51
|
Velazquez R, Ash JA, Powers BE, Kelley CM, Strawderman M, Luscher ZI, Ginsberg SD, Mufson EJ, Strupp BJ. Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2013; 58:92-101. [PMID: 23643842 PMCID: PMC4029409 DOI: 10.1016/j.nbd.2013.04.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 04/12/2013] [Accepted: 04/23/2013] [Indexed: 11/25/2022] Open
Abstract
In addition to intellectual disability, individuals with Down syndrome (DS) exhibit dementia by the third or fourth decade of life, due to the early onset of neuropathological changes typical of Alzheimer's disease (AD). Deficient ontogenetic neurogenesis contributes to the brain hypoplasia and hypocellularity evident in fetuses and children with DS. A murine model of DS and AD (the Ts65Dn mouse) exhibits key features of these disorders, notably deficient ontogenetic neurogenesis, degeneration of basal forebrain cholinergic neurons (BFCNs), and cognitive deficits. Adult hippocampal (HP) neurogenesis is also deficient in Ts65Dn mice and may contribute to the observed cognitive dysfunction. Herein, we demonstrate that supplementing the maternal diet with additional choline (approximately 4.5 times the amount in normal rodent chow) dramatically improved the performance of the adult trisomic offspring in a radial arm water maze task. Ts65Dn offspring of choline-supplemented dams performed significantly better than unsupplemented Ts65Dn mice. Furthermore, adult hippocampal neurogenesis was partially normalized in the maternal choline supplemented (MCS) trisomic offspring relative to their unsupplemented counterparts. A significant correlation was observed between adult hippocampal neurogenesis and performance in the water maze, suggesting that the increased neurogenesis seen in the supplemented trisomic mice contributed functionally to their improved spatial cognition. These findings suggest that supplementing the maternal diet with additional choline has significant translational potential for DS.
Collapse
Affiliation(s)
- Ramon Velazquez
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Jessica A. Ash
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Brian E. Powers
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Christy M. Kelley
- Dept. Neurological Science and Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612
| | - Myla Strawderman
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Zoe I. Luscher
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, and Departments of Psychiatry, and Physiology & Neuroscience, New York University Langone Medical Center, New York, NY 10962
| | - Elliott J. Mufson
- Dept. Neurological Science and Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612
| | - Barbara J. Strupp
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
52
|
Didion JP, de Villena FPM. Deconstructing Mus gemischus: advances in understanding ancestry, structure, and variation in the genome of the laboratory mouse. Mamm Genome 2013; 24:1-20. [PMID: 23223940 PMCID: PMC4034049 DOI: 10.1007/s00335-012-9441-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/05/2012] [Indexed: 01/26/2023]
Abstract
The laboratory mouse is an artificial construct with a complex relationship to its natural ancestors. In 2002, the mouse became the first mammalian model organism with a reference genome. Importantly, the mouse genome sequence was assembled from data on a single inbred laboratory strain, C57BL/6. Several large-scale genetic variant discovery efforts have been conducted, resulting in a catalog of tens of millions of SNPs and structural variants. High-density genotyping arrays covering a subset of those variants have been used to produce hundreds of millions of genotypes in laboratory stocks and a small number of wild mice. These landmark resources now enable us to determine relationships among laboratory mice, assign local ancestry at fine scale, resolve important controversies, and identify a new set of challenges-most importantly, the troubling scarcity of genetic data on the very natural populations from which the laboratory mouse was derived. Our aim with this review is to provide the reader with an historical context for the mouse as a model organism and to explain how practical decisions made in the past have influenced both the architecture of the laboratory mouse genome and the design and execution of current large-scale resources. We also provide examples on how the accomplishments of the past decade can be used by researchers to streamline the use of mice in their experiments and correctly interpret results. Finally, we propose future steps that will enable the mouse community to extend its successes in the decade to come.
Collapse
Affiliation(s)
- John P. Didion
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
53
|
Luo H, Arndt W, Zhang Y, Shi G, Alekseyev M, Tang J, Hughes AL, Friedman R. Phylogenetic analysis of genome rearrangements among five mammalian orders. Mol Phylogenet Evol 2012; 65:871-82. [PMID: 22929217 PMCID: PMC4425404 DOI: 10.1016/j.ympev.2012.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/11/2012] [Accepted: 08/13/2012] [Indexed: 01/16/2023]
Abstract
Evolutionary relationships among placental mammalian orders have been controversial. Whole genome sequencing and new computational methods offer opportunities to resolve the relationships among 10 genomes belonging to the mammalian orders Primates, Rodentia, Carnivora, Perissodactyla and Artiodactyla. By application of the double cut and join distance metric, where gene order is the phylogenetic character, we computed genomic distances among the sampled mammalian genomes. With a marsupial outgroup, the gene order tree supported a topology in which Rodentia fell outside the cluster of Primates, Carnivora, Perissodactyla, and Artiodactyla. Results of breakpoint reuse rate and synteny block length analyses were consistent with the prediction of random breakage model, which provided a diagnostic test to support use of gene order as an appropriate phylogenetic character in this study. We discussed the influence of rate differences among lineages and other factors that may contribute to different resolutions of mammalian ordinal relationships by different methods of phylogenetic reconstruction.
Collapse
Affiliation(s)
- Haiwei Luo
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| | - William Arndt
- Department of Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Yiwei Zhang
- Department of Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Guanqun Shi
- Department of Computer Science, University of California, Riverside, 92521, USA
| | - Max Alekseyev
- Department of Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Austin L. Hughes
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| | - Robert Friedman
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| |
Collapse
|
54
|
Tu-Sekine B, Goldschmidt H, Petro E, Raben DM. Diacylglycerol kinase θ: regulation and stability. Adv Biol Regul 2012; 53:118-26. [PMID: 23266086 DOI: 10.1016/j.jbior.2012.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
Given the well-established roles of diacylglycerol (DAG) and phosphatidic acid (PtdOH) in a variety of signaling cascades, it is not surprising that there is an increasing interest in understanding their physiological roles and mechanisms that regulate their cellular levels. One class of enzymes capable of coordinately regulating the levels of these two lipids is the diacylglycerol kinases (DGKs). These enzymes catalyze the transfer of the γ-phosphate of ATP to the hydroxyl group of DAG, which generates PtdOH while reducing DAG. As these enzymes reciprocally modulate the relative levels of these two signaling lipids, it is essential to understand the regulation and roles of these enzymes in various tissues. One system where these enzymes play important roles is the nervous system. Of the ten mammalian DGKs, eight of them are readily detected in the mammalian central nervous system (CNS): DGK-α, DGK-β, DGK-γ, DGK-η, DGK-ζ, DGK-ι, DGK-ε, and DGK-θ. Despite the increasing interest in DGKs, little is known about their regulation. We have focused some attention on understanding the enzymology and regulation of one of these DGK isoforms, DGK-θ. We recently showed that DGK-θ is regulated by an accessory protein containing polybasic regions. We now report that this accessory protein is required for the previously reported broadening of the pH profile observed in cell lysates in response to phosphatidylserine (PtdSer). Our data further reveal DGK-θ is regulated by magnesium and zinc, and sensitive to the known DGK inhibitor R599022. These data outline new parameters involved in regulating DGK-θ.
Collapse
Affiliation(s)
- Becky Tu-Sekine
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | | | | | | |
Collapse
|
55
|
Azim S, Banday AR, Sarwar T, Tabish M. Alternatively spliced variants of gamma-subunit of muscle-type acetylcholine receptor in fetal and adult skeletal muscle of mouse. Cell Mol Neurobiol 2012; 32:957-63. [PMID: 22488527 PMCID: PMC11498459 DOI: 10.1007/s10571-012-9838-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 03/23/2012] [Indexed: 11/30/2022]
Abstract
Gamma-subunit of nicotinic acetylcholine receptor is encoded by chrng gene of mouse. This gene is located on chromosome 1, spans 6.5 kb, and contains 12 exons and 11 introns. Previous studies have reported three transcript variants (C1-3) produced by alternative splicing; C1 contains all the 12 reported exons, C2 uses an in-frame alternate splice site in exon-2, and C3 produced by exon-5 skipping. These variants differ in their channel kinetics and opening times. In our study, we report the presence of two new transcript variants (T1 and T2) of chrng expressed in mouse postnatal day 3 and adult skeletal muscles. These transcripts contain novel first coding exon either N1 or N2. N1 is located in the 5' UTR, while N2 is an extended exon-2. 5' extension of exon-2 contains an initiation codon which produces a novel transcript variant. Either of the two exons can splice with the internal exons to produce mature transcripts making different 5' ends of the transcripts. Consequently, the proteins encoded by these two transcripts differ at N-termini. The presence of N2 exon containing transcript was further supported by the availability of EST from the database. These new variants display heterogeneous properties. They differ in the presence of signal peptide, phosphorylation, and acetylation of their amino acid residues of the new N-termini of the gamma subunit.
