51
|
He K, Cai P, Ji S, Tang Z, Fang Z, Li W, Yu J, Su J, Luo Y, Zhang F, Wang T, Wang M, Wan C, Pan L, Ji B, Li D, Chen X. An Antidehydration Hydrogel Based on Zwitterionic Oligomers for Bioelectronic Interfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311255. [PMID: 38030137 DOI: 10.1002/adma.202311255] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/27/2023] [Indexed: 12/01/2023]
Abstract
Hydrogels are ideal interfacing materials for on-skin healthcare devices, yet their susceptibility to dehydration hinders their practical use. While incorporating hygroscopic metal salts can prevent dehydration and maintain ionic conductivity, concerns arise regarding metal toxicity due to the passage of small ions through the skin barrier. Herein, an antidehydration hydrogel enabled by the incorporation of zwitterionic oligomers into its network is reported. This hydrogel exhibits exceptional water retention properties, maintaining ≈88% of its weight at 40% relative humidity, 25 °C for 50 days and about 84% after being heated at 50 °C for 3 h. Crucially, the molecular weight design of the embedded oligomers prevents their penetration into the epidermis, as evidenced by experimental and molecular simulation results. The hydrogel allows stable signal acquisition in electrophysiological monitoring of humans and plants under low-humidity conditions. This research provides a promising strategy for the development of epidermis-safe and biocompatible antidehydration hydrogel interfaces for on-skin devices.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pingqiang Cai
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shaobo Ji
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zihan Tang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Zhou Fang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wenlong Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jing Yu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yifei Luo
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Feilong Zhang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liang Pan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Baohua Ji
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dechang Li
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
52
|
Ma J, Zhong J, Sun F, Liu B, Peng Z, Lian J, Wu X, Li L, Hao M, Zhang T. Hydrogel sensors for biomedical electronics. CHEMICAL ENGINEERING JOURNAL 2024; 481:148317. [DOI: 10.1016/j.cej.2023.148317] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
53
|
Wu F, Ren Y, Lv W, Liu X, Wang X, Wang C, Cao Z, Liu J, Wei J, Pang Y. Generating dual structurally and functionally skin-mimicking hydrogels by crosslinking cell-membrane compartments. Nat Commun 2024; 15:802. [PMID: 38280863 PMCID: PMC10821872 DOI: 10.1038/s41467-024-45006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
The skin is intrinsically a cell-membrane-compartmentalized hydrogel with high mechanical strength, potent antimicrobial ability, and robust immunological competence, which provide multiple protective effects to the body. Methods capable of preparing hydrogels that can simultaneously mimic the structure and function of the skin are highly desirable but have been proven to be a challenge. Here, dual structurally and functionally skin-mimicking hydrogels are generated by crosslinking cell-membrane compartments. The crosslinked network is formed via free radical polymerization using olefinic double bond-functionalized extracellular vesicles as a crosslinker. Due to the dissipation of stretching energy mediated by vesicular deformation, the obtained compartment-crosslinked network shows enhanced mechanical strength compared to hydrogels crosslinked by regular divinyl monomers. Biomimetic hydrogels also exhibit specific antibacterial activity and adequate ability to promote the maturation and activation of dendritic cells given the existence of numerous extracellular vesicle-associated bioactive substances. In addition, the versatility of this approach to tune both the structure and function of the resulting hydrogels is demonstrated through introducing a second network by catalyst-free click reaction-mediated crosslinking between alkyne-double-ended polymers and azido-decorated extracellular vesicles. This study provides a platform to develop dual structure- and function-controllable skin-inspired biomaterials.
Collapse
Affiliation(s)
- Feng Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yusheng Ren
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Lv
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Xiaobing Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Xinyue Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuhan Wang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenping Cao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyao Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
54
|
Lee J, Hwang GW, Lee BS, Park NJ, Kim SN, Lim D, Kim DW, Lee YS, Park HK, Kim S, Kim JW, Yi GR, Kim KH, Pang C. Artificial Octopus-Limb-Like Adhesive Patches for Cupping-Driven Transdermal Delivery with Nanoscale Control of Stratum Corneum. ACS NANO 2024. [PMID: 38254288 DOI: 10.1021/acsnano.3c09304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Drug delivery through complex skin is currently being studied using various innovative structural and material strategies due to the low delivery efficiency of the multilayered stratum corneum as a barrier function. Existing microneedle-based or electrical stimulation methods have made considerable advances, but they still have technical limitations to reduce skin discomfort and increase user convenience. This work introduces the design, operation mechanism, and performance of noninvasive transdermal patch with dual-layered suction chamber cluster (d-SCC) mimicking octopus-limb capable of wet adhesion with enhanced adhesion hysteresis and physical stimulation. The d-SCC facilitates cupping-driven drug delivery through the skin with only finger pressure. Our device enables nanoscale deformation control of stratum corneum of the engaged skin, allowing for efficient transport of diverse drugs through the stratum corneum without causing skin discomfort. Compared without the cupping effect of d-SCC, applying negative pressure to the porcine, human cadaver, and artificial skin for 30 min significantly improved the penetration depth of liquid-formulated subnanoscale medicines up to 44, 56, and 139%. After removing the cups, an additional acceleration in delivery to the skin was observed. The feasibility of d-SCC was demonstrated in an atopic dermatitis-induced model with thickened stratum corneum, contributing to the normalization of immune response.
Collapse
Affiliation(s)
- Jihyun Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gui Won Hwang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - No-June Park
- Natural Products Research Institute, Korea Institute of Science and Technology, 679, Saimdangro, Gangneung-si, Gangwon-do 25451, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, 679, Saimdangro, Gangneung-si, Gangwon-do 25451, Republic of Korea
| | - Dohyun Lim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Da Wan Kim
- Department of Electronic Engineering, Korea National University of Transportation, Chungju-si, Chungbuk 27469, Republic of Korea
| | - Yeon Soo Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyoung-Ki Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Seulgi Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
55
|
Wang Q, Li Y, Lin Y, Sun Y, Bai C, Guo H, Fang T, Hu G, Lu Y, Kong D. A Generic Strategy to Create Mechanically Interlocked Nanocomposite/Hydrogel Hybrid Electrodes for Epidermal Electronics. NANO-MICRO LETTERS 2024; 16:87. [PMID: 38214840 PMCID: PMC10786775 DOI: 10.1007/s40820-023-01314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/02/2023] [Indexed: 01/13/2024]
Abstract
Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body. As the primary compliant conductors used in these devices, metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin. Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces. However, chemical modifications are typically needed for reliable bonding, which can alter their original properties. To overcome this limitation, this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes. In this physical process, soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface, which forms an interpenetrating network with the hydrogel. The microfoam-enabled bonding strategy is generally compatible with various polymers. The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids. These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels. They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing muscle contractions. Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems.
Collapse
Affiliation(s)
- Qian Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yanyan Li
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yong Lin
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yuping Sun
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Chong Bai
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Haorun Guo
- College of Chemical Engineering and Technology, Engineering Research Center of Seawater Utilization Technology of Ministry of Education, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Ting Fang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Gaohua Hu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yanqing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China.
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, 210093, People's Republic of China.
| | - Desheng Kong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China.
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
56
|
Zhang Z, Yang J, Wang H, Wang C, Gu Y, Xu Y, Lee S, Yokota T, Haick H, Someya T, Wang Y. A 10-micrometer-thick nanomesh-reinforced gas-permeable hydrogel skin sensor for long-term electrophysiological monitoring. SCIENCE ADVANCES 2024; 10:eadj5389. [PMID: 38198560 PMCID: PMC10781413 DOI: 10.1126/sciadv.adj5389] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Hydrogel-enabled skin bioelectronics that can continuously monitor health for extended periods is crucial for early disease detection and treatment. However, it is challenging to engineer ultrathin gas-permeable hydrogel sensors that can self-adhere to the human skin for long-term daily use (>1 week). Here, we present a ~10-micrometer-thick polyurethane nanomesh-reinforced gas-permeable hydrogel sensor that can self-adhere to the human skin for continuous and high-quality electrophysiological monitoring for 8 days under daily life conditions. This research involves two key steps: (i) material design by gelatin-based thermal-dependent phase change hydrogels and (ii) robust thinness geometry achieved through nanomesh reinforcement. The resulting ultrathin hydrogels exhibit a thickness of ~10 micrometers with superior mechanical robustness, high skin adhesion, gas permeability, and anti-drying performance. To highlight the potential applications in early disease detection and treatment that leverage the collective features, we demonstrate the use of ultrathin gas-permeable hydrogels for long-term, continuous high-precision electrophysiological monitoring under daily life conditions up to 8 days.
Collapse
Affiliation(s)
- Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Haoyang Wang
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Chunya Wang
- State Key Laboratory of Heavy Oil Processing, College of Carbon Neutrality Future Technology, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yuheng Gu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yumiao Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Sunghoon Lee
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Guangdong Provincial Key Laboratory of Science and Engineering for Health and Medicine, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
57
|
Ye ZT, Tseng SF, Tsou SX, Tsai CW. High-sensitivity flip chip blue Mini-LEDs miniaturized optical instrument for non-invasive glucose detection. DISCOVER NANO 2024; 19:6. [PMID: 38175421 PMCID: PMC10766880 DOI: 10.1186/s11671-023-03948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The colorimetric detection of glucose typically involves a peroxidase reaction producing a color, which is then recorded and analyzed. However, enzyme detection has difficulties with purification and storage. In addition, replacing enzyme detection with chemical methods involves time-consuming steps such as centrifugation and purification and the optical instruments used for colorimetric detection are often bulky and not portable. In this study, ammonium metavanadate and sulfuric acid were used to prepare the detection solution instead of peroxidase to produce color. We also analyzed the effect of different concentrations of detection solution on absorbance sensitivity. Finally, a flip chip blue Mini-LEDs miniaturized optical instrument (FC blue Mini-LEDs MOI) was designed for glucose detection using optics fiber, collimating lenses, a miniaturized spectrometer, and an FC Blue Mini-LEDs with a center wavelength of 459 nm. While detecting glucose solutions in the concentration range of 0.1-10 mM by the developed MOI, the regression equation of y = 0.0941x + 0.1341, R2 of 0.9744, the limit of detection was 2.15 mM, and the limit of quantification was 7.163 mM. Furthermore, the preparation of the detection solution only takes 10 min, and the absorbance sensitivity of the optimized detection solution could be increased by 2.3 times. The detection solution remained stable with only a 0.6% decrease in absorbance compared to the original after storing it in a refrigerated environment at 3 °C for 14 days. The method proposed in this study for detecting glucose using FC blue light Mini-LEDs MOI reduces the use of peroxidase. In addition, it has a wide detection range that includes blood as well as non-invasive saliva and tear fluids, providing patients with a miniaturized, highly sensitive, and quantifiable glucose detection system.
Collapse
Affiliation(s)
- Zhi Ting Ye
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan, ROC.
| | - Shen Fu Tseng
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan, ROC
| | - Shang Xuan Tsou
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan, ROC
| | - Chun Wei Tsai
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan, ROC.
| |
Collapse
|
58
|
Sayyad PW, Park SJ, Ha TJ. Bioinspired nanoplatforms for human-machine interfaces: Recent progress in materials and device applications. Biotechnol Adv 2024; 70:108297. [PMID: 38061687 DOI: 10.1016/j.biotechadv.2023.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The panoramic characteristics of human-machine interfaces (HMIs) have prompted the needs to update the biotechnology community with the recent trends, developments, and future research direction toward next-generation bioelectronics. Bioinspired materials are promising for integrating various bioelectronic devices to realize HMIs. With the advancement of scientific biotechnology, state-of-the-art bioelectronic applications have been extensively investigated to improve the quality of life by developing and integrating bioinspired nanoplatforms in HMIs. This review highlights recent trends and developments in the field of biotechnology based on bioinspired nanoplatforms by demonstrating recently explored materials and cutting-edge device applications. Section 1 introduces the recent trends and developments of bioinspired nanomaterials for HMIs. Section 2 reviews various flexible, wearable, biocompatible, and biodegradable nanoplatforms for bioinspired applications. Section 3 furnishes recently explored substrates as carriers for advanced nanomaterials in developing HMIs. Section 4 addresses recently invented biomimetic neuroelectronic, nanointerfaces, biointerfaces, and nano/microfluidic wearable bioelectronic devices for various HMI applications, such as healthcare, biopotential monitoring, and body fluid monitoring. Section 5 outlines designing and engineering of bioinspired sensors for HMIs. Finally, the challenges and opportunities for next-generation bioinspired nanoplatforms in extending the potential on HMIs are discussed for a near-future scenario. We believe this review can stimulate the integration of bioinspired nanoplatforms into the HMIs in addition to wearable electronic skin and health-monitoring devices while addressing prevailing and future healthcare and material-related problems in biotechnologies.
Collapse
Affiliation(s)
- Pasha W Sayyad
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Sang-Joon Park
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Tae-Jun Ha
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
59
|
Bai W, Zhang L, Xing S, Yin H, Weisbecker H, Tran HT, Guo Z, Han T, Wang Y, Liu Y, Wu Y, Xie W, Huang C, Luo W, Demaesschalck M, McKinney C, Hankley S, Huang A, Brusseau B, Messenger J, Zou Y. Skin-inspired, sensory robots for electronic implants. RESEARCH SQUARE 2023:rs.3.rs-3665801. [PMID: 38196588 PMCID: PMC10775366 DOI: 10.21203/rs.3.rs-3665801/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Living organisms with motor and sensor units integrated seamlessly demonstrate effective adaptation to dynamically changing environments. Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in these organisms, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle, that naturally couples multifunctional sensing and on-demand actuation in a biocompatible platform. We introduce an in situ solution-based method to create an e-skin layer with diverse sensing materials (e.g., silver nanowires, reduced graphene oxide, MXene, and conductive polymers) incorporated within a polymer matrix (e.g., polyimide), imitating complex skin receptors to perceive various stimuli. Biomimicry designs (e.g., starfish and chiral seedpods) of the robots enable various motions (e.g., bending, expanding, and twisting) on demand and realize good fixation and stress-free contact with tissues. Furthermore, integration of a battery-free wireless module into these robots enables operation and communication without tethering, thus enhancing the safety and biocompatibility as minimally invasive implants. Demonstrations range from a robotic cuff encircling a blood vessel for detecting blood pressure, to a robotic gripper holding onto a bladder for tracking bladder volume, an ingestible robot residing inside stomach for pH sensing and on-site drug delivery, and a robotic patch wrapping onto a beating heart for quantifying cardiac contractility, temperature and applying cardiac pacing, highlighting the application versatilities and potentials of the nature-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.
Collapse
Affiliation(s)
- Wubin Bai
- University of North Carolina, Chapel Hill
| | | | | | | | | | | | | | | | | | | | - Yizhang Wu
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Lee D, Song J, Kim J, Lee J, Son D, Shin M. Soft and Conductive Polyethylene Glycol Hydrogel Electrodes for Electrocardiogram Monitoring. Gels 2023; 9:957. [PMID: 38131943 PMCID: PMC10742586 DOI: 10.3390/gels9120957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
The measurement of biosignals in the clinical and healthcare fields is fundamental; however, conventional electrodes pose challenges such as incomplete skin contact and skin-related issues, hindering accurate biosignal measurement. To address these challenges, conductive hydrogels, which are valuable owing to their biocompatibility and flexibility, have been widely developed and explored for electrode applications. In this study, we fabricated a conductive hydrogel by mixing polyethylene glycol diacrylate (PEGDA) with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) polymers dissolved in deionized water, followed by light-triggered crosslinking. Notably, this study pioneered the use of a PEGDA-PEDOT:PSS hydrogel for electrocardiogram (ECG) monitoring- a type of biosignal. The resulting PEGDA-PEDOT:PSS hydrogel demonstrated remarkable conductivity while closely approximating the modulus of skin elasticity. Additionally, it demonstrated biocompatibility and a high signal-to-noise ratio in the waveforms. This study confirmed the exceptional suitability of the PEGDA-PEDOT:PSS hydrogel for accurate biosignal measurements with potential applications in various wearable devices designed for biosignal monitoring.
Collapse
Affiliation(s)
- Dongik Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (D.L.); (J.K.); (J.L.)
| | - Jihyang Song
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea;
| | - Jungwoo Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (D.L.); (J.K.); (J.L.)
| | - Jaebeom Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (D.L.); (J.K.); (J.L.)
| | - Donghee Son
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea;
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (D.L.); (J.K.); (J.L.)
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
61
|
Chen F, Zhuang Q, Ding Y, Zhang C, Song X, Chen Z, Zhang Y, Mei Q, Zhao X, Huang Q, Zheng Z. Wet-Adaptive Electronic Skin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305630. [PMID: 37566544 DOI: 10.1002/adma.202305630] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Skin electronics provides remarkable opportunities for non-invasive and long-term monitoring of a wide variety of biophysical and physiological signals that are closely related to health, medicine, and human-machine interactions. Nevertheless, conventional skin electronics fabricated on elastic thin films are difficult to adapt to the wet microenvironments of the skin: Elastic thin films are non-permeable, which block the skin perspiration; Elastic thin films are difficult to adhere to wet skin; Most skin electronics are difficult to work underwater. Here, a Wet-Adaptive Electronic Skin (WADE-skin) is reported, which consists of a next-to-skin wet-adhesive fibrous layer, a next-to-air waterproof fibrous layer, and a stretchable and permeable liquid metal electrode layer. While the electronic functionality is determined by the electrode design, this WADE-skin simultaneously offers superb stretchability, wet adhesion, permeability, biocompatibility, and waterproof property. The WADE-skin can rapidly adhere to human skin after contact for a few seconds and stably maintain the adhesion over weeks even under wet conditions, without showing any negative effect to the skin health. The use of WADE-skin is demonstrated for the stable recording of electrocardiogram during intensive sweating as well as underwater activities, and as the strain sensor for the underwater operation of virtual reality-mediated human-machine interactions.
Collapse
Affiliation(s)
- Fan Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Qiuna Zhuang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Chi Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Xian Song
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Zijian Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Quanjin Mei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
62
|
Xu H, Zheng W, Zhang Y, Zhao D, Wang L, Zhao Y, Wang W, Yuan Y, Zhang J, Huo Z, Wang Y, Zhao N, Qin Y, Liu K, Xi R, Chen G, Zhang H, Tang C, Yan J, Ge Q, Cheng H, Lu Y, Gao L. A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation. Nat Commun 2023; 14:7769. [PMID: 38012169 PMCID: PMC10682047 DOI: 10.1038/s41467-023-43664-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
Post-surgical treatments of the human throat often require continuous monitoring of diverse vital and muscle activities. However, wireless, continuous monitoring and analysis of these activities directly from the throat skin have not been developed. Here, we report the design and validation of a fully integrated standalone stretchable device platform that provides wireless measurements and machine learning-based analysis of diverse vibrations and muscle electrical activities from the throat. We demonstrate that the modified composite hydrogel with low contact impedance and reduced adhesion provides high-quality long-term monitoring of local muscle electrical signals. We show that the integrated triaxial broad-band accelerometer also measures large body movements and subtle physiological activities/vibrations. We find that the combined data processed by a 2D-like sequential feature extractor with fully connected neurons facilitates the classification of various motion/speech features at a high accuracy of over 90%, which adapts to the data with noise from motion artifacts or the data from new human subjects. The resulting standalone stretchable device with wireless monitoring and machine learning-based processing capabilities paves the way to design and apply wearable skin-interfaced systems for the remote monitoring and treatment evaluation of various diseases.
Collapse
Affiliation(s)
- Hongcheng Xu
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Weihao Zheng
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Yang Zhang
- Department of Medical Electronics, School of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China
| | - Daqing Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Lu Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China.
| | - Yangbo Yuan
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Ji Zhang
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Zimin Huo
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Yuejiao Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Ningjuan Zhao
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Yuxin Qin
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Ke Liu
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Ruida Xi
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Gang Chen
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Haiyan Zhang
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Junyu Yan
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yang Lu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, Hong Kong SAR.
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
63
|
Bian Z, Dai C, Chu F, Hu A, Xue L, Xu Q, Feng Y, Zhou B. pH biosensors based on hydrogel optical fiber. APPLIED OPTICS 2023; 62:8272-8278. [PMID: 38037929 DOI: 10.1364/ao.501549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/09/2023] [Indexed: 12/02/2023]
Abstract
This paper presents a hydrogel optical fiber fluorescence pH sensor doped with 5(6)-carboxyfluorescein (5(6)-FAM). The hydrogel optical fiber was fabricated with 2-hydroxy-2-methylpropiophenone as a photoinitiator, with different concentrations of polyethylene glycol diacrylate (PEGDA) for the core and cladding. A pH-sensitive fluorescence indicator 5(6)-FAM was doped into the core of the fiber. The prepared hydrogel optical fiber pH sensor showed good response within the pH range of 5.0-9.0. The linear range of the pH sensor is 6.0 to 8.0, with R 2=0.9904; within this range, the sensor shows good repeatability and reversibility, and the resolution is 0.07 pH units. The pHs of pork tissues soaked in different pH buffers were detected by the hydrogel optical fiber pH sensor; the linearity is 0.9828 when the pork tissue pH is in the range of 6.0-7.5. Due to the good ion permeability and biocompatibility of the hydrogel, this hydrogel optical fiber pH sensor is expected to be used in biomedical applications.
Collapse
|
64
|
Jin S, Choi H, Seong D, You CL, Kang JS, Rho S, Lee WB, Son D, Shin M. Injectable tissue prosthesis for instantaneous closed-loop rehabilitation. Nature 2023; 623:58-65. [PMID: 37914945 DOI: 10.1038/s41586-023-06628-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/08/2023] [Indexed: 11/03/2023]
Abstract
To construct tissue-like prosthetic materials, soft electroactive hydrogels are the best candidate owing to their physiological mechanical modulus, low electrical resistance and bidirectional stimulating and recording capability of electrophysiological signals from biological tissues1,2. Nevertheless, until now, bioelectronic devices for such prostheses have been patch type, which cannot be applied onto rough, narrow or deep tissue surfaces3-5. Here we present an injectable tissue prosthesis with instantaneous bidirectional electrical conduction in the neuromuscular system. The soft and injectable prosthesis is composed of a biocompatible hydrogel with unique phenylborate-mediated multiple crosslinking, such as irreversible yet freely rearrangeable biphenyl bonds and reversible coordinate bonds with conductive gold nanoparticles formed in situ by cross-coupling. Closed-loop robot-assisted rehabilitation by injecting this prosthetic material is successfully demonstrated in the early stage of severe muscle injury in rats, and accelerated tissue repair is achieved in the later stage.
Collapse
Affiliation(s)
- Subin Jin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Heewon Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Duhwan Seong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chang-Lim You
- Department of Molecular Cell Biology, Single Cell Network Research Center, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seunghyok Rho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Donghee Son
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Superintelligence Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
65
|
Ge Z, Guo W, Tao Y, Sun H, Meng X, Cao L, Zhang S, Liu W, Akhtar ML, Li Y, Ren Y. Wireless and Closed-Loop Smart Dressing for Exudate Management and On-Demand Treatment of Chronic Wounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304005. [PMID: 37547949 DOI: 10.1002/adma.202304005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/09/2023] [Indexed: 08/08/2023]
Abstract
Chronic wounds have become a significant threat to people's physical and mental health and have increased the burden of social medical care. Intelligent wound dressing (IWD) with wound condition monitoring and closed-loop on-demand drug therapy can shorten the healing process and alleviate patient suffering. However, single-function wound dressings cannot meet the current needs of chronic wound treatment. Here, a wearable IWD consisting of wound exudate management, sensor monitoring, closed-loop therapy, and flexible circuit modules is reported, which can achieve effective synergy between wound exudate management and on-demand wound therapy. The dressing is attached to the wound site, and the wound exudate is spontaneously pumped into the microfluidic channel for storage. Meanwhile, the IWD can detect the state of the wound through the temperature and humidity sensor, and use this as feedback to control the liquid metal (LM) heater through a smartphone, thereby realizing the on-demand drug release from the hydrogel. In a mouse model of infected wounds, IWD accelerates wound healing by reducing inflammatory responses, promoting angiogenesis and collagen deposition.
Collapse
Affiliation(s)
- Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Wenshang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haoxiu Sun
- School of Life Sciences, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiangyu Meng
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Liangyu Cao
- School of Life Sciences, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Shanguo Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Weiyu Liu
- School of Electronics and Control Engineering, Chang'an University, Xi'an, 710064, P. R. China
| | | | - Yu Li
- School of Life Sciences, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
66
|
Kim K, Yang H, Lee J, Lee WG. Metaverse Wearables for Immersive Digital Healthcare: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303234. [PMID: 37740417 PMCID: PMC10625124 DOI: 10.1002/advs.202303234] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/15/2023] [Indexed: 09/24/2023]
Abstract
The recent exponential growth of metaverse technology has been instrumental in reshaping a myriad of sectors, not least digital healthcare. This comprehensive review critically examines the landscape and future applications of metaverse wearables toward immersive digital healthcare. The key technologies and advancements that have spearheaded the metamorphosis of metaverse wearables are categorized, encapsulating all-encompassed extended reality, such as virtual reality, augmented reality, mixed reality, and other haptic feedback systems. Moreover, the fundamentals of their deployment in assistive healthcare (especially for rehabilitation), medical and nursing education, and remote patient management and treatment are investigated. The potential benefits of integrating metaverse wearables into healthcare paradigms are multifold, encompassing improved patient prognosis, enhanced accessibility to high-quality care, and high standards of practitioner instruction. Nevertheless, these technologies are not without their inherent challenges and untapped opportunities, which span privacy protection, data safeguarding, and innovation in artificial intelligence. In summary, future research trajectories and potential advancements to circumvent these hurdles are also discussed, further augmenting the incorporation of metaverse wearables within healthcare infrastructures in the post-pandemic era.
Collapse
Affiliation(s)
- Kisoo Kim
- Intelligent Optical Module Research CenterKorea Photonics Technology Institute (KOPTI)Gwangju61007Republic of Korea
| | - Hyosill Yang
- Department of NursingCollege of Nursing ScienceKyung Hee UniversitySeoul02447Republic of Korea
| | - Jihun Lee
- Department of Mechanical EngineeringCollege of EngineeringKyung Hee UniversityYongin17104Republic of Korea
| | - Won Gu Lee
- Department of Mechanical EngineeringCollege of EngineeringKyung Hee UniversityYongin17104Republic of Korea
| |
Collapse
|
67
|
Zhang Z, Zhu Z, Zhou P, Zou Y, Yang J, Haick H, Wang Y. Soft Bioelectronics for Therapeutics. ACS NANO 2023; 17:17634-17667. [PMID: 37677154 DOI: 10.1021/acsnano.3c02513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Soft bioelectronics play an increasingly crucial role in high-precision therapeutics due to their softness, biocompatibility, clinical accuracy, long-term stability, and patient-friendliness. In this review, we provide a comprehensive overview of the latest representative therapeutic applications of advanced soft bioelectronics, ranging from wearable therapeutics for skin wounds, diabetes, ophthalmic diseases, muscle disorders, and other diseases to implantable therapeutics against complex diseases, such as cardiac arrhythmias, cancer, neurological diseases, and others. We also highlight key challenges and opportunities for future clinical translation and commercialization of soft therapeutic bioelectronics toward personalized medicine.
Collapse
Affiliation(s)
- Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zhongtai Zhu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yunfan Zou
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| |
Collapse
|
68
|
Zhang T, Liu N, Xu J, Liu Z, Zhou Y, Yang Y, Li S, Huang Y, Jiang S. Flexible electronics for cardiovascular healthcare monitoring. Innovation (N Y) 2023; 4:100485. [PMID: 37609559 PMCID: PMC10440597 DOI: 10.1016/j.xinn.2023.100485] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the most urgent threats to humans worldwide, which are responsible for almost one-third of global mortality. Over the last decade, research on flexible electronics for monitoring and treatment of CVDs has attracted tremendous attention. In contrast to conventional medical instruments in hospitals that are usually bulky, hard to move, monofunctional, and time-consuming, flexible electronics are capable of continuous, noninvasive, real-time, and portable monitoring. Notable progress has been made in this emerging field, and thus a number of significant achievements and concomitant research prospects deserve attention for practical implementation. Here, we comprehensively review the latest progress of flexible electronics for CVDs, focusing on new functions provided by flexible electronics. First, the characteristics of CVDs and flexible electronics and the foundation of their combination are briefly reviewed. Then, four representative applications of flexible electronics for CVDs are elaborated: blood pressure (BP) monitoring, electrocardiogram (ECG) monitoring, echocardiogram monitoring, and direct epicardium monitoring. Their operational principles, progress, merits and demerits, and future efforts are discussed. Finally, the remaining challenges and opportunities for flexible electronics for cardiovascular healthcare are outlined.
Collapse
Affiliation(s)
- Tianqi Zhang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zeye Liu
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shoujun Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100037, China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100037, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| |
Collapse
|
69
|
Li X, Cui T, Li X, Liu H, Li D, Jian J, Li Z, Yang Y, Ren T. Wearable Temperature Sensors Based on Reduced Graphene Oxide Films. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5952. [PMID: 37687645 PMCID: PMC10488796 DOI: 10.3390/ma16175952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
With the development of medical technology and increasing demands of healthcare monitoring, wearable temperature sensors have gained widespread attention because of their portability, flexibility, and capability of conducting real-time and continuous signal detection. To achieve excellent thermal sensitivity, high linearity, and a fast response time, the materials of sensors should be chosen carefully. Thus, reduced graphene oxide (rGO) has become one of the most popular materials for temperature sensors due to its exceptional thermal conductivity and sensitive resistance changes in response to different temperatures. Moreover, by using the corresponding preparation methods, rGO can be easily combined with various substrates, which has led to it being extensively applied in the wearable field. This paper reviews the state-of-the-art advances in wearable temperature sensors based on rGO films and summarizes their sensing mechanisms, structure designs, functional material additions, manufacturing processes, and performances. Finally, the possible challenges and prospects of rGO-based wearable temperature sensors are briefly discussed.
Collapse
Affiliation(s)
- Xinyue Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (X.L.); (T.C.); (X.L.); (D.L.); (J.J.); (Z.L.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China;
| | - Tianrui Cui
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (X.L.); (T.C.); (X.L.); (D.L.); (J.J.); (Z.L.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China;
| | - Xin Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (X.L.); (T.C.); (X.L.); (D.L.); (J.J.); (Z.L.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China;
| | - Houfang Liu
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China;
| | - Ding Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (X.L.); (T.C.); (X.L.); (D.L.); (J.J.); (Z.L.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China;
| | - Jinming Jian
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (X.L.); (T.C.); (X.L.); (D.L.); (J.J.); (Z.L.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China;
| | - Zhen Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (X.L.); (T.C.); (X.L.); (D.L.); (J.J.); (Z.L.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China;
| | - Yi Yang
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (X.L.); (T.C.); (X.L.); (D.L.); (J.J.); (Z.L.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China;
| | - Tianling Ren
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (X.L.); (T.C.); (X.L.); (D.L.); (J.J.); (Z.L.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China;
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
70
|
Won D, Bang J, Choi SH, Pyun KR, Jeong S, Lee Y, Ko SH. Transparent Electronics for Wearable Electronics Application. Chem Rev 2023; 123:9982-10078. [PMID: 37542724 PMCID: PMC10452793 DOI: 10.1021/acs.chemrev.3c00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 08/07/2023]
Abstract
Recent advancements in wearable electronics offer seamless integration with the human body for extracting various biophysical and biochemical information for real-time health monitoring, clinical diagnostics, and augmented reality. Enormous efforts have been dedicated to imparting stretchability/flexibility and softness to electronic devices through materials science and structural modifications that enable stable and comfortable integration of these devices with the curvilinear and soft human body. However, the optical properties of these devices are still in the early stages of consideration. By incorporating transparency, visual information from interfacing biological systems can be preserved and utilized for comprehensive clinical diagnosis with image analysis techniques. Additionally, transparency provides optical imperceptibility, alleviating reluctance to wear the device on exposed skin. This review discusses the recent advancement of transparent wearable electronics in a comprehensive way that includes materials, processing, devices, and applications. Materials for transparent wearable electronics are discussed regarding their characteristics, synthesis, and engineering strategies for property enhancements. We also examine bridging techniques for stable integration with the soft human body. Building blocks for wearable electronic systems, including sensors, energy devices, actuators, and displays, are discussed with their mechanisms and performances. Lastly, we summarize the potential applications and conclude with the remaining challenges and prospects.
Collapse
Affiliation(s)
- Daeyeon Won
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Junhyuk Bang
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seok Hwan Choi
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyung Rok Pyun
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Youngseok Lee
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute
of Engineering Research/Institute of Advanced Machinery and Design
(SNU-IAMD), Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
71
|
Tao K, Yu J, Zhang J, Bao A, Hu H, Ye T, Ding Q, Wang Y, Lin H, Wu J, Chang H, Zhang H, Yuan W. Deep-Learning Enabled Active Biomimetic Multifunctional Hydrogel Electronic Skin. ACS NANO 2023; 17:16160-16173. [PMID: 37523784 DOI: 10.1021/acsnano.3c05253] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
There is huge demand for recreating human skin with the functions of epidermis and dermis for interactions with the physical world. Herein, a biomimetic, ultrasensitive, and multifunctional hydrogel-based electronic skin (BHES) was proposed. Its epidermis function was mimicked using poly(ethylene terephthalate) with nanoscale wrinkles, enabling accurate identification of materials through the capabilities to gain/lose electrons during contact electrification. Internal mechanoreceptor was mimicked by interdigital silver electrodes with stick-slip sensing capabilities to identify textures/roughness. The dermis function was mimicked by patterned microcone hydrogel, achieving pressure sensors with high sensitivity (17.32 mV/Pa), large pressure range (20-5000 Pa), low detection limit, and fast response (10 ms)/recovery time (17 ms). Assisted by deep learning, this BHES achieved high accuracy and minimized interference in identifying materials (95.00% for 10 materials) and textures (97.20% for four roughness cases). By integrating signal acquisition/processing circuits, a wearable drone control system was demonstrated with three-degree-of-freedom movement and enormous potentials for soft robots, self-powered human-machine interaction interfaces of digital twins.
Collapse
Affiliation(s)
- Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Building, No.45th, Gaoxin South ninth Road, Nanshan District, Shenzhen City 518063, China
| | - Jiahao Yu
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Building, No.45th, Gaoxin South ninth Road, Nanshan District, Shenzhen City 518063, China
| | - Jiyuan Zhang
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Building, No.45th, Gaoxin South ninth Road, Nanshan District, Shenzhen City 518063, China
| | - Aocheng Bao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haowen Hu
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaozheng Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Haobin Lin
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
| | - Honglong Chang
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Weizheng Yuan
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
72
|
Li Y, Li N, Liu W, Prominski A, Kang S, Dai Y, Liu Y, Hu H, Wai S, Dai S, Cheng Z, Su Q, Cheng P, Wei C, Jin L, Hubbell JA, Tian B, Wang S. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat Commun 2023; 14:4488. [PMID: 37495580 PMCID: PMC10372055 DOI: 10.1038/s41467-023-40191-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Soft and stretchable electronics have emerged as highly promising tools for biomedical diagnosis and biological studies, as they interface intimately with the human body and other biological systems. Most stretchable electronic materials and devices, however, still have Young's moduli orders of magnitude higher than soft bio-tissues, which limit their conformability and long-term biocompatibility. Here, we present a design strategy of soft interlayer for allowing the use of existing stretchable materials of relatively high moduli to versatilely realize stretchable devices with ultralow tissue-level moduli. We have demonstrated stretchable transistor arrays and active-matrix circuits with moduli below 10 kPa-over two orders of magnitude lower than the current state of the art. Benefiting from the increased conformability to irregular and dynamic surfaces, the ultrasoft device created with the soft interlayer design realizes electrophysiological recording on an isolated heart with high adaptability, spatial stability, and minimal influence on ventricle pressure. In vivo biocompatibility tests also demonstrate the benefit of suppressing foreign-body responses for long-term implantation. With its general applicability to diverse materials and devices, this soft-interlayer design overcomes the material-level limitation for imparting tissue-level softness to a variety of bioelectronic devices.
Collapse
Affiliation(s)
- Yang Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Nan Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Wei Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Seounghun Kang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Yahao Dai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Youdi Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Huawei Hu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Shinya Wai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Shilei Dai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Zhe Cheng
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Qi Su
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Ping Cheng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Chen Wei
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lihua Jin
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA.
| |
Collapse
|
73
|
Yu H, Li H, Sun X, Pan L. Biomimetic Flexible Sensors and Their Applications in Human Health Detection. Biomimetics (Basel) 2023; 8:293. [PMID: 37504181 PMCID: PMC10807369 DOI: 10.3390/biomimetics8030293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Bionic flexible sensors are a new type of biosensor with high sensitivity, selectivity, stability, and reliability to achieve detection in complex natural and physiological environments. They provide efficient, energy-saving and convenient applications in medical monitoring and diagnosis, environmental monitoring, and detection and identification. Combining sensor devices with flexible substrates to imitate flexible structures in living organisms, thus enabling the detection of various physiological signals, has become a hot topic of interest. In the field of human health detection, the application of bionic flexible sensors is flourishing and will evolve into patient-centric diagnosis and treatment in the future of healthcare. In this review, we provide an up-to-date overview of bionic flexible devices for human health detection applications and a comprehensive summary of the research progress and potential of flexible sensors. First, we evaluate the working mechanisms of different classes of bionic flexible sensors, describing the selection and fabrication of bionic flexible materials and their excellent electrochemical properties; then, we introduce some interesting applications for monitoring physical, electrophysiological, chemical, and biological signals according to more segmented health fields (e.g., medical diagnosis, rehabilitation assistance, and sports monitoring). We conclude with a summary of the advantages of current results and the challenges and possible future developments.
Collapse
Affiliation(s)
| | | | - Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
74
|
Ouyang X, Huang C, Cheng S, Zhang P, Chen W. Microfluidic-Based Continuous Fabrication of Ultrathin Hydrogel Films with Controllable Thickness. Polymers (Basel) 2023; 15:2905. [PMID: 37447551 DOI: 10.3390/polym15132905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Ultrathin hydrogel films composed of cross-linked polymer networks swollen by water, with soft and moisturized features similar to biological tissue, play a vital role in flexible biosensors and wearable electronics. However, achieving efficient and continuous fabrication of such films remains a challenge. Here, we present a microfluidic-based strategy for the continuous fabrication of free-standing ultrathin hydrogel films by using laminar flow, which can be precisely controlled in the micrometer scale. Compared with conventional methods, the microfluidic-based method shows advantages in producing hydrogel films with a high homogeneity as well as maintaining the structural integrity, without the need of supporting substrates and sophisticated equipment. This strategy allows the precise control over the thickness of the hydrogel films ranging from 15 ± 0.2 to 39 ± 0.5 μm, by adjusting the height of the microfluidic channels, with predictable opportunities for scaling up. Therefore, our strategy provides a facile route to produce advanced thin polymer films in a universal, steerable, and scalable manner and will promote the applications of thin polymer films in biosensors and wearable electronics.
Collapse
Affiliation(s)
- Xiaozhi Ouyang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Cheng Huang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Sha Cheng
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Pengchao Zhang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
| | - Wen Chen
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
75
|
Balakrishnan G, Song J, Khair AS, Bettinger CJ. Poisson-Nernst-Planck framework for modelling ionic strain and temperature sensors. J Mater Chem B 2023; 11:5544-5551. [PMID: 36810661 PMCID: PMC10293092 DOI: 10.1039/d2tb02819k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stimulation of excitable tissue because of the congruence in electro-mechanical properties across the tissue-material interface. However, interfacing ionic hydrogels with conventional DC voltage-based circuits poses several technical challenges including electrode delamination, electrochemical reaction, and drifting contact impedance. Utilizing alternating voltages to probe ion-relaxation dynamics has been shown to be a viable alternative for strain and temperature sensing. In this work, we present a Poisson-Nernst-Planck theoretical framework to model ion transport under alternating fields within conductors subject to varying strains and temperatures. Using simulated impedance spectra, we develop key insights about the relationship between frequency of the applied voltage perturbation and sensitivity. Lastly, we perform preliminary experimental characterization to demonstrate the applicability of the proposed theory. We believe this work provides a useful perspective that is applicable to the design of a variety of ionic hydrogel-based sensors for biomedical and soft robotic applications.
Collapse
Affiliation(s)
- Gaurav Balakrishnan
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
| | - Jiwoo Song
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
| | - Aditya S Khair
- Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Christopher J Bettinger
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
- Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
76
|
Abstract
Owing to superior softness, wetness, responsiveness, and biocompatibility, bulk hydrogels are being intensively investigated for versatile functions in devices and machines including sensors, actuators, optics, and coatings. The one-dimensional (1D) hydrogel fibers possess the metrics from both the hydrogel materials and structural topology, endowing them with extraordinary mechanical, sensing, breathable and weavable properties. As no comprehensive review has been reported for this nascent field, this article aims to provide an overview of hydrogel fibers for soft electronics and actuators. We first introduce the basic properties and measurement methods of hydrogel fibers, including mechanical, electrical, adhesive, and biocompatible properties. Then, typical manufacturing methods for 1D hydrogel fibers and fibrous films are discussed. Next, the recent progress of wearable sensors (e.g., strain, temperature, pH, and humidity) and actuators made from hydrogel fibers is discussed. We conclude with future perspectives on next-generation hydrogel fibers and the remaining challenges. The development of hydrogel fibers will not only provide an unparalleled one-dimensional characteristic, but also translate fundamental understanding of hydrogels into new application boundaries.
Collapse
Affiliation(s)
- Jiaxuan Du
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qing Ma
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Litao Sun
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
77
|
He J, Zhang Y, Yu X, Xu C. Wearable patches for transdermal drug delivery. Acta Pharm Sin B 2023; 13:2298-2309. [PMID: 37425057 PMCID: PMC10326306 DOI: 10.1016/j.apsb.2023.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023] Open
Abstract
Transdermal drug delivery systems (TDDs) avoid gastrointestinal degradation and hepatic first-pass metabolism, providing good drug bioavailability and patient compliance. One emerging type of TDDs is the wearable patch worn on the skin surface to deliver medication through the skin. They can generally be grouped into passive and active types, depending on the properties of materials, design principles and integrated devices. This review describes the latest advancement in the development of wearable patches, focusing on the integration of stimulus-responsive materials and electronics. This development is deemed to provide a dosage, temporal, and spatial control of therapeutics delivery.
Collapse
Affiliation(s)
- Jiahui He
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yuyue Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong 999077, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
78
|
Luo Y, Li J, Ding Q, Wang H, Liu C, Wu J. Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors. NANO-MICRO LETTERS 2023; 15:136. [PMID: 37225851 PMCID: PMC10209388 DOI: 10.1007/s40820-023-01109-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023]
Abstract
Breathing is an inherent human activity; however, the composition of the air we inhale and gas exhale remains unknown to us. To address this, wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks, and for the early detection and treatment of diseases for home healthcare. Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable. Functionalized hydrogels are intrinsically conductive, self-healing, self-adhesive, biocompatible, and room-temperature sensitive. Compared with traditional rigid vapor sensors, hydrogel-based gas and humidity sensors can directly fit human skin or clothing, and are more suitable for real-time monitoring of personal health and safety. In this review, current studies on hydrogel-based vapor sensors are investigated. The required properties and optimization methods of wearable hydrogel-based sensors are introduced. Subsequently, existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized. Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented. Moreover, the potential of hydrogels in the field of vapor sensing is elucidated. Finally, the current research status, challenges, and future trends of hydrogel gas/humidity sensing are discussed.
Collapse
Affiliation(s)
- Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
79
|
Barhoum A, Sadak O, Ramirez IA, Iverson N. Stimuli-bioresponsive hydrogels as new generation materials for implantable, wearable, and disposable biosensors for medical diagnostics: Principles, opportunities, and challenges. Adv Colloid Interface Sci 2023; 317:102920. [PMID: 37207377 DOI: 10.1016/j.cis.2023.102920] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Hydrogels are excellent water-swollen polymeric materials for use in wearable, implantable, and disposable biosensors. Hydrogels have unique properties such as low cost, ease of preparation, transparency, rapid response to external conditions, biocompatibility and self-adhesion to the skin, flexibility, and strain sensitivity, making them ideal for use in biosensor platforms. This review provides a detailed overview of advanced applications of stimuli-responsive hydrogels in biosensor platforms, from hydrogel synthesis and functionalization for bioreceptor immobilization to several important diagnostic applications. Emphasis is placed on recent advances in the fabrication of ultrasensitive fluorescent and electrically conductive hydrogels and their applications in wearable, implantable, and disposable biosensors for quantitative measurements. Design, modification, and assembly techniques of fluorescent, ionically conductive, and electrically conductive hydrogels to improve performance will be addressed. The advantages and performance improvements of immobilizing bioreceptors (e.g., antibodies, enzymes, and aptamers), and incorporating fluorescent and electrically conductive nanomaterials are described, as are their limitations. Potential applications of hydrogels in implantable, wearable, disposable portable biosensors for quantitative detection of the various bioanalytes (ions, molecules, drugs, proteins, and biomarkers) are discussed. Finally, the global market for hydrogel-based biosensors and future challenges and prospects are discussed in detail.
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; National Center for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 D09 Y074, Dublin, Ireland.
| | - Omer Sadak
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Electrical and Electronics Engineering, Ardahan University, Ardahan, Turkey
| | - Ivon Acosta Ramirez
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nicole Iverson
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
80
|
Rybak D, Su YC, Li Y, Ding B, Lv X, Li Z, Yeh YC, Nakielski P, Rinoldi C, Pierini F, Dodda JM. Evolution of nanostructured skin patches towards multifunctional wearable platforms for biomedical applications. NANOSCALE 2023; 15:8044-8083. [PMID: 37070933 DOI: 10.1039/d3nr00807j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent advances in the field of skin patches have promoted the development of wearable and implantable bioelectronics for long-term, continuous healthcare management and targeted therapy. However, the design of electronic skin (e-skin) patches with stretchable components is still challenging and requires an in-depth understanding of the skin-attachable substrate layer, functional biomaterials and advanced self-powered electronics. In this comprehensive review, we present the evolution of skin patches from functional nanostructured materials to multi-functional and stimuli-responsive patches towards flexible substrates and emerging biomaterials for e-skin patches, including the material selection, structure design and promising applications. Stretchable sensors and self-powered e-skin patches are also discussed, ranging from electrical stimulation for clinical procedures to continuous health monitoring and integrated systems for comprehensive healthcare management. Moreover, an integrated energy harvester with bioelectronics enables the fabrication of self-powered electronic skin patches, which can effectively solve the energy supply and overcome the drawbacks induced by bulky battery-driven devices. However, to realize the full potential offered by these advancements, several challenges must be addressed for next-generation e-skin patches. Finally, future opportunities and positive outlooks are presented on the future directions of bioelectronics. It is believed that innovative material design, structure engineering, and in-depth study of fundamental principles can foster the rapid evolution of electronic skin patches, and eventually enable self-powered close-looped bioelectronic systems to benefit mankind.
Collapse
Affiliation(s)
- Daniel Rybak
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Yu-Chia Su
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yang Li
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Xiaoshuang Lv
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Zhaoling Li
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Pawel Nakielski
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Chiara Rinoldi
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Filippo Pierini
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| |
Collapse
|
81
|
Chong J, Sung C, Nam KS, Kang T, Kim H, Lee H, Park H, Park S, Kang J. Highly conductive tissue-like hydrogel interface through template-directed assembly. Nat Commun 2023; 14:2206. [PMID: 37072411 PMCID: PMC10113367 DOI: 10.1038/s41467-023-37948-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
Over the past decade, conductive hydrogels have received great attention as tissue-interfacing electrodes due to their soft and tissue-like mechanical properties. However, a trade-off between robust tissue-like mechanical properties and good electrical properties has prevented the fabrication of a tough, highly conductive hydrogel and limited its use in bioelectronics. Here, we report a synthetic method for the realization of highly conductive and mechanically tough hydrogels with tissue-like modulus. We employed a template-directed assembly method, enabling the arrangement of a disorder-free, highly-conductive nanofibrous conductive network inside a highly stretchable, hydrated network. The resultant hydrogel exhibits ideal electrical and mechanical properties as a tissue-interfacing material. Furthermore, it can provide tough adhesion (800 J/m2) with diverse dynamic wet tissue after chemical activation. This hydrogel enables suture-free and adhesive-free, high-performance hydrogel bioelectronics. We successfully demonstrated ultra-low voltage neuromodulation and high-quality epicardial electrocardiogram (ECG) signal recording based on in vivo animal models. This template-directed assembly method provides a platform for hydrogel interfaces for various bioelectronic applications.
Collapse
Affiliation(s)
- Jooyeun Chong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changhoon Sung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kum Seok Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taewon Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyunjun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Haeseung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyunchang Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- KAIST Institute for NanoCentury, Daejeon, 34141, Republic of Korea.
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- KAIST Institute for NanoCentury, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
82
|
Mai Q, Han Y, Cheng G, Ma R, Yan Z, Chen X, Yu G, Chen T, Zhang S. Innovative Strategies for Hair Regrowth and Skin Visualization. Pharmaceutics 2023; 15:pharmaceutics15041201. [PMID: 37111686 PMCID: PMC10141228 DOI: 10.3390/pharmaceutics15041201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Today, about 50% of men and 15-30% of women are estimated to face hair-related problems, which create a significant psychological burden. Conventional treatments, including drug therapy and transplantation, remain the main strategies for the clinical management of these problems. However, these treatments are hindered by challenges such as drug-induced adverse effects and poor drug penetration due to the skin's barrier. Therefore, various efforts have been undertaken to enhance drug permeation based on the mechanisms of hair regrowth. Notably, understanding the delivery and diffusion of topically administered drugs is essential in hair loss research. This review focuses on the advancement of transdermal strategies for hair regrowth, particularly those involving external stimulation and regeneration (topical administration) as well as microneedles (transdermal delivery). Furthermore, it also describes the natural products that have become alternative agents to prevent hair loss. In addition, given that skin visualization is necessary for hair regrowth as it provides information on drug localization within the skin's structure, this review also discusses skin visualization strategies. Finally, it details the relevant patents and clinical trials in these areas. Together, this review highlights the innovative strategies for skin visualization and hair regrowth, aiming to provide novel ideas to researchers studying hair regrowth in the future.
Collapse
Affiliation(s)
- Qiuying Mai
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanhua Han
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guopan Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Rui Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhao Yan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Guangtao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shu Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
83
|
Lee S, Kim SR, Jeon KH, Jeon JW, Lee EI, Jeon J, Oh JH, Yoo JH, Kil HJ, Park JW. A fabric-based wearable sensor for continuous monitoring of decubitus ulcer of subjects lying on a bed. Sci Rep 2023; 13:5773. [PMID: 37031263 PMCID: PMC10082782 DOI: 10.1038/s41598-023-33081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/06/2023] [Indexed: 04/10/2023] Open
Abstract
For multifunctional wearable sensing systems, problems related to wireless and continuous communication and soft, noninvasive, and disposable functionality issues should be solved for precise physiological signal detection. To measure the critical transitions of pressure, temperature, and skin impedance when continuous pressure is applied on skin and tissue, we developed a sensor for decubitus ulcers using conventional analog circuitry for wireless and continuous communication in a disposable, breathable fabric-based multifunctional sensing system capable of conformal contact. By integrating the designed wireless communication module into a multifunctional sensor, we obtained sensing data that were sent sequentially and continuously to a customized mobile phone app. With a small-sized and lightweight module, our sensing system operated over 24 h with a coin-cell battery consuming minimum energy for intermittent sensing and transmission. We conducted a pilot test on healthy subjects to evaluate the adequate wireless operation of the multifunctional sensing system when applied to the body. By solving the aforementioned practical problems, including those related to wireless and continuous communication and soft, noninvasive, and disposable functionality issues, our fabric-based multifunctional decubitus ulcer sensor successfully measured applied pressure, skin temperature, and electrical skin impedance.
Collapse
Affiliation(s)
- Soyeon Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Seung-Rok Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Kun-Hoo Jeon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Jun-Woo Jeon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Ey-In Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Jiwan Jeon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Je-Heon Oh
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Ju-Hyun Yoo
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Hye-Jun Kil
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea.
- Asen Company, Seoul, 03722, Republic of Korea.
| |
Collapse
|
84
|
Levin A, Gong S, Cheng W. Wearable Smart Bandage-Based Bio-Sensors. BIOSENSORS 2023; 13:bios13040462. [PMID: 37185537 PMCID: PMC10136806 DOI: 10.3390/bios13040462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Bandage is a well-established industry, whereas wearable electronics is an emerging industry. This review presents the bandage as the base of wearable bioelectronics. It begins with introducing a detailed background to bandages and the development of bandage-based smart sensors, which is followed by a sequential discussion of the technical characteristics of the existing bandages, a more practical methodology for future applications, and manufacturing processes of bandage-based wearable biosensors. The review then elaborates on the advantages of basing the next generation of wearables, such as acceptance by the customers and system approvals, and disposal.
Collapse
Affiliation(s)
- Arie Levin
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3168, Australia
| | - Shu Gong
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3168, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
85
|
Sabrin S, Karmokar DK, Karmakar NC, Hong SH, Habibullah H, Szili EJ. Opportunities of Electronic and Optical Sensors in Autonomous Medical Plasma Technologies. ACS Sens 2023; 8:974-993. [PMID: 36897225 DOI: 10.1021/acssensors.2c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Low temperature plasma technology is proving to be at the frontier of emerging medical technologies with real potential to overcome escalating healthcare challenges including antimicrobial and anticancer resistance. However, significant improvements in efficacy, safety, and reproducibility of plasma treatments need to be addressed to realize the full clinical potential of the technology. To improve plasma treatments recent research has focused on integrating automated feedback control systems into medical plasma technologies to maintain optimal performance and safety. However, more advanced diagnostic systems are still needed to provide data into feedback control systems with sufficient levels of sensitivity, accuracy, and reproducibility. These diagnostic systems need to be compatible with the biological target and to also not perturb the plasma treatment. This paper reviews the state-of-the-art electronic and optical sensors that might be suitable to address this unmet technological need, and the steps needed to integrate these sensors into autonomous plasma systems. Realizing this technological gap could facilitate the development of next-generation medical plasma technologies with strong potential to yield superior healthcare outcomes.
Collapse
Affiliation(s)
- Sumyea Sabrin
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Debabrata K Karmokar
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Nemai C Karmakar
- Electrical and Computer Systems Engineering Department, Monash University, Clayton, Victoria 3800, Australia
| | - Sung-Ha Hong
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Habibullah Habibullah
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Endre J Szili
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
86
|
Kwon HJ, Kim GU, Lim C, Kim JK, Lee SS, Cho J, Koo HJ, Kim BJ, Char K, Son JG. Sequentially Coated Wavy Nanowire Composite Transparent Electrode for Stretchable Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13656-13667. [PMID: 36857324 DOI: 10.1021/acsami.3c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advances in fabricating stretchable and transparent electrodes have led to various techniques for establishing next-generation form-factor optoelectronic devices. Wavy Ag nanowire networks with large curvature radii are promising platforms as stretchable and transparent electrodes due to their high electrical conductivity and stretchability even at very high transparency. However, there are disadvantages such as intrinsic nonregular conductivity, large surface roughness, and nanowire oxidation in air. Here, we introduce electrically synergistic but mechanically independent composite electrodes by sequentially introducing conducting polymers and ionic liquids into the wavy Ag nanowire network to maintain the superior performance of the stretchable transparent electrode while ensuring overall conductivity, lower roughness, and long-term stability. In particular, plenty of ionic liquids can be incorporated into the uniformly coated conducting polymer so that the elastic modulus can be significantly lowered and sliding can occur at the nanowire interface, thereby obtaining the high mechanical stretchability of the composite electrode. Finally, as a result of applying the composite film as the stretchable transparent electrode of stretchable organic solar cells, the organic solar cell exhibits a high power conversion efficiency of 11.3% and 89% compared to the initial efficiency even at 20% tensile strain, demonstrating excellent stretching stability.
Collapse
Affiliation(s)
- Hyun Jeong Kwon
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Geon-U Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chulhee Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jai Kyeong Kim
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang-Soo Lee
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jinhan Cho
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Chemical & Biological Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hyung-Jun Koo
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kookheon Char
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Gon Son
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
87
|
Chu Y, Fan Q, Chai C, Wu W, Ma L, Li K, Hao J. "Water-in-Deep Eutectic Solvent" Gel Electrolytes Synergistically Controlled by Solvation Regulation and Gelation Strategies for Flexible Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12088-12098. [PMID: 36809902 DOI: 10.1021/acsami.2c19928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent developments in flexible electronics have heightened the need for electrolytes with high safety, ionic conductivity, and electrochemical stability. However, neither conventional organic electrolytes nor aqueous electrolytes can meet the above requirements simultaneously. Herein, a novel "water-in-deep eutectic solvent" gel (WIDG) electrolyte synergistically controlled by the solvation regulation and gelation strategies is reported. The water molecules introduced into deep eutectic solvent (DES) participate in the solvation structure regulation of Li+, thus endowing the WIDG electrolyte with high safety, thermal stability, and outstanding electrochemical performance, including high ionic conductivity (∼1.23 mS cm-1) and a wide electrochemical window (∼5.4 V). Besides, the polymer in the gel interacts with DES and H2O, further optimizing the electrolyte with excellent mechanical strength and higher operating voltage. Benefiting from these advantages, the lithium-ion capacitor constructed by WIDG electrolyte presents a high areal capacitance of 246 mF cm-2 with an energy density of 87.3 μWh cm-2. The use of the gel enhances the electrode structure stability, resulting in desirable cycling stability (>90% capacity retention after 1400 cycles). Moreover, the WIDG-assembled sensor exhibits high sensitivity and rapid real-time detection of motion. This work will provide guidelines for designing high-safety and high-operating-voltage electrolytes for flexible electronics.
Collapse
Affiliation(s)
- Yiran Chu
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, China
| | - Qi Fan
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, China
| | - Chunxiao Chai
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, China
| | - Wenna Wu
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, China
| | - Lin Ma
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, China
| | - Kang Li
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| |
Collapse
|
88
|
Ashok A, Nguyen TK, Barton M, Leitch M, Masud MK, Park H, Truong TA, Kaneti YV, Ta HT, Li X, Liang K, Do TN, Wang CH, Nguyen NT, Yamauchi Y, Phan HP. Flexible Nanoarchitectonics for Biosensing and Physiological Monitoring Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204946. [PMID: 36538749 DOI: 10.1002/smll.202204946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Flexible and implantable electronics hold tremendous promises for advanced healthcare applications, especially for physiological neural recording and modulations. Key requirements in neural interfaces include miniature dimensions for spatial physiological mapping and low impedance for recognizing small biopotential signals. Herein, a bottom-up mesoporous formation technique and a top-down microlithography process are integrated to create flexible and low-impedance mesoporous gold (Au) electrodes for biosensing and bioimplant applications. The mesoporous architectures developed on a thin and soft polymeric substrate provide excellent mechanical flexibility and stable electrical characteristics capable of sustaining multiple bending cycles. The large surface areas formed within the mesoporous network allow for high current density transfer in standard electrolytes, highly suitable for biological sensing applications as demonstrated in glucose sensors with an excellent detection limit of 1.95 µm and high sensitivity of 6.1 mA cm-2 µM-1 , which is approximately six times higher than that of benchmarking flat/non-porous films. The low impedance of less than 1 kΩ at 1 kHz in the as-synthesized mesoporous electrodes, along with their mechanical flexibility and durability, offer peripheral nerve recording functionalities that are successfully demonstrated in vivo. These features highlight the new possibilities of our novel flexible nanoarchitectonics for neuronal recording and modulation applications.
Collapse
Affiliation(s)
- Aditya Ashok
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4067, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Matthew Barton
- School of Nursing and Midwifery, Griffith University, Southport, Queensland, 4215, Australia
- Menzies Health Institute Queensland - Griffith University, Southport, Queensland, 4215, Australia
| | - Michael Leitch
- School of Nursing and Midwifery, Griffith University, Southport, Queensland, 4215, Australia
| | - Mostafa Kamal Masud
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Hyeongyu Park
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Thanh-An Truong
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yusuf Valentino Kaneti
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Hang Thu Ta
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Xiaopeng Li
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kang Liang
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chun-Hui Wang
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Yusuke Yamauchi
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4067, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4067, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hoang-Phuong Phan
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4067, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
89
|
Han Q, Zhang C, Guo T, Tian Y, Song W, Lei J, Li Q, Wang A, Zhang M, Bai S, Yan X. Hydrogel Nanoarchitectonics of a Flexible and Self-Adhesive Electrode for Long-Term Wireless Electroencephalogram Recording and High-Accuracy Sustained Attention Evaluation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209606. [PMID: 36620938 DOI: 10.1002/adma.202209606] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogels are ideal building blocks to fabricate the next generation of electrodes for acquiring high-quality physiological electrical signals, for example, electroencephalography (EEG). However, collection of EEG signals still suffers from electrode deformation, sweating, extensive body motion and vibration, and environmental interference. Herein, polyvinyl alcohol and polyvinylpyrrolidone are selected to prepare a hydrogel network with tissue-like modulus and excellent flexibility. Additionally, polydopamine nanoparticles, obtained by polydopamine peroxidation, are integrated into the hydrogel to endow them with higher transparency, higher self-adhesion, and lower impedance. Consequently, a multichannel and wirelessly operated hydrogel electrode can establish a conformal and stable interface with tissue and illustrate high channel uniformity, low interfacial contact impedance, low power noise, long-term stability, and a tolerance to sweat and motion. Furthermore, the hydrogel electrode shows the unprecedented ability to classify the recorded high-quality prefrontal EEG signals into seven-category sustained attention with high accuracy (91.5%), having great potential applications in the assessment of human consciousness and in multifunctional diagnoses.
Collapse
Affiliation(s)
- Qingquan Han
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chao Zhang
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Taoming Guo
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Yajie Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Wei Song
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Jiaxin Lei
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Milin Zhang
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
90
|
Kim TY, Lee GH, Mun J, Cheong S, Choi I, Kim H, Hahn SK. Smart Contact Lens Systems for Ocular Drug Delivery and Therapy. Adv Drug Deliv Rev 2023; 196:114817. [PMID: 37004938 DOI: 10.1016/j.addr.2023.114817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Ocular drug delivery and therapy systems have been extensively investigated with various methods including direct injections, eye drops and contact lenses. Nowadays, smart contact lens systems are attracting a lot of attention for ocular drug delivery and therapy due to their minimally invasive or non-invasive characteristics, highly enhanced drug permeation, high bioavailability, and on-demand drug delivery. Furthermore, smart contact lens systems can be used for direct light delivery into the eyes for biophotonic therapy replacing the use of drugs. Here, we review smart contact lens systems which can be classified into two groups of drug-eluting contact lens and ocular device contact lens. More specifically, this review covers smart contact lens systems with nanocomposite-laden systems, polymeric film-incorporated systems, micro and nanostructure systems, iontophoretic systems, electrochemical systems, and phototherapy systems for ocular drug delivery and therapy. After that, we discuss the future opportunities, challenges and perspectives of smart contact lens systems for ocular drug delivery and therapy.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Geon-Hui Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jonghwan Mun
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sunah Cheong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Inhoo Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; PHI BIOMED Co., 168 Yeoksam-ro, Gangnamgu, Seoul 06248, Republic of Korea.
| |
Collapse
|
91
|
Zhu Y, Haghniaz R, Hartel MC, Guan S, Bahari J, Li Z, Baidya A, Cao K, Gao X, Li J, Wu Z, Cheng X, Li B, Emaminejad S, Weiss PS, Khademhosseini A. A Breathable, Passive-Cooling, Non-Inflammatory, and Biodegradable Aerogel Electronic Skin for Wearable Physical-Electrophysiological-Chemical Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209300. [PMID: 36576895 PMCID: PMC10006339 DOI: 10.1002/adma.202209300] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Real-time monitoring of human health can be significantly improved by designing novel electronic skin (E-skin) platforms that mimic the characteristics and sensitivity of human skin. A high-quality E-skin platform that can simultaneously monitor multiple physiological and metabolic biomarkers without introducing skin discomfort or irritation is an unmet medical need. Conventional E-skins are either monofunctional or made from elastomeric films that do not include key synergistic features of natural skin, such as multi-sensing, breathability, and thermal management capabilities in a single patch. Herein, a biocompatible and biodegradable E-skin patch based on flexible gelatin methacryloyl aerogel (FGA) for non-invasive and continuous monitoring of multiple biomarkers of interest is engineered and demonstrated. Taking advantage of cryogenic temperature treatment and slow polymerization, FGA is fabricated with a highly interconnected porous structure that displays good flexibility, passive-cooling capabilities, and ultra-lightweight properties that make it comfortable to wear for long periods of time. It also provides numerous permeable capillary channels for thermal-moisture transfer, ensuring its excellent breathability. Therefore, the engineered FGA-based E-skin can simultaneously monitor body temperature, hydration, and biopotentials via electrophysiological sensors and detect glucose, lactate, and alcohol levels via electrochemical sensors. This work offers a previously unexplored materials strategy for next-generation E-skin platforms with superior practicality.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shenghan Guan
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Mork Family Department of Chemical Engineering & Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90007, USA
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Zijie Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Mork Family Department of Chemical Engineering & Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90007, USA
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ke Cao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Zhuohong Wu
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xuanbing Cheng
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Manufacturing Systems Engineering and Management, California State University Northridge, Northridge, CA, 91330, USA
| | - Sam Emaminejad
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
92
|
Ge G, Mandal K, Haghniaz R, Li M, Xiao X, Carlson L, Jucaud V, Dokmeci MR, Ho GW, Khademhosseini A. Deep Eutectic Solvents-based Ionogels with Ultrafast Gelation and High Adhesion in Harsh Environments. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2207388. [PMID: 37090954 PMCID: PMC10118073 DOI: 10.1002/adfm.202207388] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 05/03/2023]
Abstract
Adhesive materials have recently drawn intensive attention due to their excellent sealing ability, thereby stimulating advances in materials science and industrial usage. However, reported adhesives usually exhibit weak adhesion strength, require high pressure for strong bonding, and display severe adhesion deterioration in various harsh environments. In this work, instead of water or organic solvents, a deep eutectic solution (DES) was used as the medium for photopolymerization of zwitterionic and polarized monomers, thus generating a novel ionogel with tunable mechanical properties. Multiple hydrogen bonds and electrostatic interactions between DES and monomers facilitated ultrafast gelation and instant bonding without any external pressure, which was rarely reported previously. Furthermore, high adhesion in different harsh environments (e.g., water, acidic and basic buffers, and saline solutions) and onto hydrophilic (e.g., glass and tissues) and hydrophobic (e.g., polymethyl methacrylate, polystyrene, and polypropylene) adherends was demonstrated. Also, high stretchability of the ionogel at extreme temperatures (-80 and 80 °C) indicated its widespread applications. Furthermore, the biocompatible ionogel showed high burst pressure onto stomach and intestine tissues to prevent liquid leakage, highlighting its potential as an adhesive patch. This ionogel provides unprecedented opportunities in the fields of packaging industry, marine engineering, medical adhesives, and electronic assembly.
Collapse
Affiliation(s)
- Gang Ge
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | | | - Mengchen Li
- Department of Materials Science & Engineering, University of California-Los Angeles, Los Angeles, CA, USA
| | - Xiao Xiao
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Larry Carlson
- Institute for Technology Advancement, University of California-Los Angeles, Los Angeles, CA, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | | | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | | |
Collapse
|
93
|
Song JW, Ryu H, Bai W, Xie Z, Vázquez-Guardado A, Nandoliya K, Avila R, Lee G, Song Z, Kim J, Lee MK, Liu Y, Kim M, Wang H, Wu Y, Yoon HJ, Kwak SS, Shin J, Kwon K, Lu W, Chen X, Huang Y, Ameer GA, Rogers JA. Bioresorbable, wireless, and battery-free system for electrotherapy and impedance sensing at wound sites. SCIENCE ADVANCES 2023; 9:eade4687. [PMID: 36812305 PMCID: PMC9946359 DOI: 10.1126/sciadv.ade4687] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/20/2023] [Indexed: 05/29/2023]
Abstract
Chronic wounds, particularly those associated with diabetes mellitus, represent a growing threat to public health, with additional notable economic impacts. Inflammation associated with these wounds leads to abnormalities in endogenous electrical signals that impede the migration of keratinocytes needed to support the healing process. This observation motivates the treatment of chronic wounds with electrical stimulation therapy, but practical engineering challenges, difficulties in removing stimulation hardware from the wound site, and absence of means to monitor the healing process create barriers to widespread clinical use. Here, we demonstrate a miniaturized wireless, battery-free bioresorbable electrotherapy system that overcomes these challenges. Studies based on a splinted diabetic mouse wound model confirm the efficacy for accelerated wound closure by guiding epithelial migration, modulating inflammation, and promoting vasculogenesis. Changes in the impedance provide means for tracking the healing process. The results demonstrate a simple and effective platform for wound site electrotherapy.
Collapse
Affiliation(s)
- Joseph W. Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Hanjun Ryu
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong, Korea
| | - Wubin Bai
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, P. R. China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| | | | - Khizar Nandoliya
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Geumbee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Zhen Song
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, P. R. China
| | - Jihye Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Min-Kyu Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yugang Liu
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Mirae Kim
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Huifeng Wang
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Yixin Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Hong-Joon Yoon
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Korea
| | - Sung Soo Kwak
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Jaeho Shin
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Kyeongha Kwon
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Wei Lu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Xuexian Chen
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Departments of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute for Bionanotechnology, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - John A. Rogers
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| |
Collapse
|
94
|
Conductive and Adhesive Granular Alginate Hydrogels for On-Tissue Writable Bioelectronics. Gels 2023; 9:gels9020167. [PMID: 36826337 PMCID: PMC9957464 DOI: 10.3390/gels9020167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Conductive hydrogels are promising materials in bioelectronics that ensure a tissue-like soft modulus and re-enact the electrophysiological function of damaged tissues. However, recent approaches to fabricating conductive hydrogels have proved difficult: fixing of the conductive hydrogels on the target tissues hydrogels requires the aids from other medical glues because of their weak tissue-adhesiveness. In this study, an intrinsically conductive and tissue-adhesive granular hydrogel consisting of a PEDOT:PSS conducting polymer and an adhesive catechol-conjugated alginate polymer was fabricated via an electrohydrodynamic spraying method. Because alginate-based polymers can be crosslinked by calcium ions, alginate-catechol polymers mixed with PEDOT:PSS granular hydrogels (ACP) were easily fabricated. The fabricated ACP exhibited not only adhesive and shear-thinning properties but also conductivity similar to that of muscle tissue. Additionally, the granular structure makes the hydrogel injectable through a syringe, enabling on-tissue printing. This multifunctional granular hydrogel can be applied to soft and flexible electronics to connect humans and machines.
Collapse
|
95
|
Lee DU, Kim SC, Choi DY, Jung WK, Moon MJ. Basic amino acid-mediated cationic amphiphilic surfaces for antimicrobial pH monitoring sensor with wound healing effects. Biomater Res 2023; 27:14. [PMID: 36800989 PMCID: PMC9936651 DOI: 10.1186/s40824-023-00355-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/12/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND The wound healing process is a complex cascade of physiological events, which are vulnerable to both our body status and external factors and whose impairment could lead to chronic wounds or wound healing impediments. Conventional wound healing materials are widely used in clinical management, however, they do not usually prevent wounds from being infected by bacteria or viruses. Therefore, simultaneous wound status monitoring and prevention of microbial infection are required to promote healing in clinical wound management. METHODS Basic amino acid-modified surfaces were fabricated in a water-based process via a peptide coupling reaction. Specimens were analyzed and characterized by X-ray photoelectron spectroscopy, Kelvin probe force microscopy, atomic force microscopy, contact angle, and molecular electrostatic potential via Gaussian 09. Antimicrobial and biofilm inhibition tests were conducted on Escherichia coli and Staphylococcus epidermidis. Biocompatibility was determined through cytotoxicity tests on human epithelial keratinocytes and human dermal fibroblasts. Wound healing efficacy was confirmed by mouse wound healing and cell staining tests. Workability of the pH sensor on basic amino acid-modified surfaces was evaluated on normal human skin and Staphylococcus epidermidis suspension, and in vivo conditions. RESULTS Basic amino acids (lysine and arginine) have pH-dependent zwitterionic functional groups. The basic amino acid-modified surfaces had antifouling and antimicrobial properties similar to those of cationic antimicrobial peptides because zwitterionic functional groups have intrinsic cationic amphiphilic characteristics. Compared with untreated polyimide and modified anionic acid (leucine), basic amino acid-modified polyimide surfaces displayed excellent bactericidal, antifouling (reduction ~ 99.6%) and biofilm inhibition performance. The basic amino acid-modified polyimide surfaces also exhibited wound healing efficacy and excellent biocompatibility, confirmed by cytotoxicity and ICR mouse wound healing tests. The basic amino acid-modified surface-based pH monitoring sensor was workable (sensitivity 20 mV pH-1) under various pH and bacterial contamination conditions. CONCLUSION Here, we developed a biocompatible and pH-monitorable wound healing dressing with antimicrobial activity via basic amino acid-mediated surface modification, creating cationic amphiphilic surfaces. Basic amino acid-modified polyimide is promising for monitoring wounds, protecting them from microbial infection, and promoting their healing. Our findings are expected to contribute to wound management and could be expanded to various wearable healthcare devices for clinical, biomedical, and healthcare applications.
Collapse
Affiliation(s)
- Dong Uk Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
- Department of Industrial Chemistry, Pukyong National University, Busan, 48513, Republic of Korea
| | - Se-Chang Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Korea
| | - Dong Yun Choi
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea.
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Myung Jun Moon
- Department of Industrial Chemistry, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
96
|
Shin M, Lim J, An J, Yoon J, Choi JW. Nanomaterial-based biohybrid hydrogel in bioelectronics. NANO CONVERGENCE 2023; 10:8. [PMID: 36763293 PMCID: PMC9918666 DOI: 10.1186/s40580-023-00357-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Despite the broadly applicable potential in the bioelectronics, organic/inorganic material-based bioelectronics have some limitations such as hard stiffness and low biocompatibility. To overcome these limitations, hydrogels capable of bridging the interface and connecting biological materials and electronics have been investigated for development of hydrogel bioelectronics. Although hydrogel bioelectronics have shown unique properties including flexibility and biocompatibility, there are still limitations in developing novel hydrogel bioelectronics using only hydrogels such as their low electrical conductivity and structural stability. As an alternative solution to address these issues, studies on the development of biohybrid hydrogels that incorporating nanomaterials into the hydrogels have been conducted for bioelectronic applications. Nanomaterials complement the shortcomings of hydrogels for bioelectronic applications, and provide new functionality in biohybrid hydrogel bioelectronics. In this review, we provide the recent studies on biohybrid hydrogels and their bioelectronic applications. Firstly, representative nanomaterials and hydrogels constituting biohybrid hydrogels are provided, and next, applications of biohybrid hydrogels in bioelectronics categorized in flexible/wearable bioelectronic devices, tissue engineering, and biorobotics are discussed with recent studies. In conclusion, we strongly believe that this review provides the latest knowledge and strategies on hydrogel bioelectronics through the combination of nanomaterials and hydrogels, and direction of future hydrogel bioelectronics.
Collapse
Affiliation(s)
- Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea
| | - Joohyun An
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea.
| |
Collapse
|
97
|
Lin X, Wang J, Wu X, Luo Y, Wang Y, Zhao Y. Marine‐Derived Hydrogels for Biomedical Applications. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202211323] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 04/01/2025]
Abstract
Marine organisms provide novel and broad sources for the preparations and applications of biomaterials. Since the urgent requirement of bio‐hydrogels to mimic tissue extracellular matrix (ECM), the natural biomacromolecule hydrogels derived from marine sources have received increasing attention. Benefiting from their outstanding bioactivity and biocompatibility, many attempts have been made to reconstruct ECM components by applying marine‐derived natural hydrogels. Moreover, marine hydrogels have been successfully applied in biomedicine by means of microfluidics, electrospray, and bioprinting. In this review, the classification and characteristics of marine‐derived hydrogels are summarized. In particular, their role in the development of biomaterials is also introduced. Then, the recent advances in bio‐fabrication strategies for various hydrogel materials are focused upon. Besides, the influences of hydrogel types on their functions in biomedical applications are discussed in depth. Finally, critical reflections on the limitations and future development of marine‐derived hydrogels are presented.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 China
| | - Jinglin Wang
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Xiangyi Wu
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China
| |
Collapse
|
98
|
Zhao F, Su Y, Wang J, Romanova S, DiMaio DJ, Xie J, Zhao S. A Highly Efficacious Electrical Biofilm Treatment System for Combating Chronic Wound Bacterial Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208069. [PMID: 36385439 PMCID: PMC9918715 DOI: 10.1002/adma.202208069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/24/2022] [Indexed: 05/26/2023]
Abstract
Biofilm infection has a high prevalence in chronic wounds and can delay wound healing. Current treatment using debridement and antibiotic administration imposes a significant burden on patients and healthcare systems. To address their limitations, a highly efficacious electrical antibiofilm treatment system is described in this paper. This system uses high-intensity current (75 mA cm-2 ) to completely debride biofilm above the wound surface and enhance antibiotic delivery into biofilm-infected wounds simultaneously. Combining these two effects, this system uses short treatments (≤2 h) to reduce bacterial count of methicillin-resistant S. aureus (MRSA) biofilm-infected ex vivo skin wounds from 1010 to 105.2 colony-forming units (CFU) g-1 . Taking advantage of the hydrogel ionic circuit design, this system enhances the in vivo safety of high-intensity current application compared to conventional devices. The in vivo antibiofilm efficacy of the system is tested using a diabetic mouse-based wound infection model. MRSA biofilm bacterial count decreases from 109.0 to 104.6 CFU g-1 at 1 day post-treatment and to 103.3 CFU g-1 at 7 days post-treatment, both of which are below the clinical threshold for infection. Overall, this novel technology provides a quick, safe, yet highly efficacious treatment to chronic wound biofilm infections.
Collapse
Affiliation(s)
- Fan Zhao
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yajuan Su
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Junying Wang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Svetlana Romanova
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dominick J DiMaio
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jingwei Xie
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siwei Zhao
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
99
|
Li Y, Yao M, Luo Y, Li J, Wang Z, Liang C, Qin C, Huang C, Yao S. Polydopamine-Reinforced Hemicellulose-Based Multifunctional Flexible Hydrogels for Human Movement Sensing and Self-Powered Transdermal Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5883-5896. [PMID: 36689627 DOI: 10.1021/acsami.2c19949] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The preparation of bio-based hydrogels with excellent mechanical properties, stable electrochemical properties, and self-adhesive properties remains a challenge. In this study, nano-polydopamine-reinforced hemicellulose-based hydrogels with typical multistage pore structures were prepared. The nanocomposite hydrogels exhibit stable mechanical properties and show no significant crushing phenomenon after 1000 cycles of cyclic compression. Its ultimate tensile strain was 101%, which is significantly higher than that of native skin. The shear adhesion strength of the hydrogel to skin tissue reaches 7.52 kPa, which is better than fibrin glue (Greenplast) (5 kPa), and the excellent adhesion property prolongs the service time of the hydrogel in biomedicine applications. The impedance of the hydrogel was reduced and the electrical conductivity was increased with the addition of nano-polydopamine. The prepared nanocomposite hydrogel can detect various body movements (even throat vibrations) in real time as a motion sensor while being able to rapidly load cationic drugs and facilitate transdermal introduction of electrically stimulated drug ions as a drug patch. It provides theoretical support for the fabrication of hemicellulose-based hydrogels with excellent properties through molecular design and nanoparticle reinforcement. This has important implications for the development of next-generation flexible materials suitable for health monitoring and self-administration.
Collapse
Affiliation(s)
- Yan Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| | - Mingzhu Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| | - Yadan Luo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| | - Jiao Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| | - Zengling Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| |
Collapse
|
100
|
Li P, Hu J, Wang J, Zhang J, Wang L, Zhang C. The Role of Hydrogel in Cardiac Repair and Regeneration for Myocardial Infarction: Recent Advances and Future Perspectives. Bioengineering (Basel) 2023; 10:bioengineering10020165. [PMID: 36829659 PMCID: PMC9952459 DOI: 10.3390/bioengineering10020165] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
A myocardial infarction (MI) is the leading cause of morbidity and mortality, seriously threatens human health, and becomes a major health burden of our society. It is urgent to pursue effective therapeutic strategies for the regeneration and restore myocardial function after MI. This review discusses the role of hydrogel in cardiac repair and regeneration for MI. Hydrogel-based cardiac patches and injectable hydrogels are the most commonly used applications in cardiac regeneration medicine. With injectable hydrogels, bioactive compounds and cells can be delivered in situ, promoting in situ repair and regeneration, while hydrogel-based cardiac patches reduce myocardial wall stress, which passively inhibits ventricular expansion. Hydrogel-based cardiac patches work as mechanically supportive biomaterials. In cardiac regeneration medicine, clinical trials and commercial products are limited. Biomaterials, biochemistry, and biological actives, such as intelligent hydrogels and hydrogel-based exosome patches, which may serve as an effective treatment for MI in the future, are still under development. Further investigation of clinical feasibility is warranted. We can anticipate hydrogels having immense translational potential for cardiac regeneration in the near future.
Collapse
Affiliation(s)
- Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajia Hu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Junjie Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence:
| |
Collapse
|