51
|
Park H, Park JJ, Bui PD, Yoon H, Grigoropoulos CP, Lee D, Ko SH. Laser-Based Selective Material Processing for Next-Generation Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307586. [PMID: 37740699 DOI: 10.1002/adma.202307586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/14/2023] [Indexed: 09/25/2023]
Abstract
The connection between laser-based material processing and additive manufacturing is quite deeply rooted. In fact, the spark that started the field of additive manufacturing is the idea that two intersecting laser beams can selectively solidify a vat of resin. Ever since, laser has been accompanying the field of additive manufacturing, with its repertoire expanded from processing only photopolymer resin to virtually any material, allowing liberating customizability. As a result, additive manufacturing is expected to take an even more prominent role in the global supply chain in years to come. Herein, an overview of laser-based selective material processing is presented from various aspects: the physics of laser-material interactions, the materials currently used in additive manufacturing processes, the system configurations that enable laser-based additive manufacturing, and various functional applications of next-generation additive manufacturing. Additionally, current challenges and prospects of laser-based additive manufacturing are discussed.
Collapse
Affiliation(s)
- Huijae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Phuong-Danh Bui
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Hyeokjun Yoon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Costas P Grigoropoulos
- Laser Thermal Lab, Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Daeho Lee
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
52
|
Du X, Wang H, Wang Y, Cao Z, Yang L, Shi X, Zhang X, He C, Gu X, Liu N. An Ultra-Conductive and Patternable 40 nm-Thick Polymer Film for Reliable Emotion Recognition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403411. [PMID: 38804620 DOI: 10.1002/adma.202403411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Understanding psychology is an important task in modern society which helps predict human behavior and provide feedback accordingly. Monitoring of weak psychological and emotional changes requires bioelectronic devices to be stretchable and compliant for unobtrusive and high-fidelity signal acquisition. Thin conductive polymer film is regarded as an ideal interface; however, it is very challenging to simultaneously balance mechanical robustness and opto-electrical property. Here, a 40 nm-thick film based on photolithographic double-network conductive polymer mediated by graphene layer is reported, which concurrently enables stretchability, conductivity, and conformability. Photolithographic polymer and graphene endow the film photopatternability, enhance stress dissipation capability, as well as improve opto-electrical conductivity (4458 S cm-1@>90% transparency) through molecular rearrangement by π-π interaction, electrostatic interaction, and hydrogen bonding. The film is further applied onto corrugated facial skin, the subtle electromyogram is monitored, and machine learning algorithm is performed to understand complex emotions, indicating the outstanding ability for stretchable and compliant bioelectronics.
Collapse
Affiliation(s)
- Xiaojia Du
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hai Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yunfei Wang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Zhiqiang Cao
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Leyi Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaohu Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaoxu Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaodan Gu
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
- Beijing Graphene Institute, Beijing, 100095, China
| |
Collapse
|
53
|
Hai W, Liu Y, Tian Y, Chen Z, Chen Y, Bao W, Bai T, Liu J, Liu Y. In Situ Growth of Columnar PEG on PEDOT and Its Antifouling Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14738-14747. [PMID: 38957955 DOI: 10.1021/acs.langmuir.4c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The antifouling properties of conductive polymers have received extensive attention for biosensor and bioelectronic applications. Polyethylene glycol (PEG) is a well-known antifouling material, but the controlled regulation of the surface topography of PEG without a template remains a challenge. Here, we show a columnar structure antifouling conductive polymer brush with enhanced antifouling properties and considerable conductivity. The method involves synthesizing the 3,4-ethylenedioxythiophene monomer modified with azide (EDOT-N3), the electropolymerization of PEDOT-N3, and the in situ growth of PEG polymer brushes on PEDOT through double-click reactions. The resultant columnar structure polymer brush exhibits high electrical conductivity (3.5 Ω·cm2), ultrahigh antifouling property, electrochemical stability (capacitance retention was 93.8% after 2000 cycles of CV scans in serum), and biocompatibility.
Collapse
Affiliation(s)
- Wenfeng Hai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao 028000, Inner Mongolia, China
| | - Yang Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
| | - YuJia Tian
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210000, China
| | - Zhiran Chen
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
| | - Yingsong Chen
- School of Mongolian Medicine, Inner Mongolia Minzu University, Tong Liao 028000, Inner Mongolia, China
| | - Wenji Bao
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
| | - Tingfang Bai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
| | - Yushuang Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
| |
Collapse
|
54
|
Oh B, Baek S, Nam KS, Sung C, Yang C, Lim YS, Ju MS, Kim S, Kim TS, Park SM, Park S, Park S. 3D printable and biocompatible PEDOT:PSS-ionic liquid colloids with high conductivity for rapid on-demand fabrication of 3D bioelectronics. Nat Commun 2024; 15:5839. [PMID: 38992011 PMCID: PMC11239939 DOI: 10.1038/s41467-024-50264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
3D printing has been widely used for on-demand prototyping of complex three-dimensional structures. In biomedical applications, PEDOT:PSS has emerged as a promising material in versatile bioelectronics due to its tissue-like mechanical properties and suitable electrical properties. However, previously developed PEDOT:PSS inks have not been able to fully utilize the advantages of commercial 3D printing due to its long post treatment times, difficulty in high aspect ratio printing, and low conductivity. We propose a one-shot strategy for the fabrication of PEDOT:PSS ink that is able to simultaneously achieve on-demand biocompatibility (no post treatment), structural integrity during 3D printing for tall three-dimensional structures, and high conductivity for rapid-prototyping. By using ionic liquid-facilitated PEDOT:PSS colloidal stacking induced by a centrifugal protocol, a viscoplastic PEDOT:PSS-ionic liquid colloidal (PILC) ink was developed. PILC inks exhibit high-aspect ratio vertical stacking, omnidirectional printability for generating suspended architectures, high conductivity (~286 S/cm), and high-resolution printing (~50 µm). We demonstrate the on-demand and versatile applicability of PILC inks through the fabrication of 3D circuit boards, on-skin physiological signal monitoring e-tattoos, and implantable bioelectronics (opto-electrocorticography recording, low voltage sciatic nerve stimulation and recording from deeper brain layers via 3D vertical spike arrays).
Collapse
Affiliation(s)
- Byungkook Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Seunghyeok Baek
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kum Seok Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Changhoon Sung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Congqi Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Soo Lim
- Department of Convergence IT Engineering (CiTE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
| | - Min Sang Ju
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Soomin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering (CiTE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
- Institute of Convergence Science, Yonsei University, Seoul, Republic of Korea
| | - Seongjun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
- KAIST Institute for NanoCentury, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
- KAIST Institute for NanoCentury, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
55
|
Chen L, Shen P, Zhao T, Liu M. Enhancing the Conductivity of PEDOT:PSS Films by the Confinement of Ice Crystals. SMALL METHODS 2024; 8:e2300979. [PMID: 38105341 DOI: 10.1002/smtd.202300979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Rapid developments in organic electronics demand highly conductive and freestanding (PEDOT:PSS) films. However, the synthesis of highly conductive PEDOT:PSS films requires toxic reagents, such as high-concentration acids and bases. Herein, an eco-friendly and cost-effective strategy is reported for improving the conductivity of PEDOT:PSS films through the confinement of ice crystals. The crystallization of water swelled by the film facilitated the phase separation of PEDOT and PSS, and the excess PSS in the skin layer is effectively removed. Moreover, under the confinement effect, the carrier mobility of the film is enhanced through the formation of a well-crystallized PEDOT molecular morphology. A detailed elucidation of aggregate structure evolution in PEDOT:PSS films during annealing, solvent post-treatment, and subsequent confined crystallization is presented herein. After multiple water crystallization cycles, the conductivity of the PEDOT:PSS film increased by over 85%, achieving a maximum of 2564 ± 142 S cm-1. Finally, compared to post-treatment with dimethyl sulfoxide (DMSO), the current strategy can improve the Seebeck coefficient by 5.6% and the power factor by 139%.
