51
|
Cui C, Noronha A, Morikawa H, Alvarez VA, Stuber GD, Szumlinski KK, Kash TL, Roberto M, Wilcox MV. New insights on neurobiological mechanisms underlying alcohol addiction. Neuropharmacology 2012; 67:223-32. [PMID: 23159531 DOI: 10.1016/j.neuropharm.2012.09.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/22/2012] [Accepted: 09/24/2012] [Indexed: 11/15/2022]
Abstract
Alcohol dependence/addiction is mediated by complex neural mechanisms that involve multiple brain circuits and neuroadaptive changes in a variety of neurotransmitter and neuropeptide systems. Although recent studies have provided substantial information on the neurobiological mechanisms that drive alcohol drinking behavior, significant challenges remain in understanding how alcohol-induced neuroadaptations occur and how different neurocircuits and pathways cross-talk. This review article highlights recent progress in understanding neural mechanisms of alcohol addiction from the perspectives of the development and maintenance of alcohol dependence. It provides insights on cross talks of different mechanisms and reviews the latest studies on metaplasticity, structural plasticity, interface of reward and stress pathways, and cross-talk of different neural signaling systems involved in binge-like drinking and alcohol dependence.
Collapse
Affiliation(s)
- Changhai Cui
- Division of Neuroscience and Behavior, NIAAA/NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Social rank, chronic ethanol self-administration, and diurnal pituitary-adrenal activity in cynomolgus monkeys. Psychopharmacology (Berl) 2012; 224:133-43. [PMID: 22526537 PMCID: PMC3469782 DOI: 10.1007/s00213-012-2707-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/24/2012] [Indexed: 12/20/2022]
Abstract
RATIONALE Dominance hierarchies affect ethanol self-administration, with greater intake among subordinate animals compared to dominant animals. Excessive ethanol intake disrupts circadian rhythms. Diurnal rhythms of the hypothalamic-pituitary-adrenal axis have not been characterized in the context of ethanol self-administration with regard to social rank. OBJECTIVE This study aimed to determine whether diurnal pituitary-adrenal hormonal rhythms account for differences between social ranks in ethanol self-administration or are differentially affected by ethanol self-administration between social ranks. METHODS During alternating individual (n = 11-12) and social (n = 3 groups) housing of male cynomolgus monkeys (Macaca fascicularis), diurnal measures of cortisol and adrenocorticotropic hormone (ACTH) were obtained from plasma samples three times per week. Social rank was determined, ethanol (4 %, w/v) self-administration was induced, and then the monkeys were allowed a choice of water or ethanol for 22 h/day for 49 weeks. RESULTS For all social ranks, plasma ACTH was elevated during social housing, but cortisol was stable, although greater among dominant monkeys. Ethanol self-administration blunted the effect of social housing, cortisol, and the diurnal rhythm for both hormones, regardless of daily ethanol intake (1.2-4.2 g/kg/day). Peak ACTH and cortisol were more likely to be observed in the morning during ethanol access. Ethanol, not vehicle, intake was lower during social housing across social ranks. Only dominant monkeys showed significantly lower blood-ethanol concentration during social housing. CONCLUSIONS There was a low threshold for disruption of diurnal pituitary rhythms by ethanol drinking, but sustained adrenal corticosteroid rhythms. Protection against heavy drinking among dominant monkeys may have constrained ethanol intoxication, possibly to preserve dominance rank.
Collapse
|
53
|
Neisewander J, Peartree N, Pentkowski N. Emotional valence and context of social influences on drug abuse-related behavior in animal models of social stress and prosocial interaction. Psychopharmacology (Berl) 2012; 224:33-56. [PMID: 22955569 PMCID: PMC4071609 DOI: 10.1007/s00213-012-2853-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 08/18/2012] [Indexed: 02/07/2023]
Abstract
RATIONALE Social factors are important determinants of drug dependence and relapse. OBJECTIVES We reviewed pre-clinical literature examining the role of social experiences from early life through the development of drug dependence and relapse, emphasizing two aspects of these experiences: (1) whether the social interaction is appetitive or aversive and (2) whether the social interaction occurs within or outside of the drug-taking context. METHODS The models reviewed include neonatal care, isolation, social defeat, chronic subordination, and prosocial interactions. We review results from these models in regard to effects on self-administration and conditioned place preference established with alcohol, psychostimulants, and opiates. RESULTS We suggest that in general, when the interactions occur outside of the drug-taking context, prosocial interactions are protective against drug abuse-related behaviors, whereas social stressors facilitate these behaviors. By contrast, positive or negative social interactions occurring within the drug-taking context may interact with other risk factors to enhance or inhibit these behaviors. CONCLUSIONS Despite differences in the nature and complexity of human social behavior compared to other species, the evolving animal literature provides useful models for understanding social influences on drug abuse-related behavior that will allow for research on the behavioral and biological mechanisms involved. The models have contributed to understanding social influences on initiation and maintenance of drug use, but more research is needed to understand social influences on drug relapse.
Collapse
Affiliation(s)
- J.L. Neisewander
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501,Corresponding author: Janet Neisewander, Ph.D., School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, , Phone: 480-965-0209, Fax: 480-965-6899
| | - N.A. Peartree
- Department of Psychology, Arizona State University, PO Box 871104, Tempe, AZ 85287-1104
| | - N.S. Pentkowski
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501
| |
Collapse
|
54
|
Heydendael W, Sengupta A, Bhatnagar S. Putative genes mediating the effects of orexins in the posterior paraventricular thalamus on neuroendocrine and behavioral adaptations to repeated stress. Brain Res Bull 2012; 89:203-10. [PMID: 22982687 DOI: 10.1016/j.brainresbull.2012.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/23/2012] [Accepted: 09/04/2012] [Indexed: 01/22/2023]
Abstract
Exposure to repeated stress is often associated with psychopathology. However, our understanding of the underlying neural circuitry that regulates responses to repeated stress is limited. The posterior paraventricular thalamus (pPVT) is a brain region responsible for transmission of multimodal sensory information to limbic structures that regulate responses to both acute and repeated stress. Orexin-containing cells originating in the hypothalamus heavily innervate the pPVT. Our previous work has shown that activation of orexin1 receptors in the pPVT during repeated swim stress is important for facilitation of the hypothalamic-pituitary-adrenal (HPA) axis response to subsequent novel restraint. However, the genes responsible for these orexin-mediated adaptations to repeated stress are not known. Using a custom PCR array we examined the expression of 186 specific mRNAs in the pPVT of animals exposed to repeated swim stress (4 days of 15min swim/day) with or without direct pPVT microinfusion of the orexin1 receptor antagonist SB334867 prior to each daily swim stress. Tissue was collected the next morning under basal non stressed conditions. Repeated stress and/or orexin receptor blockade significantly altered expression of only 9 specific genes including growth factors (Vegfa, Bax and Mt3), G-protein coupled receptors (Adora2a, Grm2 and Crhr1), immune-related genes (Ptgs2 and Cx3cr1) and an epigenetic-related gene (Hdac5). These genes represent potential targets for further characterization of orexin-mediated adaptations to repeated stress in the pPVT.
Collapse
Affiliation(s)
- W Heydendael
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute and the University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4399, United States
| | | | | |
Collapse
|
55
|
Gomez JL, Lewis MJ, Luine VN. The interaction of chronic restraint stress and voluntary alcohol intake: effects on spatial memory in male rats. Alcohol 2012; 46:499-504. [PMID: 22560292 DOI: 10.1016/j.alcohol.2011.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/31/2011] [Accepted: 12/14/2011] [Indexed: 12/27/2022]
Abstract
Alcohol consumption and exposure to stressful life events activate similar neural pathways and thus result in several comparable physiological and behavioral effects. Alcoholics in treatment claim that life stressors are the leading cause of continued drinking or relapse. However, few studies have investigated the interactive effects of stress and alcohol on cognitive behavior. The effects of restraint stress, alcohol, and stress in combination with alcohol were examined on a spatial memory test, the object placement (OP) task. In addition, intake levels were measured to determine if stress altered general consumption of alcohol. Male Sprague-Dawley rats were assigned to one of four conditions: no alcohol/no stress control (CON), stress alone (STR), alcohol alone (ALC), and STR+alcohol (STR+ALC). Following each restraint stress bout, the STR+ALC and the ALC groups were given access to 8% alcohol for 1h using the two-bottle choice limited access paradigm. As predicted, the STR+ALC group significantly increased alcohol consumption, while the ALC group had consistent drinking over the 10-day treatment. On the OP task, STR and ALC groups performed at chance levels, whereas the CON and STR+ALC groups significantly discriminated between objects in the new and old locations. These data show that stress increases alcohol intake and the intake of alcohol is associated with reduction of the stress-induced impairment of spatial memory. The data have important implications for the development of alcohol abuse and its treatment.
Collapse
Affiliation(s)
- Juan L Gomez
- Doctoral Program in Biopsychology and Behavioral Neuroscience, The Graduate Center of City University of New York (CUNY), New York, NY 10016, USA.
| | | | | |
Collapse
|
56
|
Marchand A, Durand P, Lupien S. Work hours and cortisol variation from non-working to working days. Int Arch Occup Environ Health 2012; 86:553-9. [DOI: 10.1007/s00420-012-0788-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/23/2012] [Indexed: 10/27/2022]
|
57
|
Ryabinin AE, Tsoory MM, Kozicz T, Thiele TE, Neufeld-Cohen A, Chen A, Lowery-Gionta EG, Giardino WJ, Kaur S. Urocortins: CRF's siblings and their potential role in anxiety, depression and alcohol drinking behavior. Alcohol 2012; 46:349-57. [PMID: 22444954 PMCID: PMC3358480 DOI: 10.1016/j.alcohol.2011.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/10/2011] [Accepted: 10/10/2011] [Indexed: 12/30/2022]
Abstract
It is widely accepted that stress, anxiety, depression and alcohol abuse-related disorders are in large part controlled by corticotropin-releasing factor (CRF) receptors. However, evidence is accumulating that some of the actions on these receptors are mediated not by CRF, but by a family of related Urocortin (Ucn) peptides Ucn1, Ucn2 and Ucn3. The initial narrow focus on CRF as the potential main player acting on CRF receptors appears outdated. Instead it is suggested that CRF and the individual Ucns act in a complementary and brain region-specific fashion to regulate anxiety-related behaviors and alcohol consumption. This review, based on a symposium held in 2011 at the research meeting on "Alcoholism and Stress" in Volterra, Italy, highlights recent evidence for regulation of these behaviors by Ucns. In studies on stress and anxiety, the roles of Ucns, and in particular Ucn1, appear more visible in experiments analyzing adaptation to stressors rather than testing basal anxiety states. Based on these studies, we propose that the contribution of Ucn1 to regulating mood follows a U-like pattern with both high and low activity of Ucn1 contributing to high anxiety states. In studies on alcohol use disorders, the CRF system appears to regulate not only dependence-induced drinking, but also binge drinking and even basal consumption of alcohol. While dependence-induced and binge drinking rely on the actions of CRF on CRFR1 receptors, alcohol consumption in models of these behaviors is inhibited by actions of Ucns on CRFR2. In contrast, alcohol preference is positively influenced by actions of Ucn1, which is capable of acting on both CRFR1 and CRFR2. Because of complex distribution of Ucns in the nervous system, advances in this field will critically depend on development of new tools allowing site-specific analyses of the roles of Ucns and CRF.
Collapse
Affiliation(s)
- Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, L470, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Brain-specific inactivation of the Crhr1 gene inhibits post-dependent and stress-induced alcohol intake, but does not affect relapse-like drinking. Neuropsychopharmacology 2012; 37:1047-56. [PMID: 22113086 PMCID: PMC3280644 DOI: 10.1038/npp.2011.297] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Corticotropin-releasing hormone (CRH) and its receptor, CRH receptor-1 (CRHR1), have a key role in alcoholism. Especially, post-dependent and stress-induced alcohol intake involve CRH/CRHR1 signaling within extra-hypothalamic structures, but a contribution of the hypothalamic-pituitary-adrenal (HPA) axis activity might be involved as well. Here we examined the role of CRHR1 in various drinking conditions in relation to HPA and extra-HPA sites, and studied relapse-like drinking behavior in the alcohol deprivation model (ADE). To dissect CRH/CRHR1 extra-HPA and HPA signaling on a molecular level, a conditional brain-specific Crhr1-knockout (Crhr1(NestinCre)) and a global knockout mouse line were studied for basal alcohol drinking, stress-induced alcohol consumption, deprivation-induced intake, and escalated alcohol consumption in the post-dependent state. In a second set of experiments, we tested CRHR1 antagonists in the ADE model. Stress-induced augmentation of alcohol intake was lower in Crhr1(NestinCre) mice as compared with control animals. Crhr1(NestinCre) mice were also resistant to escalation of alcohol intake in the post-dependent state. Contrarily, global Crhr1 knockouts showed enhanced stress-induced alcohol consumption and a more pronounced escalation of intake in the post-dependent state than their control littermates. Basal intake and deprivation-induced intake were unaltered in both knockout models when compared with their respective controls. In line with these findings, CRHR1 antagonists did not affect relapse-like drinking after a deprivation period in rats. We conclude that CRH/CRHR1 extra-HPA and HPA signaling may have opposing effects on stress-related alcohol consumption. CRHR1 does not have a role in basal alcohol intake or relapse-like drinking situations with a low stress load.
Collapse
|
59
|
Bertotto ME, Maldonado NM, Bignante EA, Gorosito SV, Cambiasso MJ, Molina VA, Martijena ID. ERK activation in the amygdala and hippocampus induced by fear conditioning in ethanol withdrawn rats: modulation by MK-801. Eur Neuropsychopharmacol 2011; 21:892-904. [PMID: 21315561 DOI: 10.1016/j.euroneuro.2011.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 12/08/2010] [Accepted: 01/05/2011] [Indexed: 02/02/2023]
Abstract
The extracellular signal-regulated kinase (ERK) pathway, which can be activated by NMDA receptor stimulation, is involved in fear conditioning and drug addiction. We have previously shown that withdrawal from chronic ethanol administration facilitated the formation of contextual fear memory. In order to explore the neural substrates and the potential mechanism involved in this effect, we examined: 1) the ERK1/2 activation in the central (CeA) and basolateral (BLA) nuclei of the amygdala and in the dorsal hippocampus (dHip), 2) the effect of the NMDA receptor antagonist MK-801 on fear conditioning and ERK activation and 3) the effect of the infusion of U0126, a MEK inhibitor, into the BLA on fear memory formation in ethanol withdrawn rats. Rats made dependent via an ethanol-containing liquid diet were subjected to contextual fear conditioning on day 3 of ethanol withdrawal. High basal levels of p-ERK were found in CeA and dHip from ethanol withdrawn rats. ERK activation was significantly increased both in control (60min) and ethanol withdrawn rats (30 and 60min) in BLA after fear conditioning. Pre-training administration of MK-801, at a dose that had no effect on control rats, prevented the increase in ERK phosphorylation in BLA and attenuated the freezing response 24h later in ethanol withdrawn rats. Furthermore, the infusion of U0126 into the BLA, but not the CeA, before fear conditioning disrupted fear memory formation. These results suggest that the increased fear memory can be linked to changes in ERK phosphorylation, probably due to NMDA receptor activation in BLA in ethanol withdrawn rats.
Collapse
|
60
|
Pastor R, Reed C, Burkhart-Kasch S, Li N, Sharpe AL, Coste SC, Stenzel-Poore MP, Phillips TJ. Ethanol concentration-dependent effects and the role of stress on ethanol drinking in corticotropin-releasing factor type 1 and double type 1 and 2 receptor knockout mice. Psychopharmacology (Berl) 2011; 218:169-77. [PMID: 21487655 PMCID: PMC3312392 DOI: 10.1007/s00213-011-2284-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/25/2011] [Indexed: 12/30/2022]
Abstract
RATIONALE Exposure to stressors promotes ethanol (EtOH) consumption and enhances drug craving during abstinence. Corticotropin-releasing factor (CRF), and in particular, CRF actions via type 1 CRF receptors (CRF(1)) are critical in behavioral responses to stressors. CRF(1) play a role in EtOH-induced behavioral neuroadaptation, in binge-like EtOH consumption, and in heightened EtOH consumption in dependent animals. OBJECTIVES We investigated the involvement of CRF(1) in swim-stress-induced changes in EtOH consumption and in baseline consumption as a function of EtOH concentration. The role of CRF(2) in adapting to effects of the stressor was also examined. METHODS Wild-type mice and knockout mice lacking CRF(1) were tested for two-bottle choice EtOH consumption at concentrations of 3-20%. Also, intake of 10% EtOH was examined in wild-type mice and knockout mice lacking CRF(1), or lacking both CRF(1) and CRF(2), before and after acute or repeated swim stress exposures. RESULTS EtOH intake was reduced in CRF(1) compared with wild-type mice when presented at a concentration of 20% but not when presented at lower concentrations. No genotype-dependent effects were found for saccharin or quinine drinking. Acute swim stress had no effect, but repeated swim stress resulted in higher levels of EtOH consumption in wild-type mice, compared with both types of knockout mice. Stress effects on EtOH drinking were longer lasting in double knockout mice. CONCLUSIONS These data suggest a prominent role of CRF(1) in stressor-induced changes in EtOH consumption, with involvement of CRF(2) in recovery from stressor effects.
Collapse
Affiliation(s)
- Raúl Pastor
- Behavioral Neuroscience Department and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, USA. Area de Psicobiología, Universitat Jaume I, Castellón, Spain
| | - Cheryl Reed
- Behavioral Neuroscience Department and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Sue Burkhart-Kasch
- Behavioral Neuroscience Department and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Na Li
- Behavioral Neuroscience Department and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Amanda L. Sharpe
- Behavioral Neuroscience Department and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Sarah C. Coste
- Molecular Microbiology and Immunology Department, Oregon Health & Science University, Portland, OR, USA
| | - Mary P. Stenzel-Poore
- Molecular Microbiology and Immunology Department, Oregon Health & Science University, Portland, OR, USA
| | - Tamara J. Phillips
- Behavioral Neuroscience Department and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, USA. Portland VA Medical Center, Research Service, R&D32, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA
| |
Collapse
|
61
|
Becker HC, Lopez MF, Doremus-Fitzwater TL. Effects of stress on alcohol drinking: a review of animal studies. Psychopharmacology (Berl) 2011; 218:131-56. [PMID: 21850445 PMCID: PMC3247761 DOI: 10.1007/s00213-011-2443-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/02/2011] [Indexed: 11/26/2022]
Abstract
RATIONALE While stress is often proposed to play a significant role in influencing alcohol consumption, the relationship between stress and alcohol is complex and poorly understood. Over several decades, stress effects on alcohol drinking have been studied using a variety of animal models and experimental procedures, yet this large body of literature has generally produced equivocal results. OBJECTIVES This paper reviews results from animal studies in which alcohol consumption is evaluated under conditions of acute/sub-chronic stress exposure or models of chronic stress exposure. Evidence also is presented indicating that chronic intermittent alcohol exposure serves as a stressor that consequently influences drinking. RESULTS The effects of various acute/sub-chronic stress procedures on alcohol consumption have generally been mixed, but most study outcomes suggest either no effect or decreased alcohol consumption. In contrast, most studies indicate that chronic stress, especially when administered early in development, results in elevated drinking later in adulthood. Chronic alcohol exposure constitutes a potent stressor itself, and models of chronic intermittent alcohol exposure reliably produce escalation of voluntary alcohol consumption. CONCLUSIONS A complex and dynamic interplay among a wide array of genetic, biological, and environmental factors govern stress responses, regulation of alcohol drinking, and the circumstances in which stress modulates alcohol consumption. Suggestions for future directions and new approaches are presented that may aid in developing more sensitive and valid animal models that not only better mimic the clinical situation, but also provide greater understanding of mechanisms that underlie the complexity of stress effects on alcohol drinking.
Collapse
Affiliation(s)
- Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Center for Drug and Alcohol Programs, 67 President Street, MSC 861, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
62
|
Lam MP, Gianoulakis C. Effects of corticotropin-releasing hormone receptor antagonists on the ethanol-induced increase of dynorphin A1-8 release in the rat central amygdala. Alcohol 2011; 45:621-30. [PMID: 21840158 DOI: 10.1016/j.alcohol.2011.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 02/02/2023]
Abstract
Neurons in the central amygdala (CeA) co-express dynorphin and corticotropin-releasing hormone (CRH). Moreover, the activity of both the CRH and dynorphin systems in CeA is altered by alcohol treatments, effects suggesting interactions between the CRH and dynorphin systems. Thus, the objectives of the present study were to investigate the effects of (1) activating CRH receptors (CRHRs) by microinjection of CRH in CeA and (2) blocking CRHRs by local microinjections of CRHR antagonists in the CeA on the alcohol-induced changes in the extracellular concentrations of dynorphin A1-8 with in vivo microdialysis experiments. Microdialysis probes with a microinjection port were implanted in the CeA of alcohol-naïve Sprague-Dawley rats. Microinjections of CRH or antalarmin, a CRH receptor type 1 (CRHR1) antagonist, or anti-sauvagine-30, a CRH receptor type 2 (CRHR2) antagonist, at the level of CeA were followed by an intraperitoneal injection of either saline or 2.8 g ethanol/kg body weight. The content of dynorphin A1-8 was determined in dialyzate samples obtained prior to and following the various treatments using a specific radioimmunoassay. Activation of CRHRs in CeA induced an increase in the extracellular concentrations of dynorphin A1-8. Moreover, acute alcohol administration increased the extracellular concentrations of dynorphin A1-8 in CeA, an effect that was attenuated by blocking CRHR2 with anti-sauvagine-30 microinjection but not blocking CRHR1 with antalarmin microinjection. Therefore, the findings suggest an interaction between the CRH and dynorphin A1-8 systems at the level of CeA in response to acute alcohol exposure.
Collapse
|
63
|
Affect-related behaviors in mice selectively bred for high and low voluntary alcohol consumption. Behav Genet 2011; 42:313-22. [PMID: 21989731 DOI: 10.1007/s10519-011-9505-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
There is considerable evidence for the existence of comorbidity between alcohol-use disorders and depression in humans. One strategy to elucidate hereditary factors affecting the comorbidity of these disorders is to use genetic animal models, such as mouse lines selectively bred for voluntary ethanol consumption. We hypothesized that mice from lines that were bred for high-alcohol preference would manifest increased depression-like phenotypes compared to low-alcohol preferring mice. Mice that were bi-directionally selected and bred on the basis of their High- (HAP) or Low-Alcohol Preference (LAP) were tested in the open-field (OFT), dark-light box (DLB), forced swim (FST), and learned helplessness tests (LH). The study was conducted in two independently derived replicates. In the OFT, both HAP2 and HAP3 mice showed higher levels of general locomotion compared to LAP mice. However, only HAP2 mice spent more time in the center compared to LAP2 mice. In the DLB, there was a slightly higher anxiety-like phenotype in HAP mice. In both FST and LH, we observed higher depression-like behaviors in HAP mice compared to LAP mice, but this was limited to the Replicate 2 mice. Overall, we identified affect-related behavioral changes in mouse lines bred for high-alcohol preference. Notably, the Replicate 3 lines that showed fewer depression-like behaviors also manifest smaller differences in alcohol intake. These data suggest that there may be overlap between genes that predispose to excessive alcohol intake and those underlying affect-related behaviors in the mouse.
Collapse
|
64
|
Kaur S, Li J, Stenzel-Poore MP, Ryabinin AE. Corticotropin-releasing factor acting on corticotropin-releasing factor receptor type 1 is critical for binge alcohol drinking in mice. Alcohol Clin Exp Res 2011; 36:369-76. [PMID: 21895713 DOI: 10.1111/j.1530-0277.2011.01610.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The corticotropin-releasing factor (CRF) system has been implicated in the regulation of alcohol consumption. However, previous mouse knockout (KO) studies using continuous ethanol access have failed to conclusively confirm this. Recent studies have shown that CRF receptor type 1 (CRFR1) antagonists attenuate alcohol intake in the limited access "drinking in the dark" (DID) model of binge drinking. To avoid the potential nonspecific effects of antagonists, in this study, we tested alcohol drinking in CRFR1, CRFR2, CRF, and urocortin 1 (Ucn1) KO and corresponding wild-type (WT) littermates using the DID paradigm. METHODS On days 1 to 3, the CRFR1, CRFR2, Ucn1, and CRF KO mice and their respective WT littermates were provided with 20% ethanol or 10% sucrose for 2 hours with water available at all other times. On day 4, access to ethanol or sucrose was increased to 4 hours. At the end of each drinking session, the volume of ethanol consumed was recorded, and at the conclusion of the last session, blood was also collected for blood ethanol concentration (BEC) analysis. RESULTS CRFR1 KO mice had lower alcohol intakes and BECs and higher intakes of sucrose compared with WTs. In contrast, CRFR2 KO mice, while having reduced intakes initially, had similar alcohol intakes on days 2 to 4 and similar BECs as the WTs. To determine the ligand responsible, Ucn1 and CRF KO and WT mice were tested next. While Ucn1 KOs had similar alcohol intakes and BECs to their WTs, CRF KO mice showed reduced alcohol consumption and lower BECs compared with WTs. CONCLUSIONS Our results confirm that CRFR1 plays a key role in binge drinking and identify CRF as the ligand critically involved in excessive alcohol consumption.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
65
|
Refojo D, Schweizer M, Kuehne C, Ehrenberg S, Thoeringer C, Vogl AM, Dedic N, Schumacher M, von Wolff G, Avrabos C, Touma C, Engblom D, Schütz G, Nave KA, Eder M, Wotjak CT, Sillaber I, Holsboer F, Wurst W, Deussing JM. Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1. Science 2011; 333:1903-7. [PMID: 21885734 DOI: 10.1126/science.1202107] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The corticotropin-releasing hormone receptor 1 (CRHR1) critically controls behavioral adaptation to stress and is causally linked to emotional disorders. Using neurochemical and genetic tools, we determined that CRHR1 is expressed in forebrain glutamatergic and γ-aminobutyric acid-containing (GABAergic) neurons as well as in midbrain dopaminergic neurons. Via specific CRHR1 deletions in glutamatergic, GABAergic, dopaminergic, and serotonergic cells, we found that the lack of CRHR1 in forebrain glutamatergic circuits reduces anxiety and impairs neurotransmission in the amygdala and hippocampus. Selective deletion of CRHR1 in midbrain dopaminergic neurons increases anxiety-like behavior and reduces dopamine release in the prefrontal cortex. These results define a bidirectional model for the role of CRHR1 in anxiety and suggest that an imbalance between CRHR1-controlled anxiogenic glutamatergic and anxiolytic dopaminergic systems might lead to emotional disorders.
Collapse
|
66
|
Cannabinoid exposure in pubertal rats increases spontaneous ethanol consumption and NMDA receptor associated protein levels. Int J Neuropsychopharmacol 2011; 14:505-17. [PMID: 21211107 DOI: 10.1017/s1461145710001562] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent evidence suggests an involvement of the endocannabinoid system in the regulation of emotional behaviour and ethanol intake. Here we investigated age-specific acute behavioural effects of the cannabinoid receptor agonist WIN 55,212-2 (WIN) on anxiety-related behaviour and voluntary ethanol consumption in rats. Animals were treated with WIN (1.2 mg/kg)/vehicle at puberty onset on postnatal day (PD) 40, or at adulthood (PD 100). Animals were tested in the elevated plus-maze (EPM) and the light/dark emergence test (EMT) and for the initial response to alcohol in a free-choice ethanol consumption paradigm. Acute WIN treatment increased anxiety-related behaviours, and this effect was found to be partially more pronounced in pubertal than adult rats. Additionally, increased intake of higher ethanol solutions after cannabinoid treatment was only observed in pubertal rats. These drug-induced behavioural changes during puberty are paralleled by induction of the NR1 subunit of the NMDA receptor in the medial prefrontal cortex and the striatum. Moreover, pubertal but not adult WIN administration increased the levels of the scaffold protein Homer in these brain regions. Enhanced CB₁ receptor levels in the reinforcement system were also observed in pubertal compared to adult rats. These data support the notion that puberty is a highly vulnerable period for the aversive effects of cannabinoid exposure. In particular, augmented ethanol intake in pubertal cannabinoid-exposed animals might be related to some extent to increased emotional behaviour and in particular to enhanced NMDA and CB₁ receptor signalling.
Collapse
|
67
|
Gyetvai B, Simonyi A, Oros M, Saito M, Smiley J, Vadász C. mGluR7 genetics and alcohol: intersection yields clues for addiction. Neurochem Res 2011; 36:1087-100. [PMID: 21448595 DOI: 10.1007/s11064-011-0452-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2011] [Indexed: 12/19/2022]
Abstract
Development of addiction to alcohol or other substances can be attributed in part to exposure-dependent modifications at synaptic efficacy leading to an organism which functions at an altered homeostatic setpoint. Genetic factors may also influence setpoints and the stability of the homeostatic system of an organism. Quantitative genetic analysis of voluntary alcohol drinking, and mapping of the involved genes in the quasi-congenic Recombinant QTL Introgression strain system, identified Eac2 as a Quantitative Trait Locus (QTL) on mouse chromosome 6 which explained 18% of the variance with an effect size of 2.09 g/kg/day alcohol consumption, and Grm7 as a quantitative trait gene underlying Eac2 [Vadasz et al. in Neurochem Res 32:1099-1112, 100, Genomics 90:690-702, 102]. In earlier studies, the product of Grm7 mGluR7, a G protein-coupled receptor, has been implicated in stress systems [Mitsukawa et al. in Proc Natl Acad Sci USA 102:18712-18717, 63], anxiety-like behaviors [Cryan et al. in Eur J Neurosci 17:2409-2417, 14], memory [Holscher et al. in Learn Mem 12:450-455, 26], and psychiatric disorders (e.g., [Mick et al. in Am J Med Genet B Neuropsychiatr Genet 147B:1412-1418, 61; Ohtsuki et al. in Schizophr Res 101:9-16, 72; Pergadia et al. in Paper presented at the 38th Annual Meeting of the Behavior Genetics Association, Louisville, Kentucky, USA, 76]. Here, in experiments with mice, we show that (1) Grm7 knockout mice express increased alcohol consumption, (2) sub-congenic, and congenic mice carrying a Grm7 variant characterized by higher Grm7 mRNA drink less alcohol, and show a tendency for higher circadian dark phase motor activity in a wheel running paradigm, respectively, and (3) there are significant genetic differences in Grm7 mRNA abundance in the mouse brain between congenic and background mice identifying brain areas whose function is implicated in addiction related processes. We hypothesize that metabotropic glutamate receptors may function as regulators of homeostasis, and Grm7 (mGluR7) is involved in multiple processes (including stress, circadian activity, reward control, memory, etc.) which interact with substance use and the development of addiction. In conclusion, we suggest that mGluR7 is a significant new therapeutic target in addiction and related neurobehavioral disorders.
Collapse
Affiliation(s)
- Beatrix Gyetvai
- Laboratory of Neurobehavior Genetics, Nathan S Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
| | | | | | | | | | | |
Collapse
|
68
|
Breese GR, Sinha R, Heilig M. Chronic alcohol neuroadaptation and stress contribute to susceptibility for alcohol craving and relapse. Pharmacol Ther 2011; 129:149-71. [PMID: 20951730 PMCID: PMC3026093 DOI: 10.1016/j.pharmthera.2010.09.007] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 01/17/2023]
Abstract
Alcoholism is a chronic relapsing disorder. Major characteristics observed in alcoholics during an initial period of alcohol abstinence are altered physiological functions and a negative emotional state. Evidence suggests that a persistent, cumulative adaptation involving a kindling/allostasis-like process occurs during the course of repeated chronic alcohol exposures that is critical for the negative symptoms observed during alcohol withdrawal. Basic studies have provided evidence for specific neurotransmitters within identified brain sites being responsible for the negative emotion induced by the persistent cumulative adaptation following intermittent-alcohol exposures. After an extended period of abstinence, the cumulative alcohol adaptation increases susceptibility to stress- and alcohol cue-induced negative symptoms and alcohol seeking, both of which can facilitate excessive ingestion of alcohol. In the alcoholic, stressful imagery and alcohol cues alter physiological responses, enhance negative emotion, and induce craving. Brain fMRI imaging following stress and alcohol cues has documented neural changes in specific brain regions of alcoholics not observed in social drinkers. Such altered activity in brain of abstinent alcoholics to stress and alcohol cues is consistent with a continuing ethanol adaptation being responsible. Therapies in alcoholics found to block responses to stress and alcohol cues would presumably be potential treatments by which susceptibility for continued alcohol abuse can be reduced. By continuing to define the neurobiological basis of the sustained alcohol adaptation critical for the increased susceptibility of alcoholics to stress and alcohol cues that facilitate craving, a new era is expected to evolve in which the high rate of relapse in alcoholism is minimized.
Collapse
Affiliation(s)
- George R Breese
- Bowles Center for Alcohol Research and the UNC Neuroscience Center, UNC School Of Medicine, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
69
|
al'Absi M, Hooker S, Fujiwara K, Kiefer F, von der Goltz C, Cragin T, Wittmers LE. Circulating leptin levels are associated with increased craving to smoke in abstinent smokers. Pharmacol Biochem Behav 2010; 97:509-13. [PMID: 20951159 DOI: 10.1016/j.pbb.2010.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 09/22/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
Abstract
The adipocyte hormone leptin regulates satiety and energy expenditure. Recent evidence suggests that leptin is associated with increased craving for alcohol and with shorter length of abstinence during alcohol treatment. This study examined leptin's associations with craving for cigarettes and smoking relapse among smokers interested in cessation. Participants (32 smokers; 14 women) attended a laboratory session 24h following their designated quit day where circulating leptin levels and craving for smoking were assessed. Other measures of withdrawal symptoms, affect, physical symptoms, as well as neuroendocrine and cardiovascular measures were collected before and after performing two stress tasks (public speaking and cognitive tasks). High circulating leptin levels were associated with increased craving, withdrawal symptoms, negative affect, physical symptoms, and reduced positive affect. Circulating leptin levels were not related to cardiovascular and neuroendocrine measures, responses to acute stressors, or to smoking relapse. These results indicate that circulating leptin is a promising biological marker of craving for smoking and warrant further investigation of the links between appetite regulation and nicotine dependence.
Collapse
Affiliation(s)
- Mustafa al'Absi
- Duluth Medical Research Institute and Department of Behavioral Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA.
| | | | | | | | | | | | | |
Collapse
|
70
|
Spanagel R, Bartsch D, Brors B, Dahmen N, Deussing J, Eils R, Ende G, Gallinat J, Gebicke-Haerter P, Heinz A, Kiefer F, Jäger W, Mann K, Matthäus F, Nöthen M, Rietschel M, Sartorius A, Schütz G, Sommer WH, Sprengel R, Walter H, Wichmann E, Wienker T, Wurst W, Zimmer A. An integrated genome research network for studying the genetics of alcohol addiction. Addict Biol 2010; 15:369-79. [PMID: 21040237 DOI: 10.1111/j.1369-1600.2010.00276.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alcohol drinking is highly prevalent in many cultures and contributes to the global burden of disease. In fact, it was shown that alcohol constitutes 3.2% of all worldwide deaths in the year 2006 and is linked to more than 60 diseases, including cancers, cardiovascular diseases, liver cirrhosis, neuropsychiatric disorders, injuries and foetal alcohol syndrome. Alcoholism, which has been proven to have a high genetic load, is one potentially fatal consequence of chronic heavy alcohol consumption, and may be regarded as one of the most prevalent neuropsychiatric diseases afflicting our society today. The aim of the integrated genome research network 'Genetics of Alcohol Addiction'--which is a German inter-/trans-disciplinary life science consortium consisting of molecular biologists, behavioural pharmacologists, system biologists with mathematicians, human geneticists and clinicians--is to better understand the genetics of alcohol addiction by identifying and validating candidate genes and molecular networks involved in the aetiology of this pathology. For comparison, addictive behaviour to other drugs of abuse (e.g. cocaine) is studied as well. Here, we present an overview of our research consortium, the current state of the art on genetic research in the alcohol field, and list finally several of our recently published research highlights. As a result of our scientific efforts, better insights into the molecular and physiological processes underlying addictive behaviour will be obtained, new targets and target networks in the addicted brain will be defined, and subsequently, novel and individualized treatment strategies for our patients will be delivered.
Collapse
Affiliation(s)
- Rainer Spanagel
- Department of Psychopharmacology, Central Institute of Mental Health, Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Bertotto ME, Bussolino DF, Molina VA, Martijena ID. Increased voluntary ethanol consumption and c-Fos expression in selected brain areas induced by fear memory retrieval in ethanol withdrawn rats. Eur Neuropsychopharmacol 2010; 20:568-81. [PMID: 20400272 DOI: 10.1016/j.euroneuro.2010.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 11/27/2022]
Abstract
Withdrawal from chronic ethanol administration facilitated the formation of contextual fear memory. The effect of fear memory retrieval on subsequent ethanol consumption, by employing a two-bottle free-choice procedure with either water or ethanol (2-8% v/v), was investigated in ethanol withdrawn rats. The effect of fear memory extinction with or without d-cycloserine (DCS, 5mg/kgi.p.) on subsequent ethanol consumption was also evaluated. In addition, we examined c-Fos expression in different brain areas following the fear memory recall. The retrieval of such fear memory induced a significant increase in ethanol consumption in ethanol withdrawn but not in control animals. Regardless of DCS treatment, this increase was attenuated by extinction training. In ethanol withdrawn rats, context-dependent memory retrieval was accompanied by an increased c-Fos expression in the basolateral amygdala, ventrolateral periaqueductal gray, dentate gyrus and dorsomedial periaqueductal gray. Among these brain areas suggested to be implicated in the modulation of motivation and of emotional states, the basolateral amygdala has a crucial role in the emergence of negative affective state during ethanol withdrawal. These data suggest that retrieval of fear memory in ethanol withdrawn rats affected ethanol consumption and that amygdala may be involved in this effect.
Collapse
Affiliation(s)
- María Eugenia Bertotto
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5016 Córdoba, Argentina
| | | | | | | |
Collapse
|
72
|
Interacting effects of CRHR1 gene and stressful life events on drinking initiation and progression among 19-year-olds. Int J Neuropsychopharmacol 2010; 13:703-14. [PMID: 19607758 DOI: 10.1017/s1461145709990290] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Research in animals and first results in adolescents have indicated that genetic variation in the corticotropin-releasing hormone receptor 1 (CRHR1) is associated with heavy alcohol consumption related to stress. The purpose of this study was to determine whether two haplotype-tagging single nucleotide polymorphisms covering the CRHR1 gene (rs242938, rs1876831) interact with stressful life events affecting age at drinking initiation and alcohol consumption in young adults. Participants were drawn from the Mannheim Study of Children at Risk, an epidemiological cohort study following the outcome of early risk factors. Structured interviews were administered to 270 participants (125 males, 145 females) at 15 yr and 19 yr to assess age at first drinking and, at 19 yr, to assess current drinking and recent stressful life events. Life events during childhood and child psychopathology were measured using standardized parent interviews. Results indicated that, even after control for a range of confounders, higher numbers of stressful life events prior to drinking onset were significantly related to earlier age at first drink only among homozygotes for the C allele of rs1876831. Earlier age at drinking onset was significantly associated with higher consumption levels in 19-yr-olds. Furthermore, homozygotes of the rs1876831 C allele as well as carriers of the rs242938 A allele, when exposed to stress, exhibited significantly higher drinking activity than carriers of other alleles. These findings extend previous reports by demonstrating that the CRHR1 gene and stressful life events interact to predict both drinking initiation in adolescence and progression of heavy alcohol use in young adulthood.
Collapse
|
73
|
Chen ACH, Manz N, Tang Y, Rangaswamy M, Almasy L, Kuperman S, Nurnberger J, O'Connor SJ, Edenberg HJ, Schuckit MA, Tischfield J, Foroud T, Bierut LJ, Rohrbaugh J, Rice JP, Goate A, Hesselbrock V, Porjesz B. Single-nucleotide polymorphisms in corticotropin releasing hormone receptor 1 gene (CRHR1) are associated with quantitative trait of event-related potential and alcohol dependence. Alcohol Clin Exp Res 2010; 34:988-96. [PMID: 20374216 PMCID: PMC3248053 DOI: 10.1111/j.1530-0277.2010.01173.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Endophenotypes reflect more proximal effects of genes than diagnostic categories, hence providing a more powerful strategy in searching for genes involved in complex psychiatric disorders. There is strong evidence suggesting the P3 amplitude of the event-related potential (ERP) as an endophenotype for the risk of alcoholism and other disinhibitory disorders. Recent studies demonstrated a crucial role of corticotropin releasing hormone receptor 1 (CRHR1) in the environmental stress response and ethanol self-administration in animal models. The aim of the present study was to test the potential associations between single-nucleotide polymorphisms (SNPs) in the CRHR1 gene and the quantitative trait, P3 amplitude during the processing of visual target signals in an oddball paradigm, as well as alcohol dependence diagnosis. METHODS We analyzed a sample from the Collaborative Study on the Genetics of Alcoholism (COGA) comprising 1049 Caucasian subjects from 209 families (including 472 alcohol-dependent individuals). Quantitative transmission disequilibrium test (QTDT) and family-based association test (FBAT) were used to test the association, and false discovery rate (FDR) was applied to correct for multiple comparisons. RESULTS Significant associations (p < 0.05) were found between the P3 amplitude and alcohol dependence with multiple SNPs in the CRHR1 gene. CONCLUSIONS Our results suggest that CRHR1 may be involved in modulating the P3 component of the ERP during information processing and in vulnerability to alcoholism. These findings underscore the utility of electrophysiology and the endophenotype approach in the genetic study of psychiatric disorders.
Collapse
Affiliation(s)
- Andrew C H Chen
- Henri Begleiter Neurodynamics Laboratory, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Caldwell EE, Riccio DC. Alcohol self-administration in rats: Modulation by temporal parameters related to repeated mild social defeat stress. Alcohol 2010; 44:265-74. [PMID: 20682194 DOI: 10.1016/j.alcohol.2010.02.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 11/24/2009] [Accepted: 02/10/2010] [Indexed: 02/04/2023]
Abstract
Clinical evidence often points to stress as a cause or an antecedent to the development of drinking problems. Yet, animal models of alcohol drinking have yielded inconsistent evidence for a direct contribution of stress, and many studies have shown that stress suppresses alcohol consumption. The aim of the present study was to examine alcohol reward in animals exposed to repeated, mild social stress, and to determine whether alcohol drinking changes as a function of the temporal parameters of alcohol access relative to the stressor. Male Long-Evans rats, trained to self-administer a 6% (wt/vol) alcohol solution using a sucrose-fading procedure, were exposed to five brief (5min) episodes of contact with an aggressive male. Full contact with the resident was limited to a single episode of defeat, whereas the following four encounters occurred with the subjects behind a protective wire mesh cage. Alcohol self-administration was measured 1 week prior to stress (baseline), on each day of stress exposure, and 1 week following stress. Separate groups of animals were randomly assigned to self-administer alcohol immediately prior, immediately following, or 2h following defeat stress. Stress preferentially increased alcohol drinking on stress-exposure days, and further elevated the amount consumed 1 week following stress. Temporal parameters of alcohol access relative to the stressor were found to be important. Average alcohol consumption was greatest for animals drinking 2h postdefeat, whereas animals drinking immediately prior to or following the stressor did not show a significant increase in alcohol consumption. Results suggest that mild social defeat stress is sufficient to elicit increases in alcohol consumption in nonpreferring strains of rodents, provided alcohol access occurs at an optimal time interval after the social defeat experience.
Collapse
|
75
|
Pautassi RM, Camarini R, Quadros IM, Miczek KA, Israel Y. Genetic and environmental influences on ethanol consumption: perspectives from preclinical research. Alcohol Clin Exp Res 2010; 34:976-87. [PMID: 20374217 DOI: 10.1111/j.1530-0277.2010.01172.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Alcohol use disorders (abuse and dependence, AUD) are multifactorial phenomena, depending on the interplay of environmental and genetic variables. METHOD This review describes current developments in animal research that may help (a) develop gene therapies for the treatment of alcoholism, (b) understand the permissive role of stress on ethanol intake, and (c) elucidate why exposure to ethanol early in life is associated with a greater risk of AUD. RESULTS The polymorphisms found in liver alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) affect the elimination of ethanol and the susceptibility to ethanol intake. A highly active ADH protects against alcoholism, an effect related to a presteady state burst in arterial acetaldehyde. Social stressors, such as repeated early maternal separation or social defeat, exert a permissive effect on ethanol intake, perhaps by altering the normal development of the hypothalamic-pituitary-adrenal axis. Ethanol exposure during gestation, infancy, or adolescence increases the likelihood of AUD later in life. Early perception of ethanol's positive and negative (anti-anxiety) reinforcing effects may play a role in this phenomenon. CONCLUSIONS The review underscores the advantages of using preclinical animal models of AUD and highlights points of intersection between the topics to help design a more integrated approach for the study of alcohol-related problems.
Collapse
Affiliation(s)
- Ricardo M Pautassi
- Instituto de Investigaciones Médicas M. y M. Ferreyra (INIMEC-CONICET), Argentina.
| | | | | | | | | |
Collapse
|
76
|
Quantitative trait loci contributing to physiological and behavioural ethanol responses after acute and chronic treatment. Int J Neuropsychopharmacol 2010; 13:155-69. [PMID: 19691874 DOI: 10.1017/s1461145709990447] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was the identification of gene loci that contribute to the development and manifestation of behaviours related to acute and chronic alcohol exposure, as well as to alcohol withdrawal. For this purpose, we performed a serial behavioural phenotyping of 534 animals from the second filial (F2) generation of a C57BL/6J and C3H/HeJ mice intercross in paradigms with relevance to alcohol dependence. First, ethanol-induced hypothermia was determined in ethanol-naive animals. The mice then received an ethanol solution for several weeks as their only fluid source. Ethanol tolerance, locomotor activity and anxiety-related behaviours were evaluated. The ethanol was next withdrawn and the withdrawal severity was assessed. The ethanol-experienced animals were finally analysed in a two-bottle choice paradigm to determine ethanol preference and stress-induced changes in ethanol preference. The genotypes of these mice were subsequently assessed by microsatellite marker mapping. We genotyped 264 markers with an average marker distance of 5.56 cM, which represents a high-density whole genome coverage. Quantitative trait loci (QTL) were subsequently identified using univariate analysis performed with the R/qtl tool, which is an extensible, interactive environment for mapping QTL in experimental crosses. We found QTL that have already been published, thus validating the serial phenotyping protocol, and identified several novel loci. Our analysis demonstrates that the various responses to ethanol are regulated by independent groups of genes.
Collapse
|
77
|
Holsboer F, Ising M. Stress hormone regulation: biological role and translation into therapy. Annu Rev Psychol 2010; 61:81-109, C1-11. [PMID: 19575614 DOI: 10.1146/annurev.psych.093008.100321] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stress is defined as a state of perturbed homeostasis following endangerment that evokes manifold adaptive reactions, which are summarized as the stress response. In the case of mental stress, the adaptive response follows the perception of endangerment. Different peptides, steroids, and biogenic amines operate the stress response within the brain and also after they have been released into circulation. We focus in this review on the biological roles of corticosteroids, corticotrophin-releasing hormone (CRH), and arginine vasopressin (AVP), and we evaluate the effects of treatments directed against the actions of these hormones. CRH and AVP are the central drivers of the stress hormone system, but they also act as neuromodulators in the brain, affecting higher mental functions including emotion, cognition, and behavior. When released toward the pituitary, these central neuropeptides elicit corticotrophin into the periphery, which activates corticosteroid release from the adrenal cortex. These stress hormones are essential for the adequate adaptation to stress, but they can also evoke severe clinical conditions once persistently hypersecreted. Depression and anxiety disorders are prominent examples of stress-related disorders associated with an impaired regulation of stress hormones. We summarize the effects of drugs acting at specific targets of the stress hormone axis, and we discuss their potential use as next-generation antidepressant medications. Such treatments require the identification of patients that will optimally benefit from such specific interventions. These could be a first step into personalized medicine using treatments tailored to the specific pathology of the patients.
Collapse
Affiliation(s)
- Florian Holsboer
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | | |
Collapse
|
78
|
Schwandt ML, Lindell SG, Chen S, Higley JD, Suomi SJ, Heilig M, Barr CS. Alcohol response and consumption in adolescent rhesus macaques: life history and genetic influences. Alcohol 2010; 44:67-80. [PMID: 20113875 DOI: 10.1016/j.alcohol.2009.09.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/05/2009] [Accepted: 09/02/2009] [Indexed: 11/16/2022]
Abstract
The use of alcohol by adolescents is a growing problem and has become an important research topic in the etiology of the alcohol use disorders. A key component of this research has been the development of animal models of adolescent alcohol consumption and alcohol response. Because of their extended period of adolescence, rhesus macaques are especially well suited for modeling alcohol-related phenotypes that contribute to the adolescent propensity for alcohol consumption. In this review, we discuss studies from our laboratory that have investigated both the initial response to acute alcohol administration and the consumption of alcohol in voluntary self-administration paradigms in adolescent rhesus macaques. These studies confirm that adolescence is a time of dynamic change both behaviorally and physiologically, and that alcohol response and alcohol consumption are influenced by life history variables, such as age, sex, and adverse early experience in the form of peer-rearing. Furthermore, genetic variants that alter functioning of the serotonin, endogenous opioid, and corticotropin-releasing hormone systems are shown to influence both physiological and behavioral outcomes, in some cases interacting with early experience to indicate gene by environment interactions. These findings highlight several of the pathways involved in alcohol response and consumption, namely reward, behavioral dyscontrol, and vulnerability to stress, and demonstrate a role for these pathways during the early stages of alcohol exposure in adolescence.
Collapse
Affiliation(s)
- Melanie L Schwandt
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
79
|
Björk K, Hansson AC, Sommer WH. Genetic Variation and Brain Gene Expression in Rodent Models of Alcoholism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:129-71. [DOI: 10.1016/s0074-7742(10)91005-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
80
|
Pichard C, Gorwood PA, Hamon M, Cohen-Salmon C. Differential effects of free versus imposed motor activity on alcohol consumption in C57BL/6J versus DBA/2J mice. Alcohol 2009; 43:593-601. [PMID: 20004337 DOI: 10.1016/j.alcohol.2009.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 10/09/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
Abstract
Practicing sport regularly provides obvious physiological and psychological benefits, but intensive sport activity, for example, at the competition level, may be associated with an increased risk for addictive disorder, whether to improve results (doping), to tolerate consequences of important pressure and physical activities (drugs), or developing as a substitute when stopping, definitely or temporally, this activity that has been considered as potentially addictive (conversion). An animal model of voluntary versus imposed physical activity is described in which males of two mouse strains with high (C57BL/6J) versus (DBA/2J) low alcohol preference were tested for possible modifications of alcohol consumption during and after physical activity, when the activity was forced versus when it was recreative. Free access to a running wheel allowed a moderate physical activity that was associated with a decrease in voluntary alcohol intake in C57BL/6J mice. On the one hand, forced running at a higher speed than that occurring under free conditions led to increased alcohol intake, back to the initial level. On the other hand, alcohol intake remained at the same low level whether or not DBA/2J mice were subjected to free or forced running. The only effect of forced running in these alcohol-avoiding mice was a significant desynchronization of circadian motor activity rhythm, which was even more pronounced than that induced in alcohol-preferring C57BL/6J mice. These results highlight the positive aspects of moderate and entertaining sport activity and provide further support to the idea that it can decrease spontaneous alcohol intake. They also tend to demonstrate that, at least for vulnerable subjects, forced and intensive activities may not have the same benefits regarding alcohol consumption.
Collapse
|
81
|
Spanagel R. Alcoholism: A Systems Approach From Molecular Physiology to Addictive Behavior. Physiol Rev 2009; 89:649-705. [DOI: 10.1152/physrev.00013.2008] [Citation(s) in RCA: 481] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alcohol consumption is an integral part of daily life in many societies. The benefits associated with the production, sale, and use of alcoholic beverages come at an enormous cost to these societies. The World Health Organization ranks alcohol as one of the primary causes of the global burden of disease in industrialized countries. Alcohol-related diseases, especially alcoholism, are the result of cumulative responses to alcohol exposure, the genetic make-up of an individual, and the environmental perturbations over time. This complex gene × environment interaction, which has to be seen in a life-span perspective, leads to a large heterogeneity among alcohol-dependent patients, in terms of both the symptom dimensions and the severity of this disorder. Therefore, a reductionistic approach is not very practical if a better understanding of the pathological processes leading to an addictive behavior is to be achieved. Instead, a systems-oriented perspective in which the interactions and dynamics of all endogenous and environmental factors involved are centrally integrated, will lead to further progress in alcohol research. This review adheres to a systems biology perspective such that the interaction of alcohol with primary and secondary targets within the brain is described in relation to the behavioral consequences. As a result of the interaction of alcohol with these targets, alterations in gene expression and synaptic plasticity take place that lead to long-lasting alteration in neuronal network activity. As a subsequent consequence, alcohol-seeking responses ensue that can finally lead via complex environmental interactions to an addictive behavior.
Collapse
|
82
|
Nie Z, Zorrilla EP, Madamba SG, Rice KC, Roberto M, Siggins GR. Presynaptic CRF1 receptors mediate the ethanol enhancement of GABAergic transmission in the mouse central amygdala. ScientificWorldJournal 2009; 9:68-85. [PMID: 19151899 PMCID: PMC3053445 DOI: 10.1100/tsw.2009.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/31/2008] [Accepted: 01/01/2009] [Indexed: 11/23/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is a 41-amino-acid neuropeptide involved in stress responses initiated from several brain areas, including the amygdala formation. Research shows a strong relationship between stress, brain CRF, and excessive alcohol consumption. Behavioral studies suggest that the central amygdala (CeA) is significantly involved in alcohol reward and dependence. We recently reported that the ethanol augmentation of GABAergic synaptic transmission in rat CeA involves CRF1 receptors, because both CRF and ethanol significantly enhanced the amplitude of evoked GABAergic inhibitory postsynaptic currents (IPSCs) in CeA neurons from wild-type (WT) and CRF2 knockout (KO) mice, but not in neurons of CRF1 KO mice. The present study extends these findings using selective CRF receptor ligands, gene KO models, and miniature IPSC (mIPSC) analysis to assess further a presynaptic role for the CRF receptors in mediating ethanol effects in the CeA. In whole-cell patch recordings of pharmacologically isolated GABAAergic IPSCs from slices of mouse CeA, both CRF and ethanol augmented evoked IPSCs in a concentration-dependent manner, with low EC50s. A CRF1 (but not CRF2) KO construct and the CRF1-selective nonpeptide antagonist NIH-3 (LWH-63) blocked the augmenting effect of both CRF and ethanol on evoked IPSCs. Furthermore, the new selective CRF1 agonist stressin1, but not the CRF2 agonist urocortin 3, also increased evoked IPSC amplitudes. Both CRF and ethanol decreased paired-pulse facilitation (PPF) of evoked IPSCs and significantly enhanced the frequency, but not the amplitude, of spontaneous miniature GABAergic mIPSCs in CeA neurons of WT mice, suggesting a presynaptic site of action. The PPF effect of ethanol was abolished in CeA neurons of CRF1 KO mice. The CRF1 antagonist NIH-3 blocked the CRF- and ethanol-induced enhancement of mIPSC frequency in CeA neurons. These data indicate that presynaptic CRF1 receptors play a critical role in permitting or mediating ethanol enhancement of GABAergic synaptic transmission in CeA, via increased vesicular GABA release, and thus may be a rational target for the treatment of alcohol abuse and alcoholism.
Collapse
Affiliation(s)
- Zhiguo Nie
- Burnham Institute for Medical Research,
La Jolla, CA,
United States
| | - Eric P. Zorrilla
- Committee on the Neurobiology of Addictive Disorders,
Alcohol Research Center,
Scripps Research Institute,
San Diego, CA,
United States
| | - Samuel G. Madamba
- Department of Molecular and Integrative Neurosciences,
Alcohol Research Center,
Scripps Research Institute,
San Diego, CA,
United States
| | - Kenner C. Rice
- Chemical Biology Research Branch,
National Institute on Drug Abuse National Institute on Alcohol Abuse and Alcoholism,
National Institutes of Health,
Bethesda, MD,
United States
| | - Marissa Roberto
- Committee on the Neurobiology of Addictive Disorders,
Alcohol Research Center,
Scripps Research Institute,
San Diego, CA,
United States
| | - George Robert Siggins
- Department of Molecular and Integrative Neurosciences,
Alcohol Research Center,
Scripps Research Institute,
San Diego, CA,
United States
| |
Collapse
|
83
|
Crabbe JC. Review. Neurogenetic studies of alcohol addiction. Philos Trans R Soc Lond B Biol Sci 2008; 363:3201-11. [PMID: 18640917 DOI: 10.1098/rstb.2008.0101] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurogenetic studies of alcohol dependence have relied substantially on genetic animal models, particularly rodents. Studies of inbred strains, selectively bred lines and mutants bearing genes whose function has been targeted for over or under expression are reviewed. Studies focused on gene expression changes are the most recent contributors to this literature, and some genetic effects may work through epigenetic mechanisms. In a few instances, interesting parallels have been revealed between genetic risk in humans and studies in non-human animal models. Future approaches are likely to be increasingly complex.
Collapse
Affiliation(s)
- John C Crabbe
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, VA Medical Center R&D 12, 3710 Southwest US Veterans Hospital Road, Portland, OR 97239, USA.
| |
Collapse
|
84
|
Miczek KA, Yap JJ, Covington HE. Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake. Pharmacol Ther 2008; 120:102-28. [PMID: 18789966 PMCID: PMC2713609 DOI: 10.1016/j.pharmthera.2008.07.006] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 12/16/2022]
Abstract
The impact of ostensibly aversive social stresses on triggering, amplifying and prolonging intensely rewarding drug taking is an apparent contradiction in need of resolution. Social stress encompasses various types of significant life events ranging from maternal separation stress, brief episodes of social confrontations in adolescence and adulthood, to continuous subordination stress, each with its own behavioral and physiological profile. The neural circuit comprising the VTA-accumbens-PFC-amygdala is activated by brief episodes of social stress, which is critical for the DA-mediated behavioral sensitization and increased stimulant consumption. A second neural circuit comprising the raphe-PFC-hippocampus is activated by continuous subordination stress and other types of uncontrollable stress. In terms of the development of therapeutics, brief maternal separation stress has proven useful in characterizing compounds acting on subtypes of GABA, glutamate, serotonin and opioid receptors with anxiolytic potential. While large increases in alcohol and cocaine intake during adulthood have been seen after prolonged maternal separation experiences during the first two weeks of rodent life, these effects may be modulated by additional yet to be identified factors. Brief episodes of defeat stress can engender behavioral sensitization that is relevant to escalated and prolonged self-administration of stimulants and possibly opioids, whereas continuous subordination stress leads to anhedonia-like effects. Understanding the intracellular cascade of events for the transition from episodic to continuous social stress in infancy and adulthood may provide insight into the modulation of basic reward processes that are critical for addictive and affective disorders.
Collapse
Affiliation(s)
- Klaus A Miczek
- Departments of Psychology, Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford and Boston, MA 02155, United States.
| | | | | |
Collapse
|
85
|
Lu A, Steiner MA, Whittle N, Vogl AM, Walser SM, Ableitner M, Refojo D, Ekker M, Rubenstein JL, Stalla GK, Singewald N, Holsboer F, Wotjak CT, Wurst W, Deussing JM. Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior. Mol Psychiatry 2008; 13:1028-42. [PMID: 18475271 DOI: 10.1038/mp.2008.51] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypersecretion of central corticotropin-releasing hormone (CRH) has been implicated in the pathophysiology of affective disorders. Both, basic and clinical studies suggested that disrupting CRH signaling through CRH type 1 receptors (CRH-R1) can ameliorate stress-related clinical conditions. To study the effects of CRH-R1 blockade upon CRH-elicited behavioral and neurochemical changes we created different mouse lines overexpressing CRH in distinct spatially restricted patterns. CRH overexpression in the entire central nervous system, but not when overexpressed in specific forebrain regions, resulted in stress-induced hypersecretion of stress hormones and increased active stress-coping behavior reflected by reduced immobility in the forced swim test and tail suspension test. These changes were related to acute effects of overexpressed CRH as they were normalized by CRH-R1 antagonist treatment and recapitulated the effect of stress-induced activation of the endogenous CRH system. Moreover, we identified enhanced noradrenergic activity as potential molecular mechanism underlying increased active stress-coping behavior observed in these animals. Thus, these transgenic mouse lines may serve as animal models for stress-elicited pathologies and treatments that target the central CRH system.
Collapse
Affiliation(s)
- A Lu
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Differences in ethanol drinking between mice selected for high and low swim stress-induced analgesia. Alcohol 2008; 42:487-92. [PMID: 18760717 DOI: 10.1016/j.alcohol.2008.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/27/2008] [Accepted: 05/23/2008] [Indexed: 11/20/2022]
Abstract
Alcoholism is a complex disorder, still not fully understood, in which environmental and inherited risk factors play essential roles. Of particular importance may be chronic exposure to stress thought to increase preference for ethanol in genetically susceptible individuals. Animal and human data suggest that the opioid system may be involved in the development of alcohol dependence. We studied the effects of chronic mild stress (CMS) on the voluntary intake of 8% ethanol in the mouse lines displaying high (HA) or low (LA) swim stress-induced analgesia. These lines differ in the activity of the endogenous opioid system. Normally, 8% ethanol is aversive to rodents. We found that LA mice with the low opioid system activity exposed to CMS manifested greater ethanol intake than under no stress conditions. No such effect of CMS on ethanol consumption was observed in HA mice that display the enhanced opioid system activity. We conclude that CMS imposed on individuals with a genetically determined low opioid activity may favor the development of ethanol abuse.
Collapse
|
87
|
Abstract
BACKGROUND This study examined the interaction between restraint stress and ethanol drinking in mice that consume low and high amounts of ethanol. METHODS Two strains of mice (129SVEV and C57BL/6J) underwent 1 hour of restraint stress twice per day for 4 days in the presence of a CRF-1 receptor antagonist, a glucocorticoid receptor antagonist or vehicle. Ethanol preference and consumption were assessed using a two bottle choice design. In another study, mice were implanted with pellets containing corticosterone; ethanol preference and consumption were assessed using a two bottle choice design. RESULTS Restraint stress significantly increased ethanol preference and consumption in 129SVEV mice but not in C57BL/6J mice. Then 129SVEV mice underwent the identical stress procedure; however, mice received either the CRF-1 receptor antagonist, R121919 (15 or 20 mg/kg, ip) or vehicle 30 minutes prior to stress. R121919 did not block the stress-induced change in ethanol preference despite causing a significant blunting in the HPA axis. Negative results were also obtained using the CRF-1 receptor antagonist, Antalarmin (20 mg/kg, ip). In another study, 129SVEV mice were administered either the glucocorticoid receptor antagonist Mifepristone (25, 50 or 100 mug/kg, ip) or vehicle under the same procedure. Mifepristone did not alter ethanol preference. Moreover, the three receptor antagonist did not alter nonstress ethanol consumption either. In the last study, both mouse strains underwent active or sham adrenalectomy, then pellets containing corticosterone or placebo were implanted and preference for ethanol versus water was tested. Corticosterone administration decreased ethanol consumption in a strain-dependent manner. CONCLUSION These data show the restraint model for stress can modestly increase ethanol consumption in 129SVEV mice but not in C57BL/6J mice. Pharmacologic manipulation of CRF and corticosterone did not blunt baseline or stress-induced change in ethanol preference nor did administration of corticosterone mimic the effects of restraint stress on ethanol consumption. These findings suggest the mechanism responsible for increasing ethanol consumption in this model is independent of the HPA axis and extra-hypothalamic CRF.
Collapse
Affiliation(s)
- Xiaoju Yang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
88
|
Clarke TK, Treutlein J, Zimmermann US, Kiefer F, Skowronek MH, Rietschel M, Mann K, Schumann G. HPA-axis activity in alcoholism: examples for a gene-environment interaction. Addict Biol 2008; 13:1-14. [PMID: 17910738 DOI: 10.1111/j.1369-1600.2007.00084.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic and environmental influences are both known to be causal factors in the development and maintenance of substance abuse disorders. This review aims to focus on the contributions of genetic and environmental research to the understanding of alcoholism and how gene-environment interactions result in a variety of addiction phenotypes. Gene-environment interactions have been reviewed by focusing on one of the most relevant environmental risk factors for alcoholism, stress. This is examined in more detail by reviewing the functioning of the hypothalamic-pituitary-adrenal (HPA) axis and its genetic and molecular components in this disorder. Recent evidence from animal and human studies have shown that the effects of stress on alcohol drinking are mediated by core HPA axis genes and are associated with genetic variations in those genes. The findings of the studies discussed here suggest that the collaborations of neuroscience, psychobiology and molecular genetics provide a promising framework to elucidate the exact mechanisms of gene-environment interactions as seen to convene upon the HPA axis and effect phenotypes of addiction.
Collapse
Affiliation(s)
- Toni-Kim Clarke
- Section of Addiction Biology, Institute of Psychiatry, King's College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Sanbe A, Takagi N, Fujiwara Y, Yamauchi J, Endo T, Mizutani R, Takeo S, Tsujimoto G, Tanoue A. Alcohol preference in mice lacking the Avpr1a vasopressin receptor. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1482-90. [PMID: 18305023 DOI: 10.1152/ajpregu.00708.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
[Arg(8)]-vasopressin (Avp), a nonapeptide hormone, is known to regulate blood pressure, water balance, and a variety of behaviors such as anxiety, aggression, and bonding. Although some evidence that Avp modifies ethanol consumption and some of the effects of ethanol on behavior have been reported, the role of Avp in alcohol consumption and preference is poorly understood. The Avp1a receptor (Avpr1a) is ubiquitously expressed in the central nervous system. To determine the role of Avp signaling on the behavioral effects of alcohol, we examined voluntary ethanol consumption in mice with targeted disruptions of the Avpr1a knockout (Avpr1a KO) gene. Avpr1a KO mice displayed both increased ethanol consumption and preference compared with wild-type (WT) mice. Enhanced ethanol consumption was dramatically and reversibly reduced by treatment with N-methyl-D-aspartic acid antagonists. Basal glutamate release was elevated around the striatum in Avpr1a KO mice. Elevation of extracellular glutamate was also produced in WT mice by local application of an Avpr1a antagonist though a dialysis probe, and this elevation was quickly reversed by stopping the perfusion. These results suggest that Avp can inhibit the release of glutamate from the presynaptic terminal via the Avp1a receptor and that elevation of glutamate levels owing to loss of the inhibitory effect via Avp-Avpr1a signaling may play an important role in the preference for ethanol.
Collapse
Affiliation(s)
- Atsushi Sanbe
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Ji D, Gilpin NW, Richardson HN, Rivier CL, Koob GF. Effects of naltrexone, duloxetine, and a corticotropin-releasing factor type 1 receptor antagonist on binge-like alcohol drinking in rats. Behav Pharmacol 2008; 19:1-12. [PMID: 18195589 PMCID: PMC2586833 DOI: 10.1097/fbp.0b013e3282f3cf70] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A 'binge' is defined by National Institute on Alcohol Abuse and Alcoholism as an excessive pattern of alcohol drinking that produces blood-alcohol levels (BALs) greater than 0.08 g% within a 2-h period and may or may not be associated with dependence. The purpose of this investigation was to explore the effects of several neuropharmacological agents in an animal model in which outbred rats voluntarily and orally self-administer pharmacologically meaningful alcohol doses that produce BALs >or=0.08 g% in daily limited access two-bottle choice and operant drinking sessions. Rats were trained to self-administer either 10% (w/v) alcohol solution sweetened with 'supersac' (3% glucose+0.125% saccharin) or supersac alone versus water in a two-bottle choice or operant situation during 30-min daily sessions. Rats were then injected systemically with multiple doses of duloxetine, naltrexone, and the corticotropin-releasing factor antagonist, MPZP, in Latin-square designs. Alcohol binge drinkers reliably consumed amounts of alcohol sufficient to produce BALs >or=0.08 g%. Duloxetine dose-dependently suppressed two-bottle choice alcohol binge drinking and operant alcohol responding as well as operant supersac responding, but did not affect two-bottle choice supersac drinking. Naltrexone-suppressed alcohol binge drinking at very low doses and suppressed supersac drinking at moderate-to-high doses. MPZP did not affect alcohol or supersac consumption. Different profiles for drugs that suppress binge-like alcohol drinking compared with dependence-induced drinking provide a heuristic foundation for future medications development.
Collapse
Affiliation(s)
- Dong Ji
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute, La Jolla, California, USA
| | - Nicholas W. Gilpin
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Heather N. Richardson
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Catherine L. Rivier
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute, La Jolla, California, USA
| | - George F. Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
91
|
Lowery EG, Sparrow AM, Breese GR, Knapp DJ, Thiele TE. The CRF-1 receptor antagonist, CP-154,526, attenuates stress-induced increases in ethanol consumption by BALB/cJ mice. Alcohol Clin Exp Res 2008; 32:240-8. [PMID: 18162074 PMCID: PMC2274904 DOI: 10.1111/j.1530-0277.2007.00573.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) signaling modulates neurobiological responses to stress and ethanol, and may modulate observed increases in ethanol consumption following exposure to stressful events. The current experiment was conducted to further characterize the role of CRF1 receptor (CRF1R) signaling in stress-induced increases in ethanol consumption in BALB/cJ and C57BL/6N mice. METHODS Male BALB/cJ and C57BL/6N mice were given continuous access to 8% (v/v) ethanol and water for the duration of the experiment. When a baseline of ethanol consumption was established, animals were exposed to 5 minutes of forced swim stress on each of 5 consecutive days. Thirty minutes before each forced swim session, animals were given an intraperitoneal injection of a 10 mg/kg dose of CP-154,526, a selective CRF1R antagonist, or an equal volume of vehicle. The effect of forced swim stress exposure on consumption of a 1% (w/v) sucrose solution was also investigated in an ethanol-naïve group of BALB/cJ mice. RESULTS Exposure to forced swim stress significantly increased ethanol consumption by the BALB/cJ, but not of the C57BL/6N, mice. Stress-induced increases in ethanol consumption were delayed and became evident approximately 3 weeks after the first stressor. Additionally, forced swim stress did not cause increases of food or water intake and did not promote delayed increases of sucrose consumption. Importantly, BALB/cJ mice pretreated with the CRF1R antagonist showed blunted stress-induced increases in ethanol intake, and the CRF1R antagonist did not influence the ethanol drinking of non-stressed mice. CONCLUSIONS The present results provide evidence that CRF1R signaling modulates the delayed increase of ethanol consumption stemming from repeated exposure to a stressful event in BALB/cJ mice.
Collapse
Affiliation(s)
- Emily G Lowery
- Department of Psychology, University of North Carolina, Chapel Hill, North Carolina 27599-3270, USA
| | | | | | | | | |
Collapse
|
92
|
Abstract
Stress, acting through glucocorticoids (GC), has profound effects on brain physiology and pathology and is causally implicated in depressive illness. Here, we consider the information derived from genetic models generated to probe the role of the hypothalamo-pituitary-adrenal axis in depression. This essay also briefly reviews the status of knowledge regarding GC actions on neuronal birth, survival and death from the perspective of the importance of these phenomena in depression.
Collapse
Affiliation(s)
- Shuang Yu
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | | | | |
Collapse
|
93
|
Boyce-Rustay JM, Janos AL, Holmes A. Effects of chronic swim stress on EtOH-related behaviors in C57BL/6J, DBA/2J and BALB/cByJ mice. Behav Brain Res 2008; 186:133-7. [PMID: 17822784 PMCID: PMC2695676 DOI: 10.1016/j.bbr.2007.07.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 06/06/2007] [Accepted: 07/19/2007] [Indexed: 11/26/2022]
Abstract
There is a strong clinical relationship between stress and stress-related disorders and the incidence of alcohol abuse and alcoholism, and this relationship appears to be partly genetic in origin. There are marked strain differences in ethanol (EtOH)-related behaviors and reactivity to stress, but little investigation of the interaction between the two. The present study assessed the effects of chronic exposure to swim stress on EtOH-related behavior in three common inbred strains of mice, C57BL/6J, DBA/2J and BALB/cByJ. After establishing baseline (10%) EtOH self-administration in a two-bottle free choice test, mice were exposed to daily swim stress for 14 consecutive days and EtOH consumption was measured as a percent of baseline both during stress and for 10 days afterwards. A separate experiment examined the effects of 14 days of swim stress on sensitivity to the sedative/hypnotic effects of an acute injection of 4g/kg EtOH. Results showed that stress produced a significant decrease in EtOH consumption, relative to pre-stress baseline, in DBA/2J and BALB/cByJ, but not C57BL/6J mice. By contrast, stress increased sensitivity to the sedative/hypnotic effects of EtOH in all three strains. These findings demonstrate that chronic swim stress produces reductions in EtOH self-administration in a strain-dependent manner, and that these effects may be restricted to strains with a pre-existing aversion to EtOH. Present data also demonstrates a dissociation between effects of this stressor on EtOH self-administration and sensitivity to EtOH's sedative/hypnotic effects. In conclusion, strain differences, that are likely in large part genetic in nature, modify the effects of this stressor on EtOH's effects in a behavior-specific manner.
Collapse
Affiliation(s)
- Janel M Boyce-Rustay
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA.
| | | | | |
Collapse
|
94
|
Vadasz C, Saito M, Gyetvai BM, Oros M, Szakall I, Kovacs KM, Prasad VVTS, Toth R. Glutamate receptor metabotropic 7 is cis-regulated in the mouse brain and modulates alcohol drinking. Genomics 2007; 90:690-702. [PMID: 17936574 DOI: 10.1016/j.ygeno.2007.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 08/07/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
Abstract
Alcoholism is a heritable disease that afflicts about 8% of the adult population. Its development and symptoms, such as craving, loss of control, physical dependence, and tolerance, have been linked to changes in mesolimbic, mesocortical neurotransmitter systems utilizing biogenic amines, GABA, and glutamate. Identification of genes predisposing to alcoholism, or to alcohol-related behaviors in animal models, has been elusive because of variable interactions of multiple genes with relatively small individual effect size and sensitivity of the predisposing genotype to lifestyle and environmental factors. Here, using near-isogenic advanced animal models with reduced genetic background interactions, we integrate gene mapping and gene mRNA expression data in segregating and congenic mice and identify glutamate receptor metabotropic 7 (Grm7) as a cis-regulated gene for alcohol consumption. Traditionally, the mesoaccumbal dopamine reward hypothesis of addiction and the role of the ionotropic glutamate receptors have been emphasized. Our results lend support to an emerging direction of research on the role of metabotropic glutamate receptors in alcoholism and drug addiction. These data suggest for the first time that Grm7 is a risk factor for alcohol drinking and a new target in addiction therapy.
Collapse
Affiliation(s)
- Csaba Vadasz
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Heilig M, Koob GF. A key role for corticotropin-releasing factor in alcohol dependence. Trends Neurosci 2007; 30:399-406. [PMID: 17629579 PMCID: PMC2747092 DOI: 10.1016/j.tins.2007.06.006] [Citation(s) in RCA: 369] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 05/10/2007] [Accepted: 06/22/2007] [Indexed: 11/21/2022]
Abstract
Recent data indicate that alcohol dependence induces long-term neuroadaptations that recruit a negative emotional state. This leads to excessive alcohol ingestion motivated by relief of negative emotionality. A key mechanism in this transition to negative reinforcement is a recruitment of corticotropin-releasing factor (CRF) signaling within the amygdala. Long term upregulation of CRF(1) receptors is observed in the amygdala following a history of dependence, and CRF antagonists selectively block emotionality, excessive alcohol drinking and stress-induced reinstatement of alcohol-seeking in post-dependent animals. Innate upregulation of CRF(1) receptor expression mimics the post-dependent phenotype, both with regard to emotional responses and ethanol self-administration. Therefore, the CRF system is emerging as a key element of the neuroadaptive changes driving alcoholism and as a major target for its treatment.
Collapse
Affiliation(s)
- Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute of Alcohol Abuse and Alcoholism (NIAAA), NIH, 10 Center Dr., 1/5334, Bethesda, MD 20892, USA.
| | | |
Collapse
|
96
|
Goodman A. Neurobiology of addiction. An integrative review. Biochem Pharmacol 2007; 75:266-322. [PMID: 17764663 DOI: 10.1016/j.bcp.2007.07.030] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 02/08/2023]
Abstract
Evidence that psychoactive substance use disorders, bulimia nervosa, pathological gambling, and sexual addiction share an underlying biopsychological process is summarized. Definitions are offered for addiction and addictive process, the latter being the proposed designation for the underlying biopsychological process that addictive disorders are hypothesized to share. The addictive process is introduced as an interaction of impairments in three functional systems: motivation-reward, affect regulation, and behavioral inhibition. An integrative review of the literature that addresses the neurobiology of addiction is then presented, organized according to the three functional systems that constitute the addictive process. The review is directed toward identifying candidate neurochemical substrates for the impairments in motivation-reward, affect regulation, and behavioral inhibition that could contribute to an addictive process.
Collapse
Affiliation(s)
- Aviel Goodman
- Minnesota Institute of Psychiatry, 1347 Summit Avenue, St. Paul, MN 55105, USA.
| |
Collapse
|
97
|
Chu K, Koob GF, Cole M, Zorrilla EP, Roberts AJ. Dependence-induced increases in ethanol self-administration in mice are blocked by the CRF1 receptor antagonist antalarmin and by CRF1 receptor knockout. Pharmacol Biochem Behav 2007; 86:813-21. [PMID: 17482248 PMCID: PMC2170886 DOI: 10.1016/j.pbb.2007.03.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 03/19/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
Models of dependence-induced increases in ethanol self-administration will be critical in increasing our understanding of the processes of addiction and relapse, underlying mechanisms, and potential therapeutics. One system that has received considerable attention recently is the CRF(1) system that may mediate the link between anxiety states and relapse drinking. C57BL/6J mice were trained to lever press for ethanol, were made dependent and then were allowed to self-administer ethanol following a period of abstinence. The effect of the CRF(1) antagonist, antalarmin, was examined on this abstinence-induced self-administration in a separate group of mice. Finally, dependence-induced changes in ethanol self-administration were examined in CRF(1) knockout and wild type mice. The results indicated that ethanol self-administration was increased following the induction of dependence, but only after a period of abstinence. This increase in ethanol self-administration was blocked by antalarmin. Furthermore, CRF(1) knockout mice did not display this increased ethanol self-administration following dependence and abstinence. These studies, using both a pharmacological and genetic approach, support a critical role for the CRF(1) system in ethanol self-administration following dependence. In addition, a model is presented that may be useful for studies examining underlying mechanisms of the ethanol addiction process as well as for testing potential therapeutics.
Collapse
Affiliation(s)
- Kathleen Chu
- Molecular and Integrative Neurosciences Department, SV 142, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92036, USA
| | | | | | | | | |
Collapse
|
98
|
Boyce-Rustay JM, Cameron HA, Holmes A. Chronic swim stress alters sensitivity to acute behavioral effects of ethanol in mice. Physiol Behav 2007; 91:77-86. [PMID: 17363014 DOI: 10.1016/j.physbeh.2007.01.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 01/09/2007] [Accepted: 01/31/2007] [Indexed: 11/28/2022]
Abstract
Epidemiological data support a strong link between stress, stress-related disorders and risk for alcoholism. However, precisely how stress might impact sensitivity to the intoxicating effects of ethanol or the willingness to voluntary consume ethanol remains unclear. The present study assessed the effects of daily exposure to forced swim stress on subsequent sensitivity to the sedative/hypnotic, hypothermic, ataxic (measured using accelerating rotarod), and anxiolytic-like (measured using elevated plus-maze) effects of ethanol, and ethanol consumption and preference in a two-bottle choice paradigm, in male C57BL/6J mice. Stress effects on the sedative/hypnotic effects of the barbiturate pentobarbital were also tested. Results showed that chronic (fourteen days) but not acute (one or three days) swim stress significantly potentiated the sedative/hypnotic and hypothermic effects of 4 g/kg, but not 3 g/kg, ethanol. The sedative/hypnotic effects of pentobarbital were attenuated by chronic swim stress. Irrespective of chronicity, swim stress did not alter the ataxic or anxiolytic-like effects of ethanol, or alter ethanol self-administration either during or after stress. These data provide further evidence that stress alters the intoxicating effects of high doses of ethanol in a behaviorally selective manner.
Collapse
Affiliation(s)
- Janel M Boyce-Rustay
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States.
| | | | | |
Collapse
|
99
|
Schierloh A, Deussing J, Wurst W, Zieglgänsberger W, Rammes G. Corticotropin-releasing factor (CRF) receptor type 1-dependent modulation of synaptic plasticity. Neurosci Lett 2007; 416:82-6. [PMID: 17316992 DOI: 10.1016/j.neulet.2007.01.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 01/23/2007] [Indexed: 11/26/2022]
Abstract
CRF receptor type (CRHR) 1 exerts neuroregulatory control on associative learning processes such as fear and anxiety like behaviour. Using hippocampal slices, we investigated the neuronal excitability in mice lacking CRHR1 (Crhr1(-/-)). Compared to wild-type mice, long-term potentiation (LTP) elicited by 100 pulses at 100Hz was not different. Unexpectedly, at lower frequencies (1, 5 or 10Hz), the resulting synaptic changes in CA1 neurons of Crhr1(-/-) were systematically shifted towards long-term depression (LTD). Furthermore, testing paired-pulse paradigm revealed a GABA receptor-dependent decrease of paired-pulse ratio in Crhr1(-/-). It might be assumed that a lack of CRHR1 induce developmental changes which resulted in altered GABAergic activity, producing attenuated synaptic potentiation after repetitive stimulation and thus favouring LTD in principal neurons. Since CRHR1 are located in GABAergic somata, axons and boutons the activity of these receptor types rather might contribute to the development of the neuronal ability for plasticity like processes on the level of NMDAR subunit composition and GABAergic activity.
Collapse
Affiliation(s)
- Anja Schierloh
- Clinical Neuropharmacology, Max-Planck-Institute of Psychiatry, Kraepelinstr 2-10, Munich, Germany
| | | | | | | | | |
Collapse
|
100
|
Hillemacher T, Bleich S, Frieling H, Schanze A, Wilhelm J, Sperling W, Kornhuber J, Kraus T. Evidence of an association of leptin serum levels and craving in alcohol dependence. Psychoneuroendocrinology 2007; 32:87-90. [PMID: 17095166 DOI: 10.1016/j.psyneuen.2006.09.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/26/2006] [Accepted: 09/29/2006] [Indexed: 11/21/2022]
Abstract
Recent studies have described an association of leptin serum levels and craving in alcohol dependent patients. The aim of the present study was to investigate a large patients' sample using a power-based statistical analysis. We included 156 male and 33 female patients suffering from alcohol dependence admitted for detoxification treatment. Leptin serum levels were measured using a commercial ELISA kit. The Obsessive Compulsive Drinking Scale (OCDS) was used to assess alcohol craving at admission. For both genders Spearman's correlation revealed significant results. These findings could be confirmed using multiple linear regression models (males: r=1.881, t=4.338, p<0.001; females: r=6.160, t=5.793, p<0.001) with a power of 1.00. In contrast to previous results describing an association only in female patients, this power-based analysis shows that leptin is associated with alcohol craving in both genders.
Collapse
Affiliation(s)
- Thomas Hillemacher
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|