and T1 states and the considerable spin-orbit coupling matrix elements allow an efficient population of the T1 state. Combined with the crystal protection and conformation effect, the 3,3-conformer crystal shows high phosphorescence efficiency. The unsymmetrical 2,4-conformer conformation with the twisted central benzene ring leads to 1D or 2D crystal growth mode, which has a weak crystal protection effect. In addition, the unsymmetrical conformation has a dark GM T1 state that is very close to the T1-S0 CI point, implying an efficient nonradiative T1-S0 quenching. Thus, weak phosphorescence was observed from the unsymmetrical conformation. This study provides an insight for the development of highly emissive phosphorescent materials.
Collapse
Affiliation(s)
- Hongwei Wu
- College of Chemistry, Chemical Engineering and Biotechnology, National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Donghua University, Shanghai 201620, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Glib V Baryshnikov
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Artem Kuklin
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Boris F Minaev
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Bin Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Long Gu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
- Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russian Federation
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
79
|
Li H, Li H, Gu J, He F, Peng H, Tao Y, Tian D, Yang Q, Li P, Zheng C, Huang W, Chen R. Fluorine-induced aggregate-interlocking for color-tunable organic afterglow with a simultaneously improved efficiency and lifetime. Chem Sci 2021; 12:3580-3586. [PMID: 34163631 PMCID: PMC8179499 DOI: 10.1039/d0sc06025a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/07/2021] [Indexed: 01/28/2023] Open
Abstract
Designing organic afterglow materials with a high efficiency and long lifetime is highly attractive but challenging because of the inherent competition between the luminescence efficiency and lifetime. Here, we propose a simple yet efficient strategy, namely fluorine-induced aggregate-interlocking (FIAI), to realize both an enhanced efficiency and elongated lifetime of afterglow materials by stimulating the synergistic effects of the introduced fluorine atoms to efficiently promote intersystem crossing (ISC) and intermolecular non-covalent interactions for facilitating both the generation of triplet excitons and suppression of non-radiative decays. Thus, the fluorine-incorporated afterglow molecules exhibit greatly enhanced ISC with a rate constant up to 5.84 × 107 s-1 and suppressed non-radiative decay down to 0.89 s-1, resulting in efficient organic afterglow with a simultaneously improved efficiency up to 10.5% and a lifetime of 1.09 s. Moreover, accompanied by the efficient phosphorescence emission especially at cryogenic temperature, color-tunable afterglow was also observed at different temperatures. Therefore, tri-mode multiplexing encryption devices by combining lifetime, temperature and color, and visual temperature sensing were successfully established. The FIAI strategy by addressing fundamental issues of afterglow emission paves the way to develop high-performance organic afterglow materials, opening up a broad prospect of aggregated and excited state tuning of organic solids for emission lifetime-resolved applications.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Huanhuan Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jie Gu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Fei He
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Hao Peng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Ye Tao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Dan Tian
- College of Materials Science and Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Qingqing Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Ping Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Chao Zheng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| |
Collapse
|
80
|
Gu L, Wang X, Singh M, Shi H, Ma H, An Z, Huang W. Organic Room-Temperature Phosphorescent Materials: From Static to Dynamic. J Phys Chem Lett 2020; 11:6191-6200. [PMID: 32635734 DOI: 10.1021/acs.jpclett.9b03363] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dynamic room-temperature phosphorescence (RTP) in organic materials is highly sensitive toward changes of external stimulus, representing the expansion of static RTP materials with fixed properties, and has gradually captured considerable attention. Different from the big breakthroughs in static organic RTP materials, dynamic organic RTP materials remain a clear improvement over luminescent mechanisms and molecular design rule. Therefore, we have reviewed the progress of organic RTP materials from static to dynamic phosphorescence and provide insight into the dynamic behaviors of RTP lifetime, color, intensity, and efficiency under different external stimuli, especially changes to the excitation source, such as irradiation time, intensity, and excitation wavelengths. Subsequently, we present some viewpoints on this promising field to strengthen the understanding of dynamic RTP characteristics. This Perspective may be beneficial for the future development of smart materials with dynamic RTP.
Collapse
Affiliation(s)
- Long Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Xiao Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Manjeet Singh
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
81
|
Wu H, Gu L, Baryshnikov GV, Wang H, Minaev BF, Ågren H, Zhao Y. Molecular Phosphorescence in Polymer Matrix with Reversible Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20765-20774. [PMID: 32272835 DOI: 10.1021/acsami.0c04859] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultralong organic phosphorescence strongly depends on the formation of aggregation, while it is difficult to obtain in dilute environments on account of excessive internal and external molecular motions. Herein, ultralong single-molecule phosphorescence (USMP) at room temperature was achieved in the monomer state by coassembling biphenyl and naphthalene derivatives at low density with poly(vinyl alcohol) (PVA), where PVA provides a confined environment to stabilize the triplet state. Various factors that affect the USMP were studied, including aggregation, conformation, temperature, and moisture. In these systems, the formation of aggregates through intermolecular stacking and hydrogen bonding interactions in the film or crystal phases completely suppresses the USMP. However, the fluorescence is enhanced when coassembling these compounds at high concentration with PVA and becomes stronger in their powder state, indicating that the intersystem crossing process is blocked by the aggregation. Theoretical calculations suggest that the aggregation depresses spin-orbit coupling between the excited singlet and triplet states and enhances the nonradiative quenching process. Moreover, a relatively twisted conformation is more conducive to the occurrence of intersystem crossing than planar conformation. The USMP shows delicate and reversible sensitivity to the changes of temperature and moisture, rendering them with the applicability as smart organic optoelectronic materials.