Collapse
Affiliation(s)
- Shafquat Azim
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, 202002 U.P. India
| | - Abdul Rouf Banday
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, 202002 U.P. India
| | - Tarique Sarwar
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, 202002 U.P. India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, 202002 U.P. India
| |
Collapse
|
56
|
|
57
|
Li J, Akagi K, Hu Y, Trivett AL, Hlynialuk CJ, Swing DA, Volfovsky N, Morgan TC, Golubeva Y, Stephens RM, Smith DE, Symer DE. Mouse endogenous retroviruses can trigger premature transcriptional termination at a distance. Genome Res 2012; 22:870-84. [PMID: 22367191 PMCID: PMC3337433 DOI: 10.1101/gr.130740.111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 02/09/2012] [Indexed: 01/15/2023]
Abstract
Endogenous retrotransposons have caused extensive genomic variation within mammalian species, but the functional implications of such mobilization are mostly unknown. We mapped thousands of endogenous retrovirus (ERV) germline integrants in highly divergent, previously unsequenced mouse lineages, facilitating a comparison of gene expression in the presence or absence of local insertions. Polymorphic ERVs occur relatively infrequently in gene introns and are particularly depleted from genes involved in embryogenesis or that are highly expressed in embryonic stem cells. Their genomic distribution implies ongoing negative selection due to deleterious effects on gene expression and function. A polymorphic, intronic ERV at Slc15a2 triggers up to 49-fold increases in premature transcriptional termination and up to 39-fold reductions in full-length transcripts in adult mouse tissues, thereby disrupting protein expression and functional activity. Prematurely truncated transcripts also occur at Polr1a, Spon1, and up to ∼5% of other genes when intronic ERV polymorphisms are present. Analysis of expression quantitative trait loci (eQTLs) in recombinant BxD mouse strains demonstrated very strong genetic associations between the polymorphic ERV in cis and disrupted transcript levels. Premature polyadenylation is triggered at genomic distances up to >12.5 kb upstream of the ERV, both in cis and between alleles. The parent of origin of the ERV is associated with variable expression of nonterminated transcripts and differential DNA methylation at its 5'-long terminal repeat. This study defines an unexpectedly strong functional impact of ERVs in disrupting gene transcription at a distance and demonstrates that ongoing retrotransposition can contribute significantly to natural phenotypic diversity.
Collapse
Affiliation(s)
- Jingfeng Li
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Keiko Akagi
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Yongjun Hu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Christopher J.W. Hlynialuk
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Deborah A. Swing
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Natalia Volfovsky
- Advanced Biomedical Computing Center, Information Systems Program and
| | - Tamara C. Morgan
- Histotechnology Laboratory, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702, USA
| | - Yelena Golubeva
- Histotechnology Laboratory, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702, USA
| | | | - David E. Smith
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David E. Symer
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
- Department of Internal Medicine and Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| |
Collapse
|
58
|
Komissarov AS, Gavrilova EV, Demin SJ, Ishov AM, Podgornaya OI. Tandemly repeated DNA families in the mouse genome. BMC Genomics 2011; 12:531. [PMID: 22035034 PMCID: PMC3218096 DOI: 10.1186/1471-2164-12-531] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 10/28/2011] [Indexed: 12/23/2022] Open
Abstract
Background Functional and morphological studies of tandem DNA repeats, that combine high portion of most genomes, are mostly limited due to the incomplete characterization of these genome elements. We report here a genome wide analysis of the large tandem repeats (TR) found in the mouse genome assemblies. Results Using a bioinformatics approach, we identified large TR with array size more than 3 kb in two mouse whole genome shotgun (WGS) assemblies. Large TR were classified based on sequence similarity, chromosome position, monomer length, array variability, and GC content; we identified four superfamilies, eight families, and 62 subfamilies - including 60 not previously described. 1) The superfamily of centromeric minor satellite is only found in the unassembled part of the reference genome. 2) The pericentromeric major satellite is the most abundant superfamily and reveals high order repeat structure. 3) Transposable elements related superfamily contains two families. 4) The superfamily of heterogeneous tandem repeats includes four families. One family is found only in the WGS, while two families represent tandem repeats with either single or multi locus location. Despite multi locus location, TRPC-21A-MM is placed into a separated family due to its abundance, strictly pericentromeric location, and resemblance to big human satellites. To confirm our data, we next performed in situ hybridization with three repeats from distinct families. TRPC-21A-MM probe hybridized to chromosomes 3 and 17, multi locus TR-22A-MM probe hybridized to ten chromosomes, and single locus TR-54B-MM probe hybridized with the long loops that emerge from chromosome ends. In addition to in silico predicted several extra-chromosomes were positive for TR by in situ analysis, potentially indicating inaccurate genome assembly of the heterochromatic genome regions. Conclusions Chromosome-specific TR had been predicted for mouse but no reliable cytogenetic probes were available before. We report new analysis that identified in silico and confirmed in situ 3/17 chromosome-specific probe TRPC-21-MM. Thus, the new classification had proven to be useful tool for continuation of genome study, while annotated TR can be the valuable source of cytogenetic probes for chromosome recognition.
Collapse
|
59
|
Keck-Wherley J, Grover D, Bhattacharyya S, Xu X, Holman D, Lombardini ED, Verma R, Biswas R, Galdzicki Z. Abnormal microRNA expression in Ts65Dn hippocampus and whole blood: contributions to Down syndrome phenotypes. Dev Neurosci 2011; 33:451-67. [PMID: 22042248 PMCID: PMC3254042 DOI: 10.1159/000330884] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 07/06/2011] [Indexed: 12/22/2022] Open
Abstract
Down syndrome (DS; trisomy 21) is one of the most common genetic causes of intellectual disability, which is attributed to triplication of genes located on chromosome 21. Elevated levels of several microRNAs (miRNAs) located on chromosome 21 have been reported in human DS heart and brain tissues. The Ts65Dn mouse model is the most investigated DS model with a triplicated segment of mouse chromosome 16 harboring genes orthologous to those on human chromosome 21. Using ABI TaqMan miRNA arrays, we found a set of miRNAs that were significantly up- or downregulated in the Ts65Dn hippocampus compared to euploid controls. Furthermore, miR-155 and miR-802 showed significant overexpression in the Ts65Dn hippocampus, thereby confirming results of previous studies. Interestingly, miR-155 and miR-802 were also overexpressed in the Ts65Dn whole blood but not in lung tissue. We also found overexpression of the miR-155 precursors, pri- and pre-miR-155 derived from the miR-155 host gene, known as B cell integration cluster, suggesting enhanced biogenesis of miR-155. Bioinformatic analysis revealed that neurodevelopment, differentiation of neuroglia, apoptosis, cell cycle, and signaling pathways including ERK/MAPK, protein kinase C, phosphatidylinositol 3-kinase, m-TOR and calcium signaling are likely targets of these miRNAs. We selected some of these potential gene targets and found downregulation of mRNA encoding Ship1, Mecp2 and Ezh2 in Ts65Dn hippocampus. Interestingly, the miR-155 target gene Ship1 (inositol phosphatase) was also downregulated in Ts65Dn whole blood but not in lung tissue. Our findings provide insights into miRNA-mediated gene regulation in Ts65Dn mice and their potential contribution to impaired hippocampal synaptic plasticity and neurogenesis, as well as hemopoietic abnormalities observed in DS.
Collapse
Affiliation(s)
- Jennifer Keck-Wherley
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Deepak Grover
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Sharmistha Bhattacharyya
- Department of Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Xiufen Xu
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Derek Holman
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Eric D. Lombardini
- Department of Comparative Pathology Division, Veterinary Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Ranjana Verma
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Roopa Biswas
- Department of Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Zygmunt Galdzicki
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| |
Collapse
|
60
|
Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M, Furlotte NA, Eskin E, Nellåker C, Whitley H, Cleak J, Janowitz D, Hernandez-Pliego P, Edwards A, Belgard TG, Oliver PL, McIntyre RE, Bhomra A, Nicod J, Gan X, Yuan W, van der Weyden L, Steward CA, Bala S, Stalker J, Mott R, Durbin R, Jackson IJ, Czechanski A, Guerra-Assunção JA, Donahue LR, Reinholdt LG, Payseur BA, Ponting CP, Birney E, Flint J, Adams DJ. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 2011; 477:289-94. [PMID: 21921910 PMCID: PMC3276836 DOI: 10.1038/nature10413] [Citation(s) in RCA: 1189] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/05/2011] [Indexed: 01/16/2023]
Abstract
We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism.
Collapse
Affiliation(s)
- Thomas M Keane
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Large-scale projects are providing rapid global access to a wealth of mouse genetic resources to help discover disease genes and to manipulate their function.