Collapse
Affiliation(s)
- Lie Chen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Nerve-Machine Integration and Cognitive Competition Center, Beijing Machine and Equipment Institute, Beijing, 100854, P. R. China
| | - Peijie Shen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tianyi Zhao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
56
|
Pinheiro T, Morais M, Silvestre S, Carlos E, Coelho J, Almeida HV, Barquinha P, Fortunato E, Martins R. Direct Laser Writing: From Materials Synthesis and Conversion to Electronic Device Processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402014. [PMID: 38551106 DOI: 10.1002/adma.202402014] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Direct Laser Writing (DLW) has been increasingly selected as a microfabrication route for efficient, cost-effective, high-resolution material synthesis and conversion. Concurrently, lasers participate in the patterning and assembly of functional geometries in several fields of application, of which electronics stand out. In this review, recent advances and strategies based on DLW for electronics microfabrication are surveyed and outlined, based on laser material growth strategies. First, the main DLW parameters influencing material synthesis and transformation mechanisms are summarized, aimed at selective, tailored writing of conductive and semiconducting materials. Additive and transformative DLW processing mechanisms are discussed, to open space to explore several categories of materials directly synthesized or transformed for electronics microfabrication. These include metallic conductors, metal oxides, transition metal chalcogenides and carbides, laser-induced graphene, and their mixtures. By accessing a wide range of material types, DLW-based electronic applications are explored, including processing components, energy harvesting and storage, sensing, and bioelectronics. The expanded capability of lasers to participate in multiple fabrication steps at different implementation levels, from material engineering to device processing, indicates their future applicability to next-generation electronics, where more accessible, green microfabrication approaches integrate lasers as comprehensive tools.
Collapse
Affiliation(s)
- Tomás Pinheiro
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Maria Morais
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Sara Silvestre
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Emanuel Carlos
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - João Coelho
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Henrique V Almeida
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Pedro Barquinha
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Elvira Fortunato
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Rodrigo Martins
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| |
Collapse
|
57
|
Zhao J, Feng J, Jiang Y, Wang Z, Zhang J, Mei S, Yang G, Gu Z, Tan C, Qin Y, Li Z. Skin-Integrated Electrodes Based on Room-Temperature Curable, Highly Conductive Silver/Polydimethylsiloxane Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309470. [PMID: 38148306 DOI: 10.1002/smll.202309470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 12/28/2023]
Abstract
The quality of electrophysiological (EP) signals heavily relies on the electrode's contact with the skin. However, motion or exposure to water can easily destabilize this connection. In contrast to traditional methods of attaching electrodes to the skin surface, this study introduces a skin-integration strategy inspired by the skin's intergrown structure. A highly conductive and room-temperature curable composite composed of silver microflakes and polydimethylsiloxane (Ag/PDMS) is applied to the skin. Before curing, the PDMS oil partially diffuse into the stratum corneum (SC) layer of the skin. Upon curing, the composite solidifies into an electrode that seamlessly integrated with the skin, resembling a natural extension. This skin-integration strategy offers several advantages. It minimizes motion artifacts resulting from relative electrode-skin displacement, significantly reduces interface impedance (67% of commercial Ag/AgCl gel electrodes at 100 Hz) and withstands water flushes due to its hydrophobic nature. These advantages pave the way for promising advancements in EP signal recording, particularly during motion and underwater conditions.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Jiuqing Feng
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yizhou Jiang
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zekai Wang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Jialong Zhang
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Shuxing Mei
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Guoqing Yang
- School of Microelectronics and State Key Laboratory of Integrated Chip and Systems, Fudan University, Shanghai, 200433, China
| | - Zongquan Gu
- School of Microelectronics and State Key Laboratory of Integrated Chip and Systems, Fudan University, Shanghai, 200433, China
| | - Cehui Tan
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yajie Qin
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zhuo Li
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
58
|
Doshi S, Ludescher D, Karst J, Floess M, Carlström J, Li B, Mintz Hemed N, Duh YS, Melosh NA, Hentschel M, Brongersma M, Giessen H. Direct electron beam patterning of electro-optically active PEDOT:PSS. NANOPHOTONICS 2024; 13:2271-2280. [PMID: 38774765 PMCID: PMC11104293 DOI: 10.1515/nanoph-2023-0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/04/2023] [Indexed: 05/24/2024]
Abstract
The optical and electronic tunability of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has enabled emerging applications as diverse as bioelectronics, flexible electronics, and micro- and nano-photonics. High-resolution spatial patterning of PEDOT:PSS opens up opportunities for novel active devices in a range of fields. However, typical lithographic processes require tedious indirect patterning and dry etch processes, while solution-processing methods such as ink-jet printing have limited spatial resolution. Here, we report a method for direct write nano-patterning of commercially available PEDOT:PSS through electron-beam induced solubility modulation. The written structures are water stable and maintain the conductivity as well as electrochemical and optical properties of PEDOT:PSS, highlighting the broad utility of our method. We demonstrate the potential of our strategy by preparing prototypical nano-wire structures with feature sizes down to 250 nm, an order of magnitude finer than previously reported direct write methods, opening the possibility of writing chip-scale microelectronic and optical devices. We finally use the high-resolution writing capabilities to fabricate electrically-switchable optical diffraction gratings. We show active switching in this archetypal system with >95 % contrast at CMOS-compatible voltages of +2 V and -3 V, offering a route towards highly-miniaturized dynamic optoelectronic devices.
Collapse
Affiliation(s)
- Siddharth Doshi
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305, USA
- Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, CA94305, USA
| | - Dominik Ludescher
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| | - Julian Karst
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| | - Moritz Floess
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| | - Johan Carlström
- Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, CA94305, USA
| | - Bohan Li
- Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, CA94305, USA
| | - Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305, USA
| | - Yi-Shiou Duh
- Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, CA94305, USA
| | - Nicholas A. Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305, USA
| | - Mario Hentschel
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| | - Mark Brongersma
- Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, CA94305, USA
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| |
Collapse
|
59
|
Kim Y, Nam H, Ryu B, Son SY, Park SY, Park S, Youn SM, Yun C. Thermally Induced Phase Separation of the PEDOT:PSS Layer for Highly Efficient Laminated Polymer Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38690839 DOI: 10.1021/acsami.4c03104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Among various conductive polymers, the poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) film has been studied as a promising material for use as a transparent electrode and a hole-injecting layer in organic optoelectronic devices. Due to the increasing demand for the low-cost fabrication of organic light-emitting diodes (OLEDs), PEDOT:PSS has been employed as the top electrode by using the coating or lamination method. Herein, a facile method is reported for the fabrication of highly efficient polymer light-emitting diodes (PLEDs) based on a laminated transparent electrode (LTE) consisting of successive PEDOT:PSS and silver-nanowire (AgNW) layers. In particular, thermally induced phase separation (TIPS) of the PEDOT:PSS film is found to depend on the annealing temperature (Tanneal) during preparation of the LTE. At Tanneal close to the glass transition temperature of the PSS chains, a PSS-rich phase with a large number of PSS- molecules enhances the work function of the PEDOT:PSS on the glass-side surface relative to the air side. By using the optimized LTEs, bidirectional laminated PLEDs are obtained with a total external quantum efficiency of 2.9% and a turn-on voltage of 2.6 V, giving a comparable performance to that of the reference bottom-emitting PLED based on a costly evaporated metal electrode. In addition, an analysis of the angular characteristics, including the variation in the electroluminescence spectra and the change in luminance according to the emission angle, indicates that the laminated PLED with the LTE provides a more uniform angular distribution regardless of the direction of emission. Detailed optical and electrical analyses are also performed to evaluate the suitability of LTEs for the low-cost fabrication of efficient PLEDs.
Collapse
Affiliation(s)
- Yejin Kim
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyuckjin Nam
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Boeun Ryu
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seo Yeong Son
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong Yeon Park
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sejung Park
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung-Min Youn
- Energy & Nano Technology Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea
| | - Changhun Yun
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
60
|
Jung Y, Kwon K, Lee J, Ko SH. Untethered soft actuators for soft standalone robotics. Nat Commun 2024; 15:3510. [PMID: 38664373 PMCID: PMC11045848 DOI: 10.1038/s41467-024-47639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Soft actuators produce the mechanical force needed for the functional movements of soft robots, but they suffer from critical drawbacks since previously reported soft actuators often rely on electrical wires or pneumatic tubes for the power supply, which would limit the potential usage of soft robots in various practical applications. In this article, we review the new types of untethered soft actuators that represent breakthroughs and discuss the future perspective of soft actuators. We discuss the functional materials and innovative strategies that gave rise to untethered soft actuators and deliver our perspective on challenges and opportunities for future-generation soft actuators.
Collapse
Affiliation(s)
- Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kangkyu Kwon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Engineering Research / Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
61
|
Sun M, Cui S, Wang Z, Luo H, Yang H, Ouyang X, Xu K. A laser-engraved wearable gait recognition sensor system for exoskeleton robots. MICROSYSTEMS & NANOENGINEERING 2024; 10:50. [PMID: 38595947 PMCID: PMC11002036 DOI: 10.1038/s41378-024-00680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 04/11/2024]
Abstract
As a reinforcement technology that improves load-bearing ability and prevents injuries, assisted exoskeleton robots have extensive applications in freight transport and health care. The perception of gait information by such robots is vital for their control. This information is the basis for motion planning in assistive and collaborative functions. Here, a wearable gait recognition sensor system for exoskeleton robots is presented. Pressure sensor arrays based on laser-induced graphene are developed with flexibility and reliability. Multiple sensor units are integrated into an insole to detect real-time pressure at key plantar positions. In addition, the circuit hardware and the algorithm are designed to reinforce the sensor system with the capability of gait recognition. The experimental results show that the accuracy of gait recognition by the proposed system is 99.85%, and the effectiveness of the system is further verified through testing on an exoskeleton robot.
Collapse
Affiliation(s)
- Maowen Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Songya Cui
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, 310015 China
| | - Zezheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Huayu Luo
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiaoping Ouyang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Kaichen Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| |
Collapse
|
62
|
Shin Y, Lee HS, Hong YJ, Sunwoo SH, Park OK, Choi SH, Kim DH, Lee S. Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics. SCIENCE ADVANCES 2024; 10:eadi7724. [PMID: 38507496 PMCID: PMC10954228 DOI: 10.1126/sciadv.adi7724] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Stretchable bioelectronics has notably contributed to the advancement of continuous health monitoring and point-of-care type health care. However, microscale nonconformal contact and locally dehydrated interface limit performance, especially in dynamic environments. Therefore, hydrogels can be a promising interfacial material for the stretchable bioelectronics due to their unique advantages including tissue-like softness, water-rich property, and biocompatibility. However, there are still practical challenges in terms of their electrical performance, material homogeneity, and monolithic integration with stretchable devices. Here, we report the synthesis of a homogeneously conductive polyacrylamide hydrogel with an exceptionally low impedance (~21 ohms) and a reasonably high conductivity (~24 S/cm) by incorporating polyaniline-decorated poly(3,4-ethylenedioxythiophene:polystyrene). We also establish robust adhesion (interfacial toughness: ~296.7 J/m2) and reliable integration between the conductive hydrogel and the stretchable device through on-device polymerization as well as covalent and hydrogen bonding. These strategies enable the fabrication of a stretchable multichannel sensor array for the high-quality on-skin impedance and pH measurements under in vitro and in vivo circumstances.
Collapse
Affiliation(s)
- Yoonsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Su Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sueng Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangkyu Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
63
|
Bi Y, Sun M, Zhang Y, Sun F, Du Y, Wang J, Zhou M, Ma CB. Seconds Timescale Synthesis of Highly Stretchable Antibacterial Hydrogel for Skin Wound Closure and Epidermal Strain Sensor. Adv Healthc Mater 2024; 13:e2302810. [PMID: 37992675 DOI: 10.1002/adhm.202302810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Effective wound healing is critical for patient care, and the development of novel wound dressing materials that promote healing, prevent infection, and are user-friendly is of great importance, particularly in the context of point-of-care testing (POCT). This study reports the synthesis of a hydrogel material that can be produced in less than 10 s and possesses antibacterial activity against both gram-negative and gram-positive microorganisms, as well as the ability to inhibit the growth of eukaryotic cells, such as yeast. The hydrogel is formed wholly based on covalent-like hydrogen bonding interactions and exhibits excellent mechanical properties, with the ability to stretch up to more than 600% of its initial length. Furthermore, the hydrogel demonstrates ultra-fast self-healing properties, with fractures capable of being repaired within 10 s. This hydrogel can promote skin wound healing, with the added advantage of functioning as a strain sensor that generates an electrical signal in response to physical deformation. The strain sensor composed of a rubber shell realizes fast and responsive strain sensing. The findings suggest that this hydrogel has promising applications in the field of POCT for wound care, providing a new avenue for improved patient outcomes.
Collapse
Affiliation(s)
- Yanni Bi
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
- Department of Analytical Chemistry, Guangxi Vocational & Technical Institute of Industry, Guangxi, 530001, China
| | - Yuanyuan Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Fuxin Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jingjuan Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Chong-Bo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
64
|
Li Z, Yun H, Yan Y, Yuan M, Zhao Y, Zhao F. Electro-Responsive Breathing Transition of Conductive Hydrogel for Broadband Kinetic Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305837. [PMID: 37539740 DOI: 10.1002/adma.202305837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Reclaiming kinetic energy from vibrating machines holds great promise for sustainable energy harvesting technologies. Nevertheless, the impulsive current induced by vibrations is incompatible with conventional energy storage devices. The energy-management system necessitates novel designs of soft materials for lightweight, miniaturized, and integrated high-frequency electrochemical devices. Here, this work develops a conductive hydrogel with an electro-responsive polymeric network. The electro-responsive breathing transition of the crosslinking points facilitates the expeditious formation of a localized electrolyte layer. This layer features an exceedingly high local charge density, surpassing that of a saturated electrolyte solution by an order of magnitude, and thus enabling rapid charge transport under the influence of an applied voltage. The micro-capacitor based on the gel exhibits record-high capacitance of ≈2 mF cm-2 when the frequency of energy input reaches up to 104 Hz. This work also demonstrates a prototype battery charger that harvests energy from a running car engine. This study presents a feasible strategy for waste energy recycling using integrated electrochemical devices, opening a new avenue for ambient energy management.
Collapse
Affiliation(s)
- Zhou Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huiru Yun
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuke Yan
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Man Yuan
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yang Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Fei Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
65
|
Tropp J, Collins CP, Xie X, Daso RE, Mehta AS, Patel SP, Reddy MM, Levin SE, Sun C, Rivnay J. Conducting Polymer Nanoparticles with Intrinsic Aqueous Dispersibility for Conductive Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306691. [PMID: 37680065 PMCID: PMC11294187 DOI: 10.1002/adma.202306691] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Indexed: 09/09/2023]
Abstract
Conductive hydrogels are promising materials with mixed ionic-electronic conduction to interface living tissue (ionic signal transmission) with medical devices (electronic signal transmission). The hydrogel form factor also uniquely bridges the wet/soft biological environment with the dry/hard environment of electronics. The synthesis of hydrogels for bioelectronics requires scalable, biocompatible fillers with high electronic conductivity and compatibility with common aqueous hydrogel formulations/resins. Despite significant advances in the processing of carbon nanomaterials, fillers that satisfy all these requirements are lacking. Herein, intrinsically dispersible acid-crystalized PEDOT:PSS nanoparticles (ncrys-PEDOTX ) are reported which are processed through a facile and scalable nonsolvent induced phase separation method from commercial PEDOT:PSS without complex instrumentation. The particles feature conductivities of up to 410 S cm-1 , and when compared to other common conductive fillers, display remarkable dispersibility, enabling homogeneous incorporation at relatively high loadings within diverse aqueous biomaterial solutions without additives or surfactants. The aqueous dispersibility of the ncrys-PEDOTX particles also allows simple incorporation into resins designed for microstereolithography without sonication or surfactant optimization; complex biomedical structures with fine features (< 150 µm) are printed with up to 10% particle loading . The ncrys-PEDOTX particles overcome the challenges of traditional conductive fillers, providing a scalable, biocompatible, plug-and-play platform for soft organic bioelectronic materials.
Collapse
Affiliation(s)
- Joshua Tropp
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Caralyn P. Collins
- Department of Mechanical Engineering Northwestern University, Evanston, IL 60208, USA
| | - Xinran Xie
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Rachel E. Daso
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Abijeet Singh Mehta
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Shiv P. Patel
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Manideep M. Reddy
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Sophia E. Levin
- Department of Mechanical Engineering Northwestern University, Evanston, IL 60208, USA
| | - Cheng Sun
- Department of Mechanical Engineering Northwestern University, Evanston, IL 60208, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| |
Collapse
|
66
|
Jiao Y, Lei M, Zhu J, Chang R, Qu X. Advances in electrode interface materials and modification technologies for brain-computer interfaces. BIOMATERIALS TRANSLATIONAL 2023; 4:213-233. [PMID: 38282708 PMCID: PMC10817795 DOI: 10.12336/biomatertransl.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
Recent advances in neuroelectrode interface materials and modification technologies are reviewed. Brain-computer interface is the new method of human-computer interaction, which not only can realise the exchange of information between the human brain and external devices, but also provides a brand-new means for the diagnosis and treatment of brain-related diseases. The neural electrode interface part of brain-computer interface is an important area for electrical, optical and chemical signal transmission between brain tissue system and external electronic devices, which determines the performance of brain-computer interface. In order to solve the problems of insufficient flexibility, insufficient signal recognition ability and insufficient biocompatibility of traditional rigid electrodes, researchers have carried out extensive studies on the neuroelectrode interface in terms of materials and modification techniques. This paper introduces the biological reactions that occur in neuroelectrodes after implantation into brain tissue and the decisive role of the electrode interface for electrode function. Following this, the latest research progress on neuroelectrode materials and interface materials is reviewed from the aspects of neuroelectrode materials and modification technologies, firstly taking materials as a clue, and then focusing on the preparation process of neuroelectrode coatings and the design scheme of functionalised structures.
Collapse
Affiliation(s)
- Yunke Jiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, China
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, China
| | - Jianwei Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, China
| | - Ronghang Chang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang Province, China
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai, China
| |
Collapse
|
67
|
Li Y, Yu P, Ma W, Mao L. High-Performance Electrochemical Actuator under an Ultralow Driving Voltage with a Mixed Electronic-Ionic Conductive Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56158-56166. [PMID: 37976422 DOI: 10.1021/acsami.3c12270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Although versatile deformation, high flexibility, and environmental friendliness of electrochemical actuators (EAs) have made them promising in bioinspired soft robots and biomedical devices, the relatively high driving voltages unfortunately impose great restrictions on their applications in low-energy and human-friendly electronics. Here, we find that the uses of a mixed electronic-ionic conductive metal-organic framework (c-MOF), i.e., Ni3(hexaiminotriphenylene)2 (Ni3(HITP)2), largely lower the driving voltage of EAs. The as-fabricated EA can work under a driving voltage as low as 0.1 V, representing the lowest value among those for the c-MOF-based EAs reported so far. The Ni3(HITP)2-based EA shows an excellent actuation performance such as a high bending strain difference of 0.48% (±0.5 V, 0.1 Hz) and long-term durability of >99% after 15,000 cycles due to the improved conductivity up to 1000 S·cm-1 and double-layer capacitance as high as 176.3 F·g-1 stemming from the mixed electronic-ionic conduction of Ni3(HITP)2.
Collapse
Affiliation(s)
- Yali Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- Institute of Analysis and Testing (Beijing Center for Physical & Chemical Analysis), Beijing Academy of Science and Technology, Beijing100089, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
| |
Collapse
|
68
|
Goestenkors AP, Liu T, Okafor SS, Semar BA, Alvarez RM, Montgomery SK, Friedman L, Rutz AL. Manipulation of cross-linking in PEDOT:PSS hydrogels for biointerfacing. J Mater Chem B 2023; 11:11357-11371. [PMID: 37997395 DOI: 10.1039/d3tb01415k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Conducting hydrogels can be used to fabricate bioelectronic devices that are soft for improved cell- and tissue-interfacing. Those based on conjugated polymers, such as poly(3,4-ethylene-dioxythiophene):polystyrene sulfonate (PEDOT:PSS), can be made simply with solution-based processing techniques, yet the influence of fabrication variables on final gel properties is not fully understood. In this study, we investigated if PEDOT:PSS cross-linking could be manipulated by changing the concentration of a gelling agent, ionic liquid, in the hydrogel precursor mixture. Rheology and gelation kinetics of precursor mixtures were investigated, and aqueous stability, swelling, conductivity, stiffness, and cytocompatibility of formed hydrogels were characterized. Increasing ionic liquid concentration was found to increase cross-linking as measured by decreased swelling, decreased non-network fraction, increased stiffness, and increased conductivity. Such manipulation of IL concentration thus afforded control of final gel properties and was utilized in further investigations of biointerfacing. When cross-linked sufficiently, PEDOT:PSS hydrogels were stable in sterile cell culture conditions for at least 28 days. Additionally, hydrogels supported a viable and proliferating population of human dermal fibroblasts for at least two weeks. Collectively, these characterizations of stability and cytocompatibility illustrate that these PEDOT:PSS hydrogels have significant promise for biointerfacing applications that require soft materials for direct interaction with cells.
Collapse
Affiliation(s)
- Anna P Goestenkors
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA.
| | - Tianran Liu
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA.
| | - Somtochukwu S Okafor
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA.
| | - Barbara A Semar
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA
| | - Riley M Alvarez
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA.
| | - Sandra K Montgomery
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA.
| | - Lianna Friedman
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA.
| | - Alexandra L Rutz
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA.
| |
Collapse
|
69
|
Osazuwa PO, Lo CY, Feng X, Nolin A, Dhong C, Kayser LV. Surface Functionalization with (3-Glycidyloxypropyl)trimethoxysilane (GOPS) as an Alternative to Blending for Enhancing the Aqueous Stability and Electronic Performance of PEDOT:PSS Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54711-54720. [PMID: 37962428 PMCID: PMC11751989 DOI: 10.1021/acsami.3c09452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Organic mixed ionic-electronic conductors, such as poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), are essential materials for the fabrication of bioelectronic devices due to their unique ability to couple and transport ionic and electronic charges. The growing interest in bioelectronic devices has led to the development of organic electrochemical transistors (OECTs) that can operate in aqueous solutions and transduce ionic signals of biological origin into measurable electronic signals. A common challenge with OECTs is maintaining the stability and performance of the PEDOT:PSS films operating under aqueous conditions. Although the conventional approach of blending the PEDOT:PSS dispersions with a cross-linker such as (3-glycidyloxypropyl)trimethoxysilane (GOPS) helps to ensure strong adhesion of the films to device substrates, it also impacts the morphology and thus electrical properties of the PEDOT:PSS films, which leads to a significant reduction in the performance of OECTs. In this study, we instead functionalize only the surface of the device substrates with GOPS to introduce a silane monolayer before spin-coating the PEDOT:PSS dispersion on the substrate. In all cases, having a GOPS monolayer instead of a blend leads to increased electronic performance metrics, such as three times higher electronic conductivity, volumetric capacitance, and mobility-capacitance product [μC*] value in OECT devices, ultimately leading to a record value of 406 ± 39 F cm-1 V-1 s-1 for amorphous PEDOT:PSS. This increased performance does not come at the expense of operational stability, as both the blend and surface functionalization show similar performance when subjected to pulsed gate bias stress, long-term electrochemical cycling tests, and aging over 150 days. Overall, this study establishes a novel approach to using GOPS as a surface monolayer instead of a blended cross-linker, for achieving high-performance organic mixed ionic-electronic conductors that are stable in water for bioelectronics.
Collapse
Affiliation(s)
- Peter O Osazuwa
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Chun-Yuan Lo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Xu Feng
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Abigail Nolin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Charles Dhong
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Laure V Kayser
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
70
|
Xu K, Li Q, Lu Y, Luo H, Jian Y, Li D, Kong D, Wang R, Tan J, Cai Z, Yang G, Zhu B, Ye Q, Yang H, Li T. Laser Direct Writing of Flexible Thermal Flow Sensors. NANO LETTERS 2023; 23:10317-10325. [PMID: 37937967 DOI: 10.1021/acs.nanolett.3c02891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Thin film-based thermal flow sensors afford applications in healthcare and industries owing to their merits in preserving initial flow distributions. However, traditional thermal flow sensors are primarily applied to track flow intensities based on hot-wire or hot-film sensing mechanisms due to their relatively facile device configurations and fabrication strategies. Herein, a calorimetric thermal flow sensor is proposed based on laser direct writing to form laser-induced graphene as heaters and temperature sensors, resulting in monitoring both flow intensities and orientations. Via homogeneously surrounding spiral heaters with multiple temperature sensors, the device exhibits high sensitivity (∼162 K·s/m) at small flows with an extended flow detection range (∼25 m/s). Integrating the device with a data-acquisition board and a dual-mode graphical user interface enables wirelessly and dynamically monitoring respiration and the motion of robotic arms. This versatile flow sensor with facile manufacturing affords potentials in health inspection, remote monitoring, and studying hydrodynamics.
Collapse
Affiliation(s)
- Kaichen Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qi'ao Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuyao Lu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huayu Luo
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yihui Jian
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dingwei Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Depeng Kong
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruohan Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jibing Tan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zimo Cai
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Geng Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Qingqing Ye
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tiefeng Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027 Hangzhou, China
| |
Collapse
|
71
|
Seiti M, Giuri A, Corcione CE, Ferraris E. Advancements in tailoring PEDOT: PSS properties for bioelectronic applications: A comprehensive review. BIOMATERIALS ADVANCES 2023; 154:213655. [PMID: 37866232 DOI: 10.1016/j.bioadv.2023.213655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
In the field of bioelectronics, the demand for biocompatible, stable, and electroactive materials for functional biological interfaces, sensors, and stimulators, is drastically increasing. Conductive polymers (CPs) are synthetic materials, which are gaining increasing interest mainly due to their outstanding electrical, chemical, mechanical, and optical properties. Since its discovery in the late 1980s, the CP Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) has become extremely attractive, being considered as one of the most capable organic electrode materials for several bioelectronic applications in the field of tissue engineering and regenerative medicine. Main examples refer to thin, flexible films, electrodes, hydrogels, scaffolds, and biosensors. Within this context, the authors contend that PEDOT:PSS properties should be customized to encompass: i) biocompatibility, ii) conductivity, iii) stability in wet environment, iv) adhesion to the substrate, and, when necessary, v) (bio-)degradability. However, consolidating all these properties into a single functional solution is not always straightforward. Therefore, the objective of this review paper is to present various methods for acquiring and improving PEDOT:PSS properties, with the primary focus on ensuring its biocompatibility, and simultaneously addressing the other functional features. The last section highlights a collection of designated studies, with a particular emphasis on PEDOT:PSS/carbon filler composites due to their exceptional characteristics.
Collapse
Affiliation(s)
- Miriam Seiti
- Department of Mechanical Engineering, KU Leuven, KU Leuven Campus De Nayer, Jan De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Antonella Giuri
- CNR-NANOTEC-Istituto di Nanotecnologia, Polo di Nanotecnologia, c/o Campus Ecotekne, via Monteroni, I-73100 Lecce, Italy
| | | | - Eleonora Ferraris
- Department of Mechanical Engineering, KU Leuven, KU Leuven Campus De Nayer, Jan De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium.
| |
Collapse
|
72
|
Kim SD, Kim K, Shin M. Recent advances in 3D printable conductive hydrogel inks for neural engineering. NANO CONVERGENCE 2023; 10:41. [PMID: 37679589 PMCID: PMC10484881 DOI: 10.1186/s40580-023-00389-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Recently, the 3D printing of conductive hydrogels has undergone remarkable advances in the fabrication of complex and functional structures. In the field of neural engineering, an increasing number of reports have been published on tissue engineering and bioelectronic approaches over the last few years. The convergence of 3D printing methods and electrically conducting hydrogels may create new clinical and therapeutic possibilities for precision regenerative medicine and implants. In this review, we summarize (i) advancements in preparation strategies for conductive materials, (ii) various printing techniques enabling the fabrication of electroconductive hydrogels, (iii) the required physicochemical properties of the printed constructs, (iv) their applications in bioelectronics and tissue regeneration for neural engineering, and (v) unconventional approaches and outlooks for the 3D printing of conductive hydrogels. This review provides technical insights into 3D printable conductive hydrogels and encompasses recent developments, specifically over the last few years of research in the neural engineering field.
Collapse
Affiliation(s)
- Sung Dong Kim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Kyoungryong Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
73
|
Zhao Y, Jin KQ, Li JD, Sheng KK, Huang WH, Liu YL. Flexible and Stretchable Electrochemical Sensors for Biological Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305917. [PMID: 37639636 DOI: 10.1002/adma.202305917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Indexed: 08/31/2023]
Abstract
The rise of flexible and stretchable electronics has revolutionized biosensor techniques for probing biological systems. Particularly, flexible and stretchable electrochemical sensors (FSECSs) enable the in situ quantification of numerous biochemical molecules in different biological entities owing to their exceptional sensitivity, fast response, and easy miniaturization. Over the past decade, the fabrication and application of FSECSs have significantly progressed. This review highlights key developments in electrode fabrication and FSECSs functionalization. It delves into the electrochemical sensing of various biomarkers, including metabolites, electrolytes, signaling molecules, and neurotransmitters from biological systems, encompassing the outer epidermis, tissues/organs in vitro and in vivo, and living cells. Finally, considering electrode preparation and biological applications, current challenges and future opportunities for FSECSs are discussed.
Collapse
Affiliation(s)
- Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Qi Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing-Du Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Kai Sheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
74
|
Won D, Bang J, Choi SH, Pyun KR, Jeong S, Lee Y, Ko SH. Transparent Electronics for Wearable Electronics Application. Chem Rev 2023; 123:9982-10078. [PMID: 37542724 PMCID: PMC10452793 DOI: 10.1021/acs.chemrev.3c00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 08/07/2023]
Abstract
Recent advancements in wearable electronics offer seamless integration with the human body for extracting various biophysical and biochemical information for real-time health monitoring, clinical diagnostics, and augmented reality. Enormous efforts have been dedicated to imparting stretchability/flexibility and softness to electronic devices through materials science and structural modifications that enable stable and comfortable integration of these devices with the curvilinear and soft human body. However, the optical properties of these devices are still in the early stages of consideration. By incorporating transparency, visual information from interfacing biological systems can be preserved and utilized for comprehensive clinical diagnosis with image analysis techniques. Additionally, transparency provides optical imperceptibility, alleviating reluctance to wear the device on exposed skin. This review discusses the recent advancement of transparent wearable electronics in a comprehensive way that includes materials, processing, devices, and applications. Materials for transparent wearable electronics are discussed regarding their characteristics, synthesis, and engineering strategies for property enhancements. We also examine bridging techniques for stable integration with the soft human body. Building blocks for wearable electronic systems, including sensors, energy devices, actuators, and displays, are discussed with their mechanisms and performances. Lastly, we summarize the potential applications and conclude with the remaining challenges and prospects.
Collapse
Affiliation(s)
- Daeyeon Won
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Junhyuk Bang
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seok Hwan Choi
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyung Rok Pyun
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Youngseok Lee
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute
of Engineering Research/Institute of Advanced Machinery and Design
(SNU-IAMD), Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
75
|
Wang S, Wang X, Wang Q, Ma S, Xiao J, Liu H, Pan J, Zhang Z, Zhang L. Flexible Optoelectronic Multimodal Proximity/Pressure/Temperature Sensors with Low Signal Interference. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304701. [PMID: 37532248 DOI: 10.1002/adma.202304701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Multimodal tactile sensors are a crucial part of intelligent human-machine interaction and collaboration. Simultaneous detection of proximity, pressure, and temperature on a single sensor can greatly promote the safety, interactivity, and compactness of interaction systems. However, severe signal interference and complex decoupling algorithms hinder the actual applications. Here, this work reports a flexible optoelectronic multimodal sensor capable of detecting and decoupling proximity/pressure/temperature by integrating a light waveguide and an interdigital electrode (IDE) into a compact fibrous sensor. Negligible signal interference is realized by combining heterogeneous sensing mechanisms of optics and electronics, which encodes proximity into capacitance, pressure into light intensity and temperature into resistance. The sensor exhibits a large sensing distance of 225 mm with fast responses for proximity detection, a pressure sensitivity of 0.42 N-1 , and a temperature sensitivity of 7% °C-1 . As a proof of concept, a doll equipped with the sensor can accurately discriminate and detect various stimuli, thus achieving safe and immersive interactions with the user. This work opens up promising paths for self-decoupled multimodal sensors and related human/machine/environment interaction applications.
Collapse
Affiliation(s)
- Shan Wang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Xiaoyu Wang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Qi Wang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Shuqi Ma
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Jianliang Xiao
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Haitao Liu
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Jing Pan
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Zhang Zhang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Lei Zhang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
76
|
Sun J, Guo W, Mei G, Wang S, Wen K, Wang M, Feng D, Qian D, Zhu M, Zhou X, Liu Z. Artificial Spider Silk with Buckled Sheath by Nano-Pulley Combing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212112. [PMID: 37326574 DOI: 10.1002/adma.202212112] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/28/2023] [Indexed: 06/17/2023]
Abstract
The axial orientation of molecular chains always results in an increase in fiber strength and a decrease in toughness. Here, taking inspiration from the skin structure, artificial spider silk with a buckled sheath-core structure is developed, with mechanical strength and toughness reaching 1.61 GPa and 466 MJ m-3 , respectively, exceeding those of Caerostris darwini silk. The buckled structure is achieved by nano-pulley combing of polyrotaxane hydrogel fibers through cyclic stretch-release training, which exhibits axial alignment of the polymer chains in the fiber core and buckling in the fiber sheath. The artificial spider silk also exhibits excellent supercontraction behavior, achieving a work capacity of 1.89 kJ kg-1 , and an actuation stroke of 82%. This work provides a new strategy for designing high-performance and intelligent fiber materials.
Collapse
Affiliation(s)
- Jinkun Sun
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wenjin Guo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Guangkai Mei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Songli Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Kai Wen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Meilin Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Danyang Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dong Qian
- Department of Mechanical Engineering, the University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
77
|
Wang H, Zhuang T, Wang J, Sun X, Wang Y, Li K, Dai X, Guo Q, Li X, Chong D, Chen B, Yan J. Multifunctional Filler-Free PEDOT:PSS Hydrogels with Ultrahigh Electrical Conductivity Induced by Lewis-Acid-Promoted Ion Exchange. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302919. [PMID: 37352335 DOI: 10.1002/adma.202302919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Highly conductive hydrogels with biotissue-like mechanical properties are of great interest in the emerging field of hydrogel bioelectronics due to their good biocompatibility, deformability, and stability. Fully polymeric hydrogels may exhibit comparable Young's modulus to biotissues. However, most of these filler-free hydrogels have a low electrical conductivity of <10 S cm-1 , which limits their wide applications of them in digital circuits or bioelectronic devices. In this work, a series of metal-halides-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hydrogels with an ultrahigh electrical conductivity up to 547 S cm-1 is reported, which is 1.5 times to 104 times higher than previously reported filler-free polymeric hydrogels. Theoretical calculation demonstrated that the ion exchange between PEDOT:PSS and the metal halides played an important role to promote phase separation in the hydrogels, which thus leads to ultrahigh electrical conductivity. The high electrical conductivity resulted in multifunctional hydrogels with high performance in thermoelectrics, electromagnetic shielding, Joule heating, and sensing. Such flexible and stretchable hydrogels with ultrahigh electrical conductivity and stability upon various deformations are promising for soft bioelectronics devices and wearable electronics.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
- Shaanxi Jianeng Flexible Thermoelectric Technology, Inc.|Western China Science and Technology Innovation Port, Fengxi New City, Xixian New District, Xi'an, 710048, China
| | - Tiantian Zhuang
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing Wang
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xu Sun
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yizhuo Wang
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Kuncai Li
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xu Dai
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Qinyue Guo
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xuhui Li
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Daotong Chong
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bin Chen
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Junjie Yan
- State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
78
|
Li Y, Li N, Liu W, Prominski A, Kang S, Dai Y, Liu Y, Hu H, Wai S, Dai S, Cheng Z, Su Q, Cheng P, Wei C, Jin L, Hubbell JA, Tian B, Wang S. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat Commun 2023; 14:4488. [PMID: 37495580 PMCID: PMC10372055 DOI: 10.1038/s41467-023-40191-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Soft and stretchable electronics have emerged as highly promising tools for biomedical diagnosis and biological studies, as they interface intimately with the human body and other biological systems. Most stretchable electronic materials and devices, however, still have Young's moduli orders of magnitude higher than soft bio-tissues, which limit their conformability and long-term biocompatibility. Here, we present a design strategy of soft interlayer for allowing the use of existing stretchable materials of relatively high moduli to versatilely realize stretchable devices with ultralow tissue-level moduli. We have demonstrated stretchable transistor arrays and active-matrix circuits with moduli below 10 kPa-over two orders of magnitude lower than the current state of the art. Benefiting from the increased conformability to irregular and dynamic surfaces, the ultrasoft device created with the soft interlayer design realizes electrophysiological recording on an isolated heart with high adaptability, spatial stability, and minimal influence on ventricle pressure. In vivo biocompatibility tests also demonstrate the benefit of suppressing foreign-body responses for long-term implantation. With its general applicability to diverse materials and devices, this soft-interlayer design overcomes the material-level limitation for imparting tissue-level softness to a variety of bioelectronic devices.
Collapse
Affiliation(s)
- Yang Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Nan Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Wei Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Seounghun Kang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Yahao Dai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Youdi Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Huawei Hu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Shinya Wai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Shilei Dai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Zhe Cheng
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Qi Su
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Ping Cheng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Chen Wei
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lihua Jin
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA.
| |
Collapse
|
79
|
Abstract
Owing to superior softness, wetness, responsiveness, and biocompatibility, bulk hydrogels are being intensively investigated for versatile functions in devices and machines including sensors, actuators, optics, and coatings. The one-dimensional (1D) hydrogel fibers possess the metrics from both the hydrogel materials and structural topology, endowing them with extraordinary mechanical, sensing, breathable and weavable properties. As no comprehensive review has been reported for this nascent field, this article aims to provide an overview of hydrogel fibers for soft electronics and actuators. We first introduce the basic properties and measurement methods of hydrogel fibers, including mechanical, electrical, adhesive, and biocompatible properties. Then, typical manufacturing methods for 1D hydrogel fibers and fibrous films are discussed. Next, the recent progress of wearable sensors (e.g., strain, temperature, pH, and humidity) and actuators made from hydrogel fibers is discussed. We conclude with future perspectives on next-generation hydrogel fibers and the remaining challenges. The development of hydrogel fibers will not only provide an unparalleled one-dimensional characteristic, but also translate fundamental understanding of hydrogels into new application boundaries.
Collapse
Affiliation(s)
- Jiaxuan Du
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qing Ma
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Litao Sun
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
80
|
Wang Y, Huang N, Yang Z. Revealing the Role of Zinc Ions in Atherosclerosis Therapy via an Engineered Three-Dimensional Pathological Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300475. [PMID: 37092571 PMCID: PMC10288231 DOI: 10.1002/advs.202300475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Indexed: 05/03/2023]
Abstract
An incomplete understanding of the cellular functions and underlying mechanisms of zinc ions released from zinc-based stents in atherosclerosis (AS) therapy is one of the major obstacles to their clinical translation. The existing evaluation methodology using cell monolayers has limitations on accurate results due to the lack of vascular architectures and pathological features. Herein, the authors propose a 3D biomimetic AS model based on a multi-layer vascular structure comprising endothelial cells and smooth muscle cells with hyperlipidemic surroundings and inflammatory stimulations as AS-prone biochemical conditions to explore the biological functions of zinc ions in AS therapy. Concentration-dependent biphasic effects of zinc ions on cell growth are observed both in cell monolayers and 3D AS models. Nevertheless, the cells within 3D AS model exhibit more accurate biological assessments of the zinc ions, as evidenced by augmented pathological features and significantly higher half-maximal inhibitory concentration values against zinc ions. Based on such a developed 3D biomimetic AS model, the inhibitory effects on the deoxyribonucleic acid (DNA) synthesis, significantly influenced biological processes like cell motility, proliferation, and adhesion, and several potential bio-targets of zinc ions of cells are revealed.
Collapse
Affiliation(s)
- Ying Wang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative MedicineThe Tenth Affiliated Hospital of Southern Medical UniversityDongguan523059P. R. China
- Guangdong Provincial Key Laboratory of Cardiac Function and MicrocirculationGuangzhou510080P. R. China
| | - Nan Huang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative MedicineThe Tenth Affiliated Hospital of Southern Medical UniversityDongguan523059P. R. China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative MedicineThe Tenth Affiliated Hospital of Southern Medical UniversityDongguan523059P. R. China
- Guangdong Provincial Key Laboratory of Cardiac Function and MicrocirculationGuangzhou510080P. R. China
- Department of CardiologyThird People's Hospital of Chengdu Affiliated to Southwest Jiaotong UniversityChengdu610031P. R. China
| |
Collapse
|
81
|
Gao Q, Sun F, Li Y, Li L, Liu M, Wang S, Wang Y, Li T, Liu L, Feng S, Wang X, Agarwal S, Zhang T. Biological Tissue-Inspired Ultrasoft, Ultrathin, and Mechanically Enhanced Microfiber Composite Hydrogel for Flexible Bioelectronics. NANO-MICRO LETTERS 2023; 15:139. [PMID: 37245163 PMCID: PMC10225432 DOI: 10.1007/s40820-023-01096-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/09/2023] [Indexed: 05/29/2023]
Abstract
Hydrogels offer tissue-like softness, stretchability, fracture toughness, ionic conductivity, and compatibility with biological tissues, which make them promising candidates for fabricating flexible bioelectronics. A soft hydrogel film offers an ideal interface to directly bridge thin-film electronics with the soft tissues. However, it remains difficult to fabricate a soft hydrogel film with an ultrathin configuration and excellent mechanical strength. Here we report a biological tissue-inspired ultrasoft microfiber composite ultrathin (< 5 μm) hydrogel film, which is currently the thinnest hydrogel film as far as we know. The embedded microfibers endow the composite hydrogel with prominent mechanical strength (tensile stress ~ 6 MPa) and anti-tearing property. Moreover, our microfiber composite hydrogel offers the capability of tunable mechanical properties in a broad range, allowing for matching the modulus of most biological tissues and organs. The incorporation of glycerol and salt ions imparts the microfiber composite hydrogel with high ionic conductivity and prominent anti-dehydration behavior. Such microfiber composite hydrogels are promising for constructing attaching-type flexible bioelectronics to monitor biosignals.
Collapse
Affiliation(s)
- Qiang Gao
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, Jiangsu, People's Republic of China
| | - Fuqin Sun
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yue Li
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, Jiangsu, People's Republic of China
| | - Lianhui Li
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, Jiangsu, People's Republic of China
| | - Mengyuan Liu
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, Jiangsu, People's Republic of China
| | - Shuqi Wang
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yongfeng Wang
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, Jiangsu, People's Republic of China
| | - Tie Li
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, Jiangsu, People's Republic of China
| | - Lin Liu
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, Jiangsu, People's Republic of China
| | - Simin Feng
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xiaowei Wang
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, Jiangsu, People's Republic of China
| | - Seema Agarwal
- Department of Chemistry, Bavarian Center for Battery Technology (BayBatt), Bayreuth Center for Colloids and Interfaces, and Bavarian Polymer Institute, Macromolecular Chemistry II, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Ting Zhang
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, Jiangsu, People's Republic of China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
82
|
Lv TR, Zhang WH, Yang YQ, Zhang JC, Yin MJ, Yin Z, Yong KT, An QF. Micro/Nano-Fabrication of Flexible Poly(3,4-Ethylenedioxythiophene)-Based Conductive Films for High-Performance Microdevices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301071. [PMID: 37069773 DOI: 10.1002/smll.202301071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/11/2023] [Indexed: 06/19/2023]
Abstract
With the increasing demands for novel flexible organic electronic devices, conductive polymers are now becoming the rising star for reaching such targets, which has witnessed significant breakthroughs in the fields of thermoelectric devices, solar cells, sensors, and hydrogels during the past decade due to their outstanding conductivity, solution-processing ability, as well as tailorability. However, the commercialization of those devices still lags markedly behind the corresponding research advances, arising from the not high enough performance and limited manufacturing techniques. The conductivity and micro/nano-structure of conductive polymer films are two critical factors for achieving high-performance microdevices. In this review, the state-of-the-art technologies for developing organic devices by using conductive polymers are comprehensively summarized, which will begin with a description of the commonly used synthesis methods and mechanisms for conductive polymers. Next, the current techniques for the fabrication of conductive polymer films will be proffered and discussed. Subsequently, approaches for tailoring the nanostructures and microstructures of conductive polymer films are summarized and discussed. Then, the applications of micro/nano-fabricated conductive films-based devices in various fields are given and the role of the micro/nano-structures on the device performances is highlighted. Finally, the perspectives on future directions in this exciting field are presented.
Collapse
Affiliation(s)
- Tian-Run Lv
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wen-Hai Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, China
| | - Ya-Qiong Yang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jia-Chen Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Ming-Jie Yin
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Zhigang Yin
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
83
|
Liang Q, Shen Z, Sun X, Yu D, Liu K, Mugo SM, Chen W, Wang D, Zhang Q. Electron Conductive and Transparent Hydrogels for Recording Brain Neural Signals and Neuromodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211159. [PMID: 36563409 DOI: 10.1002/adma.202211159] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Recording brain neural signals and optogenetic neuromodulations open frontiers in decoding brain neural information and neurodegenerative disease therapeutics. Conventional implantable probes suffer from modulus mismatch with biological tissues and an irreconcilable tradeoff between transparency and electron conductivity. Herein, a strategy is proposed to address these tradeoffs, which generates conductive and transparent hydrogels with polypyrrole-decorated microgels as cross-linkers. The optical transparency of the electrodes can be attributed to the special structures that allow light waves to bypass the microgel particles and minimize their interaction. Demonstrated by probing the hippocampus of rat brains, the biomimetic electrode shows a prolonged capacity for simultaneous optogenetic neuromodulation and recording of brain neural signals. More importantly, an intriguing brain-machine interaction is realized, which involves signal input to the brain, brain neural signal generation, and controlling limb behaviors. This breakthrough work represents a significant scientific advancement toward decoding brain neural information and developing neurodegenerative disease therapies.
Collapse
Affiliation(s)
- Quanduo Liang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhenzhen Shen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiguang Sun
- Department of Hand Surgery, Public Research Platform, The First Hospital of Jilin University, Changchun, 130061, P. R. China
| | - Dehai Yu
- Department of Hand Surgery, Public Research Platform, The First Hospital of Jilin University, Changchun, 130061, P. R. China
| | - Kewei Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dong Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
84
|
Zeng MZ, Wei D, Ding J, Tian Y, Wu XY, Chen ZH, Wu CH, Sun J, Yin HB, Fan HS. Dopamine induced multiple bonding in hyaluronic acid network to construct particle-free conductive hydrogel for reliable electro-biosensing. Carbohydr Polym 2023; 302:120403. [PMID: 36604075 DOI: 10.1016/j.carbpol.2022.120403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Conductive hydrogel (CH) as flexible electrophysiology interface has become the new trend of bioelectronics, but still challenging in synergizing the biocompatibility, mechanics and comprehensive electrical performance. Hyaluronic acid (HA), featured with abundant active sites for personalized-modification and well-known biocompatibility, is one of the alterative candidates. The obstacle lies in the unstable conductivity from the ionic conduction, and the electronic conduction by embedding conductive nanoparticles (NPs) is likely to result in inhomogeneous CH with poor stretchability and discontinuous conductive network. Herein, inspired by catechol chemistry, dopamine (DA)-modified HA was homogeneously composited with DA-modified poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, named PP), to produce particle-free conductive hydrogel (HA-DA-PP). The DA-introduced multiple bondings in HA network and PP molecules brought aqueous conductive PP into HA hydrogel to form a homogeneous crosslinking network, imparted the flexible stretchability. By accurately regulation, HA-DA-PP achieved high stretchability with large tensile deformation (over 470 %) in the category of natural polymer-based hydrogels. Moreover, the interaction between DA and PP (conformational transition and charge transfer) could effectively enhance the hydrogel's conductivity. Consequently, HA-DA-PP hydrogel showed high sensibility to human movement, epidermal and in vivo electrophysiological signals monitoring. Overall, DA-mediated multiple bonding is a powerful strategy for constructing CH with high performance for bioelectronics.
Collapse
Affiliation(s)
- Ming-Ze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jie Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuan Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiao-Yang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zhi-Hong Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Cheng-Heng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China; Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hua-Bing Yin
- James Watt School of Engineering, University of Glasgow, G12 8LT, UK
| | - Hong-Song Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
85
|
Shin M, Lim J, An J, Yoon J, Choi JW. Nanomaterial-based biohybrid hydrogel in bioelectronics. NANO CONVERGENCE 2023; 10:8. [PMID: 36763293 PMCID: PMC9918666 DOI: 10.1186/s40580-023-00357-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Despite the broadly applicable potential in the bioelectronics, organic/inorganic material-based bioelectronics have some limitations such as hard stiffness and low biocompatibility. To overcome these limitations, hydrogels capable of bridging the interface and connecting biological materials and electronics have been investigated for development of hydrogel bioelectronics. Although hydrogel bioelectronics have shown unique properties including flexibility and biocompatibility, there are still limitations in developing novel hydrogel bioelectronics using only hydrogels such as their low electrical conductivity and structural stability. As an alternative solution to address these issues, studies on the development of biohybrid hydrogels that incorporating nanomaterials into the hydrogels have been conducted for bioelectronic applications. Nanomaterials complement the shortcomings of hydrogels for bioelectronic applications, and provide new functionality in biohybrid hydrogel bioelectronics. In this review, we provide the recent studies on biohybrid hydrogels and their bioelectronic applications. Firstly, representative nanomaterials and hydrogels constituting biohybrid hydrogels are provided, and next, applications of biohybrid hydrogels in bioelectronics categorized in flexible/wearable bioelectronic devices, tissue engineering, and biorobotics are discussed with recent studies. In conclusion, we strongly believe that this review provides the latest knowledge and strategies on hydrogel bioelectronics through the combination of nanomaterials and hydrogels, and direction of future hydrogel bioelectronics.
Collapse
Affiliation(s)
- Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea
| | - Joohyun An
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea.
| |
Collapse
|
86
|
Li L, Hai W, Chen Z, Liu Y, Liu Y, Liu Z, Liu J. Phenylboronic acid conjugated poly(3,4-ethylenedioxythiophene) (PEDOT) coated Ag dendrite for electrochemical non-enzymatic glucose sensing. NEW J CHEM 2023. [DOI: 10.1039/d2nj05148f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The fern leaf-like surface topography of poly(EDOT-PBA)/Ag/Cu/GCE increases the specific surface area of the sensor, thereby enhancing the glucose sensing performance.
Collapse
Affiliation(s)
- Lijuan Li
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhiran Chen
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yang Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yushuang Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhelin Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
87
|
Saghir S, Imenes K, Schiavone G. Integration of hydrogels in microfabrication processes for bioelectronic medicine: Progress and outlook. Front Bioeng Biotechnol 2023; 11:1150147. [PMID: 37034261 PMCID: PMC10079906 DOI: 10.3389/fbioe.2023.1150147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Recent research aiming at the development of electroceuticals for the treatment of medical conditions such as degenerative diseases, cardiac arrhythmia and chronic pain, has given rise to microfabricated implanted bioelectronic devices capable of interacting with host biological tissues in synergistic modalities. Owing to their multimodal affinity to biological tissues, hydrogels have emerged as promising interface materials for bioelectronic devices. Here, we review the state-of-the-art and forefront in the techniques used by research groups for the integration of hydrogels into the microfabrication processes of bioelectronic devices, and present the manufacturability challenges to unlock their further clinical deployment.
Collapse
|