Collapse
Affiliation(s)
- Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Long Gu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Glib V Baryshnikov
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
- Department of Chemistry and Nanomaterials Science, Bogdan Khmelnitsky National University, Cherkasy 18031, Ukraine
| | - Hou Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Boris F Minaev
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
- Department of Chemistry and Nanomaterials Science, Bogdan Khmelnitsky National University, Cherkasy 18031, Ukraine
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
82
|
Thomas H, Pastoetter DL, Gmelch M, Achenbach T, Schlögl A, Louis M, Feng X, Reineke S. Aromatic Phosphonates: A Novel Group of Emitters Showing Blue Ultralong Room Temperature Phosphorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000880. [PMID: 32239561 DOI: 10.1002/adma.202000880] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
In recent years, there has been a growing interest in purely organic materials showing ultralong room-temperature phosphorescence with lifetimes in the range of seconds. Still, the longest known phosphorescence lifetimes are only achieved with crystalline systems so far. Here, a rational design of a completely new family of halogen-free organic luminescent derivatives in amorphous matrices, displaying both conventional fluorescence and phosphorescence is reported. Hydrogen bonding between the newly developed emitters and an ethylene-vinyl alcohol copolymer (Exceval) matrix, which efficiently suppresses vibrational dissipation, enables bright long-lived phosphorescence with lifetimes up to 2.6 s at around 480 nm. The importance of the chosen matrix is shown as well as the implementation in an organic programmable luminescent tag.
Collapse
Affiliation(s)
- Heidi Thomas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, Dresden, 01187, Germany
| | - Dominik L Pastoetter
- Chair of Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Max Gmelch
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, Dresden, 01187, Germany
| | - Tim Achenbach
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, Dresden, 01187, Germany
| | - Annika Schlögl
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, Dresden, 01187, Germany
| | - Marine Louis
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, Dresden, 01187, Germany
| | - Xinliang Feng
- Chair of Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, Dresden, 01187, Germany
| |
Collapse
|
83
|
Wan S, Zhou H, Lin J, Lu W. A Prototype of a Volumetric Three‐Dimensional Display Based on Programmable Photo‐Activated Phosphorescence. Angew Chem Int Ed Engl 2020; 59:8416-8420. [DOI: 10.1002/anie.202003160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Shigang Wan
- Department of Chemistry Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Hongqi Zhou
- Department of Chemistry Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Jinxiong Lin
- Department of Chemistry Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Wei Lu
- Department of Chemistry Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| |
Collapse
|
84
|
Wan S, Zhou H, Lin J, Lu W. A Prototype of a Volumetric Three‐Dimensional Display Based on Programmable Photo‐Activated Phosphorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shigang Wan
- Department of Chemistry Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Hongqi Zhou
- Department of Chemistry Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Jinxiong Lin
- Department of Chemistry Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Wei Lu
- Department of Chemistry Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| |
Collapse
|
85
|
Yang S, Zhou B, Huang Q, Wang S, Zhen H, Yan D, Lin Z, Ling Q. Highly Efficient Organic Afterglow from a 2D Layered Lead-Free Metal Halide in Both Crystals and Thin Films under an Air Atmosphere. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1419-1426. [PMID: 31833758 DOI: 10.1021/acsami.9b20502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic afterglow materials (OAMs) with a lifetime longer than 0.1 s have recently received much attention for their fascinating properties meeting the critical requirements of applications in newly emerged technologies. However, the development of OAMs lags behind for their low luminescence efficiency. Usually, enhancing the phosphorescence efficiency of organic materials causes a short lifetime. Here, we report two kinds of OAMs, two-dimensional (2D) layered organic-inorganic hybrid zinc bromides (PEZB-NTA and PEZB-BPA), obtained in an environmentally friendly ethanol solvent by a low-temperature solution method. They display highly efficient and persistent luminescence in air in both crystals and thin films with phosphorescence quantum yields up to 42% in crystals and 27% in films. For OAMs, the two quantum yields are the highest values ever reported for crystals and films. Due to the excellent crystalline and film-forming ability, PEZB-NTA and PEZB-BPA in ethanol can be used as inks to construct patterns on various rigid and flexible substrates, including paper, iron, plastic, marble, tin foil, and cloth. Consequently, the novel OAMs show great application prospects in the fields of anti-counterfeiting and information storage because of their economic synthesis, solution processing, and easy operation.
Collapse
Affiliation(s)
- Shuming Yang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Bo Zhou
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Qiuqin Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Shuaiqi Wang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Hongyu Zhen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Dongpeng Yan
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Zhenghuan Lin
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Qidan Ling
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| |
Collapse
|
86
|
Fries F, Louis M, Scholz R, Gmelch M, Thomas H, Haft A, Reineke S. Dissecting Tetra-N-phenylbenzidine: Biphenyl as the Origin of Room Temperature Phosphorescence. J Phys Chem A 2020; 124:479-485. [DOI: 10.1021/acs.jpca.9b09148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felix Fries
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Marine Louis
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Reinhard Scholz
- Leibniz-Institut für Polymerforschung Dresden e.V, 01005 Dresden, Germany
| | - Max Gmelch
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Heidi Thomas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Anna Haft
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| |
Collapse
|
87
|
Ramalho JFCB, Correia SFH, Fu L, António LLF, Brites CDS, André PS, Ferreira RAS, Carlos LD. Luminescence Thermometry on the Route of the Mobile-Based Internet of Things (IoT): How Smart QR Codes Make It Real. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900950. [PMID: 31592146 PMCID: PMC6774024 DOI: 10.1002/advs.201900950] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/17/2019] [Indexed: 05/26/2023]
Abstract
Quick Response (QR) codes are a gateway to the Internet of things (IoT) due to the growing use of smartphones/mobile devices and its properties like fast and easy reading, capacity to store more information than that found in conventional codes, and versatility associated to the rapid and simplified access to information. Challenges encompass the enhancement of storage capacity limits and the evolution to a smart label for mobile devices decryption applications. Organic-inorganic hybrids with europium (Eu3+) and terbium (Tb3+) ions are processed as luminescent QR codes that are able to simultaneously double the storage capacity and sense temperature in real time using a photo taken with the charge-coupled device of a smartphone. The methodology based on the intensity of the red and green pixels of the photo yields a maximum relative sensitivity and minimum temperature uncertainty of the QR code sensor (293 K) of 5.14% · K-1 and 0.194 K, respectively. As an added benefit, the intriguing performance results from energy transfer involving the thermal coupling between the Tb3+-excited level (5D4) and the low-lying triplet states of organic ligands, being the first example of an intramolecular primary thermometer. A mobile app is developed to materialize the concept of temperature reading through luminescent QR codes.
Collapse
Affiliation(s)
- João F. C. B. Ramalho
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810‐193AveiroPortugal
- Department of Electronics, Telecommunications and InformaticsInstituto de TelecomunicaçõesUniversity of Aveiro3810‐193AveiroPortugal
| | - Sandra F. H. Correia
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810‐193AveiroPortugal
| | - Lianshe Fu
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810‐193AveiroPortugal
| | - Lara L. F. António
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810‐193AveiroPortugal
- Department of Electronics, Telecommunications and InformaticsInstituto de TelecomunicaçõesUniversity of Aveiro3810‐193AveiroPortugal
| | - Carlos D. S. Brites
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810‐193AveiroPortugal
| | - Paulo S. André
- Department of Electronics, Telecommunications and InformaticsInstituto de TelecomunicaçõesUniversity of Aveiro3810‐193AveiroPortugal
- Department of Electric and Computer Engineering and Instituto de TelecomunicaçõesInstituto Superior TécnicoUniversidade de Lisboa1049‐001LisbonPortugal
| | - Rute A. S. Ferreira
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810‐193AveiroPortugal
| | - Luís D. Carlos
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810‐193AveiroPortugal
| |
Collapse
|
88
|
Louis M, Thomas H, Gmelch M, Haft A, Fries F, Reineke S. Blue-Light-Absorbing Thin Films Showing Ultralong Room-Temperature Phosphorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807887. [PMID: 30721550 DOI: 10.1002/adma.201807887] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/17/2019] [Indexed: 05/05/2023]
Abstract
The development of organic materials displaying ultralong room-temperature phosphorescence (URTP) is a material design-rich research field with growing interest recently, as the luminescence characteristics have started to become interesting for applications. However, the development of systems performing under aerated conditions remains a formidable challenge. Furthermore, in the vast majority of molecular examples, the respective absorption bands of the compounds are in the near ultraviolet (UV) range, which makes UV excitation sources necessary. Herein, the synthesis and detailed analysis of new luminescent organic metal-free materials displaying, in addition to conventional fluorescence, phosphorescence with lifetimes up to 700 ms and tailored redshifted absorption bands, allowing for deep blue excitation, are reported. For the most promising targets, their application is demonstrated in the form of organic programmable tags that have been recently developed. These tags make use of reversible activation and deactivation of the URTP by toggling between the presence and absence of molecular oxygen. In this case, the activation can be achieved with visible light excitation, which greatly increases the use case scenarios by making UV sources obsolete.
Collapse
Affiliation(s)
- Marine Louis
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Heidi Thomas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Max Gmelch
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Anna Haft
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Felix Fries
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| |
Collapse
|