Collapse
Affiliation(s)
| | | | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
62
|
Piskol R, Stephan W. The role of the effective population size in compensatory evolution. Genome Biol Evol 2011; 3:528-38. [PMID: 21680889 PMCID: PMC3140890 DOI: 10.1093/gbe/evr057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The impact of the effective population size (Ne) on the efficacy of selection has been the focus of many theoretical and empirical studies over the recent years. Yet, the effect of Ne on evolution under epistatic fitness interactions is not well understood. In this study, we compare selective constraints at independently evolving (unpaired) and coevolving (paired) sites in orthologous transfer RNAs (tRNA molecules for vertebrate and drosophilid species pairs of different Ne. We show that patterns of nucleotide variation for the two classes of sites are explained well by Kimura's one- and two-locus models of sequence evolution under mutational pressure. We find that constraints in orthologous tRNAs increase with increasing Ne of the investigated species pair. Thereby, the effect of Ne on the efficacy of selection is stronger at unpaired sites than at paired sites. Furthermore, we identify a “core” set of tRNAs with high structural similarity to tRNAs from all major kingdoms of life and a “peripheral” set with lower similarity. We observe that tRNAs in the former set are subject to higher constraints and less prone to the effect of Ne, whereas constraints in tRNAs of the latter set show a large influence of Ne. Finally, we are able to demonstrate that constraints are relaxed in X-linked drosophilid tRNAs compared with autosomal tRNAs and suggest that Ne is responsible for this difference. The observed effects of Ne are consistent with the hypothesis that evolution of most tRNAs is governed by slightly to moderately deleterious mutations (i.e., |Nes| ≤ 5).
Collapse
Affiliation(s)
- Robert Piskol
- Section of Evolutionary Biology, Ludwig-Maximilian University, Munich, Germany.
| | | |
Collapse
|
63
|
Lu ZH, di Domenico A, Wright SH, Knight PA, Whitelaw CBA, Pemberton AD. Strain-specific copy number variation in the intelectin locus on the 129 mouse chromosome 1. BMC Genomics 2011; 12:110. [PMID: 21324158 PMCID: PMC3048546 DOI: 10.1186/1471-2164-12-110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/16/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND C57BL/6J mice possess a single intelectin (Itln) gene on chromosome 1. The function of intelectins is not well understood, but roles have been postulated in insulin sensitivity, bacterial recognition, intestinal lactoferrin uptake and response to parasites and allergens. In contrast to C57BL/6J mice, there is evidence for expansion of the Itln locus in other strains and at least one additional mouse Itln gene product has been described. The aim of this study was to sequence and characterise the Itln locus in the 129S7 strain, to determine the nature of the chromosomal expansion and to inform possible future gene deletion strategies. RESULTS Six 129S7 BAC clones were sequenced and assembled to generate 600 kbp of chromosomal sequence, including the entire Itln locus of approximately 500 kbp. The locus contained six distinct Itln genes, two CD244 genes and several Itln- and CD244-related pseudogenes. It was approximately 433 kbp larger than the corresponding C57BL/6J locus. The expansion of the Itln locus appears to have occurred through multiple duplications of a segment consisting of a full-length Itln gene, a CD244 (pseudo)gene and an Itln pseudogene fragment. Strong evidence for tissue-specific distribution of Itln variants was found, indicating that Itln duplication contributes more than a simple gene dosage effect. CONCLUSIONS We have characterised the Itln locus in 129S7 mice to reveal six Itln genes with distinct sequence and expression characteristics. Since C57BL/6J mice possess only a single Itln gene, this is likely to contribute to functional differences between C57BL/6J and other mouse strains.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Base Sequence
- Binding Sites
- Chromosomes, Artificial, Bacterial
- Chromosomes, Mammalian/genetics
- Evolution, Molecular
- Gene Dosage
- Gene Library
- Genetic Loci
- Genomics
- Homeodomain Proteins/metabolism
- Lectins/genetics
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Molecular Sequence Annotation
- Molecular Sequence Data
- Phylogeny
- Promoter Regions, Genetic
- Pseudogenes
- Receptors, Immunologic/genetics
- Segmental Duplications, Genomic
- Sequence Analysis, DNA
- Signaling Lymphocytic Activation Molecule Family
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Zen H Lu
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Roslin, Midlothian, UK
| | - Alex di Domenico
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Roslin, Midlothian, UK
| | - Steven H Wright
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Roslin, Midlothian, UK
| | - Pamela A Knight
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Roslin, Midlothian, UK
| | - C Bruce A Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Roslin, Midlothian, UK
| | - Alan D Pemberton
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Roslin, Midlothian, UK
| |
Collapse
|
64
|
Yang L, Liu J, Liu M, Qian M, Zhang M, Hu H. Identification of fatty acid synthase from the Pacific white shrimp, Litopenaeus vannamei and its specific expression profiles during white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2011; 30:744-749. [PMID: 21199673 DOI: 10.1016/j.fsi.2010.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/24/2010] [Accepted: 12/24/2010] [Indexed: 05/30/2023]
Abstract
Fatty acid synthase (FAS) in animal tissues consists of two identical monomers and is known to be a complex multi-functional enzyme that plays an important role in energy homeostasis. However, there are few reports of studies focused on the relationship between FAS and virus infection in invertebrates. In the present study, we cloned the FAS gene from an economically important invertebrate, the Pacific white shrimp Litopenaeus vannamei. The full-length FAS cDNA is 8268 bp, including a 5'-terminal untranslated region of 137 bp, a 3'-terminal untranslated region of 601 bp and an open reading frame of 7530 bp. FAS cDNA encodes a polypeptide of 2509 amino acid residues that contains a typical β-ketoacyl synthase (KS) domain at the N-terminus, next to a malonyl/acetyltransferase (MAT) domain, a dehydrase domain, an enoyl reductase domain, a ketoacyl reductase domain, a phosphopantetheine attachment site domain and a thioesterase domain at the C-terminus. Quantitative real-time RT-PCR revealed the up-regulated expression of FAS in L. vannamei hepatopancreas and muscle after white spot syndrome virus (WSSV) infection. The expression of FAS in muscle was 13.03-fold greater than that in the control (p<0.05) and 2.93-fold greater in hepatopancreas (p>0.05). Meanwhile, expression of the fatty acid-binding protein (FABP), another important factor in lipid metabolism, was increased in muscle to 19.20-fold greater than that in the control (p<0.05) but only 0.76-fold in hepatopancreas (p>0.05). These results implied that WSSV infected body surface tissues, but there was very little infection of internal organs. We suggest that the increase of FAS expression is induced in WSSV-infected shrimps, and the virus changes the lipid metabolism of the host, which directly affects virus assembly or defense against virus infection.
Collapse
Affiliation(s)
- Ling Yang
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Xiasha, HangZhou, ZheJiang, China
| | | | | | | | | | | |
Collapse
|
65
|
George JW, Dille EA, Heckert LL. Current concepts of follicle-stimulating hormone receptor gene regulation. Biol Reprod 2011; 84:7-17. [PMID: 20739665 PMCID: PMC4480823 DOI: 10.1095/biolreprod.110.085043] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/04/2010] [Accepted: 08/16/2010] [Indexed: 12/25/2022] Open
Abstract
Follicle-stimulating hormone (FSH), a pituitary glycoprotein hormone, is an integral component of the endocrine axis that regulates gonadal function and fertility. To transmit its signal, FSH must bind to its receptor (FSHR) located on Sertoli cells of the testis and granulosa cells of the ovary. Thus, both the magnitude and the target of hormone response are controlled by mechanisms that determine FSHR levels and cell-specific expression, which are supported by transcription of its gene. The present review examines the status of FSHR/Fshr gene regulation, emphasizing the importance of distal sequences in FSHR/Fshr transcription, new insights gained from the influx of genomics data and bioinformatics, and emerging trends that offer direction in deciphering the FSHR/Fshr regulatory landscape.
Collapse
Affiliation(s)
- Jitu W. George
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Elizabeth A. Dille
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Leslie L. Heckert
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
66
|
Kingsley CB. Identification of causal sequence variants of disease in the next generation sequencing era. Methods Mol Biol 2011; 700:37-46. [PMID: 21204025 DOI: 10.1007/978-1-61737-954-3_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Over the last decade, genetic studies have identified numerous associations between single nucleotide polymorphism (SNP) alleles in the human genome and important human diseases. Unfortunately, extending these initial associative findings to identification of the true causal variants that underlie disease susceptibility is usually not a straightforward task. Causal variant identification typically involves searching through sizable regions of genomic DNA in the vicinity of disease-associated SNPs for sequence variants in functional elements including protein coding, regulatory, and structural sequences. Prioritization of these searches is greatly aided by knowledge of the location of functional sequences in the human genome. This chapter briefly reviews several of the common approaches used to functionally annotate the human genome and discusses how this information can be used in concert with the emerging technology of next generation high-throughput sequencing to identify causal variants of human disease.
Collapse
Affiliation(s)
- Christopher B Kingsley
- Diabetes, Cardiovascular, and Metabolic Diseases Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
67
|
Sterling KM, Ahearn GA. Glucose and fructose uptake by Limulus polyphemus hepatopancreatic brush border and basolateral membrane vesicles: evidence for Na+-dependent sugar transport activity. J Comp Physiol B 2010; 181:467-75. [PMID: 21184084 DOI: 10.1007/s00360-010-0543-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/29/2010] [Accepted: 12/02/2010] [Indexed: 11/28/2022]
Abstract
[(3)H]-fructose and [(3)H]-glucose transport activities were determined in brush border membrane vesicles (BBMV) and basolateral membrane vesicles (BLMV) from Limulus polyphemus (horseshoe crab) hepatopancreas. Glucose transport was equilibrative in the absence of sodium and sodium dependent in the presence of sodium in BBMV, suggesting GLUT-like and SGLT-like transport activity. Glucose transport by BLMV was equilibrative and sodium independent. Fructose uptake by BBMV and BLMV was equilibrative in the absence of sodium and sodium dependent in the presence of sodium. Western blot analysis using a rabbit anti-mouse SGLT-1 polyclonal antibody indicated the presence of a cross-reacting horseshoe crab BBMV protein of similar molecular weight to the mammalian SGLT1. Sequence alignment of the mouse SGLT-4 and SGLT1 with a translated, horseshoe crab-expressed sequence tag also indicated significant identity between species. Fructose and glucose uptake in the absence and presence of sodium by hepatopancreas BBMV and BLMV indicated the presence of sodium-dependent transport activity for each sugar that may result from the presence of transporters similar to those described for other species.
Collapse
Affiliation(s)
- Kenneth M Sterling
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | | |
Collapse
|
68
|
Arlt A, Schäfer H. Role of the immediate early response 3 (IER3) gene in cellular stress response, inflammation and tumorigenesis. Eur J Cell Biol 2010; 90:545-52. [PMID: 21112119 DOI: 10.1016/j.ejcb.2010.10.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/01/2010] [Accepted: 10/04/2010] [Indexed: 10/18/2022] Open
Abstract
The expression of the early response gene immediate early response 3 (IER3), formerly known as IEX-1, is induced by a great variety of stimuli, such as growth factors, cytokines, ionizing radiation, viral infection and other types of cellular stress. Being of a rather unique protein structure not sharing any similarity to other vertebrate proteins, IER3 plays a complex and to some extent contradictory role in cell cycle control and apoptosis. As outlined in this review, these effects of IER3 relate to an interference with certain signalling pathways, in particular NF-κB, MAPK/ERK and PI3K/Akt. In addition to numerous functional data relying on cell culture based studies, transgenic and knock-out mouse models revealed an involvement of IER3 expression in immune functions and in the physiology of the cardiovascular system. Deficiency of IER3 expression in mice results in an aberrant immune regulation and enhanced inflammation, in an alteration of blood pressure control and hypertension or in an impaired genomic stability. A number of patient related studies revealed an involvement of IER3 in tumorigenesis in a cell-type dependent but not yet understood manner. Future studies should establish the potential of IER3 as a new predictive marker and as a molecular target in human diseases such as cancer, inflammatory diseases or hypertension.
Collapse
Affiliation(s)
- Alexander Arlt
- Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology, UKSH-Campus Kiel, Arnold-Heller-Straße 3, Bldg. 6, 24105 Kiel, Germany
| | | |
Collapse
|
69
|
Dedieu A, Gaillard JC, Pourcher T, Darrouzet E, Armengaud J. Revisiting iodination sites in thyroglobulin with an organ-oriented shotgun strategy. J Biol Chem 2010; 286:259-69. [PMID: 20978121 DOI: 10.1074/jbc.m110.159483] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thyroglobulin (Tg) is secreted by thyroid epithelial cells. It is essential for thyroid hormonogenesis and iodine storage. Although studied for many years, only indirect and partial surveys of its post-translational modifications were reported. Here, we present a direct proteomic approach, used to study the degree of iodination of mouse Tg without any preliminary purification. A comprehensive coverage of Tg was obtained using a combination of different proteases, MS/MS fragmentation procedures with inclusion lists and a hybrid mass high-resolution LTQ-Orbitrap XL mass spectrometer. Although only 16 iodinated sites are currently known for human Tg, we uncovered 37 iodinated tyrosine residues, most of them being mono- or diiodinated. We report the specific isotopic pattern of thyroxine modification, not recognized as a normal peptide pattern. Four hormonogenic sites were detected. Two donor sites were identified through the detection of a pyruvic acid residue in place of the initial tyrosine. Evidence for polypeptide cleavages sites due to the action of cathepsins and dipeptidyl proteases in the thyroid were also detected. This work shows that semi-quantitation of Tg iodination states is feasible for human biopsies and should be of significant medical interest for further characterization of human thyroid pathologies.
Collapse
Affiliation(s)
- Alain Dedieu
- Commissariat à l'Energie Atomique, DSV, iBEB, Laboratoire des Transporters en Imagerie et Radiothérapie en Oncologie, Bagnols-sur-Cèze F-30207, France.
| | | | | | | | | |
Collapse
|
70
|
Abstract
Transcriptional regulation of gene expression plays a significant role in establishing the diversity of human cell types and biological functions from a common set of genes. The components of regulatory control in the human genome include cis-acting elements that act across immense genomic distances to influence the spatial and temporal distribution of gene expression. Here we review the established categories of distant-acting regulatory elements, discussing the classical and contemporary evidence of their regulatory potential and clinical importance. Current efforts to identify regulatory sequences throughout the genome and elucidate their biological significance depend heavily on advances in sequence conservation-based analyses and on increasingly large-scale efforts applying transgenic technologies in model organisms. We discuss the advantages and limitations of sequence conservation as a predictor of regulatory function and present complementary emerging technologies now being applied to annotate regulatory elements in vertebrate genomes.
Collapse
Affiliation(s)
- James P Noonan
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
71
|
Hutchins LN, Ding Y, Szatkiewicz JP, Von Smith R, Yang H, de Villena FPM, Churchill GA, Graber JH. CGDSNPdb: a database resource for error-checked and imputed mouse SNPs. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2010; 2010:baq008. [PMID: 20624716 PMCID: PMC2911843 DOI: 10.1093/database/baq008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Center for Genome Dynamics Single Nucleotide Polymorphism Database (CGDSNPdb) is an open-source value-added database with more than nine million mouse single nucleotide polymorphisms (SNPs), drawn from multiple sources, with genotypes assigned to multiple inbred strains of laboratory mice. All SNPs are checked for accuracy and annotated for properties specific to the SNP as well as those implied by changes to overlapping protein-coding genes. CGDSNPdb serves as the primary interface to two unique data sets, the ‘imputed genotype resource’ in which a Hidden Markov Model was used to assess local haplotypes and the most probable base assignment at several million genomic loci in tens of strains of mice, and the Affymetrix Mouse Diversity Genotyping Array, a high density microarray with over 600 000 SNPs and over 900 000 invariant genomic probes. CGDSNPdb is accessible online through either a web-based query tool or a MySQL public login. Database URL:http://cgd.jax.org/cgdsnpdb/
Collapse
Affiliation(s)
- Lucie N Hutchins
- Center for Genome Dynamics, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Kirby A, Kang HM, Wade CM, Cotsapas C, Kostem E, Han B, Furlotte N, Kang EY, Rivas M, Bogue MA, Frazer KA, Johnson FM, Beilharz EJ, Cox DR, Eskin E, Daly MJ. Fine mapping in 94 inbred mouse strains using a high-density haplotype resource. Genetics 2010; 185:1081-95. [PMID: 20439770 PMCID: PMC2907194 DOI: 10.1534/genetics.110.115014] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/23/2010] [Indexed: 12/13/2022] Open
Abstract
The genetics of phenotypic variation in inbred mice has for nearly a century provided a primary weapon in the medical research arsenal. A catalog of the genetic variation among inbred mouse strains, however, is required to enable powerful positional cloning and association techniques. A recent whole-genome resequencing study of 15 inbred mouse strains captured a significant fraction of the genetic variation among a limited number of strains, yet the common use of hundreds of inbred strains in medical research motivates the need for a high-density variation map of a larger set of strains. Here we report a dense set of genotypes from 94 inbred mouse strains containing 10.77 million genotypes over 121,433 single nucleotide polymorphisms (SNPs), dispersed at 20-kb intervals on average across the genome, with an average concordance of 99.94% with previous SNP sets. Through pairwise comparisons of the strains, we identified an average of 4.70 distinct segments over 73 classical inbred strains in each region of the genome, suggesting limited genetic diversity between the strains. Combining these data with genotypes of 7570 gap-filling SNPs, we further imputed the untyped or missing genotypes of 94 strains over 8.27 million Perlegen SNPs. The imputation accuracy among classical inbred strains is estimated at 99.7% for the genotypes imputed with high confidence. We demonstrated the utility of these data in high-resolution linkage mapping through power simulations and statistical power analysis and provide guidelines for developing such studies. We also provide a resource of in silico association mapping between the complex traits deposited in the Mouse Phenome Database with our genotypes. We expect that these resources will facilitate effective designs of both human and mouse studies for dissecting the genetic basis of complex traits.
Collapse
Affiliation(s)
- Andrew Kirby
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Hyun Min Kang
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Claire M. Wade
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Chris Cotsapas
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Emrah Kostem
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Buhm Han
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Nick Furlotte
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Eun Yong Kang
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Manuel Rivas
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Molly A. Bogue
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Kelly A. Frazer
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Frank M. Johnson
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Erica J. Beilharz
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - David R. Cox
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Eleazar Eskin
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Mark J. Daly
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, Department of Computer Science, University of California, Los Angeles, California 90095, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, The Jackson Laboratory, Bar Harbor, Maine 04609, Perlegen Sciences, Mountain View, California 94043, Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and Department of Human Genetics, University of California, Los Angeles, California 90095
| |
Collapse
|
73
|
Paulsson AK, Franklin S, Mitchell-Jordan SA, Ren S, Wang Y, Vondriska TM. Post-translational regulation of calsarcin-1 during pressure overload-induced cardiac hypertrophy. J Mol Cell Cardiol 2010; 48:1206-14. [PMID: 20170660 PMCID: PMC2866759 DOI: 10.1016/j.yjmcc.2010.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 02/05/2010] [Accepted: 02/07/2010] [Indexed: 11/26/2022]
Abstract
Chronic pressure overload to the heart leads to cardiac hypertrophy and failure through processes that involve reorganization of subcellular compartments and alteration of established signaling mechanisms. To identify proteins contributing to this process, we examined changes in nuclear-associated myofilament proteins as the murine heart undergoes progressive hypertrophy following pressure overload. Calsarcin-1, a negative regulator of calcineurin signaling in the heart, was found to be enriched in cardiac nuclei and displays increased abundance following pressure overload through a mechanism that is decoupled from transcriptional regulation. Using proteomics, we identified novel processing of this protein in the setting of cardiac injury and identified four residues subject to modification by phosphorylation. These studies are the first to determine mechanisms regulating calsarcin abundance during hypertrophy and failure and reveal the first evidence of post-translational modifications of calsarcin-1 in the myocardium. Overall, the findings expand the roles of calsarcins to include nuclear tasks during cardiac growth.
Collapse
Affiliation(s)
- Anna K Paulsson
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
74
|
Chen Y, Cunningham F, Rios D, McLaren WM, Smith J, Pritchard B, Spudich GM, Brent S, Kulesha E, Marin-Garcia P, Smedley D, Birney E, Flicek P. Ensembl variation resources. BMC Genomics 2010; 11:293. [PMID: 20459805 PMCID: PMC2894800 DOI: 10.1186/1471-2164-11-293] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 05/11/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The maturing field of genomics is rapidly increasing the number of sequenced genomes and producing more information from those previously sequenced. Much of this additional information is variation data derived from sampling multiple individuals of a given species with the goal of discovering new variants and characterising the population frequencies of the variants that are already known. These data have immense value for many studies, including those designed to understand evolution and connect genotype to phenotype. Maximising the utility of the data requires that it be stored in an accessible manner that facilitates the integration of variation data with other genome resources such as gene annotation and comparative genomics. DESCRIPTION The Ensembl project provides comprehensive and integrated variation resources for a wide variety of chordate genomes. This paper provides a detailed description of the sources of data and the methods for creating the Ensembl variation databases. It also explores the utility of the information by explaining the range of query options available, from using interactive web displays, to online data mining tools and connecting directly to the data servers programmatically. It gives a good overview of the variation resources and future plans for expanding the variation data within Ensembl. CONCLUSIONS Variation data is an important key to understanding the functional and phenotypic differences between individuals. The development of new sequencing and genotyping technologies is greatly increasing the amount of variation data known for almost all genomes. The Ensembl variation resources are integrated into the Ensembl genome browser and provide a comprehensive way to access this data in the context of a widely used genome bioinformatics system. All Ensembl data is freely available at http://www.ensembl.org and from the public MySQL database server at ensembldb.ensembl.org.
Collapse
Affiliation(s)
- Yuan Chen
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Fiona Cunningham
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Daniel Rios
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - William M McLaren
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - James Smith
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Bethan Pritchard
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Giulietta M Spudich
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Simon Brent
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Eugene Kulesha
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Pablo Marin-Garcia
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Damian Smedley
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Ewan Birney
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Paul Flicek
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
75
|
Quinlan AR, Clark RA, Sokolova S, Leibowitz ML, Zhang Y, Hurles ME, Mell JC, Hall IM. Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome. Genome Res 2010; 20:623-35. [PMID: 20308636 DOI: 10.1101/gr.102970.109] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Structural variation (SV) is a rich source of genetic diversity in mammals, but due to the challenges associated with mapping SV in complex genomes, basic questions regarding their genomic distribution and mechanistic origins remain unanswered. We have developed an algorithm (HYDRA) to localize SV breakpoints by paired-end mapping, and a general approach for the genome-wide assembly and interpretation of breakpoint sequences. We applied these methods to two inbred mouse strains: C57BL/6J and DBA/2J. We demonstrate that HYDRA accurately maps diverse classes of SV, including those involving repetitive elements such as transposons and segmental duplications; however, our analysis of the C57BL/6J reference strain shows that incomplete reference genome assemblies are a major source of noise. We report 7196 SVs between the two strains, more than two-thirds of which are due to transposon insertions. Of the remainder, 59% are deletions (relative to the reference), 26% are insertions of unlinked DNA, 9% are tandem duplications, and 6% are inversions. To investigate the origins of SV, we characterized 3316 breakpoint sequences at single-nucleotide resolution. We find that approximately 16% of non-transposon SVs have complex breakpoint patterns consistent with template switching during DNA replication or repair, and that this process appears to preferentially generate certain classes of complex variants. Moreover, we find that SVs are significantly enriched in regions of segmental duplication, but that this effect is largely independent of DNA sequence homology and thus cannot be explained by non-allelic homologous recombination (NAHR) alone. This result suggests that the genetic instability of such regions is often the cause rather than the consequence of duplicated genomic architecture.
Collapse
Affiliation(s)
- Aaron R Quinlan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Spindler KR, Welton AR, Lim ES, Duvvuru S, Althaus IW, Imperiale JE, Daoud AI, Chesler EJ. The major locus for mouse adenovirus susceptibility maps to genes of the hematopoietic cell surface-expressed LY6 family. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:3055-62. [PMID: 20164425 PMCID: PMC2832721 DOI: 10.4049/jimmunol.0903363] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Susceptibility to mouse adenovirus type 1 is associated with the major quantitative trait locus Msq1. Msq1 was originally mapped to a 13-Mb region of mouse chromosome (Chr) 15 in crosses between SJL/J and BALB/cJ inbred mice. We have now narrowed Msq1 to a 0.75-Mb interval from 74.68 to 75.43 Mb, defined by two anonymous markers, rs8259436 and D15Spn14, using data from 1396 backcross mice. The critical interval includes 14 Ly6 or Ly6-related genes, including Ly6a (encoding Sca-1/TAP), Ly6e (Sca-2/Tsa1), Ly6g (Gr-1), and gpihbp1 (GPI-anchored high-density lipoprotein-binding protein 1), as well as the gene encoding an aldosterone synthase (Cyp11b2). The Ly6 family members are attractive candidates for virus susceptibility genes because their products are GPI-anchored membrane proteins expressed on lymphoid and myeloid cells, with proposed functions in cell adhesion and cell signaling. To determine interstrain variation in susceptibility and produce additional resources for cloning Msq1, we assayed the susceptibility phenotype of four previously untested inbred mouse strains. Susceptibility of strain 129S6/SvEvTac was subsequently localized to the Ly6 complex region, using polymorphic genetic markers on Chr 15 in a population of 271 (129S6/SvEvTac x BALB/cJ)F(1) x BALB/cJ backcross mice. We identified a major 129S6/SvEvTac susceptibility allele, Msq1(129S6), on Chr 15 in the same region as Msq1(SJL). The results indicate that a major host factor in mouse adenovirus type 1 susceptibility is likely to be a member of the Ly6 gene family.
Collapse
Affiliation(s)
- Katherine R Spindler
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Rachidi M, Lopes C. Molecular and cellular mechanisms elucidating neurocognitive basis of functional impairments associated with intellectual disability in Down syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2010; 115:83-112. [PMID: 20441388 DOI: 10.1352/1944-7558-115.2.83] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 11/05/2009] [Indexed: 05/29/2023]
Abstract
Down syndrome, the most common genetic cause of intellectual disability, is associated with brain disorders due to chromosome 21 gene overdosage. Molecular and cellular mechanisms involved in the neuromorphological alterations and cognitive impairments are reported herein in a global model. Recent advances in Down syndrome research have lead to the identification of altered molecular pathways involved in intellectual disability, such as Calcineurin/NFATs pathways, that are of crucial importance in understanding the molecular basis of intellectual disability pathogenesis in this syndrome. Potential treatments in mouse models of Down syndrome, including antagonists of NMDA or GABA(A) receptors, and microRNAs provide new avenues to develop treatments of intellectual disability. Nevertheless, understanding the links between molecular pathways and treatment strategies in human beings requires further research.
Collapse
Affiliation(s)
- Mohammed Rachidi
- University of Paris, Denis Diderot Laboratory of Genetic Dysregulation Models: Trisomy 21 and Hyperhomocysteinemia. Tour 54, Paris, France.
| | | |
Collapse
|
78
|
Abstract
Down syndrome (trisomy 21, or DS) is the most common live-born aneuploidy in humans, occurring in approximately 1 in 700 live births.
Collapse
|
79
|
Cramer NP, Best TK, Stoffel M, Siarey RJ, Galdzicki Z. GABAB–GIRK2-Mediated Signaling in Down Syndrome. GABABRECEPTOR PHARMACOLOGY - A TRIBUTE TO NORMAN BOWERY 2010; 58:397-426. [DOI: 10.1016/s1054-3589(10)58015-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
80
|
Jun J, Mandoiu II, Nelson CE. Identification of mammalian orthologs using local synteny. BMC Genomics 2009; 10:630. [PMID: 20030836 PMCID: PMC2807883 DOI: 10.1186/1471-2164-10-630] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 12/23/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate determination of orthology is central to comparative genomics. For vertebrates in particular, very large gene families, high rates of gene duplication and loss, multiple mechanisms of gene duplication, and high rates of retrotransposition all combine to make inference of orthology between genes difficult. Many methods have been developed to identify orthologous genes, mostly based upon analysis of the inferred protein sequence of the genes. More recently, methods have been proposed that use genomic context in addition to protein sequence to improve orthology assignment in vertebrates. Such methods have been most successfully implemented in fungal genomes and have long been used in prokaryotic genomes, where gene order is far less variable than in vertebrates. However, to our knowledge, no explicit comparison of synteny and sequence based definitions of orthology has been reported in vertebrates, or, more specifically, in mammals. RESULTS We test a simple method for the measurement and utilization of gene order (local synteny) in the identification of mammalian orthologs by investigating the agreement between coding sequence based orthology (Inparanoid) and local synteny based orthology. In the 5 mammalian genomes studied, 93% of the sampled inter-species pairs were found to be concordant between the two orthology methods, illustrating that local synteny is a robust substitute to coding sequence for identifying orthologs. However, 7% of pairs were found to be discordant between local synteny and Inparanoid. These cases of discordance result from evolutionary events including retrotransposition and genome rearrangements. CONCLUSIONS By analyzing cases of discordance between local synteny and Inparanoid we show that local synteny can distinguish between true orthologs and recent retrogenes, can resolve ambiguous many-to-many orthology relationships into one-to-one ortholog pairs, and might be used to identify cases of non-orthologous gene displacement by retroduplicated paralogs.
Collapse
Affiliation(s)
- Jin Jun
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
81
|
Abstract
While once almost synonymous, there is an increasing gap between the expanding definition of what constitutes a gene and the conservative and narrowly defined terms code or coding, which for a long time, almost exclusively constituted the open reading frame. Much confusion results from this disparity, especially in light of the plethora of noncoding RNAs (more correctly termed "non-protein-coding RNAs") that usually are encoded and transcribed by their own genes. A simple solution would be to adopt Ed Trifonov's less constrained definition of a code as any sequence pattern that can have a biological function. Such consideration favors not only a more complex view of the gene as an entity composed of many more or less conserved subgenic modules, but also a concept of modular evolution of genes and entire genomes.
Collapse
Affiliation(s)
- Jürgen Brosius
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany.
| |
Collapse
|
82
|
Folic Acid Supplementation Modifies β-Adrenoceptor–Mediated In Vitro Lipolysis of Obese/Diabetic (+db/+db) Mice. Exp Biol Med (Maywood) 2009; 234:1047-55. [DOI: 10.3181/0902-rm-44] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effects of folic acid (5.7 and 71 μg/kg, 4 weeks) consumption on the β-adrenoceptors (β-ARs)–elicited lipolysis in vitro of the abdominal adipocytes of lean/control (+ m/+ db) and obese/diabetic (+ db/+ db) mice (female) were investigated. β-AR agonists (salbutamol, a β2-AR agonist; BRL 37344 and CGP 12177, β3-AR agonists; adrenaline, a β-AR agonist)–mediated lipolysis, β2-, and β3-ARs protein expression of the adipose tissues after folic acid consumption were evaluated. Our results demonstrate that a smaller magnitude of the basal (spontaneous) and the β-AR agonists–triggered lipolysis was observed in + db/+ db mice, and folic acid supplementation (71 μg/kg) resulted in an improvement of both the baseline and the β-ARs–mediated lipolysis. In controls, a lower β2-and β3-ARs protein expression of the adipose tissues was detected in + db/+ db mice, compared to + m/+ db mice. In both strains fed with folic acid (71 μg/kg), a reduction of β2-AR protein expression was observed compared to the respective controls. In + db/+ db mice, folic acid (5.7 and 71 μg/kg) consumption caused a dose-dependent increase of β3-AR protein expression compared to controls. We demonstrate that lipolysis elicited by β-AR (β2- and β3-ARs) agonists was blunted in + db/+ db mice. Folic acid consumption has significant modulatory effects on β-ARs protein expression and lipolysis.
Collapse
|
83
|
Abstract
In mouse and human, the genes encoding protamines PRM1, PRM2 and transition protein TNP2 are found clustered together on chromosome 16. In addition, these three genes lie in the same orientation to one another and are coordinately expressed in a haploid-specific manner during spermatogenesis. Previously, we have shown that the human PRM1 --> PRM2 --> TNP2 locus exists as a single chromatin domain bounded by two male germ cell-specific MARs, i.e. Matrix Attachment Regions. A third, somatic-specific MAR element lies immediately 3' of the PRM1 --> PRM2 --> TNP2 domain. This MAR maps to a conserved CpG island 5' of the human SOCS-1 gene. Similarly, two candidate MARs flank the mouse Prm1 --> Prm2 --> Tnp2 domain. Comparative analysis of the mouse and human promoter regions identified several conserved regulatory motifs for each of the genes of this cluster. This further establishes the synteny of this region. Global structural similarities and the functional relevance of the associated candidate regulatory elements are discussed.
Collapse
Affiliation(s)
- Susan M Wykes
- Department of Obstetrics and Gynecology, Center for Molecular Medicine and Genetics, Institute for Scientific Computing, Wayne State University, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201, USA
| | | |
Collapse
|
84
|
Patterson D. Molecular genetic analysis of Down syndrome. Hum Genet 2009; 126:195-214. [PMID: 19526251 DOI: 10.1007/s00439-009-0696-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 05/29/2009] [Indexed: 12/18/2022]
Abstract
Down syndrome (DS) is caused by trisomy of all or part of human chromosome 21 (HSA21) and is the most common genetic cause of significant intellectual disability. In addition to intellectual disability, many other health problems, such as congenital heart disease, Alzheimer's disease, leukemia, hypotonia, motor disorders, and various physical anomalies occur at an elevated frequency in people with DS. On the other hand, people with DS seem to be at a decreased risk of certain cancers and perhaps of atherosclerosis. There is wide variability in the phenotypes associated with DS. Although ultimately the phenotypes of DS must be due to trisomy of HSA21, the genetic mechanisms by which the phenotypes arise are not understood. The recent recognition that there are many genetically active elements that do not encode proteins makes the situation more complex. Additional complexity may exist due to possible epigenetic changes that may act differently in DS. Numerous mouse models with features reminiscent of those seen in individuals with DS have been produced and studied in some depth, and these have added considerable insight into possible genetic mechanisms behind some of the phenotypes. These mouse models allow experimental approaches, including attempts at therapy, that are not possible in humans. Progress in understanding the genetic mechanisms by which trisomy of HSA21 leads to DS is the subject of this review.
Collapse
Affiliation(s)
- David Patterson
- Eleanor Roosevelt Institute, University of Denver, 2101 E. Wesley Avenue, Denver, CO 80208-6600, USA.
| |
Collapse
|
85
|
Costa V, Casamassimi A, Roberto R, Gianfrancesco F, Matarazzo MR, D'Urso M, D'Esposito M, Rocchi M, Ciccodicola A. DDX11L: a novel transcript family emerging from human subtelomeric regions. BMC Genomics 2009; 10:250. [PMID: 19476624 PMCID: PMC2705379 DOI: 10.1186/1471-2164-10-250] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 05/28/2009] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The subtelomeric regions of human chromosomes exhibit an extraordinary plasticity. To date, due to the high GC content and to the presence of telomeric repeats, the subtelomeric sequences are underrepresented in the genomic libraries and consequently their sequences are incomplete in the finished human genome sequence, and still much remains to be learned about subtelomere organization, evolution and function. Indeed, only in recent years, several studies have disclosed, within human subtelomeres, novel gene family members. RESULTS During a project aimed to analyze genes located in the telomeric region of the long arm of the human X chromosome, we have identified a novel transcript family, DDX11L, members of which map to 1pter, 2q13/14.1, 2qter, 3qter, 6pter, 9pter/9qter, 11pter, 12pter, 15qter, 16pter, 17pter, 19pter, 20pter/20qter, Xpter/Xqter and Yqter. Furthermore, we partially sequenced the underrepresented subtelomeres of human chromosomes showing a common evolutionary origin. CONCLUSION Our data indicate that an ancestral gene, originated as a rearranged portion of the primate DDX11 gene, and propagated along many subtelomeric locations, is emerging within subtelomeres of human chromosomes, defining a novel gene family. These findings support the possibility that the high plasticity of these regions, sites of DNA exchange among different chromosomes, could trigger the emergence of new genes.
Collapse
Affiliation(s)
- Valerio Costa
- Institute of Genetics and Biophysics A, Buzzati-Traverso , CNR, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Su Z, Ishimori N, Chen Y, Leiter EH, Churchill GA, Paigen B, Stylianou IM. Four additional mouse crosses improve the lipid QTL landscape and identify Lipg as a QTL gene. J Lipid Res 2009; 50:2083-94. [PMID: 19436067 DOI: 10.1194/jlr.m900076-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify genes controlling plasma HDL and triglyceride levels, quantitative trait locus (QTL) analysis was performed in one backcross, (NZO/H1Lt x NON/LtJ) x NON/LtJ, and three intercrosses, C57BL/6J x DBA/2J, C57BL/6J x C3H/HeJ, and NZB/B1NJ x NZW/LacJ. HDL concentrations were affected by 25 QTL distributed on most chromosomes (Chrs); those on Chrs 1, 8, 12, and 16 were newly identified, and the remainder were replications of previously identified QTL. Triglyceride concentrations were controlled by nine loci; those on Chrs 1, 2, 3, 7, 16, and 18 were newly identified QTL, and the remainder were replications. Combining mouse crosses with haplotype analysis for the HDL QTL on Chr 18 reduced the list of candidates to six genes. Further expression analysis, sequencing, and quantitative complementation testing of these six genes identified Lipg as the HDL QTL gene on distal Chr 18. The data from these crosses further increase the ability to perform haplotype analyses that can lead to the identification of causal lipid genes.
Collapse
Affiliation(s)
- Zhiguang Su
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Commins J, Toft C, Fares MA. Computational biology methods and their application to the comparative genomics of endocellular symbiotic bacteria of insects. Biol Proced Online 2009; 11:52-78. [PMID: 19495914 PMCID: PMC3055744 DOI: 10.1007/s12575-009-9004-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 02/17/2009] [Indexed: 12/02/2022] Open
Abstract
Comparative genomics has become a real tantalizing challenge in the postgenomic era. This fact has been mostly magnified by the plethora of new genomes becoming available in a daily bases. The overwhelming list of new genomes to compare has pushed the field of bioinformatics and computational biology forward toward the design and development of methods capable of identifying patterns in a sea of swamping data noise. Despite many advances made in such endeavor, the ever-lasting annoying exceptions to the general patterns remain to pose difficulties in generalizing methods for comparative genomics. In this review, we discuss the different tools devised to undertake the challenge of comparative genomics and some of the exceptions that compromise the generality of such methods. We focus on endosymbiotic bacteria of insects because of their genomic dynamics peculiarities when compared to free-living organisms.
Collapse
Affiliation(s)
- Jennifer Commins
- Evolutionary Genetics and Bioinformatics Laboratory, Department of Genetics, Smurfit Institute of Genetics, Trinity College, University of Dublin, Dublin, Ireland
| | - Christina Toft
- Evolutionary Genetics and Bioinformatics Laboratory, Department of Genetics, Smurfit Institute of Genetics, Trinity College, University of Dublin, Dublin, Ireland
| | - Mario A Fares
- Evolutionary Genetics and Bioinformatics Laboratory, Department of Genetics, Smurfit Institute of Genetics, Trinity College, University of Dublin, Dublin, Ireland
| |
Collapse
|
88
|
Reilly KM. Brain tumor susceptibility: the role of genetic factors and uses of mouse models to unravel risk. Brain Pathol 2009; 19:121-31. [PMID: 19076777 PMCID: PMC2761018 DOI: 10.1111/j.1750-3639.2008.00236.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 10/07/2008] [Indexed: 02/03/2023] Open
Abstract
Brain tumors are relatively rare but deadly cancers, and present challenges in the determination of risk factors in the population. These tumors are inherently difficult to cure because of their protected location in the brain, with surgery, radiation and chemotherapy options carrying potentially lasting morbidity for patients and incomplete cure of the tumor. The development of methods to prevent or detect brain tumors at an early stage is extremely important to reduce damage to the brain from the tumor and the therapy. Developing effective prevention or early detection methods requires a deep understanding of the risk factors for brain tumors. This review explores the difficulties in assessing risk factors in rare diseases such as brain tumors, and discusses how mouse models of cancer can aid in a better understanding of genetic risk factors for brain tumors.
Collapse
Affiliation(s)
- Karlyne M Reilly
- Mouse Cancer Genetics Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
89
|
Abstract
The scientific value of a mouse model with a targeted mutation depends greatly upon how carefully the mutation has been engineered. Until recently, our ability to alter the mouse genome has been limited by both the lack of technologies to conditionally target a locus and by conventional cloning. The "cre/loxP" and "recombineering" technologies have overcome some of these limitations and have greatly enhanced our ability to manipulate the mouse genome in a sophisticated way. However, there are still some practical aspects that need to be considered to successfully target a specific genetic locus. Here, we describe the process to engineer a targeted mutation to generate a mouse model. We include a tutorial using the publicly available informatic tools that can be downloaded for processing the genetic information needed to generate a targeting vector.
Collapse
Affiliation(s)
- Lino Tessarollo
- Mouse Cancer Genetics Program, NCI-Frederick, Frederick, MD, USA
| | | | | | | |
Collapse
|
90
|
Abstract
The Mouse Phenome Database (MPD; http://www.jax.org/phenome) is an open source, web-based repository of phenotypic and genotypic data on commonly used and genetically diverse inbred strains of mice and their derivatives. MPD is also a facility for query, analysis and in silico hypothesis testing. Currently MPD contains about 1400 phenotypic measurements contributed by research teams worldwide, including phenotypes relevant to human health such as cancer susceptibility, aging, obesity, susceptibility to infectious diseases, atherosclerosis, blood disorders and neurosensory disorders. Electronic access to centralized strain data enables investigators to select optimal strains for many systems-based research applications, including physiological studies, drug and toxicology testing, modeling disease processes and complex trait analysis. The ability to select strains for specific research applications by accessing existing phenotype data can bypass the need to (re)characterize strains, precluding major investments of time and resources. This functionality, in turn, accelerates research and leverages existing community resources. Since our last NAR reporting in 2007, MPD has added more community-contributed data covering more phenotypic domains and implemented several new tools and features, including a new interactive Tool Demo available through the MPD homepage (quick link: http://phenome.jax.org/phenome/trytools).
Collapse
Affiliation(s)
- Stephen C Grubb
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | |
Collapse
|
91
|
Lu TC, Meng LB, Yang CP, Liu GF, Liu GJ, Ma W, Wang BC. A shotgun phosphoproteomics analysis of embryos in germinated maize seeds. PLANTA 2008; 228:1029-41. [PMID: 18726113 DOI: 10.1007/s00425-008-0805-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Accepted: 07/31/2008] [Indexed: 05/09/2023]
Abstract
To better understand the role that reversible protein phosphorylation plays in seed germination, we initiated a phosphoproteomic investigation of embryos of germinated maize seeds. A total of 776 proteins including 39 kinases, 16 phosphatases, and 33 phosphoproteins containing 36 precise in vivo phosphorylation sites were identified. All the phosphorylation sites identified, with the exception of the phosphorylation site on HSP22, have not been reported previously (Lund et al. in J Biol Chem, 276, 29924-29929, 2001). Assayed with QRT-PCR, the transcripts of ten kinase genes were found to be dramatically up-regulated during seed germination and those of four phosphatase genes were up-regulated after germination, which indicated that reversible protein phosphorylation occurred and complex regulating networks were activated during this period. At least one-third of these phosphoproteins are key components involved in biological processes which relate to seed germination, such as DNA repair, gene transcription, RNA splicing and protein translation, suggesting that protein phosphorylation plays an important role in seed germination. As far as we know, this is the first phosphoproteomic study on a monocot and it will lay a solid foundation for further study of the molecular mechanisms of seed germination and seedling development.
Collapse
Affiliation(s)
- Tian-Cong Lu
- Education Ministry Key Laboratory of Forest Tree Genetic Improvement and Biotechnology, Northeast Forestry University, Harbin, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
92
|
Affiliation(s)
- Xiaonan Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and National Engineering Center for BioChip at Shanghai, Shanghai 201203, China;
- Laboratory of Microbial Molecular Physiology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongliang Yang
- Laboratory of Microbial Molecular Physiology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Guo-Ping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and National Engineering Center for BioChip at Shanghai, Shanghai 201203, China;
- Laboratory of Microbial Molecular Physiology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
93
|
Mittal R, Sharma S, Chhibber S, Harjai K. Iron dictates the virulence of Pseudomonas aeruginosa in urinary tract infections. J Biomed Sci 2008; 15:731-41. [DOI: 10.1007/s11373-008-9274-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Accepted: 07/25/2008] [Indexed: 11/21/2022] Open
|
94
|
Abstract
DNA sequencing is in a period of rapid change, in which capillary sequencing is no longer the technology of choice for most ultra-high-throughput applications. A new generation of instruments that utilize primed synthesis in flow cells to obtain, simultaneously, the sequence of millions of different DNA templates has changed the field. We compare and contrast these new sequencing platforms in terms of stage of development, instrument configuration, template format, sequencing chemistry, throughput capability, operating cost, data handling issues, and error models. While these platforms outperform capillary instruments in terms of bases per day and cost per base, the short length of sequence reads obtained from most instruments and the limited number of samples that can be run simultaneously imposes some practical constraints on sequencing applications. However, recently developed methods for paired-end sequencing and for array-based direct selection of desired templates from complex mixtures extend the utility of these platforms for genome analysis. Given the ever increasing demand for DNA sequence information, we can expect continuous improvement of this new generation of instruments and their eventual replacement by even more powerful technology.
Collapse
Affiliation(s)
- Robert A Holt
- British Columbia Cancer Agency, Genome Sciences Centre, Vancouver, British Columbia V5Z 4E6, Canada.
| | | |
Collapse
|
95
|
Su WL, Modrek B, GuhaThakurta D, Edwards S, Shah JK, Kulkarni AV, Russell A, Schadt EE, Johnson JM, Castle JC. Exon and junction microarrays detect widespread mouse strain- and sex-bias expression differences. BMC Genomics 2008; 9:273. [PMID: 18533039 PMCID: PMC2432077 DOI: 10.1186/1471-2164-9-273] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 06/04/2008] [Indexed: 12/22/2022] Open
Abstract
Background Studies have shown that genetic and sex differences strongly influence gene expression in mice. Given the diversity and complexity of transcripts produced by alternative splicing, we sought to use microarrays to establish the extent of variation found in mouse strains and genders. Here, we surveyed the effect of strain and sex on liver gene and exon expression using male and female mice from three different inbred strains. Results 71 liver RNA samples from three mouse strains – DBA/2J, C57BL/6J and C3H/HeJ – were profiled using a custom-designed microarray monitoring exon and exon-junction expression of 1,020 genes representing 9,406 exons. Gene expression was calculated via two different methods, using the 3'-most exon probe ("3' gene expression profiling") and using all probes associated with the gene ("whole-transcript gene expression profiling"), while exon expression was determined using exon probes and flanking junction probes that spanned across the neighboring exons ("exon expression profiling"). Widespread strain and sex influences were detected using a two-way Analysis of Variance (ANOVA) regardless of the profiling method used. However, over 90% of the genes identified in 3' gene expression profiling or whole transcript profiling were identified in exon profiling, along with 75% and 38% more genes, respectively, showing evidence of differential isoform expression. Overall, 55% and 32% of genes, respectively, exhibited strain- and sex-bias differential gene or exon expression. Conclusion Exon expression profiling identifies significantly more variation than both 3' gene expression profiling and whole-transcript gene expression profiling. A large percentage of genes that are not differentially expressed at the gene level demonstrate exon expression variation suggesting an influence of strain and sex on alternative splicing and a need to profile expression changes at sub-gene resolution.
Collapse
Affiliation(s)
- Wan-Lin Su
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Akagi K, Li J, Stephens RM, Volfovsky N, Symer DE. Extensive variation between inbred mouse strains due to endogenous L1 retrotransposition. Genome Res 2008; 18:869-80. [PMID: 18381897 PMCID: PMC2413154 DOI: 10.1101/gr.075770.107] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 03/27/2008] [Indexed: 12/13/2022]
Abstract
Numerous inbred mouse strains comprise models for human diseases and diversity, but the molecular differences between them are mostly unknown. Several mammalian genomes have been assembled, providing a framework for identifying structural variations. To identify variants between inbred mouse strains at a single nucleotide resolution, we aligned 26 million individual sequence traces from four laboratory mouse strains to the C57BL/6J reference genome. We discovered and analyzed over 10,000 intermediate-length genomic variants (from 100 nucleotides to 10 kilobases), distinguishing these strains from the C57BL/6J reference. Approximately 85% of such variants are due to recent mobilization of endogenous retrotransposons, predominantly L1 elements, greatly exceeding that reported in humans. Many genes' structures and expression are altered directly by polymorphic L1 retrotransposons, including Drosha (also called Rnasen), Parp8, Scn1a, Arhgap15, and others, including novel genes. L1 polymorphisms are distributed nonrandomly across the genome, as they are excluded significantly from the X chromosome and from genes associated with the cell cycle, but are enriched in receptor genes. Thus, recent endogenous L1 retrotransposition has diversified genomic structures and transcripts extensively, distinguishing mouse lineages and driving a major portion of natural genetic variation.
Collapse
Affiliation(s)
- Keiko Akagi
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Jingfeng Li
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Robert M. Stephens
- Advanced Biomedical Computing Center, Advanced Technology Program, SAIC-Frederick, Inc., Frederick, Maryland 21702, USA
| | - Natalia Volfovsky
- Advanced Biomedical Computing Center, Advanced Technology Program, SAIC-Frederick, Inc., Frederick, Maryland 21702, USA
| | - David E. Symer
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
97
|
Delcher AL, Salzberg SL, Phillippy AM. Using MUMmer to identify similar regions in large sequence sets. ACTA ACUST UNITED AC 2008; Chapter 10:Unit 10.3. [PMID: 18428693 DOI: 10.1002/0471250953.bi1003s00] [Citation(s) in RCA: 341] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The MUMmer sequence alignment package is a suite of computer programs designed to detect regions of homology in long biological sequences. Version 2.1 makes several improvements to the package, including: increased speed and reduced memory requirements; the ability to handle both protein and DNA sequences; the ability to handle multiple sequence fragments; and new algorithms for clustering together basic matches. The system is particularly efficient at comparing highly similar sequences, such as alternative versions of fragment assemblies or closely related strains of the same bacterium.
Collapse
Affiliation(s)
- Arthur L Delcher
- The Institute for Genomic Research Rockville, Maryland and Computer Science Department, Loyola College in Maryland, Baltimore, Maryland, USA
| | | | | |
Collapse
|
98
|
Abstract
The evolution of karyotypes has been the subject of intensive study since the middle of the 20th century. This was motivated by the observation that the karyotypes of related species showed remarkable conservation. The recent emergence of whole-genome sequencing projects gives the opportunity to complement the cytogenetic approaches by addressing the conservation of karyotypes using chromosome sequence comparison. In this short review we present a description of recent advances in computational biology methods dedicated to the study of chromosome evolution and more specifically ancestral karyotype reconstruction in an attempt to provide an integrated overview of both cytogenetic and computational approaches.
Collapse
|
99
|
Reeves RH, Garner CC. A year of unprecedented progress in Down syndrome basic research. ACTA ACUST UNITED AC 2008; 13:215-20. [PMID: 17910083 DOI: 10.1002/mrdd.20165] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The years 2006 and 2007 saw the publication of three new and different approaches to prevention or amelioration of Down syndrome effects on the brain and cognition. We describe the animal model systems that were critical to this progress, review these independent breakthrough studies, and discuss the implications for therapeutic approaches suggested by each.
Collapse
Affiliation(s)
- Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
100
|
Westra JW, Peterson SE, Yung YC, Mutoh T, Barral S, Chun J. Aneuploid mosaicism in the developing and adult cerebellar cortex. J Comp Neurol 2008; 507:1944-51. [PMID: 18273885 DOI: 10.1002/cne.21648] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroprogenitor cells (NPCs) in several telencephalic proliferative regions of the mammalian brain, including the embryonic cerebral cortex and postnatal subventricular zone (SVZ), display cell division "defects" in normal cells that result in aneuploid adult progeny. Here, we identify the developing cerebellum as a major, nontelencephalic proliferative region of the vertebrate central nervous system (CNS) that also produces aneuploid NPCs and nonmitotic cells. Mitotic NPCs assessed by metaphase chromosome analyses revealed that 15.3% and 20.8% of cerebellar NPCs are aneuploid at P0 and P7, respectively. By using immunofluorescent analysis of cerebellar NPCs, we show that chromosome segregation defects contribute to the generation of cells with an aneuploid genomic complement. Nonmitotic cells were assessed by fluorescence-activated cell sorting (FACS) coupled with fluorescence in situ hybridization (FISH), which revealed neuronal and nonneuronal aneuploid populations in both the adult mouse and human cerebellum. Taken together, these results demonstrate that the prevalence of neural aneuploidy includes nontelencephalic portions of the neuraxis and suggest that the generation and maintenance of aneuploid cells is a widespread, if not universal, property of central nervous system development and organization.
Collapse
Affiliation(s)
- Jurjen W Westra
- Helen L. Dorris Child and Adolescent Neuropsychiatric Disorder Institute, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|