51
|
Sfair JC, Lososová Z, Chytrý M, de Bello F. Functional rarity and evolutionary uniqueness of threatened species across different scales and habitats in a Central European flora. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Júlia C. Sfair
- Department of Botany, Faculty of Science University of South Bohemia České Budějovice Czech Republic
- Department of Biology Federal University of Ceará – UFC Fortaleza CE Brazil
| | - Zdeňka Lososová
- Department of Botany and Zoology, Faculty of Science Masaryk University Brno Czech Republic
| | - Milan Chytrý
- Department of Botany and Zoology, Faculty of Science Masaryk University Brno Czech Republic
| | - Francesco de Bello
- Department of Botany, Faculty of Science University of South Bohemia České Budějovice Czech Republic
- Centro de Investigaciones sobre Desertificación (CSIC‐UV‐GV) Valencia Spain
| |
Collapse
|
52
|
Low level of anthropization linked to harsh vertebrate biodiversity declines in Amazonia. Nat Commun 2022; 13:3290. [PMID: 35672313 PMCID: PMC9174194 DOI: 10.1038/s41467-022-30842-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 05/12/2022] [Indexed: 12/03/2022] Open
Abstract
Assessing the impact of human activity on ecosystems often links local biodiversity to disturbances measured within the same locality. However, remote disturbances may also affect local biodiversity. Here, we used environmental DNA metabarcoding to evaluate the relationships between vertebrate biodiversity (fish and mammals) and disturbance intensity in two Amazonian rivers. Measurements of anthropic disturbance -here forest cover losses- were made from the immediate vicinity of the biodiversity sampling sites to up to 90 km upstream. The findings suggest that anthropization had a spatially extended impact on biodiversity. Forest cover losses of <11% in areas up to 30 km upstream from the biodiversity sampling sites were linked to reductions of >22% in taxonomic and functional richness of both terrestrial and aquatic fauna. This underscores the vulnerability of Amazonian biodiversity even to low anthropization levels. The similar responses of aquatic and terrestrial fauna to remote disturbances indicate the need for cross-ecosystem conservation plans that consider the spatially extended effects of anthropization. It is unclear how far the impact of deforestation can spread. Here the authors analyse freshwater eDNA data along two rivers in the Amazon forest, and find that low levels of deforestation are linked to substantial reductions of fish and mammalian diversity downstream.
Collapse
|
53
|
Munstermann MJ, Heim NA, McCauley DJ, Payne JL, Upham NS, Wang SC, Knope ML. A global ecological signal of extinction risk in terrestrial vertebrates. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13852. [PMID: 34668599 PMCID: PMC9299904 DOI: 10.1111/cobi.13852] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 05/13/2023]
Abstract
To determine the distribution and causes of extinction threat across functional groups of terrestrial vertebrates, we assembled an ecological trait data set for 18,016 species of terrestrial vertebrates and utilized phylogenetic comparative methods to test which categories of habitat association, mode of locomotion, and feeding mode best predicted extinction risk. We also examined the individual categories of the International Union for Conservation of Nature Red List extinction drivers (e.g., agriculture and logging) threatening each species and determined the greatest threats for each of the four terrestrial vertebrate groups. We then quantified the sum of extinction drivers threatening each species to provide a multistressor perspective on threat. Cave dwelling amphibians (p < 0.01), arboreal quadrupedal mammals (all of which are primates) (p < 0.01), aerial and scavenging birds (p < 0.01), and pedal (i.e., walking) squamates (p < 0.01) were all disproportionately threatened with extinction in comparison with the other assessed ecological traits. Across all threatened vertebrate species in the study, the most common risk factors were agriculture, threatening 4491 species, followed by logging, threatening 3187 species, and then invasive species and disease, threatening 2053 species. Species at higher risk of extinction were simultaneously at risk from a greater number of threat types. If left unabated, the disproportionate loss of species with certain functional traits and increasing anthropogenic pressures are likely to disrupt ecosystem functions globally. A shift in focus from species- to trait-centric conservation practices will allow for protection of at-risk functional diversity from regional to global scales.
Collapse
Affiliation(s)
- Maya J. Munstermann
- Department of BiologyUniversity of Hawaii at HiloHiloHawaiiUSA
- Tropical Conservation Biology and Environmental Science Graduate ProgramUniversity of Hawaii at HiloHiloHawaiiUSA
| | - Noel A. Heim
- Department of Earth & Ocean SciencesTufts UniversityMedfordMassachusettsUSA
| | - Douglas J. McCauley
- Department of Ecology, Evolution, and Marine Biology and Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Jonathan L. Payne
- Department of Geological SciencesStanford UniversityStanfordCaliforniaUSA
| | - Nathan S. Upham
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Steve C. Wang
- Department of Mathematics and StatisticsSwarthmore CollegeSwarthmorePennsylvaniaUSA
| | - Matthew L. Knope
- Department of BiologyUniversity of Hawaii at HiloHiloHawaiiUSA
- Tropical Conservation Biology and Environmental Science Graduate ProgramUniversity of Hawaii at HiloHiloHawaiiUSA
| |
Collapse
|
54
|
Capdevila P, Stott I, Cant J, Beger M, Rowlands G, Grace M, Salguero‐Gómez R. Life history mediates the trade-offs among different components of demographic resilience. Ecol Lett 2022; 25:1566-1579. [PMID: 35334148 PMCID: PMC9314072 DOI: 10.1111/ele.14004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
Accelerating rates of biodiversity loss underscore the need to understand how species achieve resilience-the ability to resist and recover from a/biotic disturbances. Yet, the factors determining the resilience of species remain poorly understood, due to disagreements on its definition and the lack of large-scale analyses. Here, we investigate how the life history of 910 natural populations of animals and plants predicts their intrinsic ability to be resilient. We show that demographic resilience can be achieved through different combinations of compensation, resistance and recovery after a disturbance. We demonstrate that these resilience components are highly correlated with life history traits related to the species' pace of life and reproductive strategy. Species with longer generation times require longer recovery times post-disturbance, whilst those with greater reproductive capacity have greater resistance and compensation. Our findings highlight the key role of life history traits to understand species resilience, improving our ability to predict how natural populations cope with disturbance regimes.
Collapse
Affiliation(s)
- Pol Capdevila
- Zoology DepartmentOxford UniversityOxfordUK
- School of Biological SciencesUniversity of BristolBristolUK
| | - Iain Stott
- School of Life and Environmental SciencesUniversity of LincolnLincolnUK
| | - James Cant
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Maria Beger
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
- Centre for Biodiversity and Conservation ScienceSchool of Biological SciencesUniversity of QueenslandBrisbaneAustralia
| | | | | | - Roberto Salguero‐Gómez
- Zoology DepartmentOxford UniversityOxfordUK
- Centre for Biodiversity and Conservation ScienceSchool of Biological SciencesUniversity of QueenslandBrisbaneAustralia
- Max Planck Institute for Demographic ResearchRostockGermany
| |
Collapse
|
55
|
Rodríguez‐Alarcón S, Tamme R, P.Carmona C. Intraspecific trait changes in response to drought lead to trait convergence between‐ but not within species. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Riin Tamme
- Institute of Ecology and Earth Sciences University of Tartu, J. Liivi 2 Tartu Estonia
| | - Carlos P.Carmona
- Institute of Ecology and Earth Sciences University of Tartu, J. Liivi 2 Tartu Estonia
| |
Collapse
|
56
|
Mammola S, Pavlek M, Huber BA, Isaia M, Ballarin F, Tolve M, Čupić I, Hesselberg T, Lunghi E, Mouron S, Graco-Roza C, Cardoso P. A trait database and updated checklist for European subterranean spiders. Sci Data 2022; 9:236. [PMID: 35618868 PMCID: PMC9135732 DOI: 10.1038/s41597-022-01316-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/05/2022] [Indexed: 01/25/2023] Open
Abstract
Species traits are an essential currency in ecology, evolution, biogeography, and conservation biology. However, trait databases are unavailable for most organisms, especially those living in difficult-to-access habitats such as caves and other subterranean ecosystems. We compiled an expert-curated trait database for subterranean spiders in Europe using both literature data (including grey literature published in many different languages) and direct morphological measurements whenever specimens were available to us. We started by updating the checklist of European subterranean spiders, now including 512 species across 20 families, of which at least 192 have been found uniquely in subterranean habitats. For each of these species, we compiled 64 traits. The trait database encompasses morphological measures, including several traits related to subterranean adaptation, and ecological traits referring to habitat preference, dispersal, and feeding strategies. By making these data freely available, we open up opportunities for exploring different research questions, from the quantification of functional dimensions of subterranean adaptation to the study of spatial patterns in functional diversity across European caves.
Collapse
Affiliation(s)
- Stefano Mammola
- LIBRe-Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
- DarkMEG-Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR), Verbania, Pallanza, Italy.
| | - Martina Pavlek
- Ruđer Bošković Institute, Zagreb, Croatia
- Croatian Biospeleological Society, Zagreb, Croatia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Marco Isaia
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Francesco Ballarin
- Systematic Zoology Laboratory, Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa, Hachioji-shi, Tokyo, Japan
| | - Marco Tolve
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Iva Čupić
- Croatian Biospeleological Society, Zagreb, Croatia
| | | | - Enrico Lunghi
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Museo di Storia Naturale dell'Università degli Studi di Firenze, "La Specola", Firenze, Italy
| | - Samuel Mouron
- LIBRe-Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Caio Graco-Roza
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Pedro Cardoso
- LIBRe-Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
57
|
Diversity patterns of lizard assemblages from a protected habitat mosaic in the Brazilian Cerrado savanna. JOURNAL OF TROPICAL ECOLOGY 2022. [DOI: 10.1017/s0266467422000244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Differences in habitat complexity and structure can directly influence the composition, diversity, and structure of species assemblages. Measurements of functional and phylogenetic diversity complement the commonly used measurements of taxonomic diversity, elucidating the relationships between species, their traits, and their evolutionary history. In this study, we evaluated how the mosaic of open and forested formations in a federal conservation unit in the western portion of the Brazilian Cerrado savanna influences the taxonomic, functional, and phylogenetic structure of lizard assemblages. Lizards were sampled for 15 months using pitfall traps set in open and forested formations. We recorded 292 lizards distributed among 16 species from eight families, with species composition differing among the formations. Richness was greater in the assemblages from open formations, while functional diversity and phylogenetic variability were greater in those of forested formations. Lizard assemblages in open formations were functionally and phylogenetically clustered, probably as a result of environmental filters acting on species, while the assemblages from forested formations were randomly structured. Different environmental and historical mechanisms have apparently shaped the current diversity of lizards in the region. This study shows that Cerrado vegetation mosaics can promote wide variation in different aspects of the taxonomic, functional, and phylogenetic structure from the lizard assemblages.
Collapse
|
58
|
Junker RR, Albrecht J, Becker M, Keuth R, Farwig N, Schleuning M. Towards an animal economics spectrum for ecosystem research. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert R. Junker
- Evolutionary Ecology of Plants Department of Biology University of Marburg 35043 Marburg Germany
- Department of Environment and Biodiversity University of Salzburg 5020 Salzburg Austria
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Senckenberganlage 25 60325 Frankfurt am Main Germany
| | - Marcel Becker
- Conservation Ecology Department of Biology University of Marburg 35043 Marburg Germany
| | - Raya Keuth
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Senckenberganlage 25 60325 Frankfurt am Main Germany
| | - Nina Farwig
- Conservation Ecology Department of Biology University of Marburg 35043 Marburg Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Senckenberganlage 25 60325 Frankfurt am Main Germany
| |
Collapse
|
59
|
Paganeli B, Toussaint A, Bueno CG, Fujinuma J, Reier Ü, Pärtel M. Dark diversity at home describes the success of cross‐continent tree invasions. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Bruno Paganeli
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Aurèle Toussaint
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Carlos Guillermo Bueno
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Junichi Fujinuma
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Ülle Reier
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Meelis Pärtel
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| |
Collapse
|
60
|
Fourcade Y, Vercauteren M. Predicted changes in the functional structure of earthworm assemblages in France driven by climate change. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yoan Fourcade
- Univ. Paris Est Creteil Sorbonne Université CNRS INRAE IRD Université de Paris Institute of Ecology and Environmental Sciences Paris iEES Créteil France
| | - Mathias Vercauteren
- Univ. Paris Est Creteil Sorbonne Université CNRS INRAE IRD Université de Paris Institute of Ecology and Environmental Sciences Paris iEES Créteil France
| |
Collapse
|
61
|
Zhang S, Zang R, Sheil D. Rare and common species contribute disproportionately to the functional variation within tropical forests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114332. [PMID: 34933270 DOI: 10.1016/j.jenvman.2021.114332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/28/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Understanding how functional traits and functional entities (FEs, i.e., unique combinations of functional traits) are distributed within plant communities can contribute to the understanding of vegetation properties and changes in species composition. We utilized investigation data on woody plants (including trees, shrubs and lianas) from 17 1-ha plots across six old-growth tropical forest types on Hainan island, China. Plant species were categorized as common (>1 individuals/ha) and rare species (≤1 individuals/ha) according to their abundance to determine how they contributed to different ecosystem functions. First, we assessed the differences in traits between common and rare species, and second, we examined functional redundancy, functional over-redundancy, and functional vulnerability for common and rare species of the forests. We found that both common species and rare species in each of the forest types were placed into just a few FEs, leading to functional over-redundancy and resulting in functional vulnerability. Rare species tended to have different trait values than those of common species, and were differently distributed among FEs, indicating different contributions to ecosystem functioning. Our results highlighted the disproportionate contribution of rare species in all of the studied forests. Rare species are more likely than common species to possess unique FEs, and thus, they have a disproportionately large contribution to community trait space. The loss of such species may impact the functioning, redundancy, and resilience of tropical forests.
Collapse
Affiliation(s)
- Shuzi Zhang
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang, Hebei, 050061, China; Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Runguo Zang
- Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Douglas Sheil
- Forest Ecology and Forest Management Group, Wageningen University and Research, PO Box 47, 6700 AA Wageningen, The Netherlands; Center for International Forestry Research (CIFOR), Situ Gede, Bogor Barat, Jawa Barat 16115, Indonesia
| |
Collapse
|
62
|
Marino C, Leclerc C, Bellard C. Profiling insular vertebrates prone to biological invasions: What makes them vulnerable? GLOBAL CHANGE BIOLOGY 2022; 28:1077-1090. [PMID: 34783130 DOI: 10.1111/gcb.15941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Invasive alien species (IAS) are a major threat to insular vertebrates, although the ecological characteristics that make insular communities vulnerable to IAS are poorly understood. After describing the ecological strategies of 6015 insular amphibians, birds, lizards, and mammals, we assessed the functional and ecological features of vertebrates exposed to IAS. We found that at least 50% of insular amphibian functional richness was hosted by IAS-threatened amphibians and up to 29% for birds. Moreover, all IAS-threatened groups except birds harbored a higher functional richness than species groups threatened by other threats. Disentangling the ecological strategies threatened by IAS, compared to those associated with other threats, we showed that birds, lizards, and mammals were more likely to be terrestrial foragers and amphibians to have larval development. By contrast, large-bodied species and habitat specialists were universally threatened. By considering the functional aspect of threatened insular diversity, our work improves our understanding of global IAS impacts. This new dimension proves essential for undertaking relevant and effective conservation actions.
Collapse
Affiliation(s)
- Clara Marino
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Camille Leclerc
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Céline Bellard
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
63
|
Buckley YM, Puy J. The macroecology of plant populations from local to global scales. THE NEW PHYTOLOGIST 2022; 233:1038-1050. [PMID: 34536970 DOI: 10.1111/nph.17749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Population ecologists develop theoretical and pragmatic knowledge of how and why populations change or remain stable, how life histories evolve and devise management strategies for populations of concern. However, forecasting the effects of global change or recommending management strategies is often urgent, requiring ecologists to work without detailed local evidence while using data and models from outside the focal location or species. Here we explore how the comparative ecology of populations, population macroecology, can be used to develop generalisations within and between species across different scales, using available demographic, environmental, life history, occurrence and trait data. We outline the strengths and weaknesses of using broad climatic variables and suitability inferred from probability of occupancy models to represent environmental variation in comparative analyses. We evaluate the contributions of traits, environment and their interaction as drivers of life history strategy. We propose that insights from life history theory, together with the adaptive capacity of populations and individuals, can inform on 'persist in place' vs 'shift in space' responses to changing conditions. As demographic data accumulate at landscape and regional scales for single species, and throughout plant phylogenies, we will have new opportunities for testing macroecological generalities within and across species.
Collapse
Affiliation(s)
- Yvonne M Buckley
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland
- School of Biological Sciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Javier Puy
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
64
|
Cantera I, Decotte JB, Dejean T, Murienne J, Vigouroux R, Valentini A, Brosse S. Characterizing the spatial signal of environmental DNA in river systems using a community ecology approach. Mol Ecol Resour 2021; 22:1274-1283. [PMID: 34724352 DOI: 10.1111/1755-0998.13544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
Environmental DNA (eDNA) is gaining a growing popularity among scientists but its applicability to biodiversity research and management remains limited in river systems by the lack of knowledge about the spatial extent of the downstream transport of eDNA. Here, we assessed the ability of eDNA inventories to retrieve spatial patterns of fish assemblages along two large and species-rich Neotropical rivers. We first examined overall community variation with distance through the distance decay of similarity and compared this pattern to capture-based samples. We then considered previous knowledge on individual species distributions, and compared it to the eDNA inventories for a set of 53 species. eDNA collected from 28 sites in the Maroni and 25 sites in the Oyapock rivers permitted to retrieve a decline of species similarity with increasing distance between sites. The distance decay of similarity derived from eDNA was similar and even more pronounced than that obtained with capture-based methods (gill-nets). In addition, the species upstream-downstream distribution range derived from eDNA matched to the known distribution of most species. Our results demonstrate that environmental DNA does not represent an integrative measure of biodiversity across the whole upstream river basin but provides a relevant picture of local fish assemblages. Importantly, the spatial signal gathered from eDNA was therefore comparable to that gathered with local capture-based methods, which describes fish fauna over a few hundred metres.
Collapse
Affiliation(s)
- Isabel Cantera
- Laboratoire Evolution et Diversité Biologique, Université Toulouse III Paul Sabatier, Toulouse, France
| | | | - Tony Dejean
- Vigilife, Le Bourget-du-Lac, France.,Spygen, Le Bourget-du-Lac, France
| | - Jérôme Murienne
- Laboratoire Evolution et Diversité Biologique, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Régis Vigouroux
- Laboratoire Environnement de Petit Saut, Hydreco, Kourou Cedex, French Guiana
| | | | - Sébastien Brosse
- Laboratoire Evolution et Diversité Biologique, Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
65
|
Affiliation(s)
- Wenjian Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Li Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Lei Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
66
|
Carmona CP, Bueno CG, Toussaint A, Träger S, Díaz S, Moora M, Munson AD, Pärtel M, Zobel M, Tamme R. Fine-root traits in the global spectrum of plant form and function. Nature 2021; 597:683-687. [PMID: 34588667 DOI: 10.1038/s41586-021-03871-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 07/30/2021] [Indexed: 02/08/2023]
Abstract
Plant traits determine how individual plants cope with heterogeneous environments. Despite large variability in individual traits, trait coordination and trade-offs1,2 result in some trait combinations being much more widespread than others, as revealed in the global spectrum of plant form and function (GSPFF3) and the root economics space (RES4) for aboveground and fine-root traits, respectively. Here we combine the traits that define both functional spaces. Our analysis confirms the major trends of the GSPFF and shows that the RES captures additional information. The four dimensions needed to explain the non-redundant information in the dataset can be summarized in an aboveground and a fine-root plane, corresponding to the GSPFF and the RES, respectively. Both planes display high levels of species aggregation, but the differentiation among growth forms, families and biomes is lower on the fine-root plane, which does not include any size-related trait, than on the aboveground plane. As a result, many species with similar fine-root syndromes display contrasting aboveground traits. This highlights the importance of including belowground organs to the GSPFF when exploring the interplay between different natural selection pressures and whole-plant trait integration.
Collapse
Affiliation(s)
- Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - C Guillermo Bueno
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Aurele Toussaint
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Sabrina Träger
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sandra Díaz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Alison D Munson
- Centre for Forest Research, Département des Sciences du bois et de la forêt, Université Laval, Quebec, Quebec, Canada
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Riin Tamme
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
67
|
Toussaint A, Brosse S, Bueno CG, Pärtel M, Tamme R, Carmona CP. Extinction of threatened vertebrates will lead to idiosyncratic changes in functional diversity across the world. Nat Commun 2021; 12:5162. [PMID: 34453040 PMCID: PMC8397725 DOI: 10.1038/s41467-021-25293-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/20/2021] [Indexed: 11/12/2022] Open
Abstract
Although species with larger body size and slow pace of life have a higher risk of extinction at a global scale, it is unclear whether this global trend will be consistent across biogeographic realms. Here we measure the functional diversity of terrestrial and freshwater vertebrates in the six terrestrial biogeographic realms and predict their future changes through scenarios mimicking a gradient of extinction risk of threatened species. We show vastly different effects of extinctions on functional diversity between taxonomic groups and realms, ranging from almost no decline to deep functional losses. The Indo-Malay and Palearctic realms are particularly inclined to experience a drastic loss of functional diversity reaching 29 and 31%, respectively. Birds, mammals, and reptiles regionally display a consistent functional diversity loss, while the projected losses of amphibians and freshwater fishes differ across realms. More efficient global conservation policies should consider marked regional losses of functional diversity across the world. Anthropogenic extinctions are driving functional shifts in biological communities, but these changes might differ considerably among taxa and biogeographic regions. Here the authors show that projected losses of functional diversity among land and freshwater vertebrates are unevenly distributed across the world.
Collapse
Affiliation(s)
- Aurele Toussaint
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Sébastien Brosse
- Université Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution et Diversité Biologique), Toulouse, France
| | - C Guillermo Bueno
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Riin Tamme
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
68
|
Mammola S, Carmona CP, Guillerme T, Cardoso P. Concepts and applications in functional diversity. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13882] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe) Finnish Museum of Natural History (Luomus) University of Helsinki Helsinki Finland
- Molecular Ecology Group (MEG) Water Research InstituteNational Research Council (CNR‐IRSA) Verbania Pallanza Italy
| | - Carlos P. Carmona
- Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Thomas Guillerme
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe) Finnish Museum of Natural History (Luomus) University of Helsinki Helsinki Finland
| |
Collapse
|
69
|
How do lizard niches conserve, diverge or converge? Further exploration of saurian evolutionary ecology. BMC Ecol Evol 2021; 21:149. [PMID: 34330210 PMCID: PMC8323276 DOI: 10.1186/s12862-021-01877-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022] Open
Abstract
Background Environmental conditions on Earth are repeated in non-random patterns that often coincide with species from different regions and time periods having consistent combinations of morphological, physiological and behavioral traits. Observation of repeated trait combinations among species confronting similar environmental conditions suggest that adaptive trait combinations are constrained by functional tradeoffs within or across niche dimensions. In an earlier study, we assembled a high-resolution database of functional traits for 134 lizard species to explore ecological diversification in relation to five fundamental niche dimensions. Here we expand and further examine multivariate relationships in that dataset to assess the relative influence of niche dimensions on the distribution of species in 6-dimensional niche space and how these may deviate from distributions generated from null models. We then analyzed a dataset with lower functional-trait resolution for 1023 lizard species that was compiled from our dataset and a published database, representing most of the extant families and environmental conditions occupied by lizards globally. Ordinations from multivariate analysis were compared with null models to assess how ecological and historical factors have resulted in the conservation, divergence or convergence of lizard niches. Results Lizard species clustered within a functional niche volume influenced mostly by functional traits associated with diet, activity, and habitat/substrate. Consistent patterns of trait combinations within and among niche dimensions yielded 24 functional groups that occupied a total niche space significantly smaller than plausible spaces projected by null models. Null model tests indicated that several functional groups are strongly constrained by phylogeny, such as nocturnality in the Gekkota and the secondarily acquired sit-and-wait foraging strategy in Iguania. Most of the widely distributed and species-rich families contained multiple functional groups thereby contributing to high incidence of niche convergence. Conclusions Comparison of empirical patterns with those generated by null models suggests that ecological filters promote limited sets of trait combinations, especially where similar conditions occur, reflecting both niche convergence and conservatism. Widespread patterns of niche convergence following ancestral niche diversification support the idea that lizard niches are defined by trait-function relationships and interactions with environment that are, to some degree, predictable and independent of phylogeny. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01877-8.
Collapse
|
70
|
Llorente-Culebras S, Molina-Venegas R, Barbosa AM, Carvalho SB, Rodríguez MÁ, Santos AMC. Iberian Protected Areas Capture Regional Functional, Phylogenetic and Taxonomic Diversity of Most Tetrapod Groups. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.634653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protected areas (PAs) have been created with the purpose of preserving biodiversity, acting as refuges from anthropogenic pressures. Traditionally, PAs have been designed and managed to represent mainly taxonomic diversity, ignoring other diversity facets such as its functional and phylogenetic components. Yet, functional and phylogenetic diversity are, respectively, connected with species’ roles on ecosystems and evolutionary history held within communities. Here, we focused on the amphibian, reptile, resident breeding bird, and non-flying mammal faunas of the national and natural parks of the Iberian Peninsula, to evaluate whether these PAs are adequately representing regional functional, phylogenetic, and taxonomic diversity of each group. Specifically, we computed functional and phylogenetic diversity within each PA, and then compared those values to the ones obtained from a random assembly of species from the regional pool, that was defined as the region encompassing the PA and a neighboring area of 50 km beyond its boundary. We also calculated the proportion of species in each regional pool that were present within the PAs. In general, the functional and phylogenetic diversity of amphibians, reptiles and non-flying mammals found within PAs did not differ significantly from random expectations generated from the species pertaining to the regional pool, although a few PAs showed a higher diversity. In contrast, resident breeding birds presented lower functional and phylogenetic diversity than expected by chance in many of the PAs, which could relate to climatic variables and the habitat specificity of some species. The proportion of species from the regional pools that are present in the PAs was high for amphibians, reptiles and mammals, and slightly lower for birds. These results suggest that the Iberian natural and national parks are effectively capturing the functional, phylogenetic and taxonomic diversity of most tetrapod assemblages present at the regional level. Future studies should identify priority areas to expand the representation of these biodiversity components, and assess potential effects of climate and land-use changes on current patterns.
Collapse